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INTERTWINING PROPERTIES OF BOUNDED LINEAR

OPERATORS ON THE BERGMAN SPACE

NAMITA DAS

Abstract. In this paper we find conditions on φ, ψ ∈ L∞(D) that are necessary
and sufficient for the existence of bounded linear operators S, T from the Bergman

space L2
a
(D) into itself such that for all z ∈ D, φ(z) = 〈Skz , kz , 〉, ψ(z) = 〈Tkz , kz〉

and CaS = TCa for all a ∈ D where Caf = f ◦ φa for all f ∈ L2
a
(D) and φa(z) =

a−z

1−āz
, z ∈ D. Applications of the results are also discussed.

1. Introduction

Let D = {z ∈ C : |z| < 1} and dA(z) be the area measure on D normalized so that
the area of the disk is 1. Let L2(D, dA) be the Hilbert space of Lebesgue measurable
functions f on D with

‖f‖2 =
[ ∫

D

|f(z)|2dA(z)
] 1

2

<∞.

The inner product is defined as

〈f, g〉 =
∫

D

f(z)g(z) dA(z)

for f, g ∈ L2(D, dA). The Bergman space L2
a(D) is the set of those functions in L

2(D, dA)
that are analytic on D. The Bergman space L2

a(D) is a closed subspace of L2(D, dA), and
so there is an orthogonal projection P from L2(D, dA) onto L2

a(D). Let K(z, w̄) be the

function on D×D defined by K(z, w̄) = Kz(w) =
1

(1−zw̄)2 . The function K(z, w̄) is called

the Bergman kernel of D or the reproducing kernel of L2
a(D) because the formula

f(z) =

∫

D

f(w)K(z, w̄) dA(w)

reproduces each f in L2
a. For any n ≥ 0, n ∈ Z, let en(z) =

√
n+ 1zn. Then {en}

forms an orthonormal basis for L2
a(D) and K(z, w̄) =

∑∞
n=0 en(z)en(w) =

1
(1−zw̄)2 . Let

ka(z) = K(z,ā)√
K(a,ā)

= 1−|a|2

(1−āz)2 . These functions ka are called the normalized reproducing

kernels of L2
a; it is clear that they are unit vectors in L2

a. For any a ∈ D, let φa be
the analytic mapping on D defined by φa(z) =

a−z
1−āz , z ∈ D. An easy calculation shows

[12] that the derivative of φa at z is equal to −ka(z). It follows that the real Jacobian
determinant of φa at z is

Jφa
(z) = |ka(z)|2 =

(1− |a|2)2
|1− āz|4 .
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Let Aut(D) be the Lie group of all automorphisms (biholomorphic mappings) of D. Let
L∞(D, dA) be the Banach space of all essentially bounded measurable functions f on D

with
‖f‖∞ = ess sup {|f(z)| : z ∈ D}

and H∞(D) be the space of bounded analytic functions on D.

For φ ∈ L∞(D), the Toeplitz operator Tφ with symbol φ from L2
a(D) into itself is the

operator defined by Tφf = P (φf). For φ ∈ L∞(D), the multiplication operator Mφ with
symbol φ from L2(D, dA) into itself is defined by Mφf = φf. By a harmonic function we
mean a complex valued function on D whose Laplacian is identically 0.

Let h∞(D) be the space of bounded harmonic functions on D. Then h∞(D) ⊂ L∞(D).
It is well known that every harmonic function on D is the sum of an analytic function and
conjugate of another analytic function. Hence if f ∈ h∞(D) then f(z) =

∑∞
n=0 anz

n +∑∞
n=0 bnz

n.

Let L(L2
a(D)) be the of all bounded linear operators from L2

a(D) into itself and
LC(L2

a(D)) be the subspace of L(L2
a(D)) consisting of all compact operators from L2

a(D)
into itself. For linear operators T ∈ L(L2

a(D)) define the Berezin transform by the formula

T̃ (z) = σ(T )(z) = 〈Tkz, kz〉, z ∈ D.

If T ∈ L(L2
a(D)) then |σ(T )(z)| = |〈Tkz, kz〉| ≤ ‖T‖ for all z ∈ D. Hence σ(T ) ∈ L∞(D)

and ‖σ(T )‖∞ ≤ ‖T‖.

2. The unitary operator Uλ and the Berezin transform

Given λ ∈ D and f any measurable function on D, we define a function Uλf on D

by Uλf(z) = kλ(z)f(φλ(z)). Notice that Uλ is a bounded linear operator on L2(D, dA)
and L2

a(D) for all λ ∈ D. Further, it can be checked that U2
λ = I, the identity operator,

U∗
λ = Uλ, Uλ(L

2
a) ⊂ (L2

a) and Uλ((L
2
a)

⊥) ⊂ (L2
a)

⊥ for all λ ∈ D. Thus UλP = PUλ for
all λ ∈ D where P is the orthogonal projection from L2(D, dA) onto L2

a(D). Given a ∈ D

and f any measurable function on D, we define the function Caf by Caf(z) = f(φa(z)),
where φa ∈ Aut(D). The map Ca is a composition operator on L2

a(D).

Lemma 2.1. For z, ω ∈ D, Uzkω = αkφz(ω) for some complex constant α such that
|α| = 1.

Proof. Suppose z, ω ∈ D. If f ∈ L2
a(D), then

〈f, UzKω〉 = 〈Uzf,Kω〉 = (Uzf)(ω) = −(f ◦ φz)(ω)φ
′

z(ω) = 〈f, (−φ′

z(ω))Kφz(ω)〉.

