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THE DIRICHLET PROBLEM FOR DIFFERENTIAL EQUATIONS IN

A BANACH SPACE

M. L. GORBACHUK AND V. I. GORBACHUK

Dedicated to the blessed memory of A. G. Kostyuchenko

Abstract. In the paper, we consider an abstract differential equation of the form
(

∂2

∂t2
−B

)m
y(t) = 0, where B is a positive operator in a Banach space B. For

solutions of this equation on (0,∞), it is established the analogue of the Phragmen-
Lindelöf principle on the basis of which we show that the Dirichlet problem for the

above equation is uniquely solvable in the class of vector-valued functions admitting
an exponential estimate at infinity. The Dirichlet data may be both usual and gen-
eralized with respect to the operator −B1/2.The formula for the solution is given,
and some applications to partial differential equations are adduced.

1. Let B be a Banach space with norm ‖ · ‖ over the field C of complex numbers,
and let E(B) (L(B)) be the set of all densely defined closed (bounded) linear operators
on B. In what follows {etA}t≥0 denotes a C0-semigroup of bounded linear operators
on B with infinitesimal generator A (for the theory of semigroups of linear operators
on Banach and locally convex spaces we refer, for instance, to [1–4]). Recall only that
a family U = {U(t)}t≥0 of operators U(t) ∈ L(B) forms a C0-semigroup on B if the
following three properties are satisfied:

1) U(0) = I, the identity operator on B;
2) U(t)U(s) = U(t+ s) for all t, s ≥ 0;
3) lim

t→0
‖U(t)x− x‖ = 0 for all x ∈ B.

The infinitesimal generator of U, or briefly the generator, is the linear operator A

with domain D(A) defined by

D(A) =

{
x ∈ B : lim

t→0

1

t
(U(t)x− x) exists

}
,

Ax = lim
t→0

1

t
(U(t)x− x), x ∈ D(A).

This operator is closed, its domain D(A) is dense inB andU-invariant, i.e. U(t)x ∈ D(A)
for all x ∈ D(A), t ≥ 0, and AU(t)x = U(t)Ax. Moreover,

d

dt
U(t)x = AU(t)x, x ∈ D(A).

Finally, assume that ker etA = {0} for any t > 0. Without loss of generality it may be
also supposed {etA}t≥0 to be a contraction semigroup.

We introduce the space B−t(A), t > 0, as a completion of B in the norm

‖x‖−t =
∥∥etAx

∥∥ .
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The norms ‖ · ‖−t, t > 0, are compatible and comparable on B. So, for t < t′ we have a
dense and continuous embedding

(1) B ⊆ B−t(A) ⊆ B−t′(A).

We put B−(A) =
⋂

t>0 B−t(A) and endow B−(A) with the projective limit topology of
the Banach spaces B−t(A)

B−(A) = proj lim
t→0

B−t(A).

Observe that it suffices for obtainingB−(A) to restrict ourselves to the spacesB− 1

n
(A), n ∈

N. Thus, B−(A) is a complete countably normed space. (As for countably normed spaces
and operators on them see [5]).

The operator etA admits a continuous extension Ũ(t) onto B−t(A). Moreover, because
of continuity of embedding (1),

(2) Ũ(t′) ↾B−t(A)= Ũ(t) as 0 < t < t′.

On the space B−(A) we define the operators U(t) in such a way:

∀x ∈ B−(A) : U(t)x = Ũ(t)x as t > 0; U(0)x = x.

In view of (2), this definition is correct.
The family U = {U(t)}t≥0 forms an equicontinuous C0-semigroup on B−(A). As has

been shown in [6 - 8], this semigroup possesses the following properties:
(i) ∀t > 0 : U(t)B−(A) ⊆ B;
(ii) ∀t > 0, ∀x ∈ B : U(t)x = etAx;
(iii) ∀t > 0, ∀x ∈ B−(A) : U(t+ s)x = etAU(s)x = esAU(t)x.
If the semigroup {etA}t≥0 is differentiable on (0,∞), then (see [9]) the embedding

of B into B−(A) is strict, the generator Â of the semigroup {U(t)}t≥0 is defined and

continuous on the whole space B−(A), and Â is the closure of A in B−(A). So, the

semigroup {etÂ}t≥0 is infinitely differentiable in B−(A) on [0,∞). If 0 ∈ ρ(A), (ρ(·)

denotes the resolvent set of an operator), then the operator Â has a continuous inverse
defined on the whole B−(A).

