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STURM TYPE OSCILLATION THEOREMS FOR EQUATIONS WITH

BLOCK-TRIANGULAR MATRIX COEFFICIENTS

A. M. KHOLKIN AND F. S. ROFE-BEKETOV

To the memory of Anatoliy G. Kostyuchenko, a prominent mathematician and a remarkable person

Abstract. A relation is established between spectral and oscillation properties of
the problem on a finite interval and a semi-axis for second order differential equations
with block-triangular matrix coefficients.

0. Introduction

The Sturm type oscillation theory for scalar differential equations of the second order
and finite systems with Hermitian coefficients on finite and infinite intervals was studied
by many specialists. The previous works of the authors [14], [15], [17], [18], along with
the new results contained therein, present an extended bibliography in this area for
self-adjoint problems.

The asymptotic distribution of eigenvalues for self-adjoint singular differential ope-
rators has been considered in the well known monograph of A. G. Kostyuchenko and
I. S. Sargsyan [8].

The present work establishes a relation between spectral and oscillation properties of
the problem on a finite interval and a semi-axis for second order differential equations
with block-triangular matrix coefficients.

Note that differential equations with triangular matrix potential in the context of
inverse scattering problem were considered in [3], [19], [20].

Consider the differential equation with matrix coefficients

(1) l[y] = − (P (x)y′)
′
+

i

2

(
(Q(x)y)

′
+Q(x)y′

)
+ V (x)y = λW (x)y,

where the coefficients P (x), Q(x), together with their derivatives, as well as the coeffi-
cients V (x), W (x) depend continuously on x ∈ [0,∞).

Suppose that the coefficients P (x), Q(x), V (x) in (1) have a block-triangular form.
This means, in particular, that the potential V (x) is of the form

(2) V (x) =




V11(x) V12(x) . . . V1r(x)
0 V22(x) . . . V2r(x)
. . . . . . . . . . . .

0 0 . . . Vrr(x)




and the weight coefficient W (x) is given by a block-diagonal matrix of the form

W (x) =




W11(x) 0 . . . 0
0 W22(x) . . . 0
. . . . . . . . . . . .

0 0 . . . Wrr(x)


 .
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The diagonal blocks Pkk(x), Vkk(x), Qkk(x), Wkk(x), k = 1, r, are Hermitian mk×mk

matrices, mk ≥ 1 (in particular, with mk = 1 these are scalar functions). Let us assume
r∑

k=1

mk = m.

Denote by Hm the Hilbert space of dimension m < ∞. A vector h ∈ Hm is to be
written below as h = col (h1, h2, . . . , hr), with hk ∈ Hmk

, k = 1, r.
Suppose that for every k the diagonal blocks Pkk(x) of the coefficient at the highest

derivative of P (x), together with the diagonal blocks Wkk(x) of the weight coefficient
W (x), are all simultaneously positive or negative matrices at every x ∈ [0, b), also with
b included in the case when the latter is finite.

Remark 1. In the case when some of the diagonal blocks of the matrices P (x) and
W (x) are negative, consider the equation

(3) m[y] = Ĩ · l[y] = −
(
P̃ (x)y′

)′
+

i

2

((
Q̃(x)y

)′
+ Q̃(x)y′

)
+ Ṽ (x)y = λW̃ (x)y,

where Ĩ is a diagonal matrix, whose diagonal blocks are as follows. If Pkk(x) > 0 and

Wkk(x) > 0, the corresponding block of Ĩ is Imk
, the mk × mk unit matrix; otherwise

(Pkk(x) < 0 and Wkk(x) < 0) the corresponding block is (−Imk
). As for the rest

of the coefficients in (3), they are assumed to satisfy the relations P̃ (x) = Ĩ · P (x),

Q̃(x) = Ĩ · Q(x), Ṽ (x) = Ĩ · V (x), W̃ (x) = Ĩ · W (x). Under the listed assumptions,

all the diagonal blocks P̃kk(x) of P̃ (x) and the diagonal blocks W̃kk(x) of the weight

coefficient W̃ (x) in (3) are positive matrices. In what follows we assume that either
the latter condition is valid for the differential expression l[y], or we replace it with the
differential expression m[y].

In the case mk = 1 for all k = 1, r, the coefficients of the differential equation are
triangular matrices.