Thus UzKω = −φ′

z(ω)Kφz(ω). Rewriting this in terms of the normalized reproducing
kernels, we have

Uzkω = αkφz(ω)

for some complex constant α. Since Uz is unitary and ‖kω‖2 = ‖kφz(ω)‖2 = 1, we obtain
that |α| = 1. �

Lemma 2.2. For all a ∈ D, Uaka = 1.

Proof. If a ∈ D, then first observe that φ
′

a(z) = −ka(z). Since (φa ◦ φa)(z) = z for all
z ∈ D, taking derivatives with respect to z both the sides we obtain

(Uaka)(z) = ka(φa(z))ka(z) = 1.

�

Notice that for all a ∈ D, since Uaka = 1, hence ka ◦ φa =
1

ka
and k−1

a ∈ H∞(D), the

space of bounded analytic functions on D.

Lemma 2.3. If S, T ∈ L(L2
a(D)) and for all z ∈ D, S̃(z) = T̃ (z), then S = T.
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Proof. If S̃(z) = T̃ (z) for all z ∈ D, then

〈(S − T )kz, kz〉 = 0

for all z ∈ D. This implies

〈(S − T )Kz,Kz〉 = K(z, z)〈(S − T )kz, kz〉 = K(z, z) · 0 = 0.

Let L = S − T and define
F (x, y) = 〈LKx̄,Ky〉.

The function F is holomorphic in x and y and F (x, y) = 0 if x = ȳ. It can now be
verified that such functions must vanish identically. Let x = u + iv, y = u − iv. Let
G(u, v) = F (x, y). The function G is holomorphic and vanishes if u and v are real. Hence
by the uniqueness theorem (see [3],[8]), F (x, y) = G(u, v) ≡ 0. Thus even 〈LKx,Ky〉 = 0
for any x, y. Since linear combinations of Kx, x ∈ D are dense in L2

a(D), it follows that
L = 0. That is, S = T. �

3. Intertwining properties of operators

In this section we find conditions on φ, ψ ∈ L∞(D) that are necessary and sufficient
for the existence of bounded linear operators S, T from the Bergman space L2

a(D) into
itself such that for all z ∈ D, φ(z) = 〈Skz, kz, 〉, ψ(z) = 〈Tkz, kz〉 and CaS = TCa for all
a ∈ D where Caf = f ◦ φa for all f ∈ L2

a(D) and φa(z) =
a−z
1−āz , z ∈ D.

Definition 3.1. A function g(x, ȳ) on D × D is called of positive type (or positive
definite), written g ≫ 0, if

(1)

n∑

j,k=1

cj c̄kg(xj , x̄k) ≥ 0

for any n− tuple of complex numbers c1, . . . , cn and points x1, . . . , xn ∈ D. We write
g ≫ h if g − h≫ 0.

We say φ ∈ A if φ ∈ L∞(D) and is such that

(2) φ(z) = Ω(z, z̄),

where Ω(x, ȳ) is a function on D × D meromorphic in x and conjugate meromorphic in
y. It is a fact that (see [5],[7]) Ω as in (2), if it exists, is uniquely determined by φ.

We say the function Ω satisfies the condition (*) if there exists a constant C > 0 such
that

CK(x, ȳ) ≫ Ω(x, ȳ)K(x, ȳ) ≫ −CK(x, ȳ).

For φ ∈ L∞(D, dA), let

φ̂(z) =

∫

D

φ(φa(z)) dA(a)

and

φ̃(z) =

∫

D

φ(φz(w)) dA(w).

Notice that
φ̃(z) = 〈φkz, kz〉.

If φ ∈ L∞(D) then φ is said to satisfy the condition (**) if φ ∈ A and φ(z) = Ω(z, z̄)
as in (2) and

Ω1(x, ȳ) = Ω(x, ȳ) + Ω(y, x̄)

and
Ω2(x, ȳ) = i(Ω(x, ȳ)− Ω(y, x̄))
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satisfy the condition (*).

Theorem 3.2. The functions φ, θ ∈ L∞(D) satisfy the condition (**) and φ̂ = θ if
and only if there exist S, T ∈ L(L2

a(D)) such that for all z ∈ D, φ(z) = 〈Skz, kz〉 and
θ(z) = 〈Tkz, kz〉 and CaS = TCa for all a ∈ D.

Proof. Let S ∈ L(L2
a(D)) and

(3) Ω(x, ȳ) =
〈SKy,Kx〉
〈Ky,Kx〉

,

where Kx = K(., x̄) is the unnormalized reproducing kernel at x. Then Ω(x, ȳ) is a
function on D×D meromorphic in x and conjugate meromorphic in y. Let φ(z) = Ω(z, z̄).
Then φ(z) = 〈Skz, kz〉 for all z ∈ D and φ ∈ L∞(D) as S is bounded. Thus φ ∈ A.

Now let φ ∈ A and φ(z) = Ω(z, z̄) where Ω(x, ȳ) is a function on D×D meromorphic
in x and conjugate meromorphic in y. We shall prove the existence of some S (possibly
unbounded) such that 〈Skz, kz〉 = φ(z). Let

(4) Sf(x) =

∫

D

f(z)Ω(x, z̄)K(x, z̄) dA(z).

Indeed,

Sf(x) = 〈Sf,Kx〉 = 〈f, S∗Kx〉 =
∫

D

f(z)〈S∗Kx,Kz〉 dA(z)

=

∫

D

f(z)〈SKz,Kx〉 dA(z) =
∫

D

f(z)Ω(x, z̄)K(x, z̄) dA(z).

