
Methods of Functional Analysis and Topology
Vol. 18 (2012), no. 3, pp. 201–213

SECTORIAL CLASSES OF INVERSE STIELTJES FUNCTIONS AND

L-SYSTEMS

S. BELYI AND E. TSEKANOVSKĬI

Dedicated to the memory of Anatoly Gordeevich Kostuchenko

Abstract. We introduce sectorial classes of inverse Stieltjes functions acting on a
finite-dimensional Hilbert space as well as scalar classes of inverse Stieltjes functions

based upon their limit behavior at minus infinity and at zero. It is shown that a
function from these classes can be realized as the impedance function of a singular
L-system and the operator Ã in a rigged Hilbert space associated with the realizing

system is sectorial. Moreover, it is established that the knowledge of the limit values
of the scalar impedance function allows to find an angle of sectoriality of the oper-
ator Ã as well as the exact angle of sectoriality of the accretive main operator T of
such a system. The corresponding new formulas connecting the limit values of the

impedance function and the angle of sectoriality of Ã are provided. Application of
these formulas yields that the exact angle of sectoriality of operators Ã and T is the
same if and only if the limit value at zero of the corresponding impedance function

(along the negative x-axis) is equal to zero. Examples of the realizing L-systems
based upon the Schrödinger operator on half-line are presented.

1. Introduction

An operator-valued function V (z) acting on a finite-dimensional Hilbert space E is
called the Herglotz-Nevanlinna function if it is holomorphic on C \ R, symmetric with
respect to the real axis, i.e., V (z)∗ = V (z̄), z ∈ C \ R, and if it satisfies the positivity
condition

(1) ImV (z) ≥ 0, z ∈ C+,

or equivalently if

(2)
n∑

k,l=1

(
V (zk)− V (z̄l)

zk − z̄l
hk, hl

)

E

≥ 0

holds for an arbitrary choice of non-real numbers {zk} and {hk} ∈ E.
In the current paper we are going to focus on an important subclass of Herglotz-

Nevanlinna functions, the inverse Stieltjes functions that can be realized as impedance
functions of some singular L-systems. The formal definition, integral representation for
inverse Stieltjes functions as well as the basic realization results are given in Sections 2
and 3.

In Section 4, which contains the main results of the present paper, we introduce the
so called sectorial class S−1,α of inverse Stieltjes functions in Hilbert space E and a class
S−1,α1,α2 of scalar inverse Stieltjes functions based upon their limits (along the negative
x-axis) at minus infinity and at zero. The theorems for these sectorial classes presented
in Section 4 allow us to observe the geometric properties of the realizing L-systems whose
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impedance functions belong to S−1,α. In particular, it is shown that impedance function
V (z) of L-system acting on finite-dimensional Hilbert space E belongs to S−1,α if and

only if an operator Ã (in triplets of rigged Hilbert spaces) associated with L-system is α-
sectorial. The relationship between the scalar classes S−1,α and S−1,α1,α2 are established.
In particular, using the function limit values at zero and infinity permits us to find an
angle of sectoriality of the operator Ã as well as the exact angle of sectoriality of the
main operator T of L-system. This approach also allows us to discover that the exact
angles of sectoriality of operators T and Ã are equal if and only if the limit value at zero
along negative x-axis of impedance function V (z) is equal to zero. Section 5 concludes
our paper by providing important illustrations of the results of Section 4 as applied to
L-systems with a Schrödinger operator.

2. Preliminaries

For a pair of Hilbert spaces H1, H2 we denote by [H1,H2] the set of all bounded linear

operators from H1 to H2. Let Ȧ be a closed, densely defined, symmetric operator in a
Hilbert space H with inner product (f, g), f, g ∈ H. Any operator T in H such that

Ȧ ⊂ T ⊂ Ȧ∗

is called a quasi-self-adjoint extension of Ȧ.
Consider the rigged Hilbert space (see [4], [2]) H+ ⊂ H ⊂ H−, where H+ = Dom(Ȧ∗)

and

(3) (f, g)+ = (f, g) + (Ȧ∗f, Ȧ∗g), f, g ∈ Dom(A∗).

Let R be the Riesz-Berezansky operator R (see [4], [2]) which maps H− onto H+ such
that (f, g) = (f,Rg)+ (∀f ∈ H+, g ∈ H−) and ‖Rg‖+ = ‖g‖−. Note that identifying
the space conjugate to H± with H∓, we get that if A ∈ [H+,H−], then A

∗ ∈ [H+,H−].

