INTERTWINING PROPERTIES OF BOUNDED LINEAR OPERATORS ON THE BERGMAN SPACE

NAMITA DAS

Abstract

In this paper we find conditions on $\phi, \psi \in L^{\infty}(\mathbb{D})$ that are necessary and sufficient for the existence of bounded linear operators S, T from the Bergman space $L_{a}^{2}(\mathbb{D})$ into itself such that for all $z \in \mathbb{D}, \phi(z)=\left\langle S k_{z}, k_{z},\right\rangle, \psi(z)=\left\langle T k_{z}, k_{z}\right\rangle$ and $C_{a} S=T C_{a}$ for all $a \in \mathbb{D}$ where $C_{a} f=f \circ \phi_{a}$ for all $f \in L_{a}^{2}(\mathbb{D})$ and $\phi_{a}(z)=$ $\frac{a-z}{1-\bar{a} z}, z \in \mathbb{D}$. Applications of the results are also discussed.

1. Introduction

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and $d A(z)$ be the area measure on \mathbb{D} normalized so that the area of the disk is 1 . Let $L^{2}(\mathbb{D}, d A)$ be the Hilbert space of Lebesgue measurable functions f on \mathbb{D} with

$$
\|f\|_{2}=\left[\int_{\mathbb{D}}|f(z)|^{2} d A(z)\right]^{\frac{1}{2}}<\infty
$$

The inner product is defined as

$$
\langle f, g\rangle=\int_{\mathbb{D}} f(z) \overline{g(z)} d A(z)
$$

for $f, g \in L^{2}(\mathbb{D}, d A)$. The Bergman space $L_{a}^{2}(\mathbb{D})$ is the set of those functions in $L^{2}(\mathbb{D}, d A)$ that are analytic on \mathbb{D}. The Bergman space $L_{a}^{2}(\mathbb{D})$ is a closed subspace of $L^{2}(\mathbb{D}, d A)$, and so there is an orthogonal projection P from $L^{2}(\mathbb{D}, d A)$ onto $L_{a}^{2}(\mathbb{D})$. Let $K(z, \bar{w})$ be the function on $\mathbb{D} \times \mathbb{D}$ defined by $K(z, \bar{w})=\overline{K_{z}(w)}=\frac{1}{(1-z \bar{w})^{2}}$. The function $K(z, \bar{w})$ is called the Bergman kernel of \mathbb{D} or the reproducing kernel of $L_{a}^{2}(\mathbb{D})$ because the formula

$$
f(z)=\int_{\mathbb{D}} f(w) K(z, \bar{w}) d A(w)
$$

reproduces each f in L_{a}^{2}. For any $n \geq 0, n \in \mathbb{Z}$, let $e_{n}(z)=\sqrt{n+1} z^{n}$. Then $\left\{e_{n}\right\}$ forms an orthonormal basis for $L_{a}^{2}(\mathbb{D})$ and $K(z, \bar{w})=\sum_{n=0}^{\infty} e_{n}(z) \overline{e_{n}(w)}=\frac{1}{(1-z \bar{w})^{2}}$. Let $k_{a}(z)=\frac{K(z, \bar{a})}{\sqrt{K(a, \bar{a})}}=\frac{1-|a|^{2}}{(1-\bar{a} z)^{2}}$. These functions k_{a} are called the normalized reproducing kernels of L_{a}^{2}; it is clear that they are unit vectors in L_{a}^{2}. For any $a \in \mathbb{D}$, let ϕ_{a} be the analytic mapping on \mathbb{D} defined by $\phi_{a}(z)=\frac{a-z}{1-\bar{a} z}, z \in \mathbb{D}$. An easy calculation shows [12] that the derivative of ϕ_{a} at z is equal to $-k_{a}(z)$. It follows that the real Jacobian determinant of ϕ_{a} at z is

$$
J_{\phi_{a}}(z)=\left|k_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}}
$$

[^0]Let $\operatorname{Aut}(\mathbb{D})$ be the Lie group of all automorphisms (biholomorphic mappings) of \mathbb{D}. Let $L^{\infty}(\mathbb{D}, d A)$ be the Banach space of all essentially bounded measurable functions f on \mathbb{D} with

$$
\|f\|_{\infty}=\operatorname{ess} \sup \{|f(z)|: z \in \mathbb{D}\}
$$

and $H^{\infty}(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D}.
For $\phi \in L^{\infty}(\mathbb{D})$, the Toeplitz operator T_{ϕ} with symbol ϕ from $L_{a}^{2}(\mathbb{D})$ into itself is the operator defined by $T_{\phi} f=P(\phi f)$. For $\phi \in L^{\infty}(\mathbb{D})$, the multiplication operator M_{ϕ} with symbol ϕ from $L^{2}(\mathbb{D}, d A)$ into itself is defined by $M_{\phi} f=\phi f$. By a harmonic function we mean a complex valued function on \mathbb{D} whose Laplacian is identically 0 .

Let $h^{\infty}(\mathbb{D})$ be the space of bounded harmonic functions on \mathbb{D}. Then $h^{\infty}(\mathbb{D}) \subset L^{\infty}(\mathbb{D})$. It is well known that every harmonic function on \mathbb{D} is the sum of an analytic function and conjugate of another analytic function. Hence if $f \in h^{\infty}(\mathbb{D})$ then $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}+$ $\sum_{n=0}^{\infty} b_{n} \bar{z}^{n}$.

Let $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right.$) be the of all bounded linear operators from $L_{a}^{2}(\mathbb{D})$ into itself and $\mathcal{L C}\left(L_{a}^{2}(\mathbb{D})\right)$ be the subspace of $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ consisting of all compact operators from $L_{a}^{2}(\mathbb{D})$ into itself. For linear operators $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ define the Berezin transform by the formula

$$
\widetilde{T}(z)=\sigma(T)(z)=\left\langle T k_{z}, k_{z}\right\rangle, \quad z \in \mathbb{D}
$$

If $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ then $|\sigma(T)(z)|=\left|\left\langle T k_{z}, k_{z}\right\rangle\right| \leq\|T\|$ for all $z \in \mathbb{D}$. Hence $\sigma(T) \in L^{\infty}(\mathbb{D})$ and $\|\sigma(T)\|_{\infty} \leq\|T\|$.