2. Consider now the equation

(3)

(
d2

dt2
−B

)m

y(t) = 0, t ∈ (0,∞), m ∈ N,

where B is a positive operator on B, that is, B ∈ E(B), (−∞, 0] ⊂ ρ(B), and there
exists a constant M > 0 such that

∀λ ≥ 0 : ‖RB(−λ)‖ ≤
M

1 + λ

(RB(λ) = (B − λI)−1 is the resolvent of the operator B).
As has been shown in [10, 11], for such an operator the fractional powers Bα, 0 <

α < 1, can be determined, and the operator A = −B1/2 is the generator of a bounded
analytic semigroup {etA}t≥0 on B with negative type

ω(A) := lim
t→∞

ln ‖etA‖

t
= inf

t∈(0,∞)

ln ‖etA‖

t
= sup{ℜλ : λ ∈ σ(A)}

(σ(·) denotes the spectrum of an operator).
By a (classical) solution of equation (3) on (0,∞) we mean 2m times continuously dif-

ferentiable on (0,∞)B-valued vector function y(t) such that for any t ∈ (0,∞), y(2k)(t) ∈
D(Bm−k) (k = 0, 1, . . . ,m), Bm−ky(2k)(t) are continuous in B on (0,∞), and y(t) satis-
fies (3). All the solutions of (3) on (0,∞) were described in [9]. Moreover, it was proved



142 M. L. GORBACHUK AND V. I. GORBACHUK

there that every solution y(t) and its arbitrary order derivatives have boundary values
at the point 0 in the space B−(A), i.e.

lim
t→0

y(k)(t) = yk ∈ B−(A),

where the limit is taken in B−(A)-topology.
The Dirichlet problem for equation (3) consists in finding solutions of this equation

on (0,∞) satisfying the conditions

(4) y(k)(0) := lim
t→0

y(k)(t) = yk ∈ B−(A), k = 0, 1, . . . ,m− 1.

In the case of m = 1, it was considered in [11–15].
Let us start from the homogeneous Dirichlet problem

(5) y(k)(0) = 0, k = 0, 1, . . . ,m− 1.

To solve this problem, we need the space of entire vectors of the operator A (see [16]),
that is, the space

G(1)(A) = proj lim
0<α→0

G
α
1 (A) =

⋂

α>0

G
α
1 (A),

where

G
α
1 (A) =

{
x ∈

⋂

n∈N0

D(An)
∣∣∃c = c(x) > 0, ∀k ∈ N0 = {0} ∪ N : ‖Akx‖ ≤ cαkkk

}

is a Banach space with norm

‖x‖Gα
1
(A) = sup

k∈N0

‖Akx‖

αkkk
.

The convergence in G(1)(A) means the convergence in each Gα
1 (A), α > 0. Note that

G(1)(A) may be obtained if we confine ourselves only to α = 1
n , n ∈ N. So, G(1)(A) is

countably normed. Since the semigroup {etA}t≥0 is analytic, the set G(1)(A) is dense in
B,

G(1)(A) =
⋂

t>0

R(etA)

(R(·) denotes the range of an operator), and the operator-valued function

exp(zA) :=
∞∑

k=0

zk

k!
Ak

is entire in the space G(1)(A) (see [6, 17]). Moreover, the family {exp(zA)}z∈C forms an
one-parameter C0-group on G(1)(A), and

∀x ∈ G(1)(A) : exp(tA)x =

{
etAx as t ≥ 0,(

e−tA
)−1

x as t < 0.

Theorem 1. The set of all solutions of the homogeneous Dirichlet problem (3), (5)
represents an infinite-dimensional linear space, and every solution of this problem is
entire vector-valued function in G(1)(A).

Proof. In accordance with [9], a vector-valued function y(t) is a solution of equation (3)
on (0,∞) if and only if it may be written in the form

(6) y(t) = y1(t) + y2(t),

where

y1(t) =

m−1∑

k=0

tketÂfk, fk ∈ B−(A),
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y2(t) =

m−1∑

k=0

tk exp(−tA)gk, gk ∈ G(1)(A),

with vectors fk, gk being uniquely determined by y(t).
It is not difficult to count that

(7)

(
d

dt
− Â

)k

y1(t) =
m−1∑

i=k

i(i− 1) . . . (i−k+1)ti−ketÂfi, t > 0, k = 0, 1, . . . ,m− 1.