Definition 1. An operator A ∈ [H+,H−] is called a self-adjoint bi-extension of a sym-

metric operator Ȧ if A = A
∗ and A ⊃ Ȧ.

Let A be a self-adjoint bi-extension of Ȧ and let the operator Â in H be defined as
follows:

Dom(Â) = {f ∈ H+ : Âf ∈ H}, Â = A↾Dom(Â).

The operator Â is called a quasi-kernel of a self-adjoint bi-extension A (see [8], [1]).

Definition 2. Let T be a quasi-self-adjoint extension of Ȧ with nonempty resolvent set
ρ(T ). An operator A ∈ [H+,H−] is called a (∗)-extension of an operator T if

(1) A ⊃ T ⊃ Ȧ, A
∗ ⊃ T ∗ ⊃ Ȧ,

(2) the quasi-kernel of self-adjoint bi-extension ReA = 1
2 (A + A

∗) is a self-adjoint

extension of Ȧ.

In what follows we assume that Ȧ has equal finite deficiency indices and will say that
a quasi-self-adjoint extension T of Ȧ belongs to the class Λ(Ȧ) if ρ(T ) 6= ∅, Dom(Ȧ) =
Dom(T ) ∩ Dom(T ∗), and hence T admits (∗)-extensions. The description of all (∗)-
extensions via Riesz-Berezansky operator R can be found in [1].

Recall that a linear operator T in a Hilbert space H is called accretive [6] if Re (Tf, f) ≥
0 for all f ∈ Dom(T ). We call an accretive operator T α-sectorial [6] if there exists a
value of α ∈ (0, π/2) such that

(4) | Im(Tf, f)| ≤ (tanα)Re (Tf, f), f ∈ Dom(T ).
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We say that the angle of sectoriality α is exact for an α-sectorial operator T if

tanα = sup
f∈Dom(T )

| Im(Tf, f)|
Re (Tf, f)

.

A bi-extension A of Ȧ is called accretive if Re (Af, f) ≥ 0 for all f ∈ H+. This is
equivalent to that the real part ReA = (A + A

∗)/2 is a nonnegative self-adjoint bi-

extension of Ȧ.

Definition 3. A system of equations
{

(A− zI)x = KJϕ−,
ϕ+ = ϕ− − 2iK∗x,

or an array

(5) Θ =

(
A K J

H+ ⊂ H ⊂ H− E

)

is called an L-system if

(1) A is a (∗)-extension of an operator T of the class Λ(Ȧ);
(2) J = J∗ = J−1 ∈ [E,E], dimE < ∞;
(3) ImA = KJK∗, where K ∈ [E,H−], K

∗ ∈ [H+, E], and Ran(K) = Ran(ImA).

In the definition above ϕ− ∈ E stands for an input vector, ϕ+ ∈ E is an output vector,
and x is a state space vector in H. An operator A is called a state-space operator of the
system Θ, J is a direction operator, and K is a channel operator. A system Θ in (5) is

called minimal if the operator Ȧ is a prime operator in H, i.e., there exists no non-trivial
reducing invariant subspace of H on which it induces a self-adjoint operator. A system
Θ in (5) is called scattering if J = I.

We associate with an L-system Θ the operator-valued function

(6) WΘ(z) = I − 2iK∗(A− zI)−1KJ, z ∈ ρ(T ),

which is called the transfer function of the L-system Θ. We also consider the operator-
valued function

(7) VΘ(z) = K∗(ReA− zI)−1K.

It was shown in [2], [1] that both (6) and (7) are well defined. The transfer operator-
function WΘ(z) of the system Θ and an operator-function VΘ(z) of the form (7) are
connected by the following relations valid for Im z 6= 0, z ∈ ρ(T ),

VΘ(z) = i[WΘ(z) + I]−1[WΘ(z)− I]J,

WΘ(z) = (I + iVΘ(z)J)
−1(I − iVΘ(z)J).

The function VΘ(z) defined by (7) is called the impedance function of an L-system
Θ of the form (5). The class of all Herglotz-Nevanlinna functions in a finite-dimensional
Hilbert space E, that can be realized as impedance functions of an L-system, was de-
scribed in [2].

3. Realization of inverse Stieltjes functions

Let E be a finite-dimensional Hilbert space. A scalar version of the following definition
can be found in [5].