The geometric and algebraic multiplicities of eigenvalues are the same in the case of
Hermitian matrices. But these multiplicities can be different for triangular matrices.
Even in the case when the algebraic multiplicity of an eigenvalue is a constant function
of a variable x, the geometric multiplicity can happen to be non-constant, as the Jordan
structure of the matrix can vary. For example, consider the triangular matrix V (x) =(
1 x

0 1

)
, whose eigenvalue is 1. Its algebraic multiplicity is 2 for all x, while the geometric

multiplicity is 1 for x 6= 0 and is 2 for x = 0.

1. The problem on a finite interval

Suppose we are given the boundary conditions at the endpoints of the interval (0, b),
b < ∞, as follows:

(4) A · y′(0)−B · y(0) = 0,

(5) C · y′(b)−D · y(b) = 0,

where A and B, C and D are commuting block-triangular matrices of the same structure
as that of coefficients of the differential equation. For example,

(6) A =




A11 A12 . . . A1r

0 A22 . . . A2r

. . . . . . . . . . . .

0 0 . . . Arr


 , B =




B11 B12 . . . B1r

0 B22 . . . B2r

. . . . . . . . . . . .

0 0 . . . Brr


 ,
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where Akk, Bkk are Hermitianmk×mk-matrices such thatmk ≥ 1, k = 1, r,
r∑

k=1

mk = m,

and

(7) det
(
A2 +B2

)
=

r∏

k=1

det
(
A2

kk +B2
kk

)
6= 0.

It follows from AB = BA that

(8) Akk ·Bkk = Bkk ·Akk, k = 1, r.

In a similar way, the matrices C and D should satisfy the following relations:

(9) Ckk ·Dkk = Dkk · Ckk, k = 1, r,

(10) det
(
C2 +D2

)
=

r∏

k=1

det
(
C2

kk +D2
kk

)
6= 0.

Denote by Y (x, λ) the matrix solution of the equation (1), which satisfy the initial
conditions

Y (0, λ) = A, Y ′(0, λ) = B.

This solution has a block-triangular structure

(11) Y (x, λ) =




Y11(x, λ) Y12(x, λ) . . . Y1r(x, λ)
0 Y22(x, λ) . . . Y2r(x, λ)
. . . . . . . . . . . .

0 0 . . . Yrr(x, λ)


 ,

where Ykk(x, λ) are mk ×mk-matrices, mk ≥ 1, k = 1, r.
Y (x, λ) is a fundamental solution of the problem (1), (4) in the sense that

(1) For every h ∈ Hm (recall our notation Hm for a Hilbert space of dimension m)
the vector function y = Y (x, λ)h is a solution of (1) which satisfy the boundary
condition (4);

(2) every vector solution y(x, λ) of the problem (1), (4) admits a representation in
the form y(x, λ) = Y (x, λ)h;

(3) for some (hence for every) x one has det
(
Y 2(x, λ) + Y ′2(x, λ)

)
6= 0.

This means that, given h 6= 0, Y (x, λ)h is a non-trivial solution of the problem (1),
(4) (cf. the definition in [17], [18]).

The latter condition for the solution Y (x, λ) of the problem (1), (4) is valid at x = 0
by virtue of (7).

Denote by L′ the minimal with respect to b differential operator generated in the
Hilbert space L2(Hm, (0, b),W (x)dx) by the differential expression

(12) lW [y] = W−1(x)l[y]

and the boundary condition (4).
Consider the system

(13) lk[zk] = − (Pkk(x)z
′
k)

′
+

i

2
((Qkk(x)zk)

′ +Qkk(x)zk
′) + Vkk(x)zk = λWkk(x)zk

k = 1, r, with the boundary conditions

(14) Akk · z′k(0)−Bkk · zk(0) = 0,

where zk(x) is a vector function with values in Hmk
in the notation as in Introduction.
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Under the assumptions (7), (8), the condition (14) is self-adjoint (see [17], [18]). De-
note by L′

k the minimal with respect to b symmetric operator, generated by the dif-
ferential expression

(15) lk,w[zk] = W−1
kk (x)lk[zk],

together with the boundary conditions (14) and zk(b) = z′k(b) = 0.
Denote by L the differential operator generated by the differential expression (12) and

the boundary conditions (4), (5). Let also Lk stand for the self-adjoint extension of the
minimal with respect to b operator L′

k, determined by the boundary condition

(16) Ckk · z′k(b)−Dkk · zk(b) = 0,

where Ckk, Dkk are mk ×mk Hermitian matrices, which satisfy (9), (10).
In the case when the matrix C in (5) has the form

(17) C =




0 C12 . . . C1r

0 0 . . . C2r

. . . . . . . . . . . .

