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Abstract. In the classical Gaussian analysis the Clark-Ocone formula can be writ-
ten in the form

F = EF +

∫
Et∂tFdWt,

where the function (the random variable) F is square integrable with respect to the
Gaussian measure and differentiable by Hida; E denotes the expectation; Et denotes
the conditional expectation with respect to the full σ-algebra that is generated by a
Wiener process W up to the point of time t; ∂

·
F is the Hida derivative of F ;

∫
◦(t)dWt

denotes the Itô stochastic integral with respect to the Wiener process. This formula
has applications in the stochastic analysis and in the financial mathematics.

In this paper we generalize the Clark-Ocone formula to spaces of test and gener-

alized functions of the so–called Meixner white noise analysis, in which instead of the
Gaussian measure one uses the so–called generalized Meixner measure µ (depend-
ing on parameters, µ can be the Gaussian, Poissonian, Gamma measure etc.). In
particular, we study properties of integrands in our (Clark-Ocone type) formulas.

Introduction

Denote by D the Schwartz space of infinite-differentiable real-valued functions on
R+ := [0,+∞) with compact supports; by D′ the distribution space that is dual of
D; by 〈·, ·〉 the pairing between elements of D′ and D, this pairing is generated by the
scalar product in the space of square integrable with respect to the Lebesgue measure
functions on R+; by the subindex C complexifications of spaces. The notation 〈·, ·〉 will
be preserved for tensor powers and complexifications of spaces.

Let µ be the standard Gaussian measure on (D′, C(D′)) (here and below C(D′) is the
σ-algebra on D′ that is generated by cylindrical sets), i.e., a probability measure with
the Laplace transform

lµ(λ) =

∫

D′

e〈x,λ〉µ(dx) = e〈λ,λ〉/2, λ ∈ DC.

As is well known (e.g., [4, 27, 22]), any square integrable with respect to µ and differen-
tiable by Hida complex-valued function F on D′ can be presented in the form

(0.1) F = EF +

∫
Et∂tFdWt,

where E denotes the expectation; Et denotes the conditional expectation with respect
to the full σ-algebra σ(Ws : s ≤ t) that is generated by a Wiener process W up to the
point of time t; ∂·F is the Hida derivative of F ;

∫
◦(t)dWt denotes the Itô stochastic

integral with respect to W (usually for stochastic integrals on R+ we do not write limits
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of integration for simplification of notation). Formula (0.1) is called the Clark-Ocone
formula. As is known (e.g., [5, 33]), formula (0.1) holds true (up to clear modifications)
if instead of the Gaussian measure one considers the Poissonian one.

Clark-Ocone formulas and their generalizations (in this paper they will be called Clark-
Ocone type formulas) have applications in the stochastic analysis and in the financial
mathematics, see, e.g., [19, 1, 6, 29, 7, 28, 25, 10, 5, 33] and references therein. In order
to satisfy demands of applications (for example, in some problems it is necessary to re-
construct an integrand by the result of integration, in another problems it is necessary
to reconstruct a random variable by the family of conditional expectations of its stochas-
tic derivative, etc.), different variants of such formulas on various spaces, with different
stochastic derivatives and with stochastic integrals with respect to different random pro-
cesses and measures were obtained, see, in particular, [20, 22, 1, 8, 2, 21, 6, 25, 33, 5]. For
example, in [22, 21] a Clark-Ocone type formula that is connected with Lévy processes
was obtained, this formula contains stochastic integrals with respect to a Wiener process
and with respect to a compensated Poissonian random measure. In [6] another way of
construction of Clark-Ocone type formulas that are connected with Lévy processes was
offered, this way is based on the Nualart–Schoutens representation for a square inte-
grable random variable [26, 31]; now the Clark-Ocone type formulas contain integrals
with respect to special random processes. Moreover, these formulas were obtained in [6]
not only for square integrable random variables, but also for generalized ones.

In the paper [13] the author obtained Clark-Ocone type formulas in the so–called
Meixner white noise analysis. This analysis is connected with the generalized Meixner
measure µ [30] (see also Subsection 1.1) that depending on parameters can be the Gauss-
ian, Poissonian, Gamma measure etc., and with the corresponding Meixner random
process M (the derivative of which is the Meixner white noise that is connected with
µ). Note that under some assumptions (see Subsection 1.4) M is a Lévy process. Never-
theless, the constructions of [13] essentially differ from the constructions of [22, 21] and
[6]: the author tried to preserve a ”classical” form of Clark-Ocone type formulas and
therefore exploited a Hida stochastic derivative and stochastic integrals with respect to
M only. Of course, in the particular cases when µ is the Gaussian or Poissonian mea-
sure, the formulas from [13] reduce to the corresponding classical Clark-Ocone formulas.
One of conditions on a random variable for which the Clark-Ocone type formulas in [13]
were obtained is the differentiability by Hida in the classical sense. This condition arises
naturally, but is very restrictive. Fortunately, some modification of the scheme of [13]
allows to get rid of this contingency. In the short paper [14] the author described such
a modification that is based on the use of the so–called parameterized Kondratiev type
spaces of generalized functions ([12]). In the present paper we continue the researches
that were started in [13, 14]: now our goal is to obtain and to study Clark-Ocone type
formulas on parameterized Kondratiev type spaces of test and generalized functions of
Meixner white noise analysis. In particular, we will show that the differentiability by
Hida of a random variable does not play a significant role under construction of the
above mentioned formulas.