Then

〈SKy,Kx〉 =
∫

D

Ky(z)Ω(x, z̄)K(x, z̄) dA(z) =

∫

D

Ky(z)Ω(x, z̄)Kx(z) dA(z)

= 〈Ω(x, z̄)Kx,Ky〉 = Ω(x, ȳ)〈Kx,Ky〉 = Ω(x, ȳ)〈Ky,Kx〉.

Hence Ω(x, ȳ) =
〈SKy,Kx〉
〈Ky,Kx〉

and φ(z) = Ω(z, z̄) = 〈Skz, kz〉. Notice however that the

operator S given by (4) may well be unbounded. We shall now prove a necessary and
sufficient condition for S to be bounded and positive is that there exists C > 0 such that

(5) CK(x, ȳ) ≫ Ω(x, ȳ)K(x, ȳ) ≫ 0.

Suppose there exists a constant C > 0 such that for all x, y ∈ D, (5) holds. We shall show
that S is bounded and positive. Let f =

∑n
j=1 cjKxj

where cj are constants, xj ∈ D for
j = 1, 2, . . . , n. Then

〈Sf, f〉 =
〈
S
( n∑

j=1

cjKxj

)
,

n∑

j=1

cjKxj

〉

=
n∑

j,k=1

cjck〈SKxj
,Kxk

〉 =
n∑

j,k=1

cjckΩ(xk, x̄j)K(xk, x̄j) ≥ 0

and

〈Sf, f〉 =
n∑

j,k=1

cjck〈SKxj
,Kxk

〉 =
n∑

j,k=1

cjckΩ(xk, x̄j)K(xk, x̄j)

≤ C

n∑

j,k=1

cjckK(xk, x̄j) = C‖f‖2.

Since the set of vectors {
∑n
j=1 cjKxj

, xj ∈ D, j = 1, 2, . . . , n} is dense in L2
a(D), hence

0 ≤ 〈Sf, f〉 ≤ C‖f‖2 for all f ∈ L2
a(D) and S is bounded and positive.



234 NAMITA DAS

Conversely, suppose S is bounded and positive. Then there exists a constant C > 0
such that 0 ≤ 〈Sf, f〉 ≤ C‖f‖2 for all f ∈ L2

a(D). That is, if f =
∑n
j=1 cjKxj

, then

0 ≤ 〈Sf, f〉 =
n∑

j,k=1

cjck〈SKxj
,Kxk

〉 =
n∑

j,k=1

cjckΩ(xk, x̄j)K(xk, x̄j)

≤ C‖f‖2 = C

n∑

j,k=1

cjckK(xk, x̄j).

Thus CK(x, ȳ) ≫ Ω(x, ȳ)K(x, ȳ) ≫ 0.
Now suppose CK(x, ȳ) ≫ Ω(x, ȳ)K(x, ȳ) ≫ −CK(x, ȳ) for all x, y ∈ D. Let f =∑n
j=1 cjKxj

. Then

〈Sf, f〉 =
n∑

j,k=1

cjckΩ(xk, x̄j)K(xk, x̄j) ≤ C

n∑

j,k=1

cjckK(xk, x̄j) = C‖f‖2

and

〈Sf, f〉 =
n∑

j,k=1

cjckΩ(xk, x̄j)K(xk, x̄j) ≥ −C
n∑

j,k=1

cjckK(xk, x̄j) = −C‖f‖2.

Hence S is bounded and self-adjoint. Conversely, if S is bounded and self-adjoint
then there exists a constant C > 0 such that −C‖f‖2 ≤ 〈Sf, f〉 ≤ C‖f‖2. That is,
CK(x, ȳ) ≫ Ω(x, ȳ)K(x, ȳ) ≫ −CK(x, ȳ) and thus Ω satisfies the condition (*). Sup-

pose S is bounded. Then S = S+S∗

2 + iS−S
∗

2i = S1 + iS2 where S1 and S2 are bounded
and self-adjoint.

Let Ψ1(x, ȳ) =
〈S1Ky,Kx〉
〈Ky,Kx〉

and Ψ2(x, ȳ) =
〈S2Ky,Kx〉
〈Ky,Kx〉

. Since S1 and S2 are bounded and

self-adjoint, there exist constants c1 > 0 and c2 > 0 such that

c1K(x, ȳ) ≫ Ψ1(x, ȳ)K(x, ȳ) ≫ −c1K(x, ȳ)

and
c2K(x, ȳ) ≫ Ψ2(x, ȳ)K(x, ȳ) ≫ −c2K(x, ȳ).

Further

Ψ1(x, ȳ) =
〈S1Ky,Kx〉
〈Ky,Kx〉

=
1

2
{Ω(x, ȳ) + Ω(y, x̄)}

and

Ψ2(x, ȳ) =
〈S2Ky,Kx〉
〈Ky,Kx〉

= −1

2
[(i){Ω(x, ȳ)− Ω(y, x̄)}].