0 0 . . . 0


 ,

the operator L will be denoted by L0; otherwise, when the boundary condition (16)
acquires the form

(18) zk(b) = 0,

the operator Lk will be denoted by L0
k.

Denote by σk =
⋃
s

{λsk}s, k = 1, r, the set of eigenvalues for the self-adjoint operator

Lk; let also Nk(λ) be the number of eigenvalues λsk < λ with k fixed, counted according
to their multiplicities. The quantities λsk, Nk(λ) for L

0
k will be denoted by λ0

sk, N
0
k (λ),

respectively.

Lemma 1. The spectrum of L is discrete, real, and coincides to the union of spectra of
self-adjoint operators Lk

(19) σ(L) = σd(L) =
r⋃

k=1

σk.

Proof. The eigenvalues of L coincide to the poles of the Green function G(x, ξ, λ) for the
operator L− λI, i. e., to zeros of the determinant ∆(λ) := detΩ(b, λ), where

Ω(b, λ) = C · Y ′(b, λ)−D · Y (b, λ).

Since the matrices C, D, Y (b, λ), Y ′(b, λ) have a block-triangular structure of the

form (6), (11), one has ∆(λ) =
r∏

k=1

∆k(λ), where ∆k(λ) := detΩk(b, λ),

Ωk(b, λ) = Ckk · Y ′
kk(b, λ)−Dkk · Ykk(b, λ).

On the other hand, under the assumptions (9), (10) zeros of ∆k(λ) are just eigenvalues
of the self-adjoint operator Lk, hence real. It follows that the spectrum of L is real and
is just the union of spectra of Lk. The Lemma is proved. �

Remark 2. Given an eigenvalue λ0 of L, whose geometric multiplicity is æg, then 0 is
an eigenvalue of the matrix Ω(b, λ0) with the same geometric multiplicity æg, and vice
versa.

In fact, if λ0 is an eigenvalue of L with geometric multiplicity æg, then there exist æg

linear independent solutions y1(x, λ0), y2(x, λ0), . . . , yæg
(x, λ0) of (1), which satisfy the

boundary conditions (4), (5). Since Y (x, λ) is a fundamental solution of the problem (1),
(4), there exist æg linear independent vectors h1, h2, . . . , hæg

∈ Hm such that yk(x, λ0) =
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Y (x, λ0)hk, k = 1, 2, . . . ,æg. One deduces from this fact that Ω(b, λ0)hk = 0, k =
1, 2, . . . ,æg. Hence the geometric multiplicity æ′

g of 0 as an eigenvalue of the matrix
Ω(b, λ0) is at least æg, that is, æ′

g ≥ æg. The converse inequality can be proved in a
similar way. Thus we have æ′

g = æg.

Let us enumerate the eigenvalues of L0 in the ascending order

λ0
1 ≤ λ0

2 ≤ · · · ≤ λ0
n ≤ · · · ,

and denote by N0
a (λ) the number of eigenvalues λ0

n < λ of L0 counted according to their
algebraic multiplicities.

Given an arbitrary matrix T , we use below the conventional notation

(20) nulT = dimKer T, Def T = dimCokerT.

If T is Hermitian, one has nulT = Def T .
In the case of non-Hermitian T , together with the geometric multiplicity æg of 0 as

an eigenvalue of T , which is just nulT , we will consider the algebraic multiplicity æa of
0 as an eigenvalue of T . For T Hermitian, the geometric and algebraic multiplicities are
the same, so we will omit indices g and a.

Denote by nula T the algebraic multiplicity of 0 as an eigenvalue of T .
It was proved in [14], [15], [17], [18] that, although the matrix solution Ykk(x, λ) of the

differential equation (13) with Hermitian coefficients, in general can fail to be a Hermitian
matrix, but one has

(21) nulYkk(x, λ) = Def Ykk(x, λ).

For m ≥ 1 we denote by nula Y (x, λ) the algebraic multiplicity of 0 as an eigenvalue of
the matrix Y (x, λ) with fixed x and λ. In particular, withm = 1 we have nula Y (x, λ) = 1
if x is a root of the scalar equation Y (x, λ) = 0, and nula Y (x, λ) = 0 otherwise.

