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SELF-ADJOINTNESS OF SCHRÖDINGER OPERATORS WITH

SINGULAR POTENTIALS

ROSTYSLAV O. HRYNIV AND YAROSLAV V. MYKYTYUK

Dedicated to the memory of A. G. Kostyuchenko

Abstract. We study one-dimensional Schrödinger operators S with real-valued dis-

tributional potentials q inW−1
2,loc(R) and prove an extension of the Povzner–Wienholtz

theorem on self-adjointness of bounded below S thus providing additional information

on its domain. The results are further specified for q ∈ W
−1
2,unif(R).

1. Introduction and main results

In the Hilbert space L2(R), we consider a Schrödinger operator

S = −
d2

dx2
+ q

with potential q that is a real-valued distribution from the space W−1
2,loc(R). Recall that

W−1
2,loc(R) is the dual space to the space W 1

2,comp(R) of functions in W
1
2 (R) with compact

support and that every real-valued q ∈ W−1
2,loc(R) can be represented as σ′ for a real-

valued function σ from L2,loc(R). The operator S can then be rigorously defined e.g. by
the so-called regularization method that was used in [2] in the particular case q(x) = 1/x
and then developed for generic distributional potentials in W−1

2,loc(R) by Savchuk and

Shkalikov [20, 21]; see also recent extensions to more general differential expressions
in [9, 10]. Namely, the regularization method suggests to define S via

(1) Sf = ℓ(f) := −(f ′ − σf)′ − σf ′

on the natural maximal domain

(2) domS = {f ∈ L2(R) | f, f
′ − σf ∈ ACloc(R), ℓ(f) ∈ L2(R)};

here ACloc(R) is the space of functions that are locally absolutely continuous. It is
straightforward to see that Sf = −f ′′ + qf in the sense of distributions, so that the
above definition is independent of the particular choice of the primitive σ ∈ L2,loc(R).

One can also introduce the minimal operator S0, which is the closure of the restric-
tion S′

0 of S onto the set of functions of compact support, i.e., onto

domS′

0 = {f ∈ L2,comp(R) | f, f
′ − σf ∈ ACloc(R), ℓ(f) ∈ L2(R)}.

The operator S′

0 (and hence S0) is symmetric; moreover, in a standard manner [18] one
proves that S is the adjoint of S0, so that S is the so-called maximal operator.

An important question preceding any further analysis of the operator S is whether
it is self-adjoint. Recently, this question has attracted attention in the literature in the
particular case where the distributional potential q ∈W−1

2,loc(R) contains the sum of Dirac

delta-functions [1, 16, 13] or is periodic [18] (complex-valued periodic q are discussed
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in [7]), or belongs to the space W−1
2,unif(R) [12]. We recall [12] that any q ∈ W−1

2,unif(R)

can be represented (not uniquely) in the form q = σ′ + τ , where σ and τ belong to
L2,unif(R) and L1,unif(R), respectively, i.e.,

‖σ‖22,unif := sup
t∈R

∫ t+1

t

|σ(s)|2ds <∞,

‖τ‖1,unif := sup
t∈R

∫ t+1

t

|τ(s)| ds <∞,

and the derivative is understood in the sense of distributions. Given such a representa-
tion, the operator S is defined as

(3) Sf = −(f ′ − σf)′ − σf ′ + τf

on the domain (2); this definition is again independent of the particular choice of σ and
τ above.

Theorem 3.5 of our paper [12] claims that for real-valued q ∈ W−1
2,unif the operator S

as defined by (3) and (2) is self-adjoint and coincides with the operator T constructed
by the form-sum method. However, as was pointed out in [18] and [8], the proof given
in [12] is incomplete: namely, it establishes the inclusion T ⊂ S but then derives the
equality S = T taking for granted that S is symmetric. However, since S0 is symmetric,
symmetry of S would immediately imply its self-adjointness, and only the claim that
S = T in Theorem 3.5 of [12] would remain non-trivial.

The fact that S is indeed self-adjoint is rigorously justified in the paper [18] for the
particular case where q ∈ W−1

2,unif(R) is periodic. The authors prove therein that S0, S,
T , and the Friedrichs extension of S0 all coincide; however, the arguments heavily use
periodicity of q and thus are not applicable for generic real-valued q ∈W−1

2,unif(R).