The paper is organized in the following manner. In the first section we recall necessary
definitions and results (the generalized Meixner measure, properties of the corresponding
space of square integrable functions (L2), the rigging of (L2) by the parameterized Kon-
dratiev type spaces of test and generalized functions, the extended (Skorohod) stochastic
integral, the Hida stochastic derivative, properties of these operators). In the second
section we deal with Clark-Ocone type formulas and related matters.
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1. Preliminaries

1.1. The generalized Meixner measure. Let us define the generalized Meixner mea-
sure (see [30] for more details and explanations). Let ρ, ν : R+ → C be smooth functions
such that

(1.1) θ
def
= ρ− ν : R+ → R, η

def
= ρν : R+ → R+

and, moreover, θ and η are bounded on R+. Further, for each t ∈ R+ let vρ(t),ν(t)(ds)
be a probability measure on (R,B(R)) (here B(R) is the Borel σ-algebra on R) that is
defined by its Fourier transform

∫

R

eiζsvρ(t),ν(t)(ds) = exp
{
− iζ

(
ρ(t) + ν(t)

)

+ 2

∞∑

m=1

(
ρ(t)ν(t)

)m

m

[ ∞∑

n=2

(−iζ)n

n!

(
νn−2(t) + νn−3(t)ρ(t) + · · ·+ ρn−2(t)

)]m}
.

Definition. A probability measure µ on the measurable space (D′, C(D′)) with the
Fourier transform∫

D′

ei〈x,ξ〉µ(dx) = exp
{∫

R+

dt

∫

R

vρ(t),ν(t)(ds)
1

s2

(
eisξ(t) − 1− isξ(t)

)}

is called the generalized Meixner measure.

Depending on parameters ρ and ν, µ can be, in particular, the Gaussian, Poissonian,
Pascal, Meixner or Gamma measure.

It was proved in [30] that the generalized Meixner measure µ is the measure of a
generalized random process [9] with independent values; and the Laplace transform
lµ(·) =

∫
D′

exp{〈x, ·〉}µ(dx) of µ is a holomorphic at 0 ∈ DC function.

1.2. The space of square integrable functions. Let (L2) := L2(D′, µ) be the space
of complex-valued square integrable with respect to the generalized Meixner measure µ

functions on D′. We construct now a natural orthogonal basis in (L2). For n ∈ N denote
by Pn the closure in (L2) of the set of all continuous polynomials on D′ of degree ≤ n,
P0 := C. Denote also (L2

n) := Pn ⊖Pn−1 (the orthogonal difference in (L2)), (L2
0) := C.

Since µ has a holomorphic at zero Laplace transform, the set of continuous polynomials

on D′ is dense in (L2) [32], therefore (L2) =
∞
⊕

n=0
(L2

n).

Denote by ⊗̂ a symmetric tensor product. For each f (n) ∈ D⊗̂n
C

, n ∈ Z+ := N ∪ {0}
(D⊗̂0

C
:= C), we define : 〈x⊗n, f (n)〉 :, x ∈ D′, as the orthogonal projection of 〈x⊗n, f (n)〉

onto (L2
n). It follows from results of [30] that : 〈x⊗n, f (n)〉 : = 〈Pn(x), f

(n)〉, where

Pn(x) ∈ D′⊗̂n
are the kernels of (generalized Appell) polynomials with a generating

function γ(λ) exp{〈x, α(λ)〉}, λ ∈ DC, i.e.,

γ(λ) exp{〈x, α(λ)〉} =

∞∑

n=0

1

n!
〈Pn(x), λ

⊗n〉,

now

α(λ) = λ+

∞∑

n=2

λn

n
(ρn−1 + ρn−2ν + · · ·+ νn−1),

γ(λ) =
1

lµ(α(λ))

= exp
{
−

∫

R+

(λ2(t)

2
+

∞∑

n=3

λn(t)

n

(
ρn−2(t) + ρn−3(t)ν(t) + · · ·+ νn−2(t)

))
dt
}
.
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Let us define (real, i.e., bilinear) scalar products 〈·, ·〉ext on D⊗̂n
C

, n ∈ Z+, by setting

for f (n), g(n) ∈ D⊗̂n
C

〈f (n), g(n)〉ext :=
1

n!

∫

D′

〈Pn(x), f
(n)〉〈Pn(x), g

(n)〉µ(dx).

It follows from results of [30] that
(1.2)

〈f (n), g(n)〉ext =
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!

ls11 . . . lskk s1! . . . sk!

×
∫

R
s1+···+sk
+

f (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

)

× g(n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

)ηl1−1(t1) . . . η
l1−1(ts1)

× ηl2−1(ts1+1) . . . η
l2−1(ts1+s2) . . . η

lk−1(ts1+···+sk−1+1) . . . η
lk−1(ts1+···+sk)

× dt1 . . . dts1+···+sk .

So, for example, for n = 1 〈f (1), g(1)〉ext = 〈f (1), g(1)〉 =
∫
R+

f (1)(t)g(1)(t)dt, for

n = 2 〈f (2), g(2)〉ext = 〈f (2), g(2)〉 +
∫
R+

f (2)(t, t)g(2)(t, t)η(t)dt. If (see (1.2)) η ≡ 0 (the

case of Gaussian or Poissonian µ) then 〈f (n), g(n)〉ext = 〈f (n), g(n)〉, in the general case
〈f (n), g(n)〉ext = 〈f (n), g(n)〉+ · · · .

Let | · |ext denote the norm that is generated by the scalar product 〈·, ·〉ext, i.e., for
n ∈ Z+ |f (n)|ext :=

√
〈f (n), f (n)〉ext. Denote by H(n)

ext the Hilbert space that is the

completion in the classical sense of D⊗̂n
C

with respect to | · |ext (in particular, H(0)
ext = C).

