ON COMMUTING SYMMETRIC OPERATORS

S. M. ZAGORODNYUK

Dedicated to the memory of A. G. Kostyuchenko

ABSTRACT. In this paper we present some conditions for a pair of commuting symmetric operators with a joint invariant dense domain in a Hilbert space, to have a commuting self-adjoint extension in the same space. The remarkable Godič-Lucenko theorem allows to get a convenient description of all such extensions.

1. Introduction

The extension problems for commuting operators have been studied for a long time and have numerous applications (e.g. [1, Chapter VIII, Section 2], [2]–[8], etc.). We shall give some conditions for a pair of commuting symmetric operators with a joint invariant dense domain in a Hilbert space, to have a commuting self-adjoint extension in the same space. A convenient description of all such extensions can be obtained by the remarkable Godič-Lucenko theorem [9] (also see [10] for another proof and a generalization). Our conditions form an analog of Theorem 2.6 in [1, Chapter VIII] obtained in 1945 by Livshic, and independently later by Eskin. Notice that Theorem 2.6 regarded operators acting in the tensor products of Hilbert spaces and having a fixed structure. Our proof below is analogous to that of Theorem 2.6 except its part related to the Godič-Lucenko Theorem. Also, our result generalizes the result of Ismagilov in [3, Theorem 1]. A close result to Theorem 2.1 below, was given by Slinker in [4, Theorem 3.1].

Notations. We denote by \mathbb{R} , \mathbb{C} , \mathbb{N} , \mathbb{Z} , \mathbb{Z}_+ the sets of real numbers, complex numbers, positive integers, integers and non-negative integers, respectively. Everywhere in this paper, all Hilbert spaces are assumed to be separable. By $(\cdot, \cdot)_H$ and $\|\cdot\|_H$ we denote the scalar product and the norm in a Hilbert space H, respectively. The indices may be omitted in obvious cases. For a set M in H, by \overline{M} we mean the closure of M in the norm $\|\cdot\|_H$. The identity operator in H is denoted by E_H . For an arbitrary linear operator A in H, the operators $A^*, \overline{A}, A^{-1}$ mean its adjoint operator, its closure and its inverse (if they exist). By D(A) and R(A) we mean the domain and the range of the operator A.

2. An extension of commuting symmetric operators in the same space

Theorem 2.1. Let **A** be a symmetric operator and **B** be an essentially self-adjoint operator with a common domain $\mathcal{D} = D(\mathbf{A}) = D(\mathbf{B})$ in a Hilbert space \mathbf{H} , $\overline{\mathcal{D}} = \mathbf{H}$, and

$$\mathbf{A}\mathcal{D} \subseteq \mathcal{D}, \quad \mathbf{B}\mathcal{D} \subseteq \mathcal{D};$$

$$AB = BA$$
.

Suppose also that for some $z_0 \in \mathbb{C}\backslash\mathbb{R}$, the operator \mathbf{B} restricted to the domain $(\mathbf{A} - z_0 E_{\mathbf{H}})\mathcal{D}$ is essentially self-adjoint in a Hilbert space $(\overline{\mathbf{A}} - z_0 E_{\mathbf{H}})D(\overline{\mathbf{A}})$.

If there exists a conjugation **J** in **H** such that $J\mathcal{D} \subseteq \mathcal{D}$, and

$$AJ = JA, \quad BJ = JB,$$

²⁰¹⁰ Mathematics Subject Classification. Primary 44A60; Secondary 30E05. Key words and phrases. Symmetric operator, extension.

then there exists a self-adjoint operator $\widetilde{\mathbf{A}} \supseteq \mathbf{A}$, which commutes with $\overline{\mathbf{B}}$.