Thus Ω1(x, ȳ) = Ω(x, ȳ) + Ω(y, x̄) and Ω2(x, ȳ) = (i){Ω(x, ȳ) − Ω(y, x̄)} satisfy the
condition (*). Conversely, suppose Ω1(x, ȳ) and Ω2(x, ȳ) satisfy condition (*). Then
there exist constants c1 > 0 and c2 > 0 such that

c1K(x, ȳ) ≫ Ψ1(x, ȳ)K(x, ȳ) ≫ −c1K(x, ȳ)

and
c2K(x, ȳ) ≫ Ψ2(x, ȳ)K(x, ȳ) ≫ −c2K(x, ȳ),

where

Ψ1(x, ȳ) =
1

2
Ω1(x, ȳ) =

1

2
{Ω(x, ȳ) + Ω(y, x̄)} =

〈(S+S∗

2 )Ky,Kx〉
〈Ky,Kx〉

and

Ψ2(x, ȳ) = −1

2
Ω2(x, ȳ) =

1

2i
{Ω(x, ȳ)− Ω(y, x̄)} =

〈(S−S∗

2i )Ky,Kx〉
〈Ky,Kx〉

.

Thus S+S
∗

2 and S−S∗

2i are bounded and self-adjoint and hence S is bounded. Thus we have

shown that φ ∈ L∞(D) satisfy the condition (**) if and only if there exist S ∈ L(L2
a(D))
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such that φ(z) = 〈Skz, kz〉 for all z ∈ D. Similarly one can show that θ ∈ L∞(D) satisfy
the condition (**) if and only if there exist T ∈ L(L2

a(D)) such that θ(z) = 〈Tkz, kz〉 for
all z ∈ D. To establish the theorem we have to show that φ̂ = θ if and only if CaS = TCa
for all a ∈ D.

Suppose φ̂ = θ. That is, ∫

D

φ(φa(z)) dA(a) = θ(z)

for all z ∈ D. This implies ∫

D

S̃(φa(z)) dA(a) = T̃ (z)

for all z ∈ D.

Then by Lemma 2.1, there exists a constant α, |α| = 1 such that for all z ∈ D

〈Tkz, kz〉 =
∫

D

〈Skφa(z), kφa(z)〉 dA(a) =
∫

D

〈αSUakz, αUakz〉 dA(a)

=

∫

D

〈UaSUakz, kz〉 dA(a) =
〈(∫

D

UaSUa dA(a)
)
kz, kz

〉
= 〈Ŝkz, kz〉,

where Ŝ =
∫
D
UaSUa dA(a).

Thus by Lemma 2.3, T = Ŝ. Hence for all f, g ∈ L2
a(D), 〈Tf, g〉 = 〈Ŝf, g〉. That is,

∫

D

〈SUaf, Uag〉 dA(a) =
∫

D

Tf(z)g(z) dA(z).

The boundedness of T and the anti-analyticity of K(z, ā) in ā imply that for each z ∈ D,
the function

T
( f

K(·, ā)
)
(z)K(z, ā)

is anti-analytic in ā. Therefore, by the mean value property of harmonic functions, we
have

(6)

∫

D

T
( f

K(·, ā)
)
(z)K(z, ā) dA(a) = T

( f

K(·, 0)
)
(z)K(z, 0) = Tf(z).

Thus, from (6), it follows that

〈Tf, g〉 =
∫

D

g(z) dA(z)

∫

D

T
( f

K(·, ā)
)
(z)K(z, ā) dA(a).

Using Fubini’s theorem, we obtain

(7) 〈Tf, g〉 =
∫

D

dA(a)

∫

D

T
( f

K(·, ā)
)
(z)g(z)K(z, ā) dA(z).

Now since ka(z) =
K(z,ā)√
K(a,ā)

and (ka ◦φa)(z)ka(z) = 1 for all z, a ∈ D, the right hand side

of (7) is equal to
∫

D

dA(a)

∫

D

T
( f
ka

)
(z)g(z)ka(z) dA(z)

=

∫

D

dA(a)

∫

D

T
( f
ka

)
(z)g(z) ka(φa(z))|ka(z)|2dA(z).

Finally, as (φa ◦ φa)(z) ≡ z and Jφa(z) = |ka(z)|2 we obtain

〈Tf, g〉 =
∫

D

dA(a)

∫

D

T
( f
ka

)
(φa(z))ka(z) g(φa(z)) dA(z).
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By hypothesis, 〈Tf, g〉 =
∫

D

〈SUaf, Uag〉 dA(a) and by using Lemma 2.2 we have

〈SUaf, Uag〉 =
〈
S
( f ◦ φa
ka ◦ φa

)
, (g ◦ φa)ka

〉
=

〈
S
( f
ka

◦ φa
)
, (g ◦ φa)ka

〉

=

∫

D

S
( f
ka

◦ φa
)
(z)g(φa(z)) ka(z) dA(z).

Thus we obtain for all f, g ∈ L2
a(D),∫

D

S
( f
ka

◦ φa
)
(z)g(φa(z)) ka(z) dA(z) =

∫

D

T
( f
ka

)
(φa(z))ka(z) g(φa(z)) dA(z).

Hence for all f, g ∈ L2
a(D), a ∈ D,
〈
S
( f
ka

◦ φa
)
, Uag

〉
=

〈
T
( f
ka

)
◦ φa, Uag

〉
.

Since Ua is unitary, Ua ∈ L(L2
a(D)), we get

S
( f
ka

◦ φa
)
= T

( f
ka

)
◦ φa

for all f ∈ L2
a(D), a ∈ D.

That is, for all f ∈ L2
a(D), a ∈ D,

SCa

( f
ka

)
= CaT

( f
ka

)
.