Recently, Albeverio, Kostenko and Malamud [1] extended the Povzner–Wienholtz the-
orem stating that boundedness below of the minimal operator implies its self-adjointness
(see [3] and the references therein) to the class of arbitrary distributional potentials in
W−1

2,loc(R). The proof of Theorem I.1 in [1] is for the half-line and for the particular case

where q = q0 +
∑

k αkδ(· − xk), where q0 ∈ L1,loc(R), αk and xk are real numbers, and δ
is the Dirac delta-function; however, Remark III.2 explains that the same proof works in
the more general situation of q ∈W−1

2,loc(R). In particular, for q ∈W−1
2,unif(R) the minimal

operator S0 is shown in [12] to be bounded below; therefore, the operator S0 = S is then
self-adjoint by the above extension of the Povzner–Wienholtz theorem. This fills out the
gap in the proof of Theorem 3.5 of our paper [12].

The aim of this note is to give an alternative proof of the Povzner–Wienholtz theorem
for distributional potentials q ∈ W−1

2,loc(R). Our approach has several merits; namely, it
gives the representation of a positive operator S in the von Neumann form A∗A for some
first order differential operator A and provides additional information on the domain of S.
For regular q, possibility of such a representation is known to follow from disconjugacy
of S on the whole line, i.e., from the Jacobi condition in the variational problem for
the corresponding quadratic form of S, see [11, Ch. XI.10,11]. We also mention that the
factorization of S as A∗A is of basic importance for the Darboux transformation method,
also called Darboux–Crum, or single commutation method, see [4, 5, 6, 17].

Namely, assume that a real-valued distribution q ∈W−1
2,loc(R) is such that the minimal

operator S0 is bounded below. Adding a constant to q as necessary, we can make S0

positive and shall assume this throughout the rest of the note. Then [14] the equation
y′′ = qy has a (possibly not unique) solution that is positive over R, and r := y′/y ∈
L2,loc(R) is a global distributional solution to the Riccati equation r′ + r2 = q. The
function r is called the Riccati representative of q. Moreover, the differential expression ℓ
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of (1) admits then a formal representation

ℓ := −
d2

dx2
+ q = −

( d

dx
+ r

)( d

dx
− r

)

.

This representation suggests that ℓ is also related to a differential operator A∗A, where
A is the differential operator of first order given by

(4) Af = f ′ − rf

on the maximal domain

(5) domA = {f ∈ L2(R) | f
′ − rf ∈ L2(R)}.

The derivative f ′ for f ∈ domA is understood in the sense of distributions; observe,
however, that f ′ = rf + Af is locally integrable so that every f ∈ domA is locally
absolutely continuous.

Our extension of the Povzner–Wienholtz theorem reads now as follows.

Theorem 1. Assume that a real-valued distribution q ∈ W−1
2,loc(R) is such that the mi-

nimal operator S0 is positive and denote by r ∈ L2,loc(R) a Riccati representative of q.
Then S0 is self-adjoint; moreover, S0 = S = A∗A, and for every f ∈ domS it holds that

f ′ − rf ∈ L2(R).

This theorem can further be specified if q ∈ W−1
2,unif(R). As we mentioned above, the

operator S0 is then automatically bounded below and thus self-adjoint; moreover, we can
characterize its domain as follows.

Corollary 2. Assume that a real-valued q ∈ W−1
2,unif(R) is written as q = σ′ + τ with

some σ ∈ L2,unif(R) and τ ∈ L1,unif(R). Then the corresponding maximal Schrödinger

operator S is self-adjoint; moreover, domS ⊂ W 1
2 (R) and y′ − σy ∈ L2(R) for every

y ∈ domS.

We observe that Proposition 12 of [18] shows that if q ∈ W−1
2,loc(R) is periodic, then

the three statements:

(a) S is self-adjoint;
(b) domS ⊂W 1

2 (R);
(c) for every y ∈ domS, y′ − σy ∈ L2(R) ∩ACloc(R)

are equivalent.

2. Proofs

We start with the following simple observation.

Lemma 3. The operator A defined in (4)–(5) is closed.

