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A NEW METRIC IN THE STUDY OF SHIFT INVARIANT

SUBSPACES OF L2(Rn)

M. S. BALASUBRAMANI AND V. K. HARISH

Abstract. A new metric on the set of all shift invariant subspaces of L
2(Rn) is

defined and the properties are studied. The limit of a sequence of principal shift
invariant subspaces under this metric is principal shift invariant is proved. Also, the
uniform convergence of a sequence of local trace functions is characterized in terms
of convergence under this new metric.

1. Introduction

Shift invariant subspaces (SIS) are closed subspaces of L2(Rn) that are invariant under
all integer translations (also called shifts). They play an important role in various areas
of mathematical analysis and its applications, especially in the areas of wavelets, splines,
Gabor systems and approximation theory. The general structure of such spaces was
revealed in the work of Carl de Boor, DeVore, and Ron [7] and also in the work of
Bownik [1]. Using the fiberization techniques based on range functions, a characterization
of finite shift invariant spaces was provided in [7] and later it was extended to an arbitrary
shift invariant subspace by Bownik in [1].

Motivated by Bownik’s association of range functions with shift invariant subspaces
[1], we introduce a natural metric, namely shift metric on the set of all closed shift
invariant subspaces of L2(Rn) and use it to learn more about shift invariant subspaces
like completeness of SIS (Theorem 3.4).

Local trace function [LTF], introduced by Dutkay [8] and spectral function, introduced
by Rzeszotnik [2] are recent tools for the analysis of SIS. We study the relationship among
shift metric, LTF and spectral function in Theorems 3.6, 3.7 and 3.9. Consequently, the
uniform convergence of a sequence of local trace functions has been characterized in terms
of shift metric. With these tools in hand, we have been able to answer an important
question “Is the limit of a sequence of principal shift invariant (PSI) spaces, a PSI?”
(Theorem 3.11, Theorem 3.13, Theorem 3.15).

The final section provides a non trivial example of a sequences of SIS converging under
shift metric.

2. Preliminaries

Some of the important known concepts and results used in the subsequent sections
are given here for easy reference ([1], [2], [7], [8]).

A closed subspace V ⊆ L2(Rn) is called a shift invariant subspace (SIS) if for every
f ∈ V , we also have Tkf ∈ V , where the shift operator Tk on L2(Rn) is given by
Tkf(x) = f(x − k) for x ∈ R

n, k ∈ Z
n. Every SIS V has a countable subset A of

generators in the sense that V = span{Tkf : f ∈ A, k ∈ Z
n}. The latter set is also

denoted by S(A). SIS with a single generator ψ is called a principal shift invariant
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(PSI) space and is denoted by < ψ >. Every SIS has an orthogonal decomposition in
terms of countable number of PSI spaces where the generator of each PSI space is quasi
orthogonal.

Range function J : T
n −→ C(l2(Zn)), the set of all closed subspaces of l2(Zn),

is an important tool in the characterization of SIS. Using the isometric isomorphism

τ : L2(Rn) → L2(Tn, l2(Zn)) given by τf(ξ) = (f̂(ξ+k))k∈Zn , with f ∈ L2(Rn), ξ ∈ T
n,

the following characterization of SIS is proved in [1].

Proposition 2.1. V is a SIS ⇐⇒ there exists some measurable range function J such
that V = {f ∈ L2(Rn) : τf(x) ∈ J(x) a.e x ∈ T

n}. Identifying the range functions that
are equal almost everywhere, the correspondence between shift invariant subspaces and
measurable range functions is one-one and onto.

Since then, various tools were being developed to extract information about the struc-
ture of SIS. The dimension function dimV (ξ) := dim(J(ξ)), ξ ∈ T

n measures the “size”
of V by counting the ‘fibers’ J(ξ) of V whereas the spectral function, whose definition is
given below, measures the “localized size ”of the SIS.