On the other hand,
(

d

dt
− Â

)k

y1(t) =

k∑

i=0

(−1)k−iCi
kÂ

k−iy
(i)
1 (t).

The continuity of Â in B−(A) implies

lim
t→0

(
d

dt
− Â

)k

y1(t) =

k∑

i=0

(−1)k−iCi
kÂ

k−iy
(i)
1 (0),

whence, by virtue of (7),

k!fk =

k∑

i=0

(−1)k−iCi
kÂ

k−iy
(i)
1 (0), k = 0, 1, . . . ,m− 1.

So,

k∑

i=0

(−1)k−iCi
kÂ

k−iy(i)(0) = k!fk +
k∑

i=0

(−1)k−iCi
kA

k−iy
(i)
2 (0), k = 0, 1, . . . ,m− 1.

Hence, in the case of homogeneous Dirichlet problem,

fk = −
1

k!

k∑

i=0

(−1)k−iCi
kA

k−iy
(i)
2 (0), k = 0, 1, . . . ,m− 1.

Then the inclusion
k∑

i=0

(−1)k−iCi
kA

k−iy
(i)
2 (0) ∈ G(1)(A)

implies fk ∈ G(1)(A) and this, in turn, makes possible to conclude that the vector-valued
function y(t) is entire in G(1)(A).

The infinite dimension of the set of all solutions of problem (3), (5) is verified at least
due to the fact that vector-valued functions

y(t) =
sinh tA

A
g =

exp(tA)− exp(−tA)

A
g,

where g goes through the whole space G(1)(A), are its solutions. �

As is seen from the proof of Theorem 1, in the case of m = 1, all the solutions of
problem (3), (5) on (0,∞) are given by the formula

(8) y(t) =
sinh tB1/2

B1/2
g̃0, g̃0 ∈ G(1)(B

1/2).

Indeed, in this case, because of (6), a vector-valued function y(t) is a solution of this
problem if and only if

y(t) = etÂf0 + exp(−tA)g0, f0 ∈ B−(A), g0 ∈ G(1)(A).

Since

y(0) = f0 + g0 = 0,
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we arrive at (8) with g̃0 = −2B1/2g0 ∈ G(1)(B
1/2).

If m = 2, then, in view of (6), every solution of (3), (5) has the form

y(t) = etÂf0 + tetÂf1 + exp(−tA)g0 + t exp(−tA)g1,

fk ∈ B−(A), gk ∈ G(1)(A), k = 0, 1.

The condition y(0) = y′(0) = 0 yields

f0 = −g0 ∈ G(1)(A), f1 = 2Ag0 − g1 ∈ G(1)(A),

whence

y(t) =

(
sinh tB1/2

B1/2
− tetB

1/2

)
g̃0 +

t sinh tB1/2

B1/2
g̃1,

where g̃0 = −2B1/2g0, g̃1 = −2g1 ∈ G(1)(B
1/2).

It turns out to be that under certain conditions on behavior on infinity of solutions of
(3), (5), this problem has at most the trivial one. To show this, we shall first prove that
the analog of the Phragmen-Lindelöf principle for analytic functions is valid for solutions
of equation (3) on (0,∞). Namely, the following assertion holds.

Theorem 2. (Analog of the Phragmen-Lindelöf principle). Let ω = −ω(A) > 0 where
ω(A) is the type of

{
etA
}
t≥0

, A = −B1/2. If for a solution y(t) of equation (3) on

(0,∞) the relation

(9) ∀ω′ ∈ (0, ω), ∃cω′ > 0 : ‖y(t)‖ ≤ cω′eω
′t

is fulfilled for large enough t > 0 (cω′ = const), then

(10) ∀ω′′ ∈ (0, ω)∃cω′′ > 0 : ‖y(t)‖ ≤ cω′′e−ω′′t, t > 0.

for sufficiently large t > 0

Proof. Let y(t) be a solution of equation (3) on (0,∞) satisfying (9). Then y(t) may
be represented in the form (6). It is not hard to show that for arbitrary fixed ε > 0 and
t0 > 0, there exists a constant cε = cε(t0) > 0 such that

(11) ∀t ≥ t0 : ‖y1(t)‖ ≤ cεe
−(ω−ε)t.