Proof. Let yn ∈ domA be such that yn → y and gn := Ayn → g in L2(R) as n → ∞.
Since convergence in L1,loc(R) yields convergence in the space of distributions D′(R), we
conclude that yn → y, ryn → ry, and gn → g in D′(R). Therefore, y′n = ryn+gn → ry+g
in D′(R) as n → ∞; on the other hand, y′n → y′ in D′(R) since differentiation is a
continuous operation in D′(R). It follows that y′ = ry + g, whence y ∈ domA and
Ay = g as required. �

The von Neumann theorem [15, Thm. V.3.24] yields now the following result.

Corollary 4. The operator SF := A∗A is self-adjoint on the domain

domSF := {f ∈ L2(R) | Af ∈ domA∗}.
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Clearly, SF is a self-adjoint extension of the minimal operator S0. It turns out that
SF is the Friedrichs extension of S0, see Chapter VI of Kato’s classic book [15] for all
relevant definitions.

Lemma 5. The operator SF is the Friedrichs extension of S0.

Proof. We recall that the Friedrichs extension of S0 is the self-adjoint operator associated
with the closure s0 of the quadratic form of S0 (defined initially on domS0) via the first
representation theorem [15, Thm. VI.2.1]. The quadratic form sF of SF is an extension
of s0, and to prove that s0 = sF it suffices to show that domS0 is a core for sF .

It is straightforward to see that dom sF coincides with domA and that sF -convergence
is equivalent to the A-convergence. Therefore it suffices to show that domS0 is a core
for A. By the von Neumann theorem [15, Thm. V.3.24] domA∗A is a core for A, and it
suffices to show that domS0 is dense in domA∗A in the graph topology of A.

To this end let f ∈ domA∗A be arbitrary. Take χ ∈ C∞

0 such that 0 ≤ χ ≤ 1
and χ ≡ 1 on (−1, 1), and set χn := χ(·/n) and fn := χnf . Then fn → f and
Afn = χn(Af) + fχ′

n → Af in L2(R) as n → ∞, i.e., fn converge to f in the graph
topology of A. Since Af ∈ domA∗, we see that Afn = f ′n− rfn is absolutely continuous.
Recalling that r′+r2 = σ′, we conclude that r−σ is locally absolutely continuous, whence
f ′n − σfn is absolutely continuous as well. Thus fn belong to the domain of S′

0, which is
henceforth dense in domA∗A in the graph topology of A, and the proof is complete. �

Now we study the maximal operator S. The first observation is as follows.

Lemma 6. For every y ∈ domS, the quasi-derivative y[1] := y′ − ry belongs to L2(R).

Proof. Set g := Sy and assume that y[1] = y′−ry is not in L2(R
+). Integrating ℓ(y)y = gy

by parts from 0 to x, we find that
∫ x

0

g(t)y(t) dt =

∫ x

0

|y[1](t)|2 dt− y[1](x)y(x) + y[1](0)y(0).

It follows that

1

T

∫ T

0

∫ x

0

|y[1](t)|2 dt dx−
1

T

∫ T

0

y[1](x)y(x) dx =
1

T

∫ T

0

∫ x

0

g(t)y(t) dt dt− y[1](0)y(0)

remains bounded as T → ∞; since
∫ x

0
|y[1](t)|2 dt grows to +∞ as x→ ∞ by assumption,

we conclude that
1

T

∣

∣

∣

∫ T

0

y[1](x)y(x) dx
∣

∣

∣
→ ∞

as T → ∞ and, moreover, that

(6) 2
∣

∣

∣

∫ T

0

y[1](x)y(x) dx
∣

∣

∣
≥

∫ T

0

∫ x

0

|y[1](t)|2 dt dx

for all T large enough. In view of the Cauchy–Bunyakovsky–Schwarz inequality
∣

∣

∣

∫ T

0

y[1](x)y(x) dx
∣

∣

∣
≤ ‖y‖

(

∫ T

0

|y[1](x)|2 dx
)1/2

,

(6) results in the inequality
∫ T

0

|y[1](x)|2 dx ≥
1

4‖y‖2

(

∫ T

0

∫ x

0

|y[1](t)|2 dt dx
)2

.