Definition 2.2. Suppose V ⊂ L2(Rn) is shift invariant with range function J with
projection PJ(ξ), ξ ∈ T

n. The spectral function of V is the measurable mapping σV :

R
n −→ [0, 1] given by σV (ξ + k) = ‖PJ(ξ)ek‖

2, ξ ∈ T
n, k ∈ Z

n where (ek)k is the

standard orthonormal basis of l2(Zn).

For computing the spectral function of a PSI space V =< φ >, the formula

σV (ξ) =

{

|φ̂(ξ)|2(
∑

k |φ̂(ξ + k)|2)−1, ξ ∈ supp(φ̂)
0, otherwise

can be used. It is additive on countable orthogonal sums.
The Local Trace Function (LTF) τV,T associated with a SIS V and a positive operator

T on l2(Zn) is the map τV,T (ξ) = Trace(TPJ(ξ)) from T
n to [0,∞] where PJ(ξ) is the

projection onto the fiber space J(ξ) of V. In the special case when T = Pf where
Pf (v) = 〈v, f〉f , it is called restricted local trace function and is denoted by τV,f . Besides
being more general than both dimension function and spectral function, the local trace
function completely determines the SIS: two SIS are equal if and only if their local trace
functions are equal.

3. The Shift Metric

SI(Rn) is the collection of all shift invariant subspaces of L2(Rn) and PSI(Rn), the
collection of all principal shift invariant spaces of L2(Rn).

In the following proposition, we introduce shift metric, a new tool for the analysis of
shift invariant subspaces.

Lemma 3.1. Let V and W be two shift invariant subspaces of L2(Rn) and let JV and
JW be the measurable range functions associated with these subspaces ( identified as equal
if JV (ξ) = JW (ξ) for a.e ξ ∈ T

n ). For ξ ∈ T
n, let PJV (ξ), PJW (ξ) be the orthogonal

projections onto JV (ξ) and JW (ξ) respectively. Define θ as

θ(V,W ) = inf{α > 0 : m({ξ ∈ T
n : ‖PJV (ξ) − PJW (ξ)‖ > α}) = 0},

where ‖.‖ denotes the operator norm and m the Lebesgue measure. Then θ is a metric
on SI(Rn). θ is called the shift metric.

Proof. That θ(V,W ) ≥ 0 follows from definition.
For V,W ∈ SI(Rn), if θ(V,W ) = 0, one can find a sequence (αn) of positive numbers

converging to 0 and a set E of zero measure such that ‖PJV (ξ) − PJW (ξ)‖ ≤ αn ∀ n ∈
N and for ξ /∈ E. It follows that ‖PJV (ξ) −PJW (ξ)‖ = 0 for a.e ξ ∈ T

n and hence V =W.
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On the other hand, V = W implies JV (ξ) = JW (ξ) a.e ξ ∈ T
n which in turn implies

that ‖PJV (ξ) − PJW (ξ)‖ > 0 only on a set of measure 0. Hence θ(V,W ) = 0.
For U, V,W ∈ SI(Rn) and ǫ > 0, one can get M1,M2 > 0 such that

M1 < θ(V,U) +
ǫ

2
, M2 < θ(U,W ) +

ǫ

2
,

m({ξ ∈ T
n : ‖PJV (ξ) − PJU (ξ)‖ > M1}) = 0,

m({ξ ∈ T
n : ‖PJU (ξ) − PJW (ξ)‖ > M2}) = 0.

Applying triangle inequality for norm gives ‖PJV (ξ)−PJW (ξ)‖ ≤M1+M2 for a.e ξ ∈ T
n.

It follows that θ(V,W ) ≤ θ(V,U) + θ(U,W )
θ(V,U) = θ(U, V ) follows from the property of the norm. �

Remark 3.2. Let θ denote the shift metric on SI(Rn). For V,W ∈ SI(Rn), we have
θ(V,W ) ≤ ǫ⇐⇒ ‖PJV (ξ) − PJW (ξ)‖ ≤ ǫ a.e ξ ∈ T

n.

The following proposition is used in the proof of next theorem.