Theorem 1. Let an operator L0 be generated by the differential expression (12) with
block-triangular matrix coefficients and the boundary conditions (4), (5) with a matrix C

of the form (17). Suppose that the blocks Pkk(x) of the coefficient at the highest derivative
of P (x) and the blocks Wkk(x) of the matrix weight coefficient W (x) are simultaneously
either Hermitian positive or Hermitian negative at every x ∈ [0, b], and the blocks Vkk(x)
are Hermitian. Then for λ ∈ R one has

(22)
∑

x∈(0,b)

nula Y (x, λ) = N0
a (λ).

Here the sum is in those x ∈ (0, b) where nula Y (x, λ) 6= 0.

Corollary 1. For λ ∈ R one has
r∑

k=1

∑
x∈(0,b)

nulYkk(x, λ) = N0
a (λ).

Proof of Theorem 1. By virtue of Lemma 1 and the definition of N0
k (λ) and N0

a (λ) we
deduce that

(23) N0
a (λ) =

r∑

k=1

N0
k (λ).

Since the diagonal blocks Pkk(x) of the coefficient at the highest derivative and the
diagonal blocks Wkk(x) of the weight coefficient W (x) may be assumed positive at all
x ∈ [0, b], we can use the oscillation theorem1 for the boundary problem with self-adjoint

1This is the classical Sturm theorem for a scalar equation of the form −z′′ + V (x)z = λz on a finite
interval. This theorem for the equation of the form (13) with the first derivative has been proved in [15],

[17], [18]. In the case of arbitrary even order differential equations with matrix and operator coefficients
on either finite or infinite interval, the theorem has been proved in [14], [15], [17], [18].
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positive coefficients Pkk(x), Wkk(x) and zero boundary condition (18) at the right end-
point, to establish that

(24)
∑

x∈(0,b)

nulYkk(x, λ) = N0
k (λ),

where nulYkk(x, λ) is given by (20). Furthermore, (21) is valid.
Since nula Y (x, λ) stands for the algebraic multiplicity of 0 as an eigenvalue of the

matrix Y (x, λ) at fixed x and λ, we are in a position to apply (21) in order to deduce
that

(25) nula Y (x, λ) =
r∑

k=1

nulYkk(x, λ).

Now we compare (23), (24), and (25) to derive (22). The Theorem is proved. �

The Corollary 1 is due to this Theorem and (25).
Denote by Na(λ) the number of eigenvalues of L less than λ, counted according to

their algebraic multiplicities. Similarly to (23), we obtain Na(λ) =
r∑

k=1

Nk(λ).

In the case of Hermitian diagonal coefficients of the differential equation (1), i.e.,
Hermitian coefficients in the equation (13), and Hermitian matrices Akk, Bkk, Ckk, Dkk in
the boundary conditions (14), (16), the oscillation theorem for equations with Hermitian
matrix coefficients (see [14], [15], [17], [18]) implies

Nk(λ)−min{rg Ckk, mk − æk(λ)} ≤
∑

x∈(0;b)

nulYkk(x, λ) = N0
k (λ) ≤ Nk(λ),

where nulYkk(x, λ) = nula Ykk(x, λ), æk(λ) is the multiplicity of λ as an eigenvalue of the
self-adjoint operator Lk. After summing in k and applying (25), we obtain the following
Theorem.

Theorem 2. For the problem (1), (4), (5) and λ ∈ R one has

(26) Na(λ)−
r∑

k=1

min{rg Ckk, mk − æk(λ)} ≤
∑

x∈(0;b)

nula Y (x, λ) ≤ Na(λ).

The extensions corresponding to the equation (1) with Hermitian coefficients P (x),
V (x), W (x) and generated by the boundary problem, are self-adjoint and such that
algebraic and geometric multiplicities of eigenvalues coincide. Moreover, for the matrix
solution Y (x, λ) of the problem (1), (4) one has nulY (x, λ) = Def Y (x, λ). Thus one
gets a problem of transferring Theorems 1, 2 for geometric multiplicities associated to
the problems with block-triangular coefficients. However, this generalization fails, as one
can see from Example 1 below.

A proof of the Theorem for equations with self-adjoint coefficients (see [14], [15], [17],
[18]) is based on considering the behavior of eigenvalues for the self-adjoint operator L0

ξ

corresponding to the problem (1), (4), y(ξ) = 0.
Let

λ0
1(ξ) ≤ λ0

2(ξ) ≤ · · · ≤ λ0
n(ξ) ≤ · · ·

be the enumerated discrete spectrum of L0
ξ , with the geometric multiplicities æg

(
λ0
n(ξ)

)

being taken into account. The functions λ0
n(ξ) are continuous, monotonously decreasing

in ξ for ξ ∈ (0; b] and λ0
n(ξ) → +∞ as ξ → +0 (see [14]–[18]). Some specific curves may

coincide completely or partially, according to multiplicity of the corresponding eigen-
values. In the case of self-adjoint problem, geometric and algebraic multiplicities of
eigenvalues coincide, hence the total geometric multiplicity along the curves λ = λ0

j (x)
is constant.
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However, in the case of a problem with block-triangular matrix coefficients, the picture
becomes different. While the total algebraic multiplicity along the curves λ = λ0

j (x) is
constant, the total geometric multiplicity along those curves may vary, as one can observe
from the Example below. Hence the following Remark.