Set I(T ) :=
∫ T

0

∫ x

0
|y[1](t)|2 dt dx; then the above inequality can be written as

I ′(T ) ≥
1

4‖y‖2
I2(T ),
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and, upon integration, yields

(7)
1

I(T0)
−

1

I(T )
≥
T − T0
4‖y‖2

for every positive T and T0 such that T > T0 and I(T0) > 0. However, the assumption
that y[1] 6∈ L2(R

+) implies that I(T ) → ∞ as T → ∞, which is in contradiction with (7).
Therefore y[1] ∈ L2(R

+); the fact that y[1] ∈ L2(R
−) is proved analogously. �

Remark 7. Similar arguments were used in [11, Lemma XI.7.1] and [14, Lemma 4.1] in
the study of the Riccati equation.

Proof of Theorem 1. By Lemma 6, domS ⊂ domA. Further, domA = dom sF , where sF
is the quadratic form of SF , the Friedrichs extension of S0. By the extremal property of
the Friedrichs extension [15, Thm. VI.2.11] we conclude that every self-adjoint restriction
of S, i.e., every self-adjoint extension of S0, coincides with SF . This implies that the
minimal operator S0 is itself self-adjoint and that S0 = SF = S as claimed. �

It was proved in [12] that if q ∈ W−1
2,unif(R), then the operator S0 is bounded below.

Assuming that S0 is already positive, we have as before q = r′+r2 for some r ∈ L2,loc(R).
It turns out that the function r in this representation has some special properties.

Lemma 8. Assume that real-valued q ∈W−1
2,unif(R) and r ∈ L2,loc(R) satisfy the equation

r′ + r2 = q in the sense of distributions. Then r ∈ L2,unif(R).

Proof. We set

an :=

∫ n+1

n

r2(t) dt, n ∈ Z,

and prove that supn∈Z an is finite.
Denote by φ the function in W 1

2 (R) with support equal to [−1, 2] and defined via

φ(x) =











1 + x x ∈ [−1, 0),

1 x ∈ [0, 1],

2− x x ∈ (1, 2].

We also set φξ := φ( · − ξ) and notice that ‖φξ‖L∞
= ‖φ′ξ‖L∞

= 1. Denoting by 〈 · , · 〉

the pairing between W−1
2,loc(R) and W

1
2,comp(R), we find that

(8) −〈r, φ′ξ〉+ 〈r2, φξ〉 = 〈q, φξ〉.

As q = σ′ + τ with some σ ∈ L2,unif(R) and τ ∈ L1,unif(R), the right-hand side of this
equality admits the uniform estimate

(9) |〈q, φξ〉| ≤ |〈σ, φ′ξ〉|+ |〈τ, φξ〉| ≤ 3‖σ‖2,unif + 3‖τ‖1,unif =: C;

we assume that C > 0 as otherwise q ≡ r ≡ 0 and there is nothing to prove. The
inequalities

〈r2, φn〉 ≥ an, |〈r, φ′n〉| ≤ a
1/2
n−1 + a

1/2
n+1

combined with (8) and (9) lead to the relation

(10) an ≤ a
1/2
n−1 + a

1/2
n+1 + C.

We shall prove below that

(11) lim inf
n→−∞

an ≤ C/2, lim inf
n→+∞

an ≤ C/2,

so that there exist sequences (n−k )k∈N and (n+k )k∈N tending respectively to −∞ and +∞
such that an±

k

< C for all k ∈ N. Given this, the proof is concluded as follows. We have
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either an ≤ C for all n ∈ Z, or otherwise am > C for some m ∈ Z. In the latter case, for
every k so large that m ∈ (n−k , n

+
k ) the maximum

Ck := max{aj | j = n−k , . . . , n
+
k }

is assumed for some index mk strictly between n−k and n+k . Inequality (10) for n = mk

then yields

Ck ≤ 2C
1/2
k + C,

whence Ck ≤ 2C + 4. Therefore in both cases supn∈Z an is finite thus implying that
r ∈ L2,unif(R) as claimed.

It remains to establish (11). To this end we take a < b so that b − a > 3 and
integrate (8) in ξ over (a, b). As

∫ b

a

φ′ξ(t) dξ =

∫ b

a

φ′(t− ξ) dξ = φa(t)− φb(t),

the Fubini theorem yields

(12) −

∫ b

a

〈r, φ′ξ〉 dξ = 〈r, φb〉 − 〈r, φa〉.

Similarly,
∫ b

a

〈r2, φξ〉 dξ = 〈r2, ψ〉

with

ψ(t) :=

∫ b

a

φξ(t) dξ.