Since k−1
a ∈ H∞, hence SCa = CaT for all a ∈ D. That is, CaS = TCa for all a ∈ D as

C2
a = I, the identity operator in L(L2

a(D)). Now we shall prove the converse. Suppose
CaSf = TCaf for all a ∈ D, f ∈ L2

a(D). That is, for all f ∈ L2
a(D), a ∈ D,

(Sf) ◦ φa = T (f ◦ φa) and (Tf) ◦ φa = S(f ◦ φa).
By Lemma 2.2, (ka ◦ φa)ka = 1 for all a ∈ D. Hence

SUaf = S(ka(f ◦ φa)) = S
( f ◦ φa
ka ◦ φa

)
= S

(( f
ka

)
◦ φa

)
=

(
T
f

ka

)
◦ φa.

Thus for f, g ∈ L2
a(D), since ka(φa(z)) ka(z) = 1,Jφa(z) = |ka(z)|2 and ka(z) =

K(z,ā)√
K(a,ā)

for all z, a ∈ D, we obtain

〈SUaf, Uag〉 =
∫

D

(
T
f

ka

)
(φa(z))(g ◦ φa)(z) ka(z) dA(z)

=

∫

D

T
( f
ka

)
(z)g(z) (ka ◦ φa)(z)|ka(z)|2dA(z)

=

∫

D

T
( f
ka

)
(z)g(z)ka(z) dA(z)

=

∫

D

T
( f

K(·, ā)
)
(z)g(z)K(z, ā) dA(z).

Hence by using Fubini’s theorem, we obtain∫

D

〈SUaf, Uag〉 dA(a) =
∫

D

∫

D

T
( f

K(·, ā)
)
(z)g(z)K(z, ā) dA(z) dA(a)

=

∫

D

g(z) dA(z)

∫

D

T
( f

K(·, ā)
)
(z)K(z, ā) dA(a).

We have already checked in the first part of the proof that for all z ∈ D,∫

D

T
( f

K(·, ā)
)
(z)K(z, ā) dA(a) = T

( f

K(·, 0)
)
(z)K(z, 0) = Tf(z).
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Thus ∫

D

〈SUaf, Uag〉 dA(a) =
∫

D

Tf(z)g(z) dA(z) = 〈Tf, g〉.

When f = g = kz, z ∈ D, we obtain by Lemma 2.1 that

〈Tkz, kz〉 =
∫

D

〈SUakz, Uakz〉 dA(a) =
∫

D

〈Skφa(z), kφa(z)〉 dA(a) =
∫

D

S̃(φa(z)) dA(a)

and this completes the proof. �

We shall now discuss about some of the applications of Theorem 3.2. An operator
T ∈ L(L2

a(D)) is hyponormal (respectively cohyponormal) if T ∗T ≥ TT ∗ (respectively,
TT ∗ ≥ T ∗T ). The operator T is paranormal if ‖Tf‖2 ≤ ‖T 2f‖‖f‖ for all f ∈ L2

a(D).
The operator T is a coisometry if T ∗ is an isometry.An operator T ∈ L(L2

a(D)) is said
to be algebraically hyponormal if there exists a nonconstant complex polynomial p such
that p(T ) is hyponormal. The operator T ∈ L(L2

a(D)) is called cyclic with cyclic vectors
f ∈ L2

a(D) if the finite linear combinations of the vectors f, Tf, T 2f, . . . are dense in
L2
a(D). An operator T ∈ L(L2

a(D)) is said to be power bounded if there exists a constant
K > 0 such that ‖Tn‖ ≤ K for all n ∈ N.

Corollary 3.1. Let S, T ∈ L(L2
a(D)) are such that T ∗ is a hyponormal operator and S

is an isometry. If SCa = CaT for some a ∈ D then T is unitary.

Proof. Suppose SCa = CaT for some a ∈ D. Then from [11] and [9] it follows that
S∗Ca = CaT

∗ and since S is an isometry we obtain Ca = S∗CaT. Thus Ca = CaT
∗T.

That is, I − T ∗T = 0 as C2
a = I. Since T ∗ is hyponormal and T ∗T = I, it follows that T

is normal and hence, unitary. �

Corollary 3.2. Let S, T ∈ L(L2
a(D)) are such that Tn → 0 in the strong operator

topology and S is an isometry. Then there does not exist a ∈ D such that CaT = SCa.

Proof. Suppose S is an isometry. Then ‖Snf‖ = ‖f‖ for all n ∈ Z+ and f ∈ L2
a(D).

If Tn → 0 in the strong operator topology and CaT = SCa for some a ∈ D, then
0 ≤ ‖Caf‖ = ‖SnCaf‖ = ‖CaTnf‖ ≤ ‖Ca‖‖Tnf‖ → 0 for all f ∈ L2

a(D). That is,
Caf = 0 for all f ∈ L2

a(D) which is impossible. �

If f ∈ L1(D, dA), the Berezin transform of f is, by definition,

(Bf)(w) = f̃(w) = 〈fkw, kw〉 =
∫

D

(1− |w|2)2
|1− w̄z|4 f(z) dA(z), w ∈ D,

where kw is the normalized reproducing kernel at w ∈ D given by kw(z) =
1−|w|2

(1−w̄z)2 .

Notice that kw ∈ L∞(D) for all w ∈ D, so the definition makes sense. On D, the
only measure left invariant by all Mobius transformations z 7→ eiθ z−w1−z̄w := eiθφw(z), w ∈
D, θ ∈ R is the pseudo-hyperbolic measure dη(z) = dA(z)

(1−|z|2)2 .

The invariance may be verified by direct computation. It turns out that the Berezin

transform behaves well with respect to the invariant measures. The mapping B : f → f̃

is a contractive linear operator on each of the spaces Lp(D, dη(z)), 1 ≤ p ≤ ∞ and
L1(D, dη) ⊂ L1(D, dA).