Let H := L2(R+) be the space of complex-valued square integrable with respect to the

Lebesgue measure functions on R+. It is clear that H(1)
ext = H. For n ∈ N\{1} one can

identify H⊗̂n with the proper subspace of H(n)
ext that consists of ”vanishing on diagonals”

elements (i.e., f (n)(t1, . . . , tn) = 0 if there exist i, j ∈ {1, . . . , n} such that i 6= j but

ti = tj). In this sense the space H(n)
ext is an extension of H⊗̂n.

Note that, of course, the spaceH(n)
ext , n ∈ N\{1}, depends on the parametric function η,

see (1.1) (for example, if η ≡ 0 then H(n)
ext = H⊗̂n), but we do not use η in the designation

of this space for simplification of notation.

For F (n) ∈ H(n)
ext , n ∈ Z+, we define a polynomial 〈Pn, F

(n)〉 ∈ (L2) as

〈Pn, F
(n)〉 := (L2)−lim

k→∞
〈Pn, f

(n)
k 〉,

where D⊗̂n
C

∋ f
(n)
k → F (n) in H(n)

ext as k → ∞ (as is easy to verify, this definition is well-
posed). The forthcoming statement easily follows from the construction of polynomials
〈Pn, F

(n)〉 (see also [30]).

Theorem. A function F ∈ (L2) if and only if there exists a sequence of kernels

(
F (n) ∈ H(n)

ext

)∞
n=0

such that F can be presented in the form

(1.3) F =
∞∑

n=0

〈Pn, F
(n)〉,
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where the series converges in (L2), i.e., the (L2)-norm of F

(1.4) ‖F‖2(L2) =

∞∑

n=0

n!|F (n)|2ext < ∞.

Moreover, the system
{
〈Pn, F

(n)〉, F (n) ∈ H(n)
ext, n ∈ Z+

}
is an orthogonal basis in (L2)

in the sense that for F,G ∈ (L2) of form (1.3) the (real) scalar product in (L2)

(F,G)(L2) =

∞∑

n=0

n!〈F (n), G(n)〉ext.

1.3. A rigging of (L2) by parameterized Kondratiev type spaces of test and

generalized functions. Let β ∈ [0, 1], q ∈ Z in the case β > 0 and q ∈ Z+ in the case
β = 0.

Definition. We define a parameterized Kondratiev type space of test functions (L2)βq ⊆
(L2) as a Hilbert space of (classes of) functions F : D′ → C of form (1.3), for which

(1.5) ‖F‖2
(L2)βq

≡ ‖F‖2q,β =

∞∑

n=0

(n!)1+β2qn|F (n)|2ext < ∞,

let also (L2)β := pr limq(L
2)βq – the projective limit of the spaces (L2)βq with the corres-

ponding topology (e.g., [3]).

It is easy to see that the spaces (L2)βq , (L
2)β are densely and continuously embedded

into (L2), therefore one can consider a chain (a rigging of (L2))

(L2)−β ⊃ (L2)−β
−q ⊇ (L2) ⊇ (L2)βq ⊃ (L2)β ,

where (L2)−β
−q , (L

2)−β = ind limq(L
2)−β

−q (the inductive limit, e.g., [3]) are the spaces

dual of (L2)βq , (L
2)β with respect to (L2) correspondingly.

Definition. The spaces (L2)−β
−q , (L

2)−β are called parameterized Kondratiev type spaces
of generalized functions.

It is easy to see that F ∈ (L2)−β
−q if and only if F can be presented in form (1.3) with

‖F‖2
(L2)−β

−q

≡ ‖F‖2−q,−β =

∞∑

n=0

(n!)1−β2−qn|F (n)|2ext < ∞.

Denote by 〈〈·, ·〉〉 the (real, i.e., bilinear) pairing between generalized and test functions,
this pairing is generated by the scalar product in (L2). It is easy to see that for a test
function G and a generalized function F of form (1.3)

〈〈F,G〉〉 =
∞∑

n=0

n!〈F (n), G(n)〉ext.

In what follows, often it will be convenient to denote the spaces (L2)βq , (L
2)−β

−q by the

general symbol (L2)βq , now β ∈ [−1, 1], q ∈ Z (below we will accept this on default). Note

that for β = 0 and q ∈ N (L2)0q is the space of test functions, (L2)0−q is the space of

generalized functions, for β = q = 0 (L2)00 = (L2) (cf. (1.4) with (1.5)).

Remark. One can easily generalize the notion of spaces of test and generalized functions
by using in the definitions of these spaces q ∈ R, β ∈ R, and Kqn (K > 1) instead of 2qn

(see (1.5)). But such a generalization is not essential in the framework of the Meixner
white noise analysis.
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1.4. The extended stochastic integral. By analogy with the Gaussian analysis, on
the probability triplet (D′, C(D′), µ) we define the Meixner random process M by setting
for each t ∈ R+ Mt := 〈P1, 1[0,t)〉 ∈ (L2) (M0 = 0), here and below 1B(y) is the indicator
of the event {y ∈ B}.
Remark. If the parametric functions ρ and ν (see Subsection 1.1) are constants then M

is a Lévy process; but, in general, it is not the case (M can be a not time-homogeneous
process).

Using results of [30] one can show that M is a locally square integrable normal mar-
tingale (with respect to the generated by M flow of full σ-algebras) with orthogonal inde-
pendent increments, therefore one can consider the Itô stochastic integral with respect
to M .

Let us recall the construction of the extended (Skorohod) stochastic integral with
respect to M (see [17] for details). Let G ∈ (L2)βq ⊗ H. It follows from above-posed
results that G can be presented in the form

(1.6) G(·) =
∞∑

n=0

〈Pn, G
(n)
· 〉,

G
(n)
· ∈ H(n)

ext ⊗H, with

(1.7) ‖G‖2
(L2)βq⊗H

=

∞∑

n=0

(n!)1+β2qn|G(n)
· |2

H
(n)
ext⊗H

< ∞.