Observing that suppψ = [a − 1, b + 2], that ψ(t) = 2 for t ∈ [a + 2, b − 1] and that
ψ(t) ≥ 1

2φ
2
a(t) for t ∈ [a− 1, a+ 2] and ψ(t) ≥ 1

2φ
2
b(t) for t ∈ [b− 1, b+ 2], we get

〈r2, ψ〉 ≥ 2

∫ b−1

a+2

r2(t) dt+ 1
2 〈r

2, φ2a〉+
1
2 〈r

2, φ2b〉.

On the other hand, relations (8), (9), and (12) imply the inequality

〈r2, ψ〉 ≤
∣

∣

∣

∫ b

a

〈q, φξ〉 dξ
∣

∣

∣
+

∣

∣

∣

∫ b

a

〈r, φ′ξ〉 dξ
∣

∣

∣
≤ C(b− a) + |〈r, φa〉|+ |〈r, φb〉|.

Noticing that |〈r, φξ〉| ≤ 2〈r2, φ2ξ〉
1/2 by the Cauchy–Bunyakovsky–Schwarz inequality

and that 2x− 1
2x

2 ≤ 2 for x ∈ R, we conclude that

2

∫ b−1

a+2

r2(t) dt ≤ C(b− a) + 2〈r2, φ2a〉
1/2 − 1

2 〈r
2, φ2a〉+ 2〈r2, φ2b〉

1/2 − 1
2 〈r

2, φ2b〉

≤ C(b− a) + 4.

This estimate yields (11) in a straightforward manner, and the proof is complete. �

Proof of Corollary 2. We may again assume that the operator S is positive and denote
by r ∈ L2,unif(R) the corresponding solution of the Riccati equation r′+r2 = q and by A
the differential operator of (4)–(5). By Lemma 6, the domain of S is contained in domA,
so that it suffices to show that domA ⊂W 1

2 (R).
Take an arbitrary y ∈ domA; thus y and y′−ry = g are in L2(R). Set ∆n := [n, n+1),

gn :=
(∫

∆n

|g(t)|2 dt
)1/2

, and choose ξn ∈ ∆n such that

|y(ξn)| ≤
(

∫

∆n

|y(t)|2 dt
)1/2

=: yn.
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For every x ∈ ∆n, we integrate the equality y
′ = ry+ g from ξn to x to get the estimates

|y(x)| ≤ |y(ξn)|+

∫

∆n

|r(t)y(t)| dt+

∫

∆n

|g(t)| dt ≤ yn + yn ‖r‖2,unif + gn =: bn

and
∫

∆n

|r(t)y(t)|2 dt ≤ b2n ‖r‖
2
2,unif .

Since the sequence (bn) belongs to ℓ2(Z), it follows that ry ∈ L2(R); thus y
′ = ry + g ∈

L2(R), and y ∈W 1
2 (R).

Further, it was proved in [12] that y ∈ W 1
2 (R) and σ ∈ L2,unif(R) imply that σy ∈

L2(R), whence the quasi-derivative y′ − σy belongs to L2(R) as well. The proof is
complete. �

Acknowledgments. The authors thank Professors F. Gesztesy, A. Kostenko, M. Mala-
mud, and V. Mikhailets for fruitful discussions and comments. R.H. acknowledges sup-
port from the Isaac Newton Institute for Mathematical Sciences at the University of
Cambridge for participation in the programme “Inverse Problems”, during which part of
this work was done.

References

1. S. Albeverio, A. S. Kostenko, and M. M. Malamud, Spectral theory of semibounded Sturm–Liouville

operators with local interactions on a discrete set, J. Math. Phys. 51 (2010), no. 102102 (24 p.)

2. F. V. Atkinson, W. N. Everitt, and A. Zettl, Regularization of a Sturm–Liouville problem with an

interior singularity using quasi-derivatives, Differential and Integral Equations 1 (1988), 213–221.
3. S. Clark and F. Gesztesy, On Povzner–Wienholtz-type self-adjointness results for matrix-valued

Sturm–Liouville operators, Proceedings of the Royal Society of Edinburgh Ser. A 133 (2003), 747–

758.
4. M. M. Crum, Associated Sturm-Liouville systems, Quart. J. Math. Oxford (2) 6 (1955), 121–127.
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