Corollary 3.3. Let B be the Berezin transform defined on L2(D, dη) and S ∈ L(L2(D,
dη)) is an isometry. Then there exists no a ∈ D such that CaB = SCa.

Proof. The map B is a contraction on L2(D, dη). This can be verified as follows:

|f̃(w)| =
∣∣∣
∫

D

f(z)
(1− |w|2)2
|1− w̄z|4 dA(z)

∣∣∣ ≤ B(|f |)(w).

Hence
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∫

D

|f̃(w)| dA(w)

(1− |w|2)2 ≤
∫

D

(∫

D

|f(z)| (1− |w|2)2
|1− w̄z|4 dA(z)

) dA(w)

(1− |w|2)2

=

∫

D

|f(z)|
∫

D

dA(w)

|1− w̄z|4 dA(z)

=

∫

D

|f(z)|〈Kz,Kz〉 dA(z) =
∫

D

|f(z)| dA(z)

(1− |z|2)2 ,

the change of the order of integration being justified by the positivity of the integrand. If

f ∈ L2(D, dη) and f̃ = f, then f is harmonic but the only harmonic function in L2(D, dη)
is constant zero. To see this, let

M(r) =
1

2π

∫ 2π

0

|f(reit)|2dt.

This is a nonnegative and nondecreasing function of r. Further,

‖f‖2L2(D,dη) =

∫ 1

0

M(r)
2r

(1− r2)2
dr <∞.

So M(r) must tend to zero as r → 1. Thus M(r) ≡ 0, whence f = 0. Thus there is no
nonzero fixed point of B in L2(D, dη). Since B is a contraction and B is positive [4] on
L2(D, dη), its spectrum must be contained in [0, 1]. Let E(λ) be the resolution of identity
for the self-adjoint operator B. Then

‖Bnf‖2 =

∫

[0,1]

|λn|2d〈E(λ)f, f〉.

According to the Lebesgue monotone convergence theorem, this tends to
‖(I−E(1−))f‖2 = ‖Pker(B−I)f‖2. But from the above discussion it follows that ker(B−
I) = {0}. Hence ‖Bnf‖ → 0 as n → ∞. Further, it is well known [6] that BCa = CaB

for all a ∈ D. If now CaB = SCa for some a ∈ D then this implies BCa = SCa. That
is, B = S as Ca is invertible. Since S is an isometry and Bn → 0 in strong operator
topology this is not possible. �

Corollary 3.4. Suppose S, T ∈ L(L2
a(D)) are power bounded operators and CaT = SCa

for some a ∈ D. Then

(i): (i) Tn → 0 in the weak operator topology if and only if Sn → 0 in the weak
operator topology.

(ii): {Tnh} is weakly convergent for each h ∈ L2
a(D) if and only if {Sng} is weakly

convergent for each g ∈ L2
a(D).

(iii): If for each h ∈ L2
a(D) and every increasing sequence {nj} of positive integers,

the limit limN→∞
1
N

∑N
j=1 T

njh exists in the norm topology then

lim
N→∞

1

N

N∑

j=1

Snjg

exists in the norm topology for all g ∈ L2
a(D).

Proof. (i) Suppose 〈Tnh, h′〉 → 0 for all h, h′ ∈ L2
a(D). Then 〈SnCah, g〉 = 〈CaTnh, g〉 =

〈Tnh,C∗
ag〉 → 0 as n → ∞. Hence Snf → 0 weakly for all f ∈ L2

a(D) as CaL
2
a(D) =

L2
a(D). Since S is power bounded, we have Sn → 0 in weak operator topology.
Conversely, suppose that Sn → 0 in weak operator topology. Then S∗n → 0 in weak

operator topology and T ∗C∗
a = C∗

aS
∗. Hence T ∗n → 0 in weak operator topology and so

Tn → 0 in weak operator topology.
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(ii) Let h ∈ L2
a(D). Notice that the sequence {Tnh} converges weakly if and only

if 〈Tnh, h′〉 is convergent for each h′ ∈ L2
a(D). Suppose that this condition is satisfied

and define Φ(h′) = limn→∞〈Tnh, h′〉. Then Φ is a bounded conjugate linear functional,
and so there is an h̄ ∈ L2

a(D) such that 〈h̄, h′〉 = Φ(h′) for all h′ ∈ L2
a(D). Hence

Tnh → h̄ weakly. From this it follows easily that {Tnh} is weakly convergent for each
h ∈ L2

a(D) if and only if {T ∗nh} is weakly convergent for each h ∈ L2
a(D). Furthermore,

{h ∈ L2
a(D) : {Tnh} converges weakly } is a closed subspace of L2

a(D). Suppose now that
{Tnh} converges weakly for each h ∈ L2

a(D) and suppose CaT = SCa for some a ∈ D.

Let h ∈ L2
a(D) and Tnh → h̄ weakly. Then T h̄ = h̄ and Tn(h − h̄) → 0 weakly. Thus

L2
a(D) = ker(I − T ) + (L2

a)0 where (L2
a)0 = {h ∈ L2

a(D) : T
nh → 0 weakly }. It is easy

to see that Ca ker(I − T ) ⊂ ker(I − S) and Ca(L
2
a)0 ⊂ {g ∈ L2

a(D) : S
ng → 0 weakly}.

Thus {Sng} converges weakly for each g ∈ L2
a(D).