Proposition 3.3. Let (Jn)n be a sequence of measurable range functions and (Pn)n be
the corresponding sequence of orthogonal projections onto Jn’s. Suppose (Pn(ξ)) converge
to the orthogonal projection P (ξ) under the operator norm for every ξ ∈ T

n. If J(ξ) is
the range of P (ξ), then J is a measurable range function.

Proof. Let a ∈ l2(Zn) be arbitrary. Setting Fn(ξ) = Pn(ξ)a and F (ξ) = P (ξ)a, we have
‖Fn(ξ) − F (ξ)‖ ≤ ‖Pn(ξ) − P (ξ)‖‖a‖. It now follows that F (ξ) = limFn(ξ). Thus F is
the limit of a sequence (Fn) of vector measurable functions and hence vector measurable.
That is J is measurable. �

Theorem 3.4. SI(Rn), the collection of all shift invariant subspaces of L2(Rn), is com-
plete under shift metric.

Proof. Suppose (Vn) is Cauchy in SI(Rn). Then (PJV n (ξ)) is Cauchy in the Banach space

BL(l2(Zn)) and hence converges to an orthogonal projection P (ξ) for a.e ξ ∈ T
n. If J(ξ)

is the closed subspace of l2(Zn) associated with the orthogonal projection P (ξ), then

V := {f ∈ L2(Rn)| τf(ξ) ∈ J(ξ) a.e ξ ∈ T
n}

is a SIS. From uniqueness of range functions, we have JV (ξ) = J(ξ) for a.e ξ ∈ T
n and

hence PJV
(ξ) = P (ξ) for a.e ξ ∈ T

n. Consequently, (Vn) converges to V under the shift
metric. �

Proposition 3.5. SI(Rn) is not compact under shift metric topology.

Proof. It is enough to show that SI(Rn) is not totally bounded under shift metric. First
choose a countable basis {φ1, φ2, φ3, . . . , . . . , . . . } for L2(Rn) which exists as L2(Rn)
is a separable Hilbert space. Set Vm = S(Am) where Am = {φ1, φ2, . . . , φm}. Then
Vm ⊂ Vm+1 ∀ m and hence ‖PJVm (ξ)−PJVm+1

(ξ)‖ = 1, ∀ ξ ∈ T
n (Theorem 4.30 (c) [11]).

That is θ(Vm, Vm+1) = 1 ∀ m. Hence for ǫ = 1
2 , no finite collection of ǫ− balls can

contain all Vm ’s. �

Now we discuss the behavior of spectral function and local trace functions with respect
to limits under the hypothesis of convergence of the spaces in the shift metric.

Theorem 3.6. Let (Vn) be a sequence of shift invariant subspaces converging to a shift
invariant subspace V under the shift metric. For any f ∈ l2(Zn), the restricted local trace
function τVn,f converges uniformly to τV,f in T

n, except possibly on a set of measure 0.
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Proof. Since τV,f (ξ) = 〈f, PJV (ξ)f〉 a.e. ξ ∈ T
n,

|τVn,f (ξ)− τV,f (ξ)| ≤ ‖f‖2(‖PJVn (ξ) − PJV (ξ)‖) a.e ξ ∈ T
n

≤ ‖f‖2θ(Vn, V ) a.e ξ ∈ T
n.

The uniform convergence of local trace functions follows from this. �

Theorem 3.7. Let (Vn) be a sequence of shift invariant subspaces converging to a shift
invariant subspace V under shift metric. Then the corresponding sequence of spectral
functions of Vn converge uniformly to the spectral function of V on R

n a.e.

Proof. Let σV denote the spectral function of V . Then τV,em(ξ) = σV (ξ+m) for ξ ∈ T
n.

One get the required conclusion using previous result. �

The converse of the above result is not true as illustrated in the example below.

Example 3.8. Let φ, ψ ∈ L2(R) be given by φ̂ = 1√
2
(1(0,1)+1(1,2)) and ψ̂ = 1√

2
(1(0,1)−

1(1,2)). Then φ and ψ are quasi orthogonal generator of V = S(φ) and W = S(ψ)

respectively. Both V andW have the same spectral function, namely σV = σW = 1
21(0,2)

but V⊥W . Hence, if we consider the sequence (V,W, V,W, . . . , . . . , . . . ) then it can not
converge under shift metric but the corresponding sequence of spectral functions converge
uniformly.