If in addition G is such that the kernels G
(n)
· belong to H⊗̂n ⊗ H ⊂ H(n)

ext ⊗ H (the
embedding in the generalized sense described above) then one can show [17] that F can
be presented in the form

(1.8) G(·) =
∞∑

n=0

n!

∫ ∞

0

∫ tn

0

. . .

∫ t2

0

G
(n)
· (t1, . . . , tn) dMt1 . . . dMtn ,

i.e., as a series of repeated Itô stochastic integrals with respect to the Meixner process.
In this case one can define the extended stochastic integral of G with respect to M as
(1.9)∫

G(t) d̂Mt :=
∞∑

n=0

(n+ 1)!

∫ ∞

0

∫ t

0

∫ tn

0

. . .

∫ t2

0

Ĝ(n)(t1, . . . , tn, t) dMt1 . . . dMtndMt

=
∞∑

n=0

〈Pn+1, Ĝ
(n)〉 ∈ (L2)βq

(cf. [11]), where Ĝ(n) ∈ H⊗̂n+1 ⊂ H(n+1)
ext are the projections of G

(n)
· onto H⊗̂n+1, if this

series converges in (L2)βq . Note that if in addition β = q = 0 and G is integrable by Itô
then series (1.9) is the result of term by term integration of series (1.8). Moreover, in
this case from G ∈ (L2)⊗H it follows that (1.9) converges in (L2).

For a general G ∈ (L2)βq ⊗ H the above mentioned definition cannot be accepted

because it is impossible to project elements of H(n)
ext ⊗H onto H(n+1)

ext , generally speaking.

Nevertheless, the following natural generalization is possible. Let G
(n)
· ∈ H(n)

ext ⊗H. We

select a representative (a function) g
(n)
· ∈ G

(n)
· with the property g

(n)
t (t1, . . . , tn) = 0 if

there exists j ∈ {1, . . . , n} such that tj = t. Let us define the element Ĝ(n) ∈ H(n+1)
ext

as the equivalence class in H(n+1)
ext that is generated by the symmetrization of g

(n)
· with

respect to n + 1 variables (note that for n = 0 we have H(0)
ext ⊗H = H ∋ G

(0)
· = Ĝ(0) ∈

H = H(1)
ext). It was proved in [17] that Ĝ(n) is well-defined and |Ĝ(n)|ext ≤ |G(n)

· |
H

(n)
ext⊗H

.
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Definition. Let G ∈ (L2)βq ⊗H and be such that

(1.10)

∞∑

n=0

((n+ 1)!)1+β2q(n+1)|Ĝ(n)|2ext < ∞,

where the elements Ĝ(n) ∈ H(n+1)
ext are constructed as above by the kernels G

(n)
· ∈

H(n)
ext ⊗ H from decomposition (1.6) for G. We define the extended stochastic integral

with respect to M
∫
G(t) d̂Mt ∈ (L2)βq by setting

∫
G(t) d̂Mt :=

∞∑

n=0

〈Pn+1, Ĝ
(n)〉.

In particular cases, when the generalized Meixner measure µ is the Gaussian or Poisso-

nian one, the operator
∫
◦(t) d̂Mt is the classical extended Skorohod stochastic integral.

Moreover, if β = q = 0 and G ∈ (L2) ⊗ H is integrable by Itô with respect to M (i.e.,
if G is adapted with respect to the generated by M flow of σ-algebras) then G is inte-

grable in the extended sense and
∫
G(t) d̂Mt =

∫
G(t) dMt ∈ (L2) ([17]), here and below∫

◦(t) dMt is the Itô stochastic integral.

Remark. The extended stochastic integral can be continued to a linear continuous op-

erator acting from (L2)βq ⊗H to (L2)βq−1 (and from (L2)β ⊗H to (L2)β). Moreover, in

the case β = −1 estimate (1.10) follows from the condition G ∈ (L2)−1
q ⊗ H, therefore∫

◦(t) d̂Mt : (L
2)−1

q ⊗H → (L2)−1
q is a linear continuous operator.

1.5. The Hida stochastic derivative. Finally, let us recall the notion of the Hida
stochastic derivative in the Meixner white noise analysis (see [15, 16] for more details).

First we note that, as it was proved in [17], any F (n) ∈ H(n)
ext , n ∈ N, can be considered

as an element F (n)(·) of the space H(n−1)
ext ⊗H, and |F (n)(·)|

H
(n−1)
ext ⊗H

≤ |F (n)|ext (never-
theless, one can not understand the space H(n)

ext , n ∈ N\{1}, as a subspace of H(n−1)
ext ⊗H:

different elements of H(n)
ext can coincide in H(n−1)

ext ⊗H).

Definition. Let F ∈ (L2)βq and be such that

(1.11)

∞∑

n=1

(n!)1+βn1−β2q(n−1)|F (n)(·)|2
H

(n−1)
ext ⊗H

< ∞,

where F (n)(·) are the kernels from decomposition (1.3) for F , in point as elements of

H(n−1)
ext ⊗H. We define the Hida stochastic derivative ∂·F ∈ (L2)βq ⊗H by setting

∂·F :=

∞∑

n=1

n〈Pn−1, F
(n)(·)〉.

It follows from results of [17, 12, 16] that the extended stochastic integral
∫
◦(t) d̂Mt :

(L2)βq ⊗H → (L2)βq and the Hida stochastic derivative ∂· : (L
2)βq → (L2)βq ⊗H are adjoint

one to another, and, in particular, are closed operators.