Indeed, for any f ∈ B−(A) and t ≥ t0, the relation
∥∥∥etÂf

∥∥∥ =
∥∥∥e(t−t0)Aet0Âf

∥∥∥ ≤
∥∥∥e(t−t0)A

∥∥∥ ‖f̃‖

holds with f̃ = et0Âf ∈ B, whence, by definition of the type of a semigroup, for any
δ > 0, t ≥ t0,

(12)
∥∥∥etÂf

∥∥∥ ≤ c′δe
−(ω−δ)(t−t0)‖f̃‖ = cδe

−(ω−δ)t,

where cδ = c′δe
(ω−δ)t0‖f̃‖. This implies

‖y1(t)‖ =

∥∥∥∥∥

m−1∑

k=0

tketÂfk

∥∥∥∥∥ ≤

m−1∑

k=0

tk
∥∥∥etÂfk

∥∥∥

(13) ≤
m−1∑

k=0

tkckδe
−(ω−δ)t ≤

m−1∑

k=0

ck,δe
−(ω−2δ)t = cεe

−(ω−ε)t,

Here t ≥ t0, ε = 2δ > 0, cε =
∑m−1

k=0 ckδ, ckδ > 0 is the constant in (12) when it is put
f = fk there.

Now let g ∈ G(1)(A). Since for any ε > 0,

‖g‖ =
∥∥etA exp(−tA)g

∥∥ ≤
∥∥etA

∥∥ ‖ exp(−tA)g‖ ≤ c′εe
−(ω−ε)t‖ exp(−tA)g‖,
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0 < c′ε = const,

we obtain

∀t > 0 : ‖ exp(−tA)g‖ ≥ c′′εe
(ω−ε)t‖g‖,

(c′′ε = c′−1
ε does not depend on t). It follows from here that for any ε > 0,

‖y2(t)‖ = ‖ exp(−tA)g(t)‖ ≥ c′′εe
(ω−ε)t‖g(t)‖,

where

g(t) =

m−1∑

k=0

tkgk ∈ G(1)(A).

Suppose y2(t) 6≡ 0. This means that in representation (6) there exists at least one
gk 6= 0, k = 0, 1, . . . ,m− 1; for the sake of simplicity we set gm−1 6= 0. Then

‖y2(t)‖ ≥ c′′εe
(ω−ε)t

(
tm−1‖gm−1‖ −

∥∥∥∥∥

m−2∑

k=0

tkgk

∥∥∥∥∥

)

= c′′εe
(ω−ε)ttm−1

(
‖gm−1‖ −

∥∥∥∥∥

m−2∑

k=0

tk−m+1gk

∥∥∥∥∥

)
.

Taking into account that
∥∥∥∥∥

m−2∑

k=0

tk−m+1gk

∥∥∥∥∥→ 0 as t → ∞,

and for sufficiently large t > 0,

tm−1 > e−εt,

we conclude that

∀ε > 0 : ‖y2(t)‖ ≥ c̃εe
(ω−2ε)t

(t > 0 is large enough); moreover, the constant c̃ε does not depend on t.
On the other hand, due to (9), (13),

∀ε ∈ (0, ω), ∃ω′ ∈ (0, ω) : ‖y2(t)‖ = ‖y(t)− y1(t)‖ ≤ ‖y(t)‖+ ‖y1(t)‖

≤ cω′eω
′t + cεe

−(ω−ε)t ≤ c̃ω′eω
′t.

Thus, we have a two-sided estimate

c̃εe
(ω−2ε)t ≤ ‖y2(t)‖ ≤ c̃ω′eω

′t.

Putting

ϕ(t) =
‖y2(t)‖

c̃εe(ω−2ε)t
, ε =

ω − ω′

4
,

we get for sufficiently large t > 0,

1 ≤ ϕ(t) ≤ cεω′et
ω′

−ω
2 ,

where the constant cεω′ = c̃ω′

c̃ε
> 0 does not depend on t, which is impossible as ω′−ω

2 < 0.