2. The unitary operator U_{λ} and the Berezin transform

Given $\lambda \in \mathbb{D}$ and f any measurable function on \mathbb{D}, we define a function $U_{\lambda} f$ on \mathbb{D} by $U_{\lambda} f(z)=k_{\lambda}(z) f\left(\phi_{\lambda}(z)\right)$. Notice that U_{λ} is a bounded linear operator on $L^{2}(\mathbb{D}, d A)$ and $L_{a}^{2}(\mathbb{D})$ for all $\lambda \in \mathbb{D}$. Further, it can be checked that $U_{\lambda}^{2}=I$, the identity operator, $U_{\lambda}^{*}=U_{\lambda}, U_{\lambda}\left(L_{a}^{2}\right) \subset\left(L_{a}^{2}\right)$ and $U_{\lambda}\left(\left(L_{a}^{2}\right)^{\perp}\right) \subset\left(L_{a}^{2}\right)^{\perp}$ for all $\lambda \in \mathbb{D}$. Thus $U_{\lambda} P=P U_{\lambda}$ for all $\lambda \in \mathbb{D}$ where P is the orthogonal projection from $L^{2}(\mathbb{D}, d A)$ onto $L_{a}^{2}(\mathbb{D})$. Given $a \in \mathbb{D}$ and f any measurable function on \mathbb{D}, we define the function $C_{a} f$ by $C_{a} f(z)=f\left(\phi_{a}(z)\right)$, where $\phi_{a} \in \operatorname{Aut}(\mathbb{D})$. The map C_{a} is a composition operator on $L_{a}^{2}(\mathbb{D})$.
Lemma 2.1. For $z, \omega \in \mathbb{D}, U_{z} k_{\omega}=\alpha k_{\phi_{z}(\omega)}$ for some complex constant α such that $|\alpha|=1$.
Proof. Suppose $z, \omega \in \mathbb{D}$. If $f \in L_{a}^{2}(\mathbb{D})$, then

$$
\left\langle f, U_{z} K_{\omega}\right\rangle=\left\langle U_{z} f, K_{\omega}\right\rangle=\left(U_{z} f\right)(\omega)=-\left(f \circ \phi_{z}\right)(\omega) \phi_{z}^{\prime}(\omega)=\left\langle f,\left(-\overline{\phi_{z}^{\prime}(\omega)}\right) K_{\phi_{z}(\omega)}\right\rangle
$$

Thus $U_{z} K_{\omega}=-\overline{\phi_{z}^{\prime}(\omega)} K_{\phi_{z}(\omega)}$. Rewriting this in terms of the normalized reproducing kernels, we have

$$
U_{z} k_{\omega}=\alpha k_{\phi_{z}(\omega)}
$$

for some complex constant α. Since U_{z} is unitary and $\left\|k_{\omega}\right\|_{2}=\left\|k_{\phi_{z}(\omega)}\right\|_{2}=1$, we obtain that $|\alpha|=1$.

Lemma 2.2. For all $a \in \mathbb{D}, U_{a} k_{a}=1$.
Proof. If $a \in \mathbb{D}$, then first observe that $\phi_{a}^{\prime}(z)=-k_{a}(z)$. Since $\left(\phi_{a} \circ \phi_{a}\right)(z)=z$ for all $z \in \mathbb{D}$, taking derivatives with respect to z both the sides we obtain

$$
\left(U_{a} k_{a}\right)(z)=k_{a}\left(\phi_{a}(z)\right) k_{a}(z)=1
$$

Notice that for all $a \in \mathbb{D}$, since $U_{a} k_{a}=1$, hence $k_{a} \circ \phi_{a}=\frac{1}{k_{a}}$ and $k_{a}^{-1} \in H^{\infty}(\mathbb{D})$, the space of bounded analytic functions on \mathbb{D}.
Lemma 2.3. If $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and for all $z \in \mathbb{D}, \widetilde{S}(z)=\widetilde{T}(z)$, then $S=T$.

Proof. If $\widetilde{S}(z)=\widetilde{T}(z)$ for all $z \in \mathbb{D}$, then

$$
\left\langle(S-T) k_{z}, k_{z}\right\rangle=0
$$

for all $z \in \mathbb{D}$. This implies

$$
\left\langle(S-T) K_{z}, K_{z}\right\rangle=K(z, z)\left\langle(S-T) k_{z}, k_{z}\right\rangle=K(z, z) \cdot 0=0
$$

Let $L=S-T$ and define

$$
F(x, y)=\left\langle L K_{\bar{x}}, K_{y}\right\rangle
$$

The function F is holomorphic in x and y and $F(x, y)=0$ if $x=\bar{y}$. It can now be verified that such functions must vanish identically. Let $x=u+i v, y=u-i v$. Let $G(u, v)=F(x, y)$. The function G is holomorphic and vanishes if u and v are real. Hence by the uniqueness theorem (see $[3],[8]), F(x, y)=G(u, v) \equiv 0$. Thus even $\left\langle L K_{x}, K_{y}\right\rangle=0$ for any x, y. Since linear combinations of $K_{x}, x \in \mathbb{D}$ are dense in $L_{a}^{2}(\mathbb{D})$, it follows that $L=0$. That is, $S=T$.

3. Intertwining properties of operators

In this section we find conditions on $\phi, \psi \in L^{\infty}(\mathbb{D})$ that are necessary and sufficient for the existence of bounded linear operators S, T from the Bergman space $L_{a}^{2}(\mathbb{D})$ into itself such that for all $z \in \mathbb{D}, \phi(z)=\left\langle S k_{z}, k_{z},\right\rangle, \psi(z)=\left\langle T k_{z}, k_{z}\right\rangle$ and $C_{a} S=T C_{a}$ for all $a \in \mathbb{D}$ where $C_{a} f=f \circ \phi_{a}$ for all $f \in L_{a}^{2}(\mathbb{D})$ and $\phi_{a}(z)=\frac{a-z}{1-\bar{a} z}, z \in \mathbb{D}$.
Definition 3.1. A function $g(x, \bar{y})$ on $\mathbb{D} \times \mathbb{D}$ is called of positive type (or positive definite), written $g \gg 0$, if