Remark. The Hida stochastic derivative can be continued to a linear continuous operator

acting from (L2)βq to (L2)βq−1 ⊗H (and from (L2)β to (L2)β ⊗H). Moreover, in the case

β = 1 estimate (1.11) follows from the condition F ∈ (L2)1q, therefore ∂· : (L2)1q →
(L2)1q ⊗H is a linear continuous operator.
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2. Clark-Ocone type formulas and related matters

2.1. A Clark-Ocone formula in the simplest particular case. For elements of
spaces (L2)βq , β ∈ [−1, 0) and q ∈ Z, or β = 0 and q < 0 (i.e., for generalized functions),
let us extend the expectation E and the conditional expectation Et as follows. Let
F ∈ (L2)βq , t ∈ R+. Set

(2.1)

EF := 〈〈F, 1〉〉 ∈ C,

EtF := 〈P0, F
(0)〉+

∞∑

n=1

〈Pn, F
(n)1[0,t)n〉 ∈ (L2)βq ,

here F (n) ∈ H(n)
ext , n ∈ Z+, are the kernels from decomposition (1.3) for F . If F ∈ (L2)

then, as is easy to see, EF is the expectation of F , and as it follows from Theorem 4.2
in [18], EtF is the conditional expectation of F with respect to the full σ-algebra σ(Ms :
s ≤ t).

The next proposition is a simple generalization of the statement from Subsection 2.1
in [13].

Proposition 2.1. Let F ∈ (L2)βq be such that all kernels F (n) from decomposition (1.3)

belong to H⊗̂n (now we consider H⊗̂n as a subspace of H(n)
ext in the generalized sense

described in Subsection 1.2). Then the analog of classical Clark-Ocone formula (0.1) has
a form

(2.2) F = EF +

∫
Et∂tFdMt.

2.2. A belonging of functions from (L2)βq to the range of values of the extended

stochastic integral. Unfortunately, formula (2.2) is not valid for F with kernels F (n) ∈
H(n)

ext , generally speaking (even for F = 〈P2, F
(2)〉, see [13]). Moreover, in the general case

not each F ∈ (L2)βq can be presented even as a result of extended stochastic integration.
Therefore, in order to construct Clark-Ocone type formulas for general F , first we have
to clarify this question.

Proposition 2.2. Let F ∈ (L2)βq . The following statements are equivalent:

(1) F can be presented in the form

(2.3) F = EF +

∫
G(t) d̂Mt,

where G ∈ (L2)βq ⊗H in the case β ≥ 0, and G ∈ (L2)βq−1 ⊗H in the case β < 0;

(2) for each n ∈ N\{1} the kernel F (n) ∈ H(n)
ext from decomposition (1.3) for F has a

representative f (n) such that f (n)(t1, . . . , tn) = 0 if for each i ∈ {1, . . . , n} there
exists j ∈ {1, . . . , n}\{i} such that ti = tj.

Remark 2.1. If, for example, η ≡ 0 (see (1.1)) then for each F ∈ (L2)βq the condition
of statement (2) is automatically fulfilled. In fact, it follows from (1.2) that considering

properties of representatives of F (n) ∈ H(n)
ext , n ∈ N\{1}, one can ignore families of

arguments {t1, . . . , tn} for which there exist i, j ∈ {1, . . . , n} such that i 6= j, ti = tj ,
η(ti) = 0 (i.e., one can redefine these representatives on described families of arguments
in compliance with necessity).

Proof. For F = 〈Pn, F
(n)〉, n ∈ N\{1}, F (n) ∈ H(n)

ext , this statement is proved in [13] (in
the cases n = 0 and n = 1 representation (2.3) is trivial). In the general case the implica-
tion ”(1)⇒(2)” easily follows from the corresponding implication in the particular case;
in order to prove the implication ”(2)⇒(1)” it is sufficient to show that G ∈ (L2)βq ⊗H
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in the case β ≥ 0, and G ∈ (L2)βq−1⊗H in the case β < 0. In order to do this (and for the

convenience of a reader) let us recall the construction of kernels from decomposition (1.6)

for this G ([13]). Set G
(0)
· := F (1) ≡ F (1)(·). Further, let F (n) ∈ H(n)

ext , n ∈ N\{1}, be a
kernel from decomposition (1.3) for F , f (n) be a representative of F (n) that is described
in the condition of statement (2). Without loss of generality one can assume that f (n)

is a symmetric function. We set

(2.4)
hn(t1, . . . , tn) =

1

n

[
1{t1 6=tn,t2 6=tn,...,tn−1 6=tn}

+ 1{tn 6=tn−1,t1 6=tn−1,...,tn−2 6=tn−1} + · · ·+ 1{t2 6=t1,t3 6=t1,...,tn 6=t1}

]

(here and below 1B is the indicator of the event B),

g
(n−1)
t (t1, . . . , tn−1) :=

{
f(n)(t1,...,tn−1,t)
hn(t1,...,tn−1,t)

, if hn(t1, . . . , tn−1, t) 6= 0

0, if hn(t1, . . . , tn−1, t) = 0

(note that if hn(t1, . . . , tn−1, t) = 0 then f (n)(t1, . . . , tn−1, t) = 0 by the condition of state-

ment (2)). It is proved in [13] that the function g
(n−1)
· generates an element (an equiva-

lence class) G
(n−1)
· ∈ H(n−1)

ext ⊗H, Ĝ(n−1) = F (n), and |G(n−1)
· |

H
(n−1)
ext ⊗H

≤ √
n|F (n)|ext.