So, in representation (6) y2(t) ≡ 0. Setting ω′′ = ω − ε, we obtain

∀ω′′ ∈ (0, ω) : ‖y(t)‖ = ‖y1(t)‖ ≤ cω′′e−ω′′t.

�

Theorem 3. In the class of vector-valued functions y(t) satisfying the condition

(14) ∀ε ∈ (0, ω), ∃cε > 0 : ‖y(t)‖ ≤ cεe
(ω−ε)t

for sufficiently large t > 0, the homogeneous Dirichlet problem (3), (5) has only a trivial
solution.
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Proof. When proving the previous theorem, we had established that if a solution y(t) of
equation (3) on (0,∞) satisfies (14), then in its representation (6) y2(t) ≡ 0. Thus,

y(t) =
m−1∑

k=0

tketÂfk, fk ∈ B−(A).

If, in addition, the condition (5) holds true, then the formula for k!fk from the proof of
Theorem 1 shows that fk = 0 for all k = 0, 1, . . . ,m− 1, which is what had to be proved.

�

3. Let A = −B1/2. For any x ∈ D(An), n ∈ N, we put

‖x‖Hn(A) = ‖Anx‖.

The space

H
n(A) =

(
D(An), ‖ · ‖Hn(A)

)

is the Sobolev space of order n associated to
{
etA
}
t≥0

(see [4]). Define the space H−n(A)

as a completion of B in the norm

‖x‖H−n(A) = ‖A−nx‖.

Obviously,

(15) H
n(A) ⊆ B ⊆ H

−n(A) ⊆ B−(A).

Moreover (see [4]), the embeddings (15) are dense and continuous, AHn(A) = Hn−1(A),{
etA ↾Hn(A)

}
t≥0

is a C0-semigroup on Hn(A), and the extensions of etA, t ≥ 0, to H−n(A)

form a C0-semigroup on H−n(A).

4. Pass now to the inhomogeneous Dirichlet problem (3), (4).

Theorem 4. There exists a unique solution of problem (3), (4) in the class of vector-
valued functions y(t) satisfying (9). Moreover, if y(i)(0) = yi ∈ Hp−i(A), p ∈ Z, then for
the corresponding solution y(t), the vector-valued functions y(i)(t), i = 0, 1, . . . ,m − 1,
are continuous on [0,∞) in the space Hp−i(A)

Proof. As was shown in the proof of Theorem 3, every solution of (3) satisfying (9) may
be represented in the form

(16) y(t) =

m−1∑

k=0

tketÂfk, fk ∈ B−(A),

where,

(17) k!fk =
k∑

i=0

(−1)k−iCi
kÂ

k−iyi, k = 0, 1, . . . ,m− 1.

Thus, fk are uniquely determined by the vectors yi = y(i)(0). Then the uniqueness of
a solution of (3), (4) in the class of vector-valued functions satisfying (9) follows from
Theorem 3.

Let X be an arbitrary Banach space, and {T (t)}t≥0 be a bounded analytic C0-
semigroup on X with generator A, 0 ∈ ρ(A). Then the vector-valued function

yk(t) = tkAkT (t)x, k ∈ N, x ∈ X,

is continuous in X, and

∀k ∈ N : yk(t) → 0 in X as t → 0.

Indeed, the bounded analyticity of {T (t)}t≥0 implies (see e.g. [1–4]) the inequality

‖tkAkT (t)‖X ≤ ck, 0 < ck = const.
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If x ∈ D(Ak), then x = A−kg, g ∈ X, and

∀k ∈ N : ‖tkAkT (t)x‖X = tk‖T (t)g‖X → 0 as t → 0.

Taking into account the density of D(Ak) in X, we conclude, on the basis of the Banach-
Steinhaus theorem, that the vector-valued function yk(t) = tkAkT (t)x is continuous for
any x ∈ X; moreover, for any k ∈ N, yk(t) → 0 as t → 0.

Assume now A = −B1/2 and y(i)(0) = yi ∈ Hp−i(A) with some p ∈ Z. Then, because
of (17),

fk = Âkhk,

where

hk =
1

k!

k∑

i=0

(−1)k−iCi
kÂ

−iyi ∈ H
p(A), k ∈ N0,

whence

y(t) =

m−1∑

k=0

tkÂketÂhk, hk ∈ H
p(A).