Proof. Consider the Cayley transformations of the operators $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$

$$V_{\mathbf{A}} := (\overline{\mathbf{A}} - \overline{z_0} E_{\mathbf{H}}) (\overline{\mathbf{A}} - z_0 E_{\mathbf{H}})^{-1} = E + (z_0 - \overline{z_0}) (\overline{\mathbf{A}} - z_0 E_{\mathbf{H}})^{-1},$$

$$U_{\mathbf{B}} := (\overline{\mathbf{B}} + i E_{\mathbf{H}}) (\overline{\mathbf{B}} - i E_{\mathbf{H}})^{-1} = E + 2i (\overline{\mathbf{B}} - i E_{\mathbf{H}})^{-1}.$$

Set

$$\mathbf{H}_1 = (\overline{\mathbf{A}} - z_0 E_{\mathbf{H}}) D(\overline{\mathbf{A}}), \quad \mathbf{H}_2 = \mathbf{H} \ominus \mathbf{H}_1, \quad \mathbf{H}_3 = (\overline{\mathbf{A}} - \overline{z_0} E_{\mathbf{H}}) D(\overline{\mathbf{A}}), \quad \mathbf{H}_4 = \mathbf{H} \ominus \mathbf{H}_3.$$

Observe that $V_{\mathbf{A}}$ maps isometrically \mathbf{H}_1 onto \mathbf{H}_3 , and $U_{\mathbf{B}}$ is a unitary operator in \mathbf{H} . For arbitrary $h \in (\mathbf{B} - iE_{\mathbf{H}})(\mathbf{A} - z_0E_{\mathbf{H}})\mathcal{D}$, $h = (\mathbf{B} - iE_{\mathbf{H}})(\mathbf{A} - z_0E_{\mathbf{H}})f$, $f \in \mathcal{D}$, we may write

$$U_{\mathbf{B}}V_{\mathbf{A}}h = U_{\mathbf{B}}(\overline{\mathbf{A}} - \overline{z_0}E_{\mathbf{H}})(\mathbf{B} - iE_{\mathbf{H}})f = (\mathbf{B} + iE_{\mathbf{H}})(\mathbf{A} - \overline{z_0}E_{\mathbf{H}})f;$$

 $V_{\mathbf{A}}U_{\mathbf{B}}h = V_{\mathbf{A}}(\overline{\mathbf{B}} + iE_{\mathbf{H}})(\mathbf{A} - z_0E_{\mathbf{H}})f = (\overline{\mathbf{A}} - \overline{z_0}E_{\mathbf{H}})(\overline{\mathbf{B}} + iE_{\mathbf{H}})f.$

Therefore

(1)
$$U_{\mathbf{B}}V_{\mathbf{A}}h = V_{\mathbf{A}}U_{\mathbf{B}}h, \quad h \in (\mathbf{B} - iE_{\mathbf{H}})(\mathbf{A} - z_0E_{\mathbf{H}})\mathcal{D}.$$

Since **B** restricted to the domain $(\mathbf{A} - z_0 E_{\mathbf{H}})\mathcal{D}$ is essentially self-adjoint, the sets $(\mathbf{B} \pm iE_{\mathbf{H}})(\mathbf{A} - z_0 E_{\mathbf{H}})\mathcal{D}$ are dense in \mathbf{H}_1 . By continuity, from (1) we derive

$$(2) U_{\mathbf{B}}V_{\mathbf{A}}h = V_{\mathbf{A}}U_{\mathbf{B}}h, \quad h \in \mathbf{H}_1.$$

Observe that

$$U_{\mathbf{B}}(\mathbf{B} - iE_{\mathbf{H}})(\mathbf{A} - z_0E_{\mathbf{H}})f = (\mathbf{B} + iE_{\mathbf{H}})(\mathbf{A} - z_0E_{\mathbf{H}})f, \quad f \in \mathcal{D}.$$

Thus, $U_{\mathbf{B}}$ maps a dense set in \mathbf{H}_1 on a dense set in \mathbf{H}_1 . Therefore $U_{\mathbf{B}}$ is a unitary operator in \mathbf{H}_1 . Then $U_{\mathbf{B}}$ is a unitary operator in \mathbf{H}_2 , as well. By (2) we may write

$$U_{\mathbf{B}}\mathbf{H}_3 = U_{\mathbf{B}}V_{\mathbf{A}}\mathbf{H}_1 = V_{\mathbf{A}}U_{\mathbf{B}}\mathbf{H}_1 = V_{\mathbf{A}}\mathbf{H}_1 = \mathbf{H}_3.$$

Therefore $U_{\mathbf{B}}$ is a unitary operator in subspaces \mathbf{H}_3 and \mathbf{H}_4 , as well.