Conversely, suppose that {Sng} converges weakly for each g ∈ L2
a(D). Then T

∗C∗
a =

C∗
aS

∗ and {S∗ng} converges weakly for each g ∈ L2
a(D). As in the previous case, one can

show that {T ∗nh} converges weakly for each h ∈ L2
a(D), and so {Tnh} converges weakly

for each h ∈ L2
a(D).

(iii) Suppose for each increasing subsequence of positive integer {nj} and every h ∈

L2
a(D) the limit lim

N→∞

1

N

N∑

j=1

Tnjh exists in the norm topology. Then lim
N→∞

1

N

N∑

j=1

SnjCah =

lim
N→∞

1

N

N∑

j=1

CaT
njh exists for each h ∈ L2

a(D). Since RangeCa = L2
a and the sequence

1

N

N∑

j=1

Tnj is bounded, the limit lim
N→∞

1

N

N∑

j=1

Snjg exists for all g ∈ L2
a(D). �

Corollary 3.5. Let S, T ∈ L(L2
a(D)). Suppose TCa = CaS and T ∗Ca = CaS

∗ for some
a ∈ D. Then the operators S and T are unitarily equivalent and the following hold:

(i): If S is hyponormal (cohyponormal) then T is also hyponormal (cohyponormal).
(ii): If S is an isometry (coisometry) then T is also an isometry (coisometry).
(iii): If S is normal then T is also normal.

Proof. Let C∗
a = W ∗Q be the polar decomposition of C∗

a such that kerW ∗ = kerQ.
Since C2

a = I we obtain C∗
a
2 = I. Hence C∗

af = 0 implies C∗
a
2f = 0. Therefore f = 0.

Thus C∗
a is injective and kerC∗

a = {0}. The operator W ∗ is a partial isometry. That
is, ‖W ∗f‖ = ‖f‖ for all f ∈ (kerW ∗)⊥. Now f ∈ kerQ implies f ∈ kerC∗

a . Hence
kerQ ⊆ kerC∗

a = {0}. Thus kerQ = {0}. But kerW ∗ = kerQ. Hence kerW ∗ = {0} and
W ∗ is injective. Thus ‖W ∗f‖ = ‖f‖ for all f ∈ (kerW ∗)⊥ = {0}⊥ = L2

a(D). Thus W
∗ is

an isometry.
Now C∗

a = W ∗Q implies Ca = QW. If f ∈ kerW then f ∈ kerCa. But kerCa = {0}.
Hence kerW = {0} and W is injective. Further, W ∗ is a partial isometry implies [2] the
operator W is a partial isometry. That is, ‖Wf‖ = ‖f‖ for all f ∈ (kerW )⊥ = {0}⊥ =
L2
a(D). Hence W is an isometry. Thus W is unitary and Q2 = CaC

∗
a is injective. From

equations TCa = CaS and T ∗Ca = CaS
∗, we have

TCaC
∗
a = CaSC

∗
a , CaC

∗
aT = CaSC

∗
a .

Thus, Q2 = CaC
∗
a commutes with T, and [2] so QT = TQ. Hence we obtain

QTW = TQW = TCa = CaS = QWS,

which implies that TW =WS because Q is injective.
Since W is a coisometry, we have

(8) T = TWW ∗ =WSW ∗.
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Hence from (8) it follows that S and T are unitarily equivalent. From the equations
C∗
aT = SC∗

a and TQ = QT, we have

W ∗TQ =W ∗QT = C∗
aT = SC∗

a = SW ∗Q,

which implies that W ∗T = SW ∗. This is so as RangeQ = (kerQ)⊥ = (kerW ∗)⊥ =
{0}⊥ = L2

a(D). Hence
W ∗WS =W ∗TW = SW ∗W.

Suppose now that S is normal. Since S∗S = SS∗, we have

T ∗T = (WSW ∗)∗(WSW ∗) =WS∗W ∗WSW ∗ =WS∗SW ∗WW ∗

=WS∗SW ∗ =WSS∗W ∗ =WW ∗WSS∗W ∗ = (WSW ∗)(WSW ∗)∗ = TT ∗.

Thus T is normal. This proves (iii).
To prove (i), assume that S is hyponormal (respectively, cohyponormal). Since S∗S ≥

SS∗ (respectively, SS∗ ≥ S∗S), from the above arguments it follows that T ∗T =
WS∗SW ∗ ≥ WSS∗W ∗ = TT ∗ (respectively, TT ∗ = WSS∗W ∗ ≥ WS∗SW ∗ = T ∗T )
and the result follows.

To prove (ii), assume that S is an isometry (respectively, coisometry). Again, by the
above computation, T ∗T = WS∗SW ∗ = WW ∗ = I (respectively, TT ∗ = WSS∗W ∗ =
WW ∗ = I). Thus T is an isometry (respectively, coisometry). So (ii) is established. �

Corollary 3.6. Let S, T ∈ L(L2
a(D)) are such that T is a paranormal contraction, S∗ is

an isometry and TCa = CaS for some a ∈ D. Then T and S are unitary operators.