However, if we are assured the uniform convergence of τVn,f to τV,f on the unit circle
of both R

n and l2(Zn), we have the converse statement.

Theorem 3.9. Let V, Vm ∈ SI(Rn) ∀ m ∈ N. Assume that the restricted local trace
function τVm,f converges uniformly to τV,f on T

n, except possibly on a set of measure 0
and for all f ∈ l2(Zn) with ‖f‖ = 1. Then (Vm) converges to V under shift metric.

Proof. We have, | τVn,f (ξ)− τV,f (ξ) | = | 〈f, (PJVn (ξ) − PJV (ξ))f〉 | a.e. ξ ∈ T
n. Hence

sup
‖f‖=1

| τVn,f (ξ)− τV,f (ξ) | = sup
‖f‖=1

| 〈f, (PJVn (ξ) − PJV (ξ))f〉 |

= ‖PJVn (ξ) − PJV (ξ)‖.

The result now follows from the assumption of the theorem. �

Let us say that a sequence (τVn,f )n of local trace functions is uniformly Cauchy on the
unit circle of Rn and l2(Zn), if for each ǫ > 0, ∃ k ∈ N such that |τVn,f (ξ)− τVm,f (ξ)| <
ǫ ∀ ξ ∈ T

n and ∀ f ∈ l2(Zn) with ‖f‖ = 1 whenever n,m ≥ k. We have the following
corollary.

Corollary 3.10. Suppose that (Vn) is a sequence of shift invariant subspaces for which
the sequence (τVn,f )n of local trace functions is uniformly Cauchy on the unit circle of
both R

n and l2(Zn). Then the limit is a local trace function.

PSI spaces, being the building blocks of all SIS, it is natural to give a special consid-
eration in our study to this collection. Below, we shall prove that PSI(Rn) is a closed
subspace of SI(Rn) under shift metric.

Theorem 3.11. PSI(Rn) is complete under the shift metric θ.

Proof. Suppose that (Vn) is a Cauchy sequence of elements of PSI(Rn). By Theorem
(3.4), sequence (Vn) converges to some V ∈ SI(Rn). We need only to show that V has
a single generator.

For 0 < ǫ < 1, choose p ∈ N such that θ(Vn, V ) < ǫ, ∀ n ≥ p. This implies that
‖PJVn

(ξ) − PJV
(ξ)‖ < ǫ for a.e ξ whenever n ≥ p. Hence dim JV (ξ) = dim JVn

(ξ) = 1
for a.e. ξ (Theorem 4.35(a) [11]). This proves that V can be generated by a single
function and hence V ∈ PSI(Rn). �
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Theorem 3.12. The space of all SIS with a fixed dimension function is complete under
shift metric.

Proof. The proof is similar to the proof of Theorem 3.11. �

A proof of different flavor and yielding information about the generator of the limit
space is given below.

Theorem 3.13. Suppose that (φn) is a Cauchy sequence in L2(Rn) and that each φn
is a quasi orthogonal generator of Vn ∈ PSI(Rn). If (Vn) is Cauchy under shift metric,
then the limit is also a principal shift invariant space and is generated by the limit of
(φn).

Proof. Let (φn) converge to φ in L2(Rn). Then we have a subsequence (nk) on natural
numbers such that (τφnk

) converges point wise to τφ in L2(Tn, l2(Zn)). Consequently,
‖τφ(ξ)‖ = limk→∞‖τφnk

(ξ)‖ = 1E(ξ) for some E ⊆ T
n. Therefore φ is a quasi orthog-

onal generator for the principal shift invariant space V := S(φ).
As SI(Rn) is complete under θ, there exists a W ∈ SI(Rn) to which Vn converges.