Remark 3. The claim of Theorem 1 for geometric multiplicities is not true without
additional assumptions.

Example 1. Consider the differential equation with a triangular potential

(27) −y′′ + V (x)y = λy,

where

(28) V (x) =

(
0 V12(x)
0 0

)
, V12(x) =

{
0, 0 ≤ x ≤ π

2 ,

1, π
2 < x ≤ π.

The solution Y (x, λ) satisfying the initial conditions Y (0, λ) = 0, Y ′(0, λ) = I, has
the form

(29) Y (x, λ) =

(
1√
λ
sin

√
λx y12(x, λ)

0 1√
λ
sin

√
λx

)
,

where

y12(x, λ) =

{
0, 0 ≤ x ≤ π

2 ,
1

2(
√
λ)3

cos
√
λπ

2 sin
√
λ(x− π

2 )− 1
2λ (x− π

2 ) cos
√
λx, π

2 ≤ x ≤ π.

If one considers the condition y(π, λ) = 0 at the right endpoint, the eigenvalues are to

be found from the equation sin
√
λπ = 0, i.e.,

√
λ = n, λ = n2.

The eigenvalues of L0
x are given by

λ0
n(x) =

π2n2

x2
, λ0

n(x) → +∞ as x → +0.

The algebraic multiplicity is æa(λ
0
n(x)) = 2 at all x ∈ (0;π], while the geometric

multiplicity is

æg(λ
0
n(x)) =

{
2, 0 < x ≤ π

2 ,

1, π
2 < x ≤ π.

Remark 4. If for some µ < ∞ the total geometric multiplicity is constant along the
collection of all the curves λ = λ0

j (x) for the problem (1), (4), y(b) = 0 with block-
triangular coefficients, then one has

(30)
∑

x∈(0;b)

nulY (x, λ) = N0
g (λ), λ ≤ µ,

where nulY (x, λ) is given by (20) in such a way that (21) is valid for Y (x, λ), N0
g (λ) is

the number of eigenvalues λ0
n < λ of L0 generated by the problem (1), (4), y(b) = 0,

counted according to their geometric multiplicities.
The sketch of a proof for Remark 4 is similar to that of the corresponding theorem

for equations with Hermitian coefficients (see [14], [15], [17], [18]).

Example 2. Consider the differential equation (27) with a potential of the form (28),
where

V12(x) =

{
1, 0 ≤ x ≤ π

2 ,

0, π
2 < x ≤ π.
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In this case the solution Y (x, λ) satisfying the initial conditions Y (0, λ) = 0, Y ′(0, λ) = I

has also the form (29), but

y12(x, λ) =

{
1

2(
√
λ)3

sin
√
λx− x

2λ cos
√
λx, 0 ≤ x ≤ π

2 ,

1
2(

√
λ)3

sin
√
λπ

2 cos(π2 − x)− π
4λ cos

√
λx, π

2 ≤ x ≤ π.

Here again λ0
n(x) =

π2n2

x2 , but with

æa(λ
0
n(x)) = 2, ∀x ∈ (0;π],

æg(λ
0
n(x)) = 1, ∀x ∈ (0;π].

Now let us look at the problem on [0;π] under the conditions y(π, λ) = 0, λ0
n = n2. With

λ = 0 the solution Y (x, λ) has the form

Y (x, 0) =

(
x y12(x)
0 x

)
, y12(x) =

{
x3

6 , 0 ≤ x ≤ π
2 ,

π2

8 x− π3

24 ,
π
2 ≤ x ≤ π,

and λ = 0 is not among the eigenvalues. Thus λ0
n = n2, n ∈ N.

For n = 1, λ0
1 = 1 one has

Y (x, λ0
1) =

(
sinx y12(x)
0 sinx

)
, y12(x) =

{
1
2 sinx− x

2 cosx, 0 ≤ x ≤ π
2 ,

1
2 sinx− π

4 cosx, π
2 < x ≤ π,

and nulY (x, λ0
1) = 0 for x ∈ (0;π).