Definition 4. We will call an operator-valued Herglotz-Nevanlinna function V (z) in a
finite-dimensional Hilbert space E by an inverse Stieltjes if V (z) it is holomorphic in
Ext[0,+∞) and

(8)
Im[V (z)/z]

Im z
≥ 0.
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Combining (8) with (2) we obtain

n∑

k,l=1

(
V (zk)/zk − V (z̄l)/z̄l

zk − z̄l
hk, hl

)

E

≥ 0

for an arbitrary sequence {zk} (k = 1, . . . , n) of complex numbers and a sequence of
vectors {hk} in E. It can be shown (see [5]) that every inverse Stieltjes function V (z) in
a finite-dimensional Hilbert space E admits the following integral representation:

(9) V (z) = γ + zβ +

∫ ∞

0

(
1

t− z
− 1

t

)
dG(t),

where γ ≤ 0, β ≥ 0, and G(t) is a non-decreasing on [0,+∞) operator-valued function
such that ∫ ∞

0

(dG(t)h, h)

t+ t2
< ∞, ∀h ∈ E.

The following definition provides the description of a realizable subclass of inverse Stielt-
jes operator-valued functions.

Definition 5. An operator-valued inverse Stieltjes function V (z) in a finite-dimensional
Hilbert space E is a member of the class S−1

0 (R) if in the representation ( 9) we have

• β = 0,

•
∫ ∞

0

(dG(t)h, h)E = ∞ for all h ∈ E, h 6= 0.

A (∗)-extensions A of an operator T ∈ Λ(Ȧ) is called accumulative if

(10) (ReAf, f) ≤ (Ȧ∗f, f) + (f, Ȧ∗f), f ∈ H+.

An L-system Θ of the form (5) is called accumulative if its operator A is accumulative,
i.e., satisfies (10). It is easy to see that if an L-system is accumulative, then (10) implies

that the operator Ȧ of the system is non-negative and both operators T and T ∗ are
accretive. We also associate another operator Ã to an accumulative L-system Θ. It is
given by

(11) Ã = 2Re Ȧ∗ − A,

where Ȧ∗ is in [H+,H−]. Obviously, Re Ȧ∗ ∈ [H+,H−] and Ã ∈ [H+,H−]. Clearly, Ã is

a bi-extension of Ȧ and is accretive if and only if A is accumulative. It is also not hard
to see that even though Ã is not a (∗)-extensions of the operator T but the form (Ãf, f),
f ∈ H+ extends the form (f, Tf), f ∈ Dom(T ).

The following statement [1] is the direct realization theorem for the functions of the
class S−1

0 (R).

Theorem 6. Let Θ be an accumulative L-system of the form (5) with an invertible

channel operator K and Dom(Ȧ) = H. Then its impedance function VΘ(z) of the form
(7) belongs to the class S−1

0 (R).

The inverse realization theorem [1] can be stated for the class S−1
0 (R) as follows.

Theorem 7. Let an operator-valued function V (z) belong to the class S−1
0 (R). Then

V (z) can be realized as an impedance function of an accumulative minimal L-system Θ
of the form (5) with an invertible channel operator K, a non-negative densely defined

symmetric operator Ȧ and J = I.
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4. Sectorial classes S−1,α and S−1,α1,α2 and their realizations

Let α ∈ (0, π
2 ). We introduce sectorial subclasses S−1,α of operator-valued inverse

Stieltjes functions as follows. An operator-valued inverse Stieltjes function V (z) belongs
to S−1,α if

(12) Kα =

n∑

k,l=1

([
V (zk)/zk − V (z̄l)/z̄l

zk − z̄l
− (cotα)

V ∗(zl)

z̄l

V (zk)

zk

]
hk, hl

)

E

≥ 0

for an arbitrary sequence {zk} (k = 1, . . . , n) of complex numbers and a sequence of
vectors {hk} in E. For 0 < α1 < α2 < π

2 , we have

S−1,α1 ⊂ S−1,α2 ⊂ S−1,

where S−1 denotes the class of all inverse Stieltjes functions (which corresponds to the
case α = π

2 ), as follows from the inequality

Kα1
≤ Kα2

≤ Kπ

2
.

The following theorem refines the result of Theorems 6 and 7 as applied to the class
S−1,α.