$$
\begin{equation*}
\sum_{j, k=1}^{n} c_{j} \bar{c}_{k} g\left(x_{j}, \bar{x}_{k}\right) \geq 0 \tag{1}
\end{equation*}
$$

for any n - tuple of complex numbers c_{1}, \ldots, c_{n} and points $x_{1}, \ldots, x_{n} \in \mathbb{D}$. We write $g \gg h$ if $g-h \gg 0$.
We say $\phi \in \mathcal{A}$ if $\phi \in L^{\infty}(\mathbb{D})$ and is such that

$$
\begin{equation*}
\phi(z)=\Omega(z, \bar{z}) \tag{2}
\end{equation*}
$$

where $\Omega(x, \bar{y})$ is a function on $\mathbb{D} \times \mathbb{D}$ meromorphic in x and conjugate meromorphic in y. It is a fact that (see $[5],[7]) \Omega$ as in (2), if it exists, is uniquely determined by ϕ.
We say the function Ω satisfies the condition $\left(^{*}\right)$ if there exists a constant $C>0$ such that

$$
C K(x, \bar{y}) \gg \Omega(x, \bar{y}) K(x, \bar{y}) \gg-C K(x, \bar{y})
$$

For $\phi \in L^{\infty}(\mathbb{D}, d A)$, let

$$
\widehat{\phi}(z)=\int_{\mathbb{D}} \phi\left(\phi_{a}(z)\right) d A(a)
$$

and

$$
\widetilde{\phi}(z)=\int_{\mathbb{D}} \phi\left(\phi_{z}(w)\right) d A(w)
$$

Notice that

$$
\widetilde{\phi}(z)=\left\langle\phi k_{z}, k_{z}\right\rangle .
$$

If $\phi \in L^{\infty}(\mathbb{D})$ then ϕ is said to satisfy the condition $\left(^{* *}\right)$ if $\phi \in \mathcal{A}$ and $\phi(z)=\Omega(z, \bar{z})$ as in (2) and

$$
\Omega_{1}(x, \bar{y})=\Omega(x, \bar{y})+\overline{\Omega(y, \bar{x})}
$$

and

$$
\Omega_{2}(x, \bar{y})=i(\Omega(x, \bar{y})-\overline{\Omega(y, \bar{x})})
$$

satisfy the condition $\left({ }^{*}\right)$.
Theorem 3.2. The functions $\phi, \theta \in L^{\infty}(\mathbb{D})$ satisfy the condition $\left(^{* *}\right)$ and $\widehat{\phi}=\theta$ if and only if there exist $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that for all $z \in \mathbb{D}, \phi(z)=\left\langle S k_{z}, k_{z}\right\rangle$ and $\theta(z)=\left\langle T k_{z}, k_{z}\right\rangle$ and $C_{a} S=T C_{a}$ for all $a \in \mathbb{D}$.
Proof. Let $S \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and

$$
\begin{equation*}
\Omega(x, \bar{y})=\frac{\left\langle S K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}, \tag{3}
\end{equation*}
$$

where $K_{x}=K(., \bar{x})$ is the unnormalized reproducing kernel at x. Then $\Omega(x, \bar{y})$ is a function on $\mathbb{D} \times \mathbb{D}$ meromorphic in x and conjugate meromorphic in y. Let $\phi(z)=\Omega(z, \bar{z})$. Then $\phi(z)=\left\langle S k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$ and $\phi \in L^{\infty}(\mathbb{D})$ as S is bounded. Thus $\phi \in \mathcal{A}$.

Now let $\phi \in \mathcal{A}$ and $\phi(z)=\Omega(z, \bar{z})$ where $\Omega(x, \bar{y})$ is a function on $\mathbb{D} \times \mathbb{D}$ meromorphic in x and conjugate meromorphic in y. We shall prove the existence of some S (possibly unbounded) such that $\left\langle S k_{z}, k_{z}\right\rangle=\phi(z)$. Let

$$
\begin{equation*}
S f(x)=\int_{\mathbb{D}} f(z) \Omega(x, \bar{z}) K(x, \bar{z}) d A(z) \tag{4}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
S f(x) & =\left\langle S f, K_{x}\right\rangle=\left\langle f, S^{*} K_{x}\right\rangle=\int_{\mathbb{D}} f(z) \overline{\left\langle S^{*} K_{x}, K_{z}\right\rangle} d A(z) \\
& =\int_{\mathbb{D}} f(z)\left\langle S K_{z}, K_{x}\right\rangle d A(z)=\int_{\mathbb{D}} f(z) \Omega(x, \bar{z}) K(x, \bar{z}) d A(z)
\end{aligned}
$$

Then

$$
\begin{aligned}
\left\langle S K_{y}, K_{x}\right\rangle & =\int_{\mathbb{D}} K_{y}(z) \Omega(x, \bar{z}) K(x, \bar{z}) d A(z)=\int_{\mathbb{D}} K_{y}(z) \Omega(x, \bar{z}) \overline{K_{x}(z)} d A(z) \\
& =\overline{\left\langle\overline{\Omega(x, \bar{z})} K_{x}, K_{y}\right\rangle}=\overline{\overline{\Omega(x, \bar{y})}\left\langle K_{x}, K_{y}\right\rangle}=\Omega(x, \bar{y})\left\langle K_{y}, K_{x}\right\rangle
\end{aligned}
$$

Hence $\Omega(x, \bar{y})=\frac{\left\langle S K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}$ and $\phi(z)=\Omega(z, \bar{z})=\left\langle S k_{z}, k_{z}\right\rangle$. Notice however that the operator S given by (4) may well be unbounded. We shall now prove a necessary and sufficient condition for S to be bounded and positive is that there exists $C>0$ such that

$$
\begin{equation*}
C K(x, \bar{y}) \gg \Omega(x, \bar{y}) K(x, \bar{y}) \gg 0 \tag{5}
\end{equation*}
$$