For n = 2, λ0
2 = 4 one has

Y (x, λ0
2) =

(
1
2 sin 2x y12(x)

0, 1
2 sin 2x

)
.

In this case nulY (π2 ;λ
0
2) = 1 = N0

g (λ
0
2). A similar computation can be done for other n.

All this results in ∑

x∈(0;π)

nulY (x, λ) = N0
g (λ).

Note that the number of roots for the equation detY (x, λ) = 0 on (0;π), counted ac-
cording to their multiplicities, is N0

a (λ), i.e., (22) is also valid.

2. The problem on a semi-axis

Denote by L′ the minimal with respect to x = ∞ (non-closed) differential operator
generated on compactly supported functions in L2(Hm, (0,∞),W (x)dx) (here Hm is an
m-dimensional Hilbert space) by the differential expression (12) and the boundary con-
dition (4) at 0. Let also L′

k, k = 1, r, be the minimal symmetric operator, generated in
L2(Hmk

, (0,∞),Wkk(x)dx) by the differential expression (15) and the boundary condi-
tion (14). Suppose that every symmetric operator L′

k is lower semi-bounded. (If either
P (x) = Im or the grows of Pk(x) as x → ∞ is not too fast, then the minimal symmet-
ric semi-bounded operators L′

k, k = 1, r, are essentially self-adjoint (see [2]), and their
self-adjoint extensions are produced by closing the minimal operator).

In the general case, suppose that one has the self-adjoint boundary condition at the
infinity for the symmetric operator L′

k as follows:

(31) Uk[yk] = 0, k = 1, r,

where Uk is a linear map from L2(Hmk
, (0,∞),Wkk(x)dx) to Hmk

such that Uk[yk] =
Uk[zk] if yk(x) = zk(x) for x big enough.

Suppose one has some boundary condition at the infinity for L′:

(32) U [y] = 0
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such that one may set up
(U [y])1 = U1[y1, y2, . . . , yr],

(U [y])2 = U2[y2, y3, . . . , yr],

. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(U [y])r−1 = Ur−1[yr−1, yr],

(U [y])r = Ur[yr].

Denote by L any extension of L′ determined by the boundary condition (32) and
possessing the following properties:

(33)

U1[y1, 0, . . . , 0] = U1[y1],

U2[y2, 0, . . . , 0] = U2[y2],

. . . . . . . . . . . . . . . . . . . . . . . .

Ur−1[yr−1, 0] = Ur−1[yr−1],

where the right hand sides correspond to (31).
If (31) determine the Friedrichs extension L0

k of the semi-bounded symmetric operator
L′
k, the corresponding extension of L′ will be denoted by L0. It was demonstrated in [12],

[13] that the spectral function ρ(λ) of the operator L0
k is derivable by a kind of passage

to a limit as b → ∞ from the spectral function ρb(λ) of the problem (13), (14), (18) on
[0, b].

Denote by σk =
⋃
s

{λsk}s, k = 1, r, the set of eigenvalues λsk < λe (Lk) of the self-

adjoint operator Lk for each fixed k; let Nk(λ) be the number of eigenvalues λsk < λ <

λe (Lk) counted according to their multiplicities. Here λe(Lk) stands for the the lower
bound of the essential spectrum of the operator Lk. The quantities λsk, Nk(λ) for L0

k

will be denoted by λ0
sk, N

0
k (λ), respectively.

Lemma 2. The discrete spectrum of L is real and is contained in the union of discrete
spectra of Lk

(34) σd(L) ⊆
r⋃

k=1

σk.

Proof. Let λ = λ0 be an eigenvalue of L, and

y(x, λ0) = col(y1(x, λ0), y2(x, λ0), . . . , yr(x, λ0))

the corresponding vector eigenfunction. Here at least one coordinate of the vector y(x, λ0)
is not identically zero. Let us show that λ0 is an eigenvalue of the operator Lk for at
least one k.

