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ON COMMUTING SYMMETRIC OPERATORS

S. M. ZAGORODNYUK

Dedicated to the memory of A. G. Kostyuchenko

Abstract. In this paper we present some conditions for a pair of commuting sym-
metric operators with a joint invariant dense domain in a Hilbert space, to have a
commuting self-adjoint extension in the same space. The remarkable Godič-Lucenko
theorem allows to get a convenient description of all such extensions.

1. Introduction

The extension problems for commuting operators have been studied for a long time
and have numerous applications (e.g. [1, Chapter VIII, Section 2], [2]–[8], etc.). We shall
give some conditions for a pair of commuting symmetric operators with a joint invariant
dense domain in a Hilbert space, to have a commuting self-adjoint extension in the same
space. A convenient description of all such extensions can be obtained by the remarkable
Godič-Lucenko theorem [9] (also see [10] for another proof and a generalization). Our
conditions form an analog of Theorem 2.6 in [1, Chapter VIII] obtained in 1945 by
Livshic, and independently later by Eskin. Notice that Theorem 2.6 regarded operators
acting in the tensor products of Hilbert spaces and having a fixed structure. Our proof
below is analogous to that of Theorem 2.6 except its part related to the Godič-Lucenko
Theorem. Also, our result generalizes the result of Ismagilov in [3, Theorem 1]. A close
result to Theorem 2.1 below, was given by Slinker in [4, Theorem 3.1].

Notations. We denote by R,C,N,Z,Z+ the sets of real numbers, complex numbers,
positive integers, integers and non-negative integers, respectively. Everywhere in this
paper, all Hilbert spaces are assumed to be separable. By (·, ·)H and ‖ · ‖H we denote
the scalar product and the norm in a Hilbert space H, respectively. The indices may be
omitted in obvious cases. For a set M in H, by M we mean the closure of M in the norm
‖ · ‖H . The identity operator in H is denoted by EH . For an arbitrary linear operator
A in H, the operators A∗,A,A−1 mean its adjoint operator, its closure and its inverse (if
they exist). By D(A) and R(A) we mean the domain and the range of the operator A.

2. An extension of commuting symmetric operators in the same space

Theorem 2.1. Let A be a symmetric operator and B be an essentially self-adjoint

operator with a common domain D = D(A) = D(B) in a Hilbert space H, D = H, and

AD ⊆ D, BD ⊆ D;

AB = BA.

Suppose also that for some z0 ∈ C\R, the operator B restricted to the domain (A −
z0EH)D is essentially self-adjoint in a Hilbert space (A− z0EH)D(A).

If there exists a conjugation J in H such that JD ⊆ D, and

AJ = JA, BJ = JB,
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then there exists a self-adjoint operator Ã ⊇ A, which commutes with B.

Proof. Consider the Cayley transformations of the operators A and B

VA := (A− z0EH)(A− z0EH)−1 = E + (z0 − z0)(A− z0EH)−1,

UB := (B+ iEH)(B− iEH)−1 = E + 2i(B− iEH)−1.

Set

H1 = (A− z0EH)D(A), H2 = H⊖H1, H3 = (A− z0EH)D(A), H4 = H⊖H3.

Observe that VA maps isometrically H1 onto H3, and UB is a unitary operator in H.
For arbitrary h ∈ (B− iEH)(A− z0EH)D, h = (B− iEH)(A− z0EH)f , f ∈ D, we may
write

UBVAh = UB(A− z0EH)(B− iEH)f = (B+ iEH)(A− z0EH)f ;

VAUBh = VA(B+ iEH)(A− z0EH)f = (A− z0EH)(B+ iEH)f.

Therefore

(1) UBVAh = VAUBh, h ∈ (B− iEH)(A− z0EH)D.

Since B restricted to the domain (A− z0EH)D is essentially self-adjoint, the sets (B±
iEH)(A− z0EH)D are dense in H1. By continuity, from (1) we derive

(2) UBVAh = VAUBh, h ∈ H1.

Observe that

UB(B− iEH)(A− z0EH)f = (B+ iEH)(A− z0EH)f, f ∈ D.

Thus, UB maps a dense set in H1 on a dense set in H1. Therefore UB is a unitary
operator in H1. Then UB is a unitary operator in H2, as well. By (2) we may write

UBH3 = UBVAH1 = VAUBH1 = VAH1 = H3.

Therefore UB is a unitary operator in subspaces H3 and H4, as well.
Let us construct an isometric operator U2,4 which maps H2 onto H4, and commutes

with UB

(3) UBU2,4x = U2,4UBx, x ∈ H2.

The operator UB restricted to Hj we denote by UB,j , 1 ≤ j ≤ 4. Using the definition of
the closure we get

JAh = AJh, h ∈ D(A),

JBh = BJh, h ∈ D(B).

Observe that
JUBh = U−1

B
Jh, h ∈ D(UB).

To check this relation we may write for an arbitrary x ∈ D and g := (B− iEH)x

(B− iEH)Jx = J(B+ iEH)x = JUBg.

Multiply the latter equality by UB

(B+ iEH)Jx = UBJUBg,

and we get
Jg = UBJUBg, g ∈ (B− iEH)D.

Moreover, we have

(4) A
∗

Jx = JA
∗

x, x ∈ D(A
∗

).

Indeed, for arbitrary fA ∈ D(A) and gA∗ ∈ D(A
∗

) we may write

(AfA,JgA∗) = (JAfA, gA∗) = (AJfA, gA∗) = (JfA,A
∗

gA∗) = (fA,JA
∗

gA∗),
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and (4) follows.

Choose an arbitrary x ∈ H2. We have A
∗

x = z0x, and therefore A
∗

Jx = JA
∗

x = z0x.
Thus, we have JH2 ⊆ H4. In a similar manner we get JH4 ⊆ H2, and therefore

(5) JH2 = H4, JH4 = H2.

By the Godič-Lucenko Theorem we have a representation: UB,2 = KL, where K and L

are some conjugations in H2. We set

(6) U2,4 := JK.

From (5) it follows that U2,4 maps isometrically H2 onto H4. Notice that U−1
2,4 = KJ.

Then

U2,4UB,2U
−1
2,4x = JKKLKJx = JLKJx = JU−1

B,2Jx = JU−1
B

Jx = UB,4x, x ∈ H4.

Therefore relation (3) is true. Set Ũ = VA ⊕ U2,4. It is straightforward to check that

Ũ commutes with UB. Moreover, it is easy to check that all unitary operators U ⊇ VA

which commute with UB have the following form:

(7) U = VA ⊕W2,4,

where W2,4 is an isometric operator which maps H2 onto H4, and commutes with UB.

Finally, we set Ã to be the inverse Cayley transformation of Ũ . �

Remark 2.1. Notice that by (7),(6) we easily obtain that the following relation:

W2,4 = U2,4U2,

where U2 is an arbitrary unitary operator in H2 commuting with UB, provides all ad-
missible operators for (7). Operators U2 may be described in terms of the decomposable
operators with respect to the spectral measure of the operator UB restricted to H2.
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