Suppose there exists a constant $C>0$ such that for all $x, y \in \mathbb{D},(5)$ holds. We shall show that S is bounded and positive. Let $f=\sum_{j=1}^{n} c_{j} K_{x_{j}}$ where c_{j} are constants, $x_{j} \in \mathbb{D}$ for $j=1,2, \ldots, n$. Then

$$
\begin{aligned}
\langle S f, f\rangle & =\left\langle S\left(\sum_{j=1}^{n} c_{j} K_{x_{j}}\right), \sum_{j=1}^{n} c_{j} K_{x_{j}}\right\rangle \\
& =\sum_{j, k=1}^{n} c_{j} \overline{c_{k}}\left\langle S K_{x_{j}}, K_{x_{k}}\right\rangle=\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Omega\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right) \geq 0
\end{aligned}
$$

and

$$
\begin{aligned}
\langle S f, f\rangle & =\sum_{j, k=1}^{n} c_{j} \overline{c_{k}}\left\langle S K_{x_{j}}, K_{x_{k}}\right\rangle=\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Omega\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right) \\
& \leq C \sum_{j, k=1}^{n} c_{j} \overline{c_{k}} K\left(x_{k}, \overline{x_{j}}\right)=C\|f\|^{2}
\end{aligned}
$$

Since the set of vectors $\left\{\sum_{j=1}^{n} c_{j} K_{x_{j}}, x_{j} \in \mathbb{D}, j=1,2, \ldots, n\right\}$ is dense in $L_{a}^{2}(\mathbb{D})$, hence $0 \leq\langle S f, f\rangle \leq C\|f\|^{2}$ for all $f \in L_{a}^{2}(\mathbb{D})$ and S is bounded and positive.

Conversely, suppose S is bounded and positive. Then there exists a constant $C>0$ such that $0 \leq\langle S f, f\rangle \leq C\|f\|^{2}$ for all $f \in L_{a}^{2}(\mathbb{D})$. That is, if $f=\sum_{j=1}^{n} c_{j} K_{x_{j}}$, then

$$
\begin{aligned}
0 \leq\langle S f, f\rangle & =\sum_{j, k=1}^{n} c_{j} \overline{c_{k}}\left\langle S K_{x_{j}}, K_{x_{k}}\right\rangle=\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Omega\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right) \\
& \leq C\|f\|^{2}=C \sum_{j, k=1}^{n} c_{j} \overline{c_{k}} K\left(x_{k}, \overline{x_{j}}\right)
\end{aligned}
$$

Thus $C K(x, \bar{y}) \gg \Omega(x, \bar{y}) K(x, \bar{y}) \gg 0$.
Now suppose $C K(x, \bar{y}) \gg \Omega(x, \bar{y}) K(x, \bar{y}) \gg-C K(x, \bar{y})$ for all $x, y \in \mathbb{D}$. Let $f=$ $\sum_{j=1}^{n} c_{j} K_{x_{j}}$. Then

$$
\langle S f, f\rangle=\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Omega\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right) \leq C \sum_{j, k=1}^{n} c_{j} \overline{c_{k}} K\left(x_{k}, \overline{x_{j}}\right)=C\|f\|^{2}
$$

and

$$
\langle S f, f\rangle=\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Omega\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right) \geq-C \sum_{j, k=1}^{n} c_{j} \overline{c_{k}} K\left(x_{k}, \overline{x_{j}}\right)=-C\|f\|^{2}
$$

Hence S is bounded and self-adjoint. Conversely, if S is bounded and self-adjoint then there exists a constant $C>0$ such that $-C\|f\|^{2} \leq\langle S f, f\rangle \leq C\|f\|^{2}$. That is, $C K(x, \bar{y}) \gg \Omega(x, \bar{y}) K(x, \bar{y}) \gg-C K(x, \bar{y})$ and thus Ω satisfies the condition (*). Suppose S is bounded. Then $S=\frac{S+S^{*}}{2}+i \frac{S-S^{*}}{2 i}=S_{1}+i S_{2}$ where S_{1} and S_{2} are bounded and self-adjoint.

Let $\Psi_{1}(x, \bar{y})=\frac{\left\langle S_{1} K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}$ and $\Psi_{2}(x, \bar{y})=\frac{\left\langle S_{2} K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}$. Since S_{1} and S_{2} are bounded and self-adjoint, there exist constants $c_{1}>0$ and $c_{2}>0$ such that

$$
c_{1} K(x, \bar{y}) \gg \Psi_{1}(x, \bar{y}) K(x, \bar{y}) \gg-c_{1} K(x, \bar{y})
$$

and

$$
c_{2} K(x, \bar{y}) \gg \Psi_{2}(x, \bar{y}) K(x, \bar{y}) \gg-c_{2} K(x, \bar{y})
$$

Further

$$
\Psi_{1}(x, \bar{y})=\frac{\left\langle S_{1} K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}=\frac{1}{2}\{\Omega(x, \bar{y})+\overline{\Omega(y, \bar{x})}\}
$$

and

$$
\Psi_{2}(x, \bar{y})=\frac{\left\langle S_{2} K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}=-\frac{1}{2}[(i)\{\Omega(x, \bar{y})-\overline{\Omega(y, \bar{x})}\}]
$$

Thus $\Omega_{1}(x, \bar{y})=\Omega(x, \bar{y})+\overline{\Omega(y, \bar{x})}$ and $\Omega_{2}(x, \bar{y})=(i)\{\Omega(x, \bar{y})-\overline{\Omega(y, \bar{x})}\}$ satisfy the condition (*). Conversely, suppose $\Omega_{1}(x, \bar{y})$ and $\Omega_{2}(x, \bar{y})$ satisfy condition (*). Then there exist constants $c_{1}>0$ and $c_{2}>0$ such that

$$
c_{1} K(x, \bar{y}) \gg \Psi_{1}(x, \bar{y}) K(x, \bar{y}) \gg-c_{1} K(x, \bar{y})
$$

and

$$
c_{2} K(x, \bar{y}) \gg \Psi_{2}(x, \bar{y}) K(x, \bar{y}) \gg-c_{2} K(x, \bar{y})
$$

where

$$
\Psi_{1}(x, \bar{y})=\frac{1}{2} \Omega_{1}(x, \bar{y})=\frac{1}{2}\{\Omega(x, \bar{y})+\overline{\Omega(y, \bar{x})}\}=\frac{\left\langle\left(\frac{S+S^{*}}{2}\right) K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}
$$

and

$$
\Psi_{2}(x, \bar{y})=-\frac{1}{2} \Omega_{2}(x, \bar{y})=\frac{1}{2 i}\{\Omega(x, \bar{y})-\overline{\Omega(y, \bar{x})}\}=\frac{\left\langle\left(\frac{S-S^{*}}{2 i}\right) K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}
$$

Thus $\frac{S+S^{*}}{2}$ and $\frac{S-S^{*}}{2 i}$ are bounded and self-adjoint and hence S is bounded. Thus we have shown that $\phi \in L^{\infty}(\mathbb{D})$ satisfy the condition $\left({ }^{* *}\right)$ if and only if there exist $S \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$
such that $\phi(z)=\left\langle S k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$. Similarly one can show that $\theta \in L^{\infty}(\mathbb{D})$ satisfy the condition $\left(^{* *}\right)$ if and only if there exist $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\theta(z)=\left\langle T k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$. To establish the theorem we have to show that $\widehat{\phi}=\theta$ if and only if $C_{a} S=T C_{a}$ for all $a \in \mathbb{D}$.