Setting in the above argumentsX = Hp(A), T (t) = etÂ, we find that y ∈ C([0,∞),Hp(A)),
and y(t) → f0 = y0 in the space Hp(A) as t → 0. Analogously,

y(i)(t) = Âi
m−1∑

k=0

tkÂketÂhki =

m−1∑

k=0

tkÂketÂÂihki,

where hki ∈ Hp(A) as a linear combination of hk. So Âihki ∈ Hp−i(A). Putting X =

Hp−i(A) and T (t) = etÂ, we arrive at the inclusion y(i) ∈ C([0,∞),Hp−i(A)). �

5. Let B = H be a Hilbert space with the scalar product (·, ·), and let A be a
selfadjoint positive definite operator on H whose spectrum σ(A) is discrete. Denote by
{λk}

∞
k=1 the sequence of eigenvalues of A arranged in ascending order so that every

eigenvalue is repeated according to its multiplicity. Let also {ek}
∞
k=1 be the orthonormal

basis in H composed from the eigenvectors of A. The operator −A generates an analytic
C0-semigroup {e−tA}t≥0 acting on H as

e−tAf =

∞∑

k=1

e−tλk(f, ek)ek.

Put

Φm(A) =

{
f ∈ H

∣∣f =

m∑

k=1

(f, ek)ek

}
.

Evidently, Φm+1(A) ⊃ Φm(A). We set

Φ(A) = ind lim
m→∞

Φm(A).

The set Φ(A) is A-invariant and dense in H. Since Φm(A) is a subspace of Φm+1(A), the
above inductive limit is regular (see [18]). The convergence fn → 0 in Φ(A) as n → ∞
means that

∃m ∈ N, ∀n ∈ N : fn ∈ Φm(A) and ‖fn‖ → 0, n → ∞.

The space Φ(A) is complete with respect to this convergence.
Denote by Φ′(A) the space of continuous antilinear functionals f on Φ(A) with the

weak convergence:

Φ′(A) ∋ fn → f in Φ′(A), n → ∞ ⇐⇒ ∀ϕ ∈ Φ(A) : (fn, ϕ) → (f, ϕ).
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((f, ϕ) is the action of the functional f ∈ Φ′(A) onto ϕ ∈ Φ(A), which is the extension
of the scalar product (·, ·) from to Φ′(A)×Φ(A) (see [19])). Associating with each f ∈ H

the functional Ff ∈ Φ′(A) : (Ff , ϕ) = (f, ϕ) , we construct the chain

Φ(A) ⊂ H ⊂ Φ′(A)

of continuous embeddings. The elements of Φ′(A) are called generalized vectors connected
with the operator A.

Denote by S the space of all number consequences {sn}
∞
n=1, sn ∈ C, with convergence

by coordinates, and associate with every f ∈ Φ′(A) the sequence

Jf = {fk}
∞
k=1, fk = (f, ek).

The mapping J : Φ′(A) 7→ S is an isomorphism. Indeed, it is not difficult to see that if
f1 6= f2, fi ∈ Φ′(A), i = 1, 2, then there exists k ∈ N such that f1k 6= f2k. Otherwise,
the equality (f1 − f2, en) = 0 for any n ∈ N implies (f1 − f2, ϕ) = 0 for an arbitrary
ϕ ∈ Φ(A), that is, f1 = f2. Thus, J is an injection. Moreover, J is a bijection. Indeed,
let f be the functional associated with a sequence {sk}

∞
k=1 ∈ S in the way

(
f,

n∑

k=1

αkek

)
=

n∑

k=1

αksk.

This antilinear functional is continuous on Φ(A). In addition, the convergence in Φ′(A)
is equivalent to the coordinate-wise one of the corresponding sequences from S. So, J
is one-to-one and mutually continuous map. Hence, Φ′(A) is complete under the weak
convergence.

The isomorphism J maps Φ(A) onto the set of finite sequences from S and H onto
l2. Moreover, the operation {fk}

∞
k=1 7→ {λkfk}

∞
k=1 corresponds to the operator A. This

operator may be extended to the continuous operator Â : Âf = J−1{λkfk}
∞
k=1 on Φ′(A),

and the following relations are valid:

∀f ∈ Φ′(A), ∀ϕ ∈ Φ(A) : (Âf, ϕ) = (f,Aϕ);
(
e−tÂf, ϕ

)
=
(
f, e−tAϕ

)
.