Let us construct an isometric operator $U_{2,4}$ which maps \mathbf{H}_2 onto \mathbf{H}_4 , and commutes with $U_{\mathbf{B}}$

(3)
$$U_{\mathbf{B}}U_{2,4}x = U_{2,4}U_{\mathbf{B}}x, \quad x \in \mathbf{H}_2.$$

The operator $U_{\mathbf{B}}$ restricted to \mathbf{H}_j we denote by $U_{\mathbf{B},j}$, $1 \leq j \leq 4$. Using the definition of the closure we get

$$\mathbf{J}\overline{\mathbf{A}}h = \overline{\mathbf{A}}\mathbf{J}h, \quad h \in D(\overline{\mathbf{A}}),$$

 $\mathbf{J}\overline{\mathbf{B}}h = \overline{\mathbf{B}}\mathbf{J}h, \quad h \in D(\overline{\mathbf{B}}).$

Observe that

$$\mathbf{J}U_{\mathbf{B}}h = U_{\mathbf{B}}^{-1}\mathbf{J}h, \quad h \in D(U_{\mathbf{B}}).$$

To check this relation we may write for an arbitrary $x \in \mathcal{D}$ and $g := (\mathbf{B} - iE_{\mathbf{H}})x$

$$(\mathbf{B} - iE_{\mathbf{H}})\mathbf{J}x = \mathbf{J}(\mathbf{B} + iE_{\mathbf{H}})x = \mathbf{J}U_{\mathbf{B}}g.$$

Multiply the latter equality by $U_{\mathbf{B}}$

$$(\mathbf{B} + iE_{\mathbf{H}})\mathbf{J}x = U_{\mathbf{B}}\mathbf{J}U_{\mathbf{B}}g,$$

and we get

$$Jq = U_B J U_B q, \quad q \in (B - iE_H) \mathcal{D}.$$

Moreover, we have

(4)
$$\overline{\mathbf{A}}^* \mathbf{J} x = \mathbf{J} \overline{\mathbf{A}}^* x, \quad x \in D(\overline{\mathbf{A}}^*).$$

Indeed, for arbitrary $f_A \in D(\overline{\mathbf{A}})$ and $g_{A^*} \in D(\overline{\mathbf{A}}^*)$ we may write

$$\overline{(\overline{\mathbf{A}}f_A, \mathbf{J}g_{A^*})} = (\mathbf{J}\overline{\mathbf{A}}f_A, g_{A^*}) = (\overline{\mathbf{A}}\mathbf{J}f_A, g_{A^*}) = (\mathbf{J}f_A, \overline{\mathbf{A}}^*g_{A^*}) = \overline{(f_A, \overline{\mathbf{J}}\overline{\mathbf{A}}^*g_{A^*})},$$

and (4) follows.

Choose an arbitrary $x \in \mathbf{H}_2$. We have $\overline{\mathbf{A}}^* x = \overline{z_0} x$, and therefore $\overline{\mathbf{A}}^* \mathbf{J} x = \mathbf{J} \overline{\mathbf{A}}^* x = z_0 x$. Thus, we have $\mathbf{J} \mathbf{H}_2 \subseteq \mathbf{H}_4$. In a similar manner we get $\mathbf{J} \mathbf{H}_4 \subseteq \mathbf{H}_2$, and therefore

$$\mathbf{JH}_2 = \mathbf{H}_4, \quad \mathbf{JH}_4 = \mathbf{H}_2.$$

By the Godič-Lucenko Theorem we have a representation: $U_{\mathbf{B},2} = KL$, where K and L are some conjugations in \mathbf{H}_2 . We set