Suppose $\widehat{\phi}=\theta$. That is,

$$
\int_{\mathbb{D}} \phi\left(\phi_{a}(z)\right) d A(a)=\theta(z)
$$

for all $z \in \mathbb{D}$. This implies

$$
\int_{\mathbb{D}} \widetilde{S}\left(\phi_{a}(z)\right) d A(a)=\widetilde{T}(z)
$$

for all $z \in \mathbb{D}$.
Then by Lemma 2.1, there exists a constant $\alpha,|\alpha|=1$ such that for all $z \in \mathbb{D}$

$$
\begin{aligned}
\left\langle T k_{z}, k_{z}\right\rangle & =\int_{\mathbb{D}}\left\langle S k_{\phi_{a}(z)}, k_{\phi_{a}(z)}\right\rangle d A(a)=\int_{\mathbb{D}}\left\langle\alpha S U_{a} k_{z}, \alpha U_{a} k_{z}\right\rangle d A(a) \\
& =\int_{\mathbb{D}}\left\langle U_{a} S U_{a} k_{z}, k_{z}\right\rangle d A(a)=\left\langle\left(\int_{\mathbb{D}} U_{a} S U_{a} d A(a)\right) k_{z}, k_{z}\right\rangle=\left\langle\widehat{S} k_{z}, k_{z}\right\rangle
\end{aligned}
$$

where $\widehat{S}=\int_{\mathbb{D}} U_{a} S U_{a} d A(a)$.
Thus by Lemma 2.3, $T=\widehat{S}$. Hence for all $f, g \in L_{a}^{2}(\mathbb{D}),\langle T f, g\rangle=\langle\widehat{S} f, g\rangle$. That is,

$$
\int_{\mathbb{D}}\left\langle S U_{a} f, U_{a} g\right\rangle d A(a)=\int_{\mathbb{D}} T f(z) \overline{g(z)} d A(z)
$$

The boundedness of T and the anti-analyticity of $K(z, \bar{a})$ in \bar{a} imply that for each $z \in \mathbb{D}$, the function

$$
T\left(\frac{f}{K(\cdot, \bar{a})}\right)(z) K(z, \bar{a})
$$

is anti-analytic in \bar{a}. Therefore, by the mean value property of harmonic functions, we have

$$
\begin{equation*}
\int_{\mathbb{D}} T\left(\frac{f}{K(\cdot, \bar{a})}\right)(z) K(z, \bar{a}) d A(a)=T\left(\frac{f}{K(\cdot, 0)}\right)(z) K(z, 0)=T f(z) \tag{6}
\end{equation*}
$$

Thus, from (6), it follows that

$$
\langle T f, g\rangle=\int_{\mathbb{D}} \overline{g(z)} d A(z) \int_{\mathbb{D}} T\left(\frac{f}{K(\cdot, \bar{a})}\right)(z) K(z, \bar{a}) d A(a) .
$$

Using Fubini's theorem, we obtain

$$
\begin{equation*}
\langle T f, g\rangle=\int_{\mathbb{D}} d A(a) \int_{\mathbb{D}} T\left(\frac{f}{K(\cdot, \bar{a})}\right)(z) \overline{g(z)} K(z, \bar{a}) d A(z) \tag{7}
\end{equation*}
$$

Now since $k_{a}(z)=\frac{K(z, \bar{a})}{\sqrt{K(a, \bar{a})}}$ and $\left(k_{a} \circ \phi_{a}\right)(z) k_{a}(z)=1$ for all $z, a \in \mathbb{D}$, the right hand side of (7) is equal to

$$
\begin{aligned}
\int_{\mathbb{D}} d A(a) \int_{\mathbb{D}} T\left(\frac{f}{k_{a}}\right)(z) \overline{g(z)} k_{a}(z) d A(z) \\
\quad=\int_{\mathbb{D}} d A(a) \int_{\mathbb{D}} T\left(\frac{f}{k_{a}}\right)(z) \overline{g(z)} \overline{k_{a}\left(\phi_{a}(z)\right)}\left|k_{a}(z)\right|^{2} d A(z) .
\end{aligned}
$$

Finally, as $\left(\phi_{a} \circ \phi_{a}\right)(z) \equiv z$ and $\mathbf{J}_{\phi_{a}(z)}=\left|k_{a}(z)\right|^{2}$ we obtain

$$
\langle T f, g\rangle=\int_{\mathbb{D}} d A(a) \int_{\mathbb{D}} T\left(\frac{f}{k_{a}}\right)\left(\phi_{a}(z)\right) \overline{k_{a}(z)} \overline{g\left(\phi_{a}(z)\right)} d A(z)
$$

By hypothesis, $\langle T f, g\rangle=\int_{\mathbb{D}}\left\langle S U_{a} f, U_{a} g\right\rangle d A(a)$ and by using Lemma 2.2 we have

$$
\begin{aligned}
\left\langle S U_{a} f, U_{a} g\right\rangle & =\left\langle S\left(\frac{f \circ \phi_{a}}{k_{a} \circ \phi_{a}}\right),\left(g \circ \phi_{a}\right) k_{a}\right\rangle=\left\langle S\left(\frac{f}{k_{a}} \circ \phi_{a}\right),\left(g \circ \phi_{a}\right) k_{a}\right\rangle \\
& =\int_{\mathbb{D}} S\left(\frac{f}{k_{a}} \circ \phi_{a}\right)(z) \overline{g\left(\phi_{a}(z)\right)} \overline{k_{a}(z)} d A(z) .
\end{aligned}
$$