Using this estimate, (1.7) and (1.5), we obtain for β ≥ 0

‖G‖2
(L2)βq⊗H

=

∞∑

n=1

((n− 1)!)1+β2q(n−1)|G(n−1)
· |2

H
(n−1)
ext ⊗H

≤ 2−q
∞∑

n=1

(n!)1+β2qnn−β |F (n)|2ext ≤ 2−q‖F‖2q,β < ∞,

and for β < 0

‖G‖2
(L2)βq−1⊗H

=

∞∑

n=1

((n− 1)!)1+β2(q−1)(n−1)|G(n−1)
· |2

H
(n−1)
ext ⊗H

≤ 21−q
∞∑

n=1

(n!)1+β2qn[2−nn−β ]|F (n)|2ext≤21−q max
n∈N

[2−nn−β ]‖F‖2q,β < ∞,

which required to be proved. �

Remark. Let F ∈ (L2)βq and be presentable in the form F = EF +
∫
G(t) d̂Mt, where

G(·) =
∑∞

n=1〈Pn−1,G(n−1)
· 〉, G(n−1)

· ∈ H(n−1)
ext ⊗H, is a formal series, and

∫
G(t) d̂Mt is

a formal stochastic integral, i.e.,
∫
G(t) d̂Mt =

∑∞
n=1〈Pn, Ĝ(n−1)〉. Since now for each

n ∈ N F (n) = Ĝ(n−1) in H(n)
ext (see (1.3)), F satisfies the condition of statement (2) of

Proposition 2.2 whence it follows that F can be presented in form (2.3) with an integrand

G ∈ (L2)βq ⊗H in the case β ≥ 0 or G ∈ (L2)βq−1⊗H in the case β < 0 (note that G 6= G,
generally speaking). So, in what follows, in corresponding places we will write ”F can be

presented in form (2.3)” without the reminder that G ∈ (L2)βq ⊗H or G ∈ (L2)βq−1 ⊗H.

Finally we note that even a monomial 〈P3, F
(3)〉, F (3) ∈ H(3)

ext, can be presentable in
form (2.3), but not in form (2.2) (see [13]).

2.3. Clark-Ocone type formulas. In this subsection we generalize the Clark-Ocone
type formulas, proposed in [13], to the spaces (L2)βq .

For n ∈ N\{1} and t1, . . . , tn ∈ R+ set

~n(t1, . . . , tn) := nhn(t1, . . . , tn),
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where the functions hn are defined in (2.4); set also ~1 ≡ 1. Further, for G
(n)
· ∈ H(n)

ext⊗H,
n ∈ Z+, set

G̃
(n)
· (·1, . . . , ·n) :=

{
G

(n)
·

(·1,...,·n)
~n+1(·1,...,·n,·)

, if ~n+1(·1, . . . , ·n, ·) 6= 0

0, if ~n+1(·1, . . . , ·n, ·) = 0
.

It is easy to see that G̃
(n)
· ∈ H(n)

ext ⊗H and

(2.5) |G̃(n)
· |

H
(n)
ext⊗H

≤ |G(n)
· |

H
(n)
ext⊗H

.

For G ∈ (L2)βq ⊗H we define

(AG)(·) :=
∞∑

n=0

〈Pn, G̃
(n)
· 〉,

where the kernels G̃
(n)
· are constructed by the kernels G

(n)
· from decomposition (1.6) for

G. It follows from estimate (2.5) that A is a linear continuous operator in (L2)βq ⊗H.

Proposition 2.3. Let F ∈ (L2)βq . Then for β ≥ 0 A∂·F ∈ (L2)βq ⊗ H, and for β < 0

A∂·F ∈ (L2)βq−1⊗H, where we understand ∂· as a linear continuous operator acting from

(L2)βq to (L2)βq−1 ⊗H.

Proof. In the case β < 0 the result follows from properties of ∂· and A. Let β ≥ 0.

Since A∂·F =
∑∞

n=1 n〈Pn−1, F̃
(n)(·)〉 (here F̃ (n)(·) ∈ H(n−1)

ext ⊗ H are constructed by

the kernels F (n) from decomposition (1.3) for F , in point as elements of H(n−1)
ext ⊗H),

~n(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

, t) = 1{lk>1} + (sk + 1)1{lk=1} for different ar-

guments t1, . . . , ts1+···+sk , t (here k, l·, s· ∈ N, l1 > · · · > lk, l1s1+ · · ·+ lksk = n− 1) and
therefore (see (1.2))

|nF̃ (n)(·)|2
H

(n−1)
ext ⊗H

= n
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk>1,
l1s1+···+lksk+1=n

n!

ls11 . . . lskk s1! . . . sk!

×
∫

R
s1+···+sk+1

+

|F (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

, t)|2

× ηl1−1(t1) . . . η
lk−1(ts1+···+sk) dt1 . . . dts1+···+skdt

+ n
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk=1,
l1s1+···+lk−1sk−1+sk+1=n

n!

ls11 . . . l
sk−1

k−1 s1! . . . (sk + 1)!(sk + 1)

×
∫

R
s1+···+sk+1

+

|F (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk−1+1, . . . , ts1+···+sk , t)|2

× ηl1−1(t1) . . . η
lk−1−1(ts1+···+sk−1

) dt1 . . . dts1+···+skdt ≤ n|F (n)|2ext,
we obtain (see (1.7) and (1.5))

‖A∂·F‖2
(L2)βq⊗H

=
∞∑

n=1

((n− 1)!)1+β2q(n−1)|nF̃ (n)(·)|2
H

(n−1)
ext ⊗H

≤ 2−q
∞∑

n=1

(n!)1+β2qnn−β |F (n)|2ext ≤ 2−q‖F‖2q,β < ∞,

which required to be proved. �
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From the proof of Theorem 1 in [13] and this proposition we obtain the following
result.