Theorem 8. Let Θ be an accumulative scattering minimal L-system of the form (5) with

an invertible channel operator K and Dom(Ȧ) = H. Then the impedance function VΘ(z)

defined by (7) belongs to the class S−1,α if and only if the operator Ã of the form (11)
associated to the L-system Θ is α-sectorial.

Proof. Relying on the results of Theorems 6 and 7 all we need is to show that (12) is

equivalent to relation (4) in the definition of sectoriality. Suppose that Ã is α-sectorial,
then (4) holds for all g ∈ H+ and hence

(13) cotα · |(Im Ã g, g)| ≤ (Re Ã g, g), g ∈ H+.

Let {zk} (k = 1, . . . , n) be a sequence of (Im zk > 0) complex numbers and hk be a
sequence of vectors in E. Let us denote

(14) Khk = δk, gk = (ReA− zkI)
−1δk, g =

n∑

k=1

gk.

Consequently, it follows from (4) and (14) that

(15)

n∑

k,ℓ=1

(Re Ã gk, gℓ) ≥ (cotα)
∣∣∣

n∑

k,ℓ=1

(Im Ã gk, gℓ)
∣∣∣.

Let ϕk be a sequence of elements of Nzk (zk 6= z̄k), the defect subspace of the operator

Ȧ. Then for every k there exists hk ∈ E such that

(16) ϕk =
1

zk
(ReA− zkI)

−1Khk (k = 1, . . . , n).
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Taking into account that Ȧ∗ϕk = zkϕk, formulas (11) and (16), and letting ϕ =
∑n

k=1 ϕk

we get

(Re Ãϕ,ϕ) = (Ȧ∗ϕ,ϕ) + (ϕ, Ȧ∗ϕ)− (ReAϕ,ϕ)

=
n∑

k,l=1

[
(Ȧ∗ϕk, ϕl) + (ϕk, Ȧ

∗ϕl)− (ReAϕk, ϕl)
]

=

n∑

k,l=1

([−ReA+ zk + z̄l]ϕk, ϕl)

=

n∑

k,l=1

(
(ReA− z̄lI)

−1(z̄l(ReA− z̄lI)− zk(ReA− zkI))(ReA− zkI)
−1

zkz̄l(zk − z̄l)

×Khk,Khl

)

=

n∑

k,l=1

(
z̄lK

∗(ReA− zkI)
−1K − zkK

∗(ReA− z̄lI)
−1K

zkz̄l(zk − z̄l)
hk, hl

)

=

n∑

k,l=1

(
z̄lVΘ(zk)− zkVΘ(z̄l)

zkz̄l(zk − z̄l)
hk, hl

)
.

The last line can be re-written and hence

(17)

n∑

k,ℓ=1

(Re Ãϕk, ϕℓ) =

n∑

k,l=1

(
VΘ(zk)/zk − VΘ(z̄l)/z̄l

zk − z̄l
hk, hl

)
.

It is easy too see that Im Ã = − ImA = −KK∗ and thus (15) yields

(18)

n∑

k,ℓ=1

(Re Ãϕk, ϕl) ≥ (cotα)
∣∣∣

n∑

k,ℓ=1

(Im Ãϕk, ϕℓ)
∣∣∣ = (cotα)

∣∣∣
n∑

k,ℓ=1

(KK∗ϕk, ϕl)
∣∣∣

= (cotα)
∣∣∣

n∑

k,ℓ=1

(KK∗ 1

zk
(ReA− zkI)

−1Khk,
1

z̄l
(ReA− z̄ℓI)

−1Khl)
∣∣∣

= (cotα)
∣∣∣

n∑

k,ℓ=1

(V ∗(zl)

z̄l

V (zk)

zk
hk, hl

)∣∣∣.

Combining the above inequality with (17) we obtain (12).
To prove the converse statement we recall that it was shown in [1] that for a minimal

system Θ whose symmetric operator Ȧ is prime, we have

c.l.s.
z 6=z̄

Nz = H,

and, consequently, c.l.s.
z 6=z̄

Nz = H+. Thus, (17) and (18) will imply (15). The rest of the

converse statement is proved by reversing the argument. Thus we have shown that (12)
is equivalent to (13) and this completes the proof. �

Another class that we would like to introduce at this point is a special subclass of
scalar realizable inverse Stieltjes functions. Let

0 ≤ α1 < α2 ≤ π

2
.