Thus we obtain for all $f, g \in L_{a}^{2}(\mathbb{D})$,

$$
\int_{\mathbb{D}} S\left(\frac{f}{k_{a}} \circ \phi_{a}\right)(z) \overline{g\left(\phi_{a}(z)\right)} \overline{k_{a}(z)} d A(z)=\int_{\mathbb{D}} T\left(\frac{f}{k_{a}}\right)\left(\phi_{a}(z)\right) \overline{k_{a}(z)} \overline{g\left(\phi_{a}(z)\right)} d A(z) .
$$

Hence for all $f, g \in L_{a}^{2}(\mathbb{D}), a \in \mathbb{D}$,

$$
\left\langle S\left(\frac{f}{k_{a}} \circ \phi_{a}\right), U_{a} g\right\rangle=\left\langle T\left(\frac{f}{k_{a}}\right) \circ \phi_{a}, U_{a} g\right\rangle .
$$

Since U_{a} is unitary, $U_{a} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, we get

$$
S\left(\frac{f}{k_{a}} \circ \phi_{a}\right)=T\left(\frac{f}{k_{a}}\right) \circ \phi_{a}
$$

for all $f \in L_{a}^{2}(\mathbb{D}), a \in \mathbb{D}$.
That is, for all $f \in L_{a}^{2}(\mathbb{D}), a \in \mathbb{D}$,

$$
S C_{a}\left(\frac{f}{k_{a}}\right)=C_{a} T\left(\frac{f}{k_{a}}\right)
$$

Since $k_{a}^{-1} \in H^{\infty}$, hence $S C_{a}=C_{a} T$ for all $a \in \mathbb{D}$. That is, $C_{a} S=T C_{a}$ for all $a \in \mathbb{D}$ as $C_{a}^{2}=I$, the identity operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Now we shall prove the converse. Suppose $C_{a} S f=T C_{a} f$ for all $a \in \mathbb{D}, f \in L_{a}^{2}(\mathbb{D})$. That is, for all $f \in L_{a}^{2}(\mathbb{D}), a \in \mathbb{D}$,

$$
(S f) \circ \phi_{a}=T\left(f \circ \phi_{a}\right) \text { and }(T f) \circ \phi_{a}=S\left(f \circ \phi_{a}\right)
$$

By Lemma 2.2, $\left(k_{a} \circ \phi_{a}\right) k_{a}=1$ for all $a \in \mathbb{D}$. Hence

$$
S U_{a} f=S\left(k_{a}\left(f \circ \phi_{a}\right)\right)=S\left(\frac{f \circ \phi_{a}}{k_{a} \circ \phi_{a}}\right)=S\left(\left(\frac{f}{k_{a}}\right) \circ \phi_{a}\right)=\left(T \frac{f}{k_{a}}\right) \circ \phi_{a}
$$

Thus for $f, g \in L_{a}^{2}(\mathbb{D})$, since $\overline{k_{a}\left(\phi_{a}(z)\right)} \overline{k_{a}(z)}=1, \mathbf{J}_{\phi_{a}(z)}=\left|k_{a}(z)\right|^{2}$ and $k_{a}(z)=\frac{K(z, \bar{a})}{\sqrt{K(a, \bar{a})}}$ for all $z, a \in \mathbb{D}$, we obtain

$$
\begin{aligned}
\left\langle S U_{a} f, U_{a} g\right\rangle & =\int_{\mathbb{D}}\left(T \frac{f}{k_{a}}\right)\left(\phi_{a}(z)\right) \overline{\left(g \circ \phi_{a}\right)(z)} \overline{k_{a}(z)} d A(z) \\
& =\int_{\mathbb{D}} T\left(\frac{f}{k_{a}}\right)(z) \overline{g(z)} \overline{\left(k_{a} \circ \phi_{a}\right)(z)}\left|k_{a}(z)\right|^{2} d A(z) \\
& =\int_{\mathbb{D}} T\left(\frac{f}{k_{a}}\right)(z) \overline{g(z)} k_{a}(z) d A(z) \\
& =\int_{\mathbb{D}} T\left(\frac{f}{K(\cdot, \bar{a})}\right)(z) \overline{g(z)} K(z, \bar{a}) d A(z)
\end{aligned}
$$

Hence by using Fubini's theorem, we obtain

$$
\begin{aligned}
\int_{\mathbb{D}}\left\langle S U_{a} f, U_{a} g\right\rangle d A(a) & =\int_{\mathbb{D}} \int_{\mathbb{D}} T\left(\frac{f}{K(\cdot, \bar{a})}\right)(z) \overline{g(z)} K(z, \bar{a}) d A(z) d A(a) \\
& =\int_{\mathbb{D}} \overline{g(z)} d A(z) \int_{\mathbb{D}} T\left(\frac{f}{K(\cdot, \bar{a})}\right)(z) K(z, \bar{a}) d A(a)
\end{aligned}
$$

We have already checked in the first part of the proof that for all $z \in \mathbb{D}$,

$$
\int_{\mathbb{D}} T\left(\frac{f}{K(\cdot, \bar{a})}\right)(z) K(z, \bar{a}) d A(a)=T\left(\frac{f}{K(\cdot, 0)}\right)(z) K(z, 0)=T f(z)
$$

Thus

$$
\int_{\mathbb{D}}\left\langle S U_{a} f, U_{a} g\right\rangle d A(a)=\int_{\mathbb{D}} T f(z) \overline{g(z)} d A(z)=\langle T f, g\rangle .
$$