Hence, τVn,f → τW,f uniformly for a.e ξ and for each f ∈ l2(Zn) as n −→ ∞. Now,

| τVnk
,f (ξ)− τV,f (ξ) | = | |〈f, τφnk

(ξ)〉|2 − |〈f, τφ(ξ)〉|2 |

≤ 2‖f‖2‖τφnk
(ξ)− τφ(ξ)‖l2 ∀ f ∈ l2(Zn).

From this we get that τVnk
,f (ξ) −→ τV,f (ξ) as k → ∞ for a.e ξ. This implies τW,f =

τV,f ∀ f ∈ l2(Zn), thereby proving the theorem. �

Corollary 3.14. Let φn ∈ L2(Rn) be a quasi orthogonal generator of Vn ∈ PSI(Rn),

n ∈ N and let (φ̂n) converge pointwise. Further suppose that

(1) support of all φ̂n’s are contained in a compact set E and
(2) sequence (Vn) is Cauchy under shift metric θ.

Then sequence (Vn) converges to a PSI space generated by limit(φn).

Proof. Suppose (φ̂n) converge pointwise to the function ψ. The characterization of quasi

orthogonal generators gives |φ̂n(ξ)| ≤ 1 for a.e ξ ∈ R
n. Also using condition 1, for all n,

we have

|φ̂n|(ξ) ≤ g(ξ) :=

{

1, ξ ∈ E
0, otherwise

.

As g ∈ L2(Rn), ψ ∈ L2(Rn) and (φ̂n) converge to ψ in L2(Rn). The result now follows
from previous theorem. �

Theorem 3.15. Let S(Rn) denote the Schwartz class of rapidly decreasing functions on
R

n. Suppose (φn) converges to φ in S(Rn) where φn is a quasi orthogonal generator of
the PSI space Vn. Then Vn converges to the PSI space V := S(φ) under shift metric.

Proof. Let ψn = φn − φ. Its Fourier transform ψ̂n ∈ S(Rn). Let Cn = supξ∈Rn{(1 +

|ξ|)|ψ̂n(ξ)|}.Then ‖τφn(ξ)−τφ(ξ)‖ =
∑

k |φ̂n(ξ)−φ̂(ξ)|
2 ≤MC2

n whereM =
∑

k
1

(1+|k|)2 .

From the convergence of φn to φ, we conclude the uniform convergence of τφn to τφ in
T
n. This, in turn, implies convergence of Vn to V under shift metric. �

4. Example

Example 4.1. Here we give an example of a sequence of SIS converging under shift
metric. Let a, an, b, bn > 0, be such that a2 + b2 = 1, a2n + b2n = 1. Define φ0 and φn by
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φ̂0(ξ) :=







a, ξ ∈ (0, 1)
b, ξ ∈ (1, 2)
0, otherwise

,

φ̂n(ξ) :=







an, ξ ∈ (0, 1)
bn, ξ ∈ (1, 2)
0, otherwise

.

Further assume that an −→ a so that bn −→ b. We claim that Vn := S(φn) converges to
V := S(φ0) under shift metric.

A simple calculation shows that for ξ ∈ (0, 1)

JV (ξ) = span{ae0 + be1} and JV n
(ξ) = span{ane0 + bne1} ∀n.

Hence, for any f ∈ l2(Zn), there exist scalars kf,0 and kf,n such that

(1)
PJVn (ξ)f − PJV (ξ)f = kf,n(ane0 + bne1)− kf,0(ae0 + be1)

= (kf,nan − kf,0a)e0 + (kf,nbn − kf,0b)e1.

An evaluation using spectral function formula gives

(2) ke0,0 = a, ke1,0 = b, ke0,n = an, ke1,n = bn and kep,n = 0 for p 6= 0, 1.

Also for any f ∈ l2(Z) with ‖f‖2 = 1

‖PJVn (ξ)f − PJV (ξ)f‖ ≤ ‖(PJVn (ξ)e0 − PJV (ξ)e0)‖+ ‖(PJVn (ξ)e1 − PJV (ξ)e1)‖.

Evaluating the RHS using (1) and (2), we can conclude the convergence of (Vn) to V
under shift metric.
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