We say that a scalar inverse Stieltjes function V (z) of the class S−1
0 (R) belongs to the

class S−1,α1,α2 if

(19) tan(π − α1) = lim
x→0

V (x), tan(π − α2) = lim
x→−∞

V (x).
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The following theorem provides a connection between the classes S−1,α and S−1,α1,α2 .

Theorem 9. Let Θ be a scattering accumulative L-system of the form

(20) Θ =

(
A K 1

H+ ⊂ H ⊂ H− C

)

with a densely defined non-negative symmetric operator Ȧ. Let also Ã of the form (11)
be α-sectorial. Then

(1) the impedance function VΘ(z) defined by (7) belongs to the class S−1,α1,α2 ,
(2) the operator T of Θ is (α2 − α1)-sectorial with the exact angle of sectoriality

(α2 − α1),
(3) tanα2 ≤ tanα.

Proof. Since Ã is α-sectorial operator, then (13) holds and we can apply Theorem 8 to
get

(21)
Im(VΘ(z)/z)

Im z
≥ (cotα)

V ∗
Θ(z)VΘ(z)

|z|2 .

Consider the following steps:

(22)

Im(VΘ(z)/z)

Im z
= K∗ z̄(ReA− z̄I)−1 − z(ReA− zI)−1

zz̄(z̄ − z)
K

= K∗ (ReA− z̄I)−1[z̄(ReA− z̄I)− z(ReA− zI)](ReA− zI)−1

|z|2(z̄ − z)
K

= K∗ (ReA− z̄I)−1[(z̄ − z)ReA+ (z2 − z̄2)I](ReA− zI)−1

|z|2(z̄ − z)
K

= K∗ (ReA− z̄I)−1[−ReA+ zI + z̄I](ReA− zI)−1

|z|2 K,

that can be checked directly. Using (22) we obtain

(23) lim
z→x

Im(VΘ(z)/z)

Im z
=

1

x2
K∗(ReA− z̄I)−1[−ReA+ 2xI](ReA− zI)−1K.

Here we used the fact that A is accumulative and x < 0 is a regular point for the
quasi-kernel of ReA. Consequently, (23) yields for x < 0

− VΘ(x)− x2 lim
z→x

Im(VΘ(z)/z)

Im z
= −K∗(ReA− xI)−1K

−K∗(ReA− xI)−1[−ReA+ 2xI](ReA− xI)−1K

= −K∗(ReA− xI)−1[I + (−ReA+ 2xI)(ReA− xI)−1]K

= −K∗(ReA− xI)−1[(ReA− xI)(ReA− xI)−1 + (−ReA+ 2xI)(ReA− xI)−1]K

= −K∗(ReA− xI)−1[ReA− xI − ReA+ 2xI](ReA− xI)−1K

= −K∗(ReA− xI)−1[xI](ReA− xI)−1K

= −xK∗(ReA− xI)−1(ReA− xI)−1K

= −xK∗(ReA− xI)−1KK∗(ReA− xI)−1K = −x(VΘ(x))
2 ≥ 0.

Therefore

(24) −VΘ(x) ≥ x2 lim
z→x

Im(VΘ(z)/z)

Im z
(x < 0)

or

(25) −VΘ(x)

x2
≥ lim

z→x

Im(VΘ(z)/z)

Im z
.
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Thus, using (21) and (25) we get

(26) −VΘ(x) ≥ (cotα)V 2
Θ(x) (x < 0),

and therefore

(27) −VΘ(x) ≤ tanα (x < 0).

It follows from Theorem 6 that the impedance function VΘ(z) of an L-system with an
accumulative operator A has the integral representation (9) with β = 0, i.e.,

(28) VΘ(z) = γ +

∫ ∞

0

(
1

t− z
− 1

t

)
dG(t).

Then (27) and (28) yield

−VΘ(x) = −γ −
∫ ∞

0

(
1

t− x
− 1

t

)
dG(t) ≤ tanα (x < 0, |x| > 1)

and thus ∫ ∞

0

dG(t)

t
< ∞ and − γ −

∫ ∞

0

dG(t)

t
≤ tanα.

Let us denote

(29) tan(π − α1) = γ, tan(π − α2) = γ −
∫ ∞

0

dG(t)

t
.

Using (29) we obtain that VΘ(z) ∈ S−1,α1,α2 and tanα2 ≤ tanα.
It was shown in [1] (see Theorem 8.2.4) for the system Θ of the form (20) there is a

system

(30) Θ′ =

(
S

√
2(I + A)−1K −1

H C

)

with the main operator S = (I − T )(I + T )−1 and such that

(31) WΘ(z) = WΘ(−1)WΘ′

(
1− z

1 + z

)
, z ∈ ρ(T ), z 6= −1.