Proof. Let f be a nonzero vector in L2
a(D). Then Caf 6= 0. Let gn = CaS

∗nf, n =
0, 1, 2, · · · . Then Tgn+1 = TCaS

∗n+1f = CaSS
∗n+1f = CaS

∗nf = gn. Since T is a
contraction,

‖gn‖ = ‖Tgn+1‖ ≤ ‖gn+1‖ = ‖CaS∗n+1
f‖ ≤ ‖Ca‖‖f‖

and hence {‖gn+1‖} is a monotone increasing convergent sequence. Since T is paranor-
mal, we obtain

‖gn‖2 = ‖Tgn+1‖2 ≤ ‖T 2gn+1‖‖gn+1‖ = ‖gn+1‖‖gn+1‖
and

1 ≥ ‖g0‖
‖g1‖

≥ ‖g1‖
‖g2‖

≥ · · · ≥ ‖gn−1‖
‖gn‖

→ 1

as n→ ∞. In particular, ‖g0‖ = ‖g1‖, that is, ‖Caf‖ = ‖CaS∗f‖. Thus
‖CaS∗f‖ = ‖Caf‖ = ‖CaSS∗f‖ = ‖TCaS∗f‖ ≤ ‖CaS∗f‖,

and so

‖CaS∗f‖ = ‖Caf‖ = ‖TCaS∗f‖.
If f = 0 then

‖CaS∗f‖ = ‖Caf‖ = ‖TCaS∗f‖ = 0.

Hence
‖T ∗Caf − CaS

∗f‖2

= ‖T ∗Caf‖2 + ‖CaS∗f‖2 − 〈T ∗Caf, CaS
∗f〉 − 〈CaS∗f, T ∗Caf〉

≤ 2‖Caf‖2 − 〈Caf, TCaS∗f〉 − 〈TCaS∗f, Caf〉
= 2‖Caf‖2 − 〈Caf, CaSS∗f〉 − 〈CaSS∗f, Caf〉
= 2‖Caf‖2 − 2‖Caf‖2 = 0

for all f ∈ L2
a(D) and T

∗Ca = CaS
∗. It follows from Corollary 3.5 that T is a coisometry.

That is, TT ∗ = I. Since T is a paranormal contraction we have 〈T ∗Tf, f〉 = 〈Tf, Tf〉 =
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‖Tf‖2 ≤ ‖T 2f‖‖f‖ ≤ ‖T‖2‖f‖2 ≤ ‖f‖2 for all f ∈ L2
a(D). Hence T

∗T ≤ I = TT ∗. Thus
T ∗ is hyponormal.

From [10] and [9] it follows that the operator T is unitary. Let C∗
a = W ∗Q be the

polar decomposition of C∗
a such that kerW ∗ = kerQ. Then proceeding as in Corollary

3.5 one can show that W is unitary and T = WSW ∗. Since T is an unitary operator,
hence S is an unitary operator. �

Recall that for T ∈ L(L2
a(D)), we have defined T̂ =

∫
D
UaTUa dA(a) and for φ ∈

L∞(D), φ̂(z) =
∫
D
φ(φa(z)) dA(a). The following holds.

Corollary 3.7. Let φ, ψ ∈ L∞(D). If TφCa = CaTψ for all a ∈ D then ψ− φ̂ ∈ (L2
a(D))

⊥.
Further if Tφ is cyclic then Tψ is cyclic. That is, if v is a cyclic vector for Tφ, then C

∗
av

is a cyclic vector for Tψ for all a ∈ D.

Proof. Suppose TφCa = CaTψ for all a ∈ D. Then from Theorem 3.2 it follows that

T̂φ = Tψ. But for f, g ∈ L2
a(D) and φ ∈ L∞(D) we have

〈T̂φf, g〉 =
∫

D

〈UaTφUaf, g〉 dA(a) =
∫

D

〈TφUaf, Uag〉 dA(a)

=

∫

D

〈P (φUaf), Uag〉 dA(a) =
∫

D

〈φUaf, PUag〉 dA(a)

=

∫

D

〈φUaf, UaPg〉 dA(a) =
∫

D

〈φUaf, Uag〉 dA(a).

But
〈φUaf, Uag〉 = 〈UaMφUaf, g〉 = 〈Mφ◦φa

f, g〉.
Thus ∫

D

〈
φUaf, Uag

〉
dA(a) =

∫

D

〈
Mφ◦φa

f, g
〉
dA(a) =

〈(∫

D

(φ ◦ φa) dA(a)
)
f, g

〉

= 〈φ̂f, g〉 = 〈φ̂f, Pg〉 = 〈P (φ̂f), g〉 = 〈T
φ̂
f, g〉.

Therefore T̂φ = T̂
φ
. Hence Tψ = T̂

φ
. Thus ψ − φ̂ ∈ (L2

a(D))
⊥.

Since TφCa = CaTψ it follows that C∗
aTφ = TψC

∗
a . If p(z) is any (analytic) polynomial,

then C∗
ap(Tφ) = p(Tψ)C

∗
a . Now let v be a cyclic vector for Tφ, so C

∗
ap(Tφ)v = p(Tψ)C

∗
av.

Since Ca is one-to-one, C∗
a has dense range, thus as p varies it follows that C∗

av is cyclic
for Tψ. �

Corollary 3.8. If φ, ψ ∈ h∞(D), then TφCa = CaTψ for all a ∈ D if and only if ψ = φ̂.

Proof. Notice that if φ ∈ h∞(D) then φ̂ ∈ h∞(D). In fact, if ψ ∈ h∞(D) and ψ(z) =∑∞
n=0 anz

n +
∑∞
n=0 bnz

n then ψ̂(z) = a0 − (a12 )z − ( b12 )z ∈ h∞(D). If φ, ψ ∈ h∞(D),

then by Corollary 3.7 we obtain TφCa = CaTψ for all a ∈ D if and only if Tψ = T̂φ. That

is, if and only if Tψ = T̂
φ
where φ̂(z) =

∫
D
φ(φa(z)) dA(a). But from [1] it follows that

T
ψ−

̂
φ
= 0 if and only if ψ − φ̂ = 0. Hence the result follows. �
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