When $f=g=k_{z}, z \in \mathbb{D}$, we obtain by Lemma 2.1 that

$$
\left\langle T k_{z}, k_{z}\right\rangle=\int_{\mathbb{D}}\left\langle S U_{a} k_{z}, U_{a} k_{z}\right\rangle d A(a)=\int_{\mathbb{D}}\left\langle S k_{\phi_{a}(z)}, k_{\phi_{a}(z)}\right\rangle d A(a)=\int_{\mathbb{D}} \widetilde{S}\left(\phi_{a}(z)\right) d A(a)
$$

and this completes the proof.
We shall now discuss about some of the applications of Theorem 3.2. An operator $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is hyponormal (respectively cohyponormal) if $T^{*} T \geq T T^{*}$ (respectively, $\left.T T^{*} \geq T^{*} T\right)$. The operator T is paranormal if $\|T f\|^{2} \leq\left\|T^{2} f\right\|\|f\|$ for all $f \in L_{a}^{2}(\mathbb{D})$. The operator T is a coisometry if T^{*} is an isometry.An operator $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is said to be algebraically hyponormal if there exists a nonconstant complex polynomial p such that $p(T)$ is hyponormal. The operator $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is called cyclic with cyclic vectors $f \in L_{a}^{2}(\mathbb{D})$ if the finite linear combinations of the vectors $f, T f, T^{2} f, \ldots$ are dense in $L_{a}^{2}(\mathbb{D})$. An operator $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is said to be power bounded if there exists a constant $K>0$ such that $\left\|T^{n}\right\| \leq K$ for all $n \in \mathbb{N}$.
Corollary 3.1. Let $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ are such that T^{*} is a hyponormal operator and S is an isometry. If $S C_{a}=C_{a} T$ for some $a \in \mathbb{D}$ then T is unitary.

Proof. Suppose $S C_{a}=C_{a} T$ for some $a \in \mathbb{D}$. Then from [11] and [9] it follows that $S^{*} C_{a}=C_{a} T^{*}$ and since S is an isometry we obtain $C_{a}=S^{*} C_{a} T$. Thus $C_{a}=C_{a} T^{*} T$. That is, $I-T^{*} T=0$ as $C_{a}^{2}=I$. Since T^{*} is hyponormal and $T^{*} T=I$, it follows that T is normal and hence, unitary.
Corollary 3.2. Let $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ are such that $T^{n} \rightarrow 0$ in the strong operator topology and S is an isometry. Then there does not exist $a \in \mathbb{D}$ such that $C_{a} T=S C_{a}$.
Proof. Suppose S is an isometry. Then $\left\|S^{n} f\right\|=\|f\|$ for all $n \in \mathbb{Z}_{+}$and $f \in L_{a}^{2}(\mathbb{D})$. If $T^{n} \rightarrow 0$ in the strong operator topology and $C_{a} T=S C_{a}$ for some $a \in \mathbb{D}$, then $0 \leq\left\|C_{a} f\right\|=\left\|S^{n} C_{a} f\right\|=\left\|C_{a} T^{n} f\right\| \leq\left\|C_{a}\right\|\left\|T^{n} f\right\| \rightarrow 0$ for all $f \in L_{a}^{2}(\mathbb{D})$. That is, $C_{a} f=0$ for all $f \in L_{a}^{2}(\mathbb{D})$ which is impossible.

If $f \in L^{1}(\mathbb{D}, d A)$, the Berezin transform of f is, by definition,

$$
(B f)(w)=\widetilde{f}(w)=\left\langle f k_{w}, k_{w}\right\rangle=\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{2}}{|1-\bar{w} z|^{4}} f(z) d A(z), \quad w \in \mathbb{D}
$$

where k_{w} is the normalized reproducing kernel at $w \in \mathbb{D}$ given by $k_{w}(z)=\frac{1-|w|^{2}}{(1-\bar{w} z)^{2}}$.
Notice that $k_{w} \in L^{\infty}(\mathbb{D})$ for all $w \in \mathbb{D}$, so the definition makes sense. On \mathbb{D}, the only measure left invariant by all Mobius transformations $z \mapsto e^{i \theta} \frac{z-w}{1-\bar{z} w}:=e^{i \theta} \phi_{w}(z), w \in$ $\mathbb{D}, \theta \in \mathbb{R}$ is the pseudo-hyperbolic measure $d \eta(z)=\frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}$.

The invariance may be verified by direct computation. It turns out that the Berezin transform behaves well with respect to the invariant measures. The mapping $B: f \rightarrow \widetilde{f}$ is a contractive linear operator on each of the spaces $L^{p}(\mathbb{D}, d \eta(z)), 1 \leq p \leq \infty$ and $L^{1}(\mathbb{D}, d \eta) \subset L^{1}(\mathbb{D}, d A)$.
Corollary 3.3. Let B be the Berezin transform defined on $L^{2}(\mathbb{D}, d \eta)$ and $S \in \mathcal{L}\left(L^{2}(\mathbb{D}\right.$, $d \eta))$ is an isometry. Then there exists no $a \in \mathbb{D}$ such that $C_{a} B=S C_{a}$.

Proof. The map B is a contraction on $L^{2}(\mathbb{D}, d \eta)$. This can be verified as follows:

$$
|\widetilde{f}(w)|=\left|\int_{\mathbb{D}} f(z) \frac{\left(1-|w|^{2}\right)^{2}}{|1-\bar{w} z|^{4}} d A(z)\right| \leq B(|f|)(w)
$$

Hence

$$
\begin{aligned}
\int_{\mathbb{D}}|\tilde{f}(w)| \frac{d A(w)}{\left(1-|w|^{2}\right)^{2}} & \leq \int_{\mathbb{D}}\left(\int_{\mathbb{D}}|f(z)| \frac{\left(1-|w|^{2}\right)^{2}}{|1-\bar{w} z|^{4}} d A(z)\right) \frac{d A(w)}{\left(1-|w|^{2}\right)^{2}} \\
& =\int_{\mathbb{D}}|f(z)| \int_{\mathbb{D}} \frac{d A(w)}{|1-\bar{w} z|^{4}} d A(z) \\
& =\int_{\mathbb{D}}|f(z)|\left\langle K_{z}, K_{z}\right\rangle d A(z)=\int_{\mathbb{D}}|f(z)| \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}},
\end{aligned}
$$

the change of the order of integration being justified by the positivity of the integrand. If $f \in L^{2}(\mathbb{D}, d \eta)$ and $\widetilde{f}=f$, then f is harmonic but the only harmonic function in $L^{2}(\mathbb{D}, d \eta)$ is constant zero. To see this, let

$$
M(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{2} d t .
$$

This is a nonnegative and nondecreasing function of r. Further,

$$
\|f\|_{L^{2}(\mathbb{\mathbb { N }}, d \eta)}^{2}=\int_{0}^{1} M(r) \frac{2 r}{\left(1-r^{2}\right)^{2}} d r<\infty .
$$