The series
∑∞

k=1 fkek, where fk = (f, ek), is called the Fourier series of f ∈ Φ′(A). If
f ∈ H, this series coincides with the usual expansion of f in orthonormal basis {ek}

∞
k=1.

Theorem 5. Let f ∈ Φ′(A). Then its Fourier series converges to f in the Φ′(A)-

topology. Conversely, the sequence of partial sums of a series
∞∑
k=1

skek, {sk}
∞
k=1 ∈ S,

converges in Φ′(A) to a certain f ∈ Φ′(A), and this series is the Fourier series of f .

Proof. Let f ∈ Φ′(A) and
∞∑
k=1

fkek be its Fourier series. Under the map J , the partial

sum Sn(f) =
n∑

k=1

fkek is transformed into sn = {f1, . . . , fn, 0, . . . , 0, . . . } ∈ S. The

sequence sn converges to Jf = {fk}
∞
k=1. So, Sn(f) = J−1sn → f, n → ∞, in the space

Φ′(A).

Take now an arbitrary series
∞∑
k=1

skek, sk ∈ C. The reasoning similar to the above

one allows to conclude that this series converges to f = J−1 limn→∞ JSn in the space

Φ′(A), where Sn =
n∑

k=1

skek, and also

(f, ek) = (J−1 lim
n→∞

JSn, ek) = lim
n→∞

(Sn, ek) = sk.

�
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Corollary 1. The space Φ(A) is dense in Φ′(A).

Theorem 5 shows that Φ′(A) may be considered as the space of formal series of the

form
∞∑
k=1

fkek, and this, in turn, makes possible in the situation under consideration to

describe various subspaces of usual and generalized vectors connected with the operator
A in terms of behavior of their Fourier coefficients. For instance, for the spaces B−(A)
and G(1)(A) the following theorem is valid.

Theorem 6. Let f =
∞∑
k=1

fkek ∈ Φ′(A). Then

(18) f ∈ B−(A) ⇐⇒ ∀t > 0, ∃c = c(t) > 0 : |fk| ≤ cetλk ;

(19) f ∈ G(1)(A) ⇐⇒ ∀t > 0, ∃c = c(t) > 0 : |fk| ≤ ce−tλk .

Proof. Let f ∈ B−(A), i.e. f ∈ B−t(A) for any t > 0 Then

∥∥∥e−tÂf
∥∥∥
2

=
∞∑

k=1

∣∣∣
(
e−tÂf, ek

)∣∣∣
2

=
∞∑

k=1

∣∣(f, e−tAek
)∣∣2 =

∞∑

k=1

e−2tλk |fk|
2.

As the latter series is convergent, we have

∀t > 0, ∃c = c(t) > 0 : e−tλk |fk| < c.

Likewise, it is proved that the inclusion f ∈ G(1)(A) implies the inequality in (19).
Assume now that for f ∈ Φ′(A), the inequality in (18) is fulfilled. It follows from here

that the series
∞∑
k=1

e−2tλk |fk|
2 converges for any t > 0, and its sum is equal to

∥∥∥e−tÂf
∥∥∥
2

,

whence f ∈ B−t(A) for any t > 0, that is, f ∈ B−(A).

Further, if the inequality in (19) is satisfied, then the series
∞∑
k=1

e2tλk |fk|
2 converges

for any t > 0. This means that f ∈ D(etA) for any t > 0. The relation

G(1)(A) =
⋂

t>0

R(e−tA) =
⋂

t>0

D(etA)

shows that f ∈ G(1)(A). �

6. Examples. Put B = L2(Ω), where Ω is a bounded domain in R
q with piece-

wise smooth boundary ∂Ω, and denote by B′ the operator generated on L2(Ω) by the
differential expression

(20) (Lu)(x) = −

q∑

i=1

q∑

k=1

∂

∂xi

(
aik(x)

∂u(x)

∂xk

)
+ c(x)u(x),

on

(21) D(B′) =
{
u ∈ C2(Ω)

∣∣u ↾∂Ω= 0
}
.