After writing down the system (1) and the boundary conditions (4) in a block-
coordinate form, the latter relations acquire the form (13), (14) for k = r, λ = λ0

with respect to the function yr(x, λ0) instead of zk(x). If yr(x, λ0) 6≡ 0 for x ∈ (0,∞),
the function yr(x, λ0) satisfy the differential equation (13), the boundary condition (14),
and the condition at infinity (31) with k = r. Hence yr(x, λ0) in this case is an eigenfunc-
tion, and λ0 is an eigenvalue of the self-adjoint operator Lr; in particular, λ0 is real. Now
suppose that yk(x, λ0) ≡ 0 for all 1 ≤ s < k ≤ r while ys(x, λ0) 6≡ 0. Then the last r − s

equations of the system (1) become the identities, the s-th equation in (1) becomes the
same as the corresponding equation of the system (13), the s-th equality in the boundary
condition (4) at 0 coincides with the corresponding condition in (14), and the boundary
condition at infinity (31) with k = s becomes Us[ys, 0, . . . , 0] = 0. This means that λ0

is an eigenvalue of the self-adjoint operator Ls, and ys(x, λ0) is an eigenfunction of this
operator, hence λ0 is real (here λ0 may also be an eigenvalue of Lk for some different k).
Thus the discrete spectrum of L is real, which completes the proof of (34). �
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The Lemma is proved, but it will be of some interest to consider the possibility of
converse inclusion. Let λ0 ∈ σ1. Then there exists h1 ∈ Hm1

, h1 6= 0, such that the
vector function y11(x, λ0) = Y11(x, λ0)h1 is a solution of the equation (13), satisfies the
boundary condition (14) and the condition at infinity, which determine the self-adjoint
operator L1. Hence this vector function is an eigenfunction of the latter operator, and
the vector function y(x, λ0) = Y (x, λ0)h, with h = col(h1, 0, . . . , 0), is an eigenfunction
of L, whence λ0 ∈ σ(L).

Let λ0 ∈ σ2. Then there exists h2 ∈ Hm2
, h2 6= 0, such that the vector function

y22(x, λ0) = Y22(x, λ0)h2 satisfies the boundary condition at infinity and is an eigenfunc-
tion for L2. In order to make sure that y(x, λ0) = Y (x, λ)h, with

h = col(0, h2, 0, . . . , 0), y(x, λ0) = col(y12(x, λ0), y22(x, λ0), 0, . . . , 0),

is an eigenfunction of L, it suffices to have that y(x, λ0) ∈ L2(Hm, (0,∞),W (x)dx). In
a similar way, if λ0 ∈ σk, 1 < k ≤ r, and ykk(x, λ0) = Ykk(x, λ0)hk, hk ∈ Hmk

, is
the corresponding eigenfunction for Lk, then in order to make sure that λ0 ∈ σd(L), it
suffices to have

(35)
y(x, λ0) = Y (x, λ0)h

= col(y1k(x, λ0), . . . , ykk(x, λ0), 0, . . . , 0) ∈ L2(Hm, (0,∞),W (x)dx),

where h = col(0, . . . , 0, hk, 0, . . . , 0).
This condition is always valid for b < ∞ due to smoothness of coefficients. Hence for

the problem on a finite interval one has

(36) σd(L) =

r⋃

k=1

σk

(cf. (19)). However, for the problem on a semi-axis, (35) can fail. Sufficient conditions
for the spectrum σd(L) of L to coincide with the union of discrete spectra of Lk, k = 1, r,
are given by the following

Example 3. (36) is valid for the differential equation of the form

(37) −y′′ + V (x)y = λy

with a block-triangular m × m matrix potential V (x) (whose diagonal blocks are Her-
mitian), which has the first moment

∫ ∞

0

x · |V (x)|dx < ∞.

In this case, only the negative part of the spectrum is discrete.
A proof follows from the properties of spectrum for the scattering problem related to

Hermitian systems on a semi-axis [1] and the properties of spectrum for the scattering
problem with a triangular matrix potential [3].

Another sufficient condition for (37) in the case of triangular 2 × 2 matrix potential,
with fast growth on the diagonal, is presented by the authors in the following Lemma.
Its proof is to be expounded in another paper.

Lemma 3. Suppose that the potential V (x) in (37) has the form

V (x) = w(x)I + U(x), U(x) =

(
p(x) q(x)
0 p(x)

)
,

where w(x), p(x), q(x) are scalar functions, w(x), p(x) are real, 0 < w(x) → ∞
monotonously as x → ∞ and faster than xα with α > 2, w(x) has a monotonous abso-
lutely continuous derivative, so that

∫ ∞

0

|U(t)| · w− 1

2 (t)dt < ∞,
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∫ ∞

0

w′2(t) · w− 5

2 (t)dt < ∞,

∫ ∞

0

w′′(t) · w− 3

2 (t)dt < ∞.