Theorem 2.1. Let F ∈ (L2)βq and be presentable in form (2.3) (see Proposition 2.2).
Then the representation

(2.6) F = EF +

∫
A∂tF d̂Mt

is valid, where
∫
A∂tF d̂Mt :=

∫
(A∂·F )(t) d̂Mt.

Corollary. If F ∈ (L2)βq and can be presented in form (2.3) then an integrand G from
(2.3) can be presented in the form

G(·) = A∂·F.

Formula (2.6) can be interpreted as a Clark-Ocone type formula in the Meixner white
noise analysis, but this formula is not a closer analog of classical Clark-Ocone formula
(0.1) (see [13] for details). Let us obtain a direct analog of formula (0.1). For n ∈ N and
t1, . . . , tn, t ∈ R+ set

χn,t(t1, . . . , tn) :=

{
0, if ∃i ∈ {1, . . . , n} : ti ≥ t and ∀j ∈ {1, . . . , n}\{i} ti 6= tj

1, in other cases
,

i.e., χn,t(t1, . . . , tn) = 0 if there exists ti of multiplicity one such that ti ≥ t. For example,
χ3,5(6, 6, 4) = 1 (4 < 5, 6 has the multiplicity two), χ3,5(6, 6, 6) = χ3,5(4, 4, 4) = 1 (no
terms of multiplicity one), but χ3,5(6, 4, 4) = 0 (6 > 5, 6 has the multiplicity one). Set
also χ0,· ≡ 1. For F ∈ (L2)βq and t ∈ R+ define

(2.7) ẼtF :=

∞∑

n=0

〈Pn, F
(n)χn,t〉 ∈ (L2)βq ,

where F (n) ∈ H(n)
ext are the kernels from decomposition (1.3) for F . As is easily seen, we

have |F (n)χn,t|ext ≤ |F (n)|ext, therefore Ẽt◦ is a linear continuous operator in (L2)βq .

Remark. We use for the operator Ẽt the notation that is similar to the designation of
a conditional expectation because these operators are similar in a sense: cf. (2.7) and

(2.1). Moreover, it is easy to see that in the Gaussian and Poissonian cases Ẽt = Et

because for n ∈ N χn,t = 1[0,t)n in H⊗̂n (i.e., these two functions belong to the same
equivalence class in this space).

Further, for G ∈ (L2)βq ⊗H we define

(Ẽ·G)(·) :=
∞∑

n=0

〈Pn, G
(n)
· χn,·〉 ∈ (L2)βq ⊗H,

where the kernels G
(n)
· are from decomposition (1.6) for G. It is easy to see that Ẽ· is a

linear continuous operator in (L2)βq ⊗H, and for fixed t ∈ R+

(Ẽ·G)(t) = ẼtG(t)

(one can understand elements of (L2)βq ⊗ H as classes of functions acting from R+ to

(L2)βq , G(t) and (Ẽ·G)(t) are corresponding representatives of such classes at t).

Proposition 2.4. Let F ∈ (L2)βq . Then for β ≥ 0 Ẽ·∂·F ∈ (L2)βq ⊗ H, and for β < 0

Ẽ·∂·F ∈ (L2)βq−1 ⊗H, where ∂· as in Proposition 2.3.
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Proof. In the case β < 0 the result follows from properties of ∂· and Ẽ·. Let β ≥ 0. Since

Ẽ·∂·F =
∑∞

n=0(n+ 1)〈Pn, F
(n+1)(·)χn,·〉 (here F (n+1)(·) are the kernels from decompo-

sition (1.3) for F , in point as elements of H(n)
ext ⊗ H), in order to estimate the norm of

Ẽ·∂·F in (L2)βq ⊗H we need the following technical result.

Lemma. For n ∈ Z+ and F (n+1) ∈ H(n+1)
ext

(n+ 1)|F (n+1)(·)χn,·|2H(n)
ext⊗H

≤ |F (n+1)|2ext.

Proof. Using (1.2), the definition of χn,·, and the fact that for a symmetric integrable by
Lebesgue function fm : Rm

+ → R, m ∈ N,
∫

Rm
+

fm(t1, . . . , tm) dt1 . . . dtm

=
m∑

k=1

∫

R+

dtk

∫

[0,tk)m−1

fm(t1, . . . , tm) dt1 . . . dtk−1dtk+1 . . . dtm

≡
m∑

k=1

∫

R+

dt1

∫

[0,t1)m−1

fm(tk, t2, . . . , tk−1, t1, tk+1, . . . , tm) dt2 . . . dtm

= m

∫

R+

dt1

∫

[0,t1)m−1

fm(t1, . . . , tm) dt2 . . . dtm,

we obtain

(n+ 1)|F (n+1)(·)χn,·|2H(n)
ext⊗H

=
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk,
l1s1+···+lksk=n

(n+ 1)!

ls11 . . . lskk s1! . . . sk!

×
∫

R
s1+···+sk+1

+

|F (n+1)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

, t)

×χn,t(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

)|2

×ηl1−1(t1) . . . η
lk−1(ts1+···+sk)dt1 . . . dts1+···+skdt

=
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk>1,
l1s1+···+lksk+1=n+1

(n+ 1)!

ls11 . . . lskk s1! . . . sk!

×
∫

R
s1+···+sk+1

+

|F (n+1)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

, t)|2

×ηl1−1(t1) . . . η
lk−1(ts1+···+sk)dt1 . . . dts1+···+skdt

+
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk=1,
l1s1+···+lk−1sk−1+sk+1=n+1

(n+ 1)!

ls11 . . . l
sk−1

k−1 s1! . . . sk!