We know from [1] (see Lemma 9.5.12) that T is α-sectorial if and only if S is α-co-sectorial
contraction, i.e.,

‖S sinα± iI cosα‖ ≤ 1.

It is also shown in [1] that the exact angle of co-sectoriality of S can be calculated via

(32) cotβ =
1 + VΘ′(1)VΘ′(−1)

|VΘ′(−1)− VΘ′(1)| .

Let us compute VΘ′(1) and VΘ′(−1) using (31) and (2). We get

VΘ′(1) = −i(I +W−1
Θ (−1)WΘ(0))

−1(W−1
Θ (−1)WΘ(0)− I),

VΘ′(−1) = −i(I +W−1
Θ (−1)WΘ(−∞))−1(W−1

Θ (−1)WΘ(−∞)− I)

and

WΘ(0) =
1− iVΘ(0)

1 + iVΘ(0)
,WΘ(−∞) =

1− iVΘ(−∞)

1 + iVΘ(−∞)
,W−1

Θ (−1) =
1 + iVΘ(−1)

1− iVΘ(−1)
.

This yields

VΘ′(1) =
VΘ(−1)− VΘ(−∞)

1 + VΘ(−1)VΘ(−∞)
, VΘ′(−1) =

VΘ(−1)− VΘ(0)

1 + VΘ(−1)VΘ(0)
.

Taking into account (32) we get
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cotβ =
1 + VΘ(0)VΘ(−∞)

VΘ(0)− VΘ(−∞)
=

1 + tan(π − α1) · tan(π − α2)

tan(π − α1)− tan(π − α2)
= cot(α2 − α1).

�

Note that Theorem 9 also remains valid for the case when the operator Ã is accretive
but not α-sectorial for any α ∈ (0, π/2).

The corollary below treats the case when α in Theorem 9 is the exact angle of sec-
toriality of the operator T . Thus both operators T and A maintain the same exact
angle.

Corollary 10. Let Θ of the form (20) be an L-system as in the statement of Theorem 9
and let α be the exact angle of sectoriality of the operator T of Θ. Then VΘ(z) ∈ S−1,0,α.

Proof. According to Theorem 9 the exact angle of sectoriality is given by α2−α1, where
tanα1 and tanα2 = limx→−0 VΘ(x) are derived from (19). It was also shown that
tanα ≥ tanα2. On the other hand, since in the statement of the current corollary α is
the exact angle of sectoriality of T , then α = α2 − α1 and hence tan(α2 − α1) ≥ tanα2.
Therefore, α1 = 0. �

Remark 11. It follows that under assumptions of Corollary 10, the impedance function
VΘ(z) has the form

VΘ(z) =

∫ ∞

0

(
1

t− z
− 1

t

)
dG(t).

Theorem 12. Let Θ be a minimal accumulative L-system of the form (20), where Ȧ is
a closed densely defined non-negative symmetric operator with deficiency numbers (1, 1).

Let also Ã be defined via (11). If the impedance function VΘ(z) belongs to the class

S−1,α1,α2 , then Ã is α-sectorial, where

(33) tanα = tanα2 + 2
√
tanα1(tanα2 − tanα1).

Proof. Since VΘ(z) ∈ S−1,α1,α2 , we use (28) and (29) to get

(34) VΘ(z) = − tanα1+

∫ ∞

0

(
1

t− z
− 1

t

)
dG(t) and tanα2 = tanα1+

∫ ∞

0

dG(t)

t
.

It is easily seen from (34) that

(35) VΘ(z)/z = −1

z
tanα1 +

∫ ∞

0

dG(t)

t(t− z)
.

Let {zk}, k = 1, . . . , n be an arbitrary numbers in C+ and {ξk}, k = 1, . . . , n be arbitrary
complex numbers. By direct substitution and using (34)–(35) one gets

(36)

n∑

k,l=1

VΘ(zk)/zk − VΘ(z̄l)/z̄l

zk − z̄l
ξ̄kξl = (tanα1)

∣∣∣∣
n∑

l=1

ξl
zl

∣∣∣∣
2

+

∞∫

0

∣∣∣∣
n∑

l=1

ξl√
t(t− zl)

∣∣∣∣
2

dG(t).