Then the discrete spectrum σd(L) of L coincides to the union of discrete spectra of self-
adjoint operators Lk, k = 1, r.

Condition Σ. In what follows we assume that the coefficients of the differential equation
(1) for the problem on a semi-axis are such that the discrete spectrum of L coincides to
the union of discrete spectra of self-adjoint operators Lk, k = 1, r, i.e., (36) is valid.

Recall that we denote by L0 such extension of L′ that the corresponding extensions
of the operators L′

k are just the Friedrichs extensions L0
k.

Let us enumerate the eigenvalues of L0 in increasing order

λ0
1 ≤ λ0

2 ≤ · · · ≤ λ0
n ≤ · · · < λe

(
L0
)
.

Denote by N0
a (λ) the number of eigenvalues λ0

n < λ < λe

(
L0
)
of the operator L0,

counted according to their algebraic multiplicities.

Theorem 3. Assume that Condition Σ is satisfied. Suppose the operator L0 is generated
by the differential expression (12) with matrix block-triangular coefficients, the boundary
condition at 0 (4), and such boundary conditions at the infinity that one gets Friedrichs
extensions for semi-bounded symmetric operators L′

k. Assume also that the diagonal
blocks Pkk(x) of the coefficient at the highest derivative of P (x) and the diagonal blocks
Wkk(x) of the weight coefficient W (x) are simultaneously either Hermitian positive or
Hermitian negative at every x ∈ [0;∞), and the blocks Vkk(x) are Hermitian. Then for
λ < λe

(
L0
)
one has ∑

x∈(0,∞)

nula Y (x, λ) = N0
a (λ)

(the sum here is in those x ∈ (0,∞) for which nula Y (x, λ) 6= 0).

The proof is analogous to that of Theorem 1 and uses the oscillation theorem for
equations with self-adjoint positive coefficients Pkk(x), Wkk(x) on semi-axis (in the case
of the scalar equation (13) with Qkk(x) ≡ 0 the theorem has been proved in [5], [9]; in
the case of differential equations of an arbitrary even order with matrix and operator
coefficients on an infinite interval the theorem has been proved in [14], [15], [17], [18]).

Let Lk be an arbitrary self-adjoint extension of a semi-bounded symmetric operator
L′
k, determined by a condition (31) at the infinity. A description of self-adjoint extensions

for symmetric differential operators of arbitrary order (both even and odd) on an infinite
interval (axis, semi-axis) in an absolutely indefinite case was obtained in [7] (see also [17],
[18]). In the case of intermediate deficiency indices these questions have been investigated
in [4], [6], [10], [11].

Denote by L an extension of an operator L′ determined by the condition (32) so that
(33) is satisfied.

Theorem 4. Let the condition Σ be satisfied. With the operator L as above and λ <

λe(L) one has

Na(λ)−
r∑

k=1

pk ≤
∑

x∈(0,∞)

nula Y (x, λ) = N0
a (λ) ≤ Na(λ),

where pk = Def
{
Lk

∣∣D
(
L0
k

)
∩D (Lk)

}
. If λ is not an eigenvalue of L′, then for λ <

λe(L) one has

Na(λ)−
r∑

k=1

min{pk, dk − æk(λ)} ≤
∑

x∈(0,∞)

nula Y (x, λ) = N0
a (λ) ≤ Na(λ),
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where dk = Def L′
k, æk(λ) is the multiplicity of λ as an eigenvalue of the self-adjoint

operator Lk.

Proof. By virtue of the oscillation theorem (see [15], [17], [18]), for every equation of the
split system (13) with Hermitian matrix coefficients and with λ < λe(Lk) one has

Nk(λ)− pk ≤
∑

x∈(0;∞)

nulYkk(x, λ) = N0
k (λ) ≤ Nk(λ),

where Nk(λ) is a counting function for eigenvalues less than λ for the self-adjoint ex-
tension Lk of the symmetric operator L′

k generated by the problem (13), (14), which is
minimal with respect to the infinity,

pk = Def
{
Lk

∣∣D
(
L0
k

)
∩D(Lk)

}
.

If λ is not an eigenvalue of L′
k, for λ < λe(Lk) one has

Nk(λ)−min{pk, dk − æk(λ)} ≤
∑

x∈(0,∞)

nulYkk(x, λ) = N0
k (λ) ≤ N(λ),

where dk = Def L′
k.

�

Now we sum up this in k to obtain the claim of Theorem 4.

Remark 5. With a regular endpoint b < ∞ one has pk = rg Ckk, dk = mk.
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