$$(6) U_{2,4} := \mathbf{J}K.$$

From (5) it follows that $U_{2,4}$ maps isometrically \mathbf{H}_2 onto \mathbf{H}_4 . Notice that $U_{2,4}^{-1} = K\mathbf{J}$. Then

$$U_{2,4}U_{\mathbf{B},2}U_{2,4}^{-1}x = \mathbf{J}KKLK\mathbf{J}x = \mathbf{J}LK\mathbf{J}x = \mathbf{J}U_{\mathbf{B},2}^{-1}\mathbf{J}x = \mathbf{J}U_{\mathbf{B}}^{-1}\mathbf{J}x = U_{\mathbf{B},4}x, \quad x \in \mathbf{H}_4.$$

Therefore relation (3) is true. Set $\widetilde{U} = V_{\mathbf{A}} \oplus U_{2,4}$. It is straightforward to check that \widetilde{U} commutes with $U_{\mathbf{B}}$. Moreover, it is easy to check that all unitary operators $U \supseteq V_{\mathbf{A}}$ which commute with $U_{\mathbf{B}}$ have the following form:

$$(7) U = V_{\mathbf{A}} \oplus W_{2,4},$$

where $W_{2,4}$ is an isometric operator which maps \mathbf{H}_2 onto \mathbf{H}_4 , and commutes with $U_{\mathbf{B}}$. Finally, we set $\widetilde{\mathbf{A}}$ to be the inverse Cayley transformation of \widetilde{U} .

Remark 2.1. Notice that by (7), (6) we easily obtain that the following relation:

$$W_{2,4} = U_{2,4}U_2,$$

where U_2 is an arbitrary unitary operator in \mathbf{H}_2 commuting with $U_{\mathbf{B}}$, provides all admissible operators for (7). Operators U_2 may be described in terms of the decomposable operators with respect to the spectral measure of the operator $U_{\mathbf{B}}$ restricted to \mathbf{H}_2 .

REFERENCES

- Ju. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, RI, 1968. (Russian edition: Naukova Dumka, Kiev, 1965)
- R. S. Phillips, The extension of dual subspaces invariant under an algebra, Proc. Internat. Sympos. Linear spaces, Jerusalem, 1960. Academic Press, Jerusalem; Pergamon Press, Oxford—London—New York—Paris, 1961, pp. 366–398. (Russian transl. Matematika 8 (1964), no. 6, 81–108)
- 3. R. S. Ismagilov, Selfadjoint extensions of commuting symmetric operators, Uspekhi Mat. Nauk 17 (1962), no. 1(103), 177–181. (Russian)
- S. P. Slinker, On commuting self-adjoint extensions of unbounded operators, Indiana Univ. Math. J. 27 (1978), no. 4, 629–636.
- A. N. Kochubei, On symmetric operators commuting with a family of unitary operators, Funk. Anal. Prilozh. 13 (1979), no. 4, 77–78. (Russian)
- P. E. T. Jørgensen, Selfadjoint extension operators commuting with an algebra, Math. Z. 169 (1979), 41–62.
- K. Schmüdgen, On commuting unbounded self-adjoint operators, IV, Math. Nachr. 125 (1986), 83–102.
- 8. Yu. E. Bohonov, On self-adjoint extensions of commuting Hermitian operators, Ukrain. Mat. Zh. 42 (1990), no. 5, 695–697. (Russian)
- 9. V. I. Godič, I. E. Lucenko, On the representation of a unitary operator as a product of two involutions, Uspekhi Mat. Nauk 20 (1965), 64-65. (Russian)
- S. R. Garcia, M. Putinar, Complex symmetric operators and applications, II, Trans. Amer. Math. Soc. 359 (2007), 3913–3931.

School of Mathematics and Mechanics, Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61077, Ukraine

 $E ext{-}mail\ address: Sergey.M.Zagorodnyuk@univer.kharkov.ua}$