Furthermore, it follows from (34) and (35) that

(37)

n∑

k,l=1

VΘ(zk)

zk

VΘ(z̄l)

z̄l
ξlξ̄k =

n∑

k,l=1

(
− 1

zk
tanα1 +

∫ ∞

0

(
1

t− zk
− 1

t

)
dG(t)

)

×
(
− 1

z̄l
tanα1 +

∫ ∞

0

(
1

t− z̄l
− 1

t

)
dG(t)

)
ξlξ̄k

=

∣∣∣∣
n∑

l=1

(− tanα1)
ξl
zl

+

∫ ∞

0

n∑

l=1

(
ξl√

t(t− zl)

)
dG(t)

∣∣∣∣
2

.
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Applying (37) we have that

∣∣∣∣
n∑

l=1

(− tanα1)
ξl
zl

+

∫ ∞

0

n∑

l=1

(
ξl√

t(t− zl)

)
dG(t)

∣∣∣∣ ≤ tanα1

∣∣∣∣
n∑

l=1

ξl
zl

∣∣∣∣+
∣∣∣∣
∫ ∞

0

n∑

l=1

ξldG(t)√
t(t− zl)

∣∣∣∣

= tanα1

∣∣∣∣
n∑

l=1

ξl
zl

∣∣∣∣+
∣∣∣∣
∫ ∞

0

1√
t

n∑

l=1

ξldG(t)

t− zl

∣∣∣∣

≤ tanα1

∣∣∣∣
n∑

l=1

ξl
zl

∣∣∣∣+
(∫ ∞

0

dG(t)

t

)1/2 (∫ ∞

0

∣∣∣∣∣

n∑

l=1

ξl
t− zl

∣∣∣∣∣

2

dG(t)

)1/2

≤ (tanα1)
1/2

[
tanα1

∣∣∣∣
n∑

l=1

ξl
zl

∣∣∣∣
2

+

∫ ∞

0

∣∣∣∣
n∑

l=1

ξl
t− zl

∣∣∣∣
2

dG(t)

]1/2

+

(∫ ∞

0

dG(t)

t

)1/2 [
tanα1

∣∣∣∣
n∑

l=1

ξl
zl

∣∣∣∣
2

+

∫ ∞

0

∣∣∣∣
n∑

l=1

ξl
t− zl

∣∣∣∣
2

dG(t)

]1/2

=

[
tan1/2 α1 +

(∫ ∞

0

dG(t)

t

)1/2 ]( n∑

k,l=1

VΘ(zk)/zk − VΘ(z̄l)/z̄l
zk − z̄l

ξ̄kξl

)1/2

.

Using (36), (37) we obtain

(38)

n∑

k,l=1

VΘ(zk)

zk

VΘ(z̄l)

z̄l
ξlξ̄k ≤

[
tan1/2 α1 +

(∫ ∞

0

dG(t)

t

)1/2 ]2

×
n∑

k,l=1

VΘ(zk)/zk − VΘ(z̄l)/z̄l
zk − z̄l

ξ̄kξl.

This implies that VΘ(z) belongs to the class S−1,α with

tanα =

[
tan1/2 α1 +

(∫ ∞

0

dG(t)

t

)1/2 ]2

= tanα1 + (tanα2 − tanα1) + 2
√
tanα1 ·

√
tanα2 − tanα1

= tanα2 + 2
√
tanα1 ·

√
tanα2 − tanα1.

Applying Theorem 8 we get that Ã is α-sectorial with the angle α described by formu-
la (33). �

The next statement gives an explicit description of all the functions from the class
S−1,α1,α2 that are realizable as impedance functions of such L-systems that the exact
angles of sectoriality of T and Ã coincide. Its proof immediately follows from Theorems 9
and 12.

Theorem 13. Let Θ be an L-system of the form (20) from the statement of Theorem 12.

Then both Ã and T ∈ Λ(Ȧ) are α-sectorial operators with the exact angle α ∈ (0, π/2) if
and only if

VΘ(z) =

∫ ∞

0

(
1

t− z
− 1

t

)
∈ S−1,0,α.

Moreover, the angle α can be found via the formula

(39) tanα =

∫ ∞

0

dG(t)

t
.
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Therefore, we have shown that within the conditions of Theorem 13 the α-sectorial
sesquilinear form (f, Tf) defined on a subspace Dom(T ) of H+ can be extended to the

α-sectorial form (Ãf, f) defined on H+ preserving the exact (for both forms) angle of
sectoriality α. A general problem of extending sectorial sesquilinear forms was mentioned
by T. Kato in [6].