It is assumed that aik(x), c(x) ∈ C∞(Ω), c(x) ≥ 0. Suppose also the expression (20) to
be of elliptic type in Ω. In this case all the eigenvalues µi(x), i = 1, . . . , q, of the matrix
‖aik(x)‖

q
i,k=1, x ∈ Ω, have the same sign; without loss of generality we may assume

µi(x) > 0, x ∈ Ω.
It is not hard to make sure that B′ is a positive definite Hermitian operator with

dense domain in L2(Ω). So, B
′ admits closure to a positive definite selfadjoint operator

B on L2(Ω). We shall call B the operator generated by (20),(21). The spectrum of B is
discrete, and for its eigenvalues λ1(B) < λ2(B) < · · · < λn(B) < · · · the estimate

(22) c1n
2/q ≤ λn(B) ≤ c2n

2/q, 0 < ci = const, i = 1, 2.
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is valid (see [20]). Denote by en(x), n ∈ N, the orthonormal basis in L2(Ω), composed

from the eigenfunctions of B. Set A = −B1/2. Then λn(A) = −λ
1/2
n (B), and the

orthonormal basis consisting of the eigenvalues of A coincides with en(x), n ∈ N. In
view of (22), the spaces B−(A) and G(1)(A) are described by the equivalence relations
(18) and (19), in which

|fk| ≤ cetk and |fk| ≤ ce−tk

respectively.
In the case where Ω is a q-dimensional cube 0 < xk < a, k = 1, . . . , q, a > 0, and L =

q∑
i=1

∂2

∂x2

i
, the following formulas for the eigenvalues λn1...nq

, nk ∈ N, and eigenfunctions

en1...nq
(x) of the operator B hold:

λn1...nq
=

π2

a2

q∑

k=1

n2
k; en1...nq

(x) =

(
2

a

)q/2 q∏

k=1

sin
π

a
xk.

Assume now that B in equation (3) is the operator generated by (20),(21). Taking
into account (22) and Theorem 6, we arrive at the following assertion.

Theorem 7. Each classical solution u(t, x) on (0,∞)× Ω of the problem

(23)

(
∂2

∂t2
+

q∑

i=1

q∑

k=1

∂

∂xi

(
aik

∂

∂xk

)
+ c(x)

)m

u(t, x) = 0,

(24) u(t, x)
∣∣
t>0,x∈∂Ω

= 0

may be represented in the form

u(t, x) =

m∑

j=0

tj
∞∑

n=1

ane
−tλn(A)en(x) +

m∑

j=0

tj
∞∑

n=1

bne
tλn(A)en(x), t > 0, x ∈ Ω,

where an, bn ∈ C satisfy the conditions

∀t > 0 : an = o(etn), bn = o(e−tn) as n → ∞.

Since for the type of the semigroup {etA}t≥0 the equality ω(A) = −λ
1/2
1 (B) takes

place, we obtain, by Theorem 2, the next assertion.

Theorem 8. Let u(t, x) be a solution of problem (23), (24). If

(25) ∀ω′ < λ1(B
1/2), ∃cω′ > 0 :

∫

Ω

|u(t, x)|2 dx ≤ cω′e2ω
′t

(t > 0 is sufficiently large), then

∀ω′′ < λ1(B
1/2), ∃cω′′ > 0 :

∫

Ω

|u(t, x)|2 dx ≤ cω′′e−2ω′′t.

In the special case, where q = 1, Ω = (0, 1), and L = d2

dx2 , Theorem 8 contains in
particular the well-known classical Phragmen-Lindelöf principle (see [21]): if a function
harmonic in the strip (0,∞) × (0, 1) is equal to 0 on half-lines forming a part of the
boundary of the strip mentioned above, and it is bounded in (0,∞) × (0, 1) for large
t > 0, then this function is tending exponentially to 0 as t → ∞.

In the class of functions satisfying (25), the Dirichlet problem, which consists in finding
a solution u(t, x) of (23),(24) that satisfies the condition

lim
t→0

∂ku(t, x)

∂tk
= yk, k = 0, 1, . . . ,m− 1,

(the limit is taken in the B−(A)-topology) is uniquely solvable for arbitrary yk ∈ B−(A).
The solution is given by formulas (18), (19).



THE DIRICHLET PROBLEM FOR DIFFERENTIAL EQUATIONS IN A BANACH SPACE 151

References

1. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence,
RI, 1957.

2. K. Yosida, Functional Analysis, Springer, Berlin—Góttingen—Heidelberg, 1965.
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