×
∫

R
s1+···+sk+1

+

|F (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk−1+1, . . . , ts1+···+sk , t)

×χn,t(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk−1+1, . . . , ts1+···+sk)|2

×ηl1−1(t1) . . . η
lk−1−1(ts1+···+sk−1

)dt1 . . . dts1+···+skdt
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=
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk>1,
l1s1+···+lksk+1=n+1

(n+ 1)!

ls11 . . . lskk s1! . . . sk!

×
∫

R
s1+···+sk+1

+

|F (n+1)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

, t)|2

×ηl1−1(t1) . . . η
lk−1(ts1+···+sk)dt1 . . . dts1+···+skdt

+
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk=1,
l1s1+···+lk−1sk−1+sk+1=n+1

(n+ 1)!

ls11 . . . l
sk−1

k−1 s1! . . . sk!

×
∫

R
s1+···+sk−1+1

+

dtdt1 . . . dts1+···+sk−1
ηl1−1(t1) . . . η

lk−1−1(ts1+···+sk−1
)

×
∫

[0,t)sk
|F (n)(t1, . . . , t1︸ ︷︷ ︸

l1

, . . . , ts1+···+sk−1+1, . . . , ts1+···+sk , t)|2

×dts1+···+sk−1+1 . . . dts1+···+sk

=
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk>1,
l1s1+···+lksk+1=n+1

(n+ 1)!

ls11 . . . lskk s1! . . . sk!

×
∫

R
s1+···+sk+1

+

|F (n+1)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk , . . . , ts1+···+sk︸ ︷︷ ︸
lk

, t)|2

×ηl1−1(t1) . . . η
lk−1(ts1+···+sk)dt1 . . . dts1+···+skdt

+
∑

k,lj ,sj∈N: j=1,...,k, l1>···>lk=1,
l1s1+···+lk−1sk−1+sk+1=n+1

(n+ 1)!

ls11 . . . l
sk−1

k−1 s1! . . . (sk + 1)!

×
∫

R
s1+···+sk+1

+

|F (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk−1+1, . . . , ts1+···+sk , t)|2

×ηl1−1(t1) . . . η
lk−1−1(ts1+···+sk−1

)dt1 . . . dts1+···+skdt ≤ |F (n+1)|2ext.

(Note that if F (n+1) satisfies the condition described in statement (2) of Proposition 2.2
then on the last step we have the equality, i.e., in this case (n+1)|F (n+1)(·)χn,·|2

H
(n)
ext⊗H

=

|F (n+1)|2ext.) �

Using the result of this lemma, we obtain (see (1.7) and (1.5))

‖Ẽ·∂·F‖2
(L2)βq⊗H

=

∞∑

n=0

(n!)1+β2qn(n+ 1)2|F (n+1)(·)χn,·|2H(n)
ext⊗H

≤ 2−q
∞∑

n=0

((n+ 1)!)1+β2q(n+1)(n+ 1)−β |F (n+1)|2ext ≤ 2−q‖F‖2q,β < ∞,

which required to be proved. �

From the proof of Theorem 2 in [13] and this proposition we obtain the following
result.
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Theorem 2.2. Let F ∈ (L2)βq and be presentable in form (2.3) (see Proposition 2.2).
Then the representation

(2.8) F = EF +

∫
Ẽt∂tF d̂Mt

is valid.

Note that if the kernels F (n) from decomposition (1.3) for F can be considered as

elements of H⊗̂n (see Subsection 1.2) then formula (2.8) reduces to (2.2).

Remark. In the case β = q = 0 (recall that (L2)00 = (L2)) the statements of Theo-
rems 2.1, 2.2 turn into the statements of Theorems 1, 2 from [13] correspondingly, but
with one significant difference: now a function F , for which we construct the Clark-Ocone
type formulas, can be not differentiable by Hida.

As we see, the use of the extended stochastic integral and of special operators in
Clark-Ocone type formulas is stipulated by properties of the scalar products 〈·, ·〉ext.
Nevertheless, in some particular cases one can use the Itô stochastic integral and the
conditional expectation. Let us consider the question about this possibility in more
details. From the proof of Theorem 3 in [13] and Proposition 2.4 one can easily obtain
the following result.

Theorem 2.3. Let F ∈ (L2)βq . Then the following statements are equivalent:

(1) F can be presented in form (2.2) (now Ẽ·∂·F ∈ (L2)βq ⊗H if β ≥ 0, and Ẽ·∂·F ∈
(L2)βq−1 ⊗H if β < 0);

(2) for each n ∈ N\{1} the kernel F (n) ∈ H(n)
ext from decomposition (1.3) for F has

a representative f (n) ∈ F (n) such that f (n)(t1, . . . , tn) = 0 if there exist i, j ∈
{1, . . . , n}, i 6= j, such that max{t1, . . . , tn} = ti = tj (i.e., if the multiplicity of
maximal t· ∈ {t1, . . . , tn} is greater than one).

Remark. As is easy to see, if for some F ∈ (L2)βq the condition of statement (2) of this
theorem is fulfilled (for example, it is so in the case η ≡ 0 (see (1.1))) then the condition
of statement (2) of Proposition 2.2 is fulfilled too.

Note that if F ∈ (L2)βq can be presented in form (2.2) then Ẽ·∂·F = E·∂·F (see the
proof of Proposition 2.2 in [13]).

Remark. The results of Theorems 2.1–2.3 hold true if the random variable F ∈ (L2)β ,
β ∈ [−1, 1], in this case the integrands belong to (L2)β ⊗H.

Finally we note that the spaces similar toH(n)
ext arise not only in the Meixner white noise

analysis, but also in an analysis connected with Lévy processes, see [24, 23]. Therefore
the results of this paper can be reformulated for the ”Lévy analysis”. A detailed study
of this question and related topics will be given in another paper.
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and remarks.
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