5. Examples

Example 1. Consider a function

V (z) = i
√
z.

A direct check (see also [3] and [7]) confirms that V (z) is an inverse Stieltjes function.
Clearly, V (z) belongs to the class S−1,0,π/2.

Let us consider a symmetric operator given by

(40)

{
Ȧy = −y′′,
y(0) = y′(0) = 0.

Then its adjoint operator Ȧ∗ is defined in L2[0,+∞) by Ȧ∗y = −y′′ without any boundary
conditions. It was shown in [1] that we can construct an L-system Θ with Schrödinger

operator based on Ȧ of the form (40) that realizes V (z)

(41) Θ =

(
A K 1

H+ ⊂ L2[0,+∞) ⊂ H− C

)
,

where

(42) A y = −y′′ − [iy′(0) + y(0)]δ′(x)

and operator T

(43)

{
Ty = −y′′,
y′(0) = iy(0).

The space H+ in the above system was constructed with operator Ȧ of the form (40)
using (3). Also, δ(x) ∈ H− and δ′(x) ∈ H− are delta function and its derivative such
that (y, δ) = y(0) and (y, δ′) = −y′(0).

The channel operator is given by Kc = cg, g = δ′(x), (c ∈ C) (see [1]) with

(44) K∗y = (y, g) = −y′(0).

Consider also operator Ã defined by (11). We have

Ãy = 2Re Ȧ∗y − Ay = −y′′ − y′(0)δ(x)− y(0)δ′(x) + [iy′(0) + y(0)]δ′(x).

One can see that operator T of the from (43) is accretive but not α-sectorial for any α

and so is operator Ã above.
All the derivations above can be repeated for an inverse Stieltjes function of the form

V (z) = γ + i
√
z, −∞ < γ ≤ 0,

with very minor changes. Clearly, V (z) ∈ S−1,−γ,π/2. In this case (see [1]) the operator
T has a form

(45)

{
Ty = −y′′,
y′(0) = (−γ + i)y(0).

This operator is α-sectorial with

(46) tanα = − 1

γ
.

The state-space operator A of the realizing system in this case is

A y = −y′′ − [iy′(0) + (1 + iγ)y(0)][−γδ(x) + δ′(x)],
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and operator K is again of the form Kc = cg, (c ∈ C), where g = [−γδ(x) + δ′(x)]. The

realizing system Θ has the form (41) with these operators. The operator Ã defined by
the form

Ãy = −y′′ − y′(0)δ(x)− y(0)δ′(x) + [iy′(0) + (1 + iγ)y(0)][−γδ(x) + δ′(x)]

is accretive but not α-sectorial for any α.

Example 2. Consider a function

(47) V (z) = −
√
z√

z + 2i
.

Running a direct check similar to Example 1 confirms that V (z) is an inverse Stieltjes
function. It is also easy to see that V (z) belongs to the class S−1,0,π/4. Now we will
assemble an L-system Θ of the form

Θ =

(
A K 1

H+ ⊂ L2[0,+∞) ⊂ H− C

)

based on a Schrödinger operator such that its impedance function VΘ(z) coincides with

V (z). Let Ȧ be defined by (40) and

(48)

{
Ty = −y′′,
y′(0) = (1 + i)y(0).

It follows from [1] that T of the form (48) is α-sectorial with the exact angle α = π/4.
Using the results from [1] we set

A y = −y′′ − 1

1 + i
[y′(0)− (1 + i)y(0)]δ′(x)

and use the operator K given by Kc = cg, (c ∈ C), where g = 1√
2
δ′(x), to obtain the

system Θ of the form (41). The associated operator Ã then is

Ãy = −y′′ − y′(0)δ(x)− y(0)δ′(x) +
1

1 + i
[y′(0)− (1 + i)y(0)]δ′(x).

By direct calculations we obtain that

(Re Ãy, y) = ‖y′(x)‖2L2 +
1

2
|y′(0)|2, (Im Ãy, y) = −1

2
|y′(0)|2,

and hence

(Re Ãy, y) ≥ |(Im Ãy, y)|.
Thus, Ã is α-sectorial with α = π/4. According to Theorem 13 this angle of sectoriality
is exact.
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