So $M(r)$ must tend to zero as $r \rightarrow 1$. Thus $M(r) \equiv 0$, whence $f=0$. Thus there is no nonzero fixed point of B in $L^{2}(\mathbb{D}, d \eta)$. Since B is a contraction and B is positive [4] on $L^{2}(\mathbb{D}, d \eta)$, its spectrum must be contained in $[0,1]$. Let $E(\lambda)$ be the resolution of identity for the self-adjoint operator B. Then

$$
\left\|B^{n} f\right\|^{2}=\int_{[0,1]}\left|\lambda^{n}\right|^{2} d\langle E(\lambda) f, f\rangle
$$

According to the Lebesgue monotone convergence theorem, this tends to $\|(I-E(1-)) f\|^{2}=\left\|P_{\operatorname{ker}(B-I)} f\right\|^{2}$. But from the above discussion it follows that $\operatorname{ker}(B-$ $I)=\{0\}$. Hence $\left\|B^{n} f\right\| \rightarrow 0$ as $n \rightarrow \infty$. Further, it is well known [6] that $B C_{a}=C_{a} B$ for all $a \in \mathbb{D}$. If now $C_{a} B=S C_{a}$ for some $a \in \mathbb{D}$ then this implies $B C_{a}=S C_{a}$. That is, $B=S$ as C_{a} is invertible. Since S is an isometry and $B^{n} \rightarrow 0$ in strong operator topology this is not possible.

Corollary 3.4. Suppose $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ are power bounded operators and $C_{a} T=S C_{a}$ for some $a \in \mathbb{D}$. Then
(i): (i) $T^{n} \rightarrow 0$ in the weak operator topology if and only if $S^{n} \rightarrow 0$ in the weak operator topology.
(ii): $\left\{T^{n} h\right\}$ is weakly convergent for each $h \in L_{a}^{2}(\mathbb{D})$ if and only if $\left\{S^{n} g\right\}$ is weakly convergent for each $g \in L_{a}^{2}(\mathbb{D})$.
(iii): If for each $h \in L_{a}^{2}(\mathbb{D})$ and every increasing sequence $\left\{n_{j}\right\}$ of positive integers, the limit $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} T^{n_{j}} h$ exists in the norm topology then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} S^{n_{j}} g
$$

exists in the norm topology for all $g \in L_{a}^{2}(\mathbb{D})$.
Proof. (i) Suppose $\left\langle T^{n} h, h^{\prime}\right\rangle \rightarrow 0$ for all $h, h^{\prime} \in L_{a}^{2}(\mathbb{D})$. Then $\left\langle S^{n} C_{a} h, g\right\rangle=\left\langle C_{a} T^{n} h, g\right\rangle=$ $\left\langle T^{n} h, C_{a}^{*} g\right\rangle \rightarrow 0$ as $n \rightarrow \infty$. Hence $S^{n} f \rightarrow 0$ weakly for all $f \in L_{a}^{2}(\mathbb{D})$ as $C_{a} L_{a}^{2}(\mathbb{D})=$ $L_{a}^{2}(\mathbb{D})$. Since S is power bounded, we have $S^{n} \rightarrow 0$ in weak operator topology.

Conversely, suppose that $S^{n} \rightarrow 0$ in weak operator topology. Then $S^{* n} \rightarrow 0$ in weak operator topology and $T^{*} C_{a}^{*}=C_{a}^{*} S^{*}$. Hence $T^{* n} \rightarrow 0$ in weak operator topology and so $T^{n} \rightarrow 0$ in weak operator topology.
(ii) Let $h \in L_{a}^{2}(\mathbb{D})$. Notice that the sequence $\left\{T^{n} h\right\}$ converges weakly if and only if $\left\langle T^{n} h, h^{\prime}\right\rangle$ is convergent for each $h^{\prime} \in L_{a}^{2}(\mathbb{D})$. Suppose that this condition is satisfied and define $\Phi\left(h^{\prime}\right)=\lim _{n \rightarrow \infty}\left\langle T^{n} h, h^{\prime}\right\rangle$. Then Φ is a bounded conjugate linear functional, and so there is an $\bar{h} \in L_{a}^{2}(\mathbb{D})$ such that $\left\langle\bar{h}, h^{\prime}\right\rangle=\Phi\left(h^{\prime}\right)$ for all $h^{\prime} \in L_{a}^{2}(\mathbb{D})$. Hence $T^{n} h \rightarrow \bar{h}$ weakly. From this it follows easily that $\left\{T^{n} h\right\}$ is weakly convergent for each $h \in L_{a}^{2}(\mathbb{D})$ if and only if $\left\{T^{* n} h\right\}$ is weakly convergent for each $h \in L_{a}^{2}(\mathbb{D})$. Furthermore, $\left\{h \in L_{a}^{2}(\mathbb{D}):\left\{T^{n} h\right\}\right.$ converges weakly $\}$ is a closed subspace of $L_{a}^{2}(\mathbb{D})$. Suppose now that $\left\{T^{n} h\right\}$ converges weakly for each $h \in L_{a}^{2}(\mathbb{D})$ and suppose $C_{a} T=S C_{a}$ for some $a \in \mathbb{D}$. Let $h \in L_{a}^{2}(\mathbb{D})$ and $T^{n} h \rightarrow \bar{h}$ weakly. Then $T \bar{h}=\bar{h}$ and $T^{n}(h-\bar{h}) \rightarrow 0$ weakly. Thus $L_{a}^{2}(\mathbb{D})=\operatorname{ker}(I-T)+\left(L_{a}^{2}\right)_{0}$ where $\left(L_{a}^{2}\right)_{0}=\left\{h \in L_{a}^{2}(\mathbb{D}): T^{n} h \rightarrow 0\right.$ weakly $\}$. It is easy to see that $C_{a} \operatorname{ker}(I-T) \subset \operatorname{ker}(I-S)$ and $C_{a}\left(L_{a}^{2}\right)_{0} \subset\left\{g \in L_{a}^{2}(\mathbb{D}): S^{n} g \rightarrow 0\right.$ weakly $\}$. Thus $\left\{S^{n} g\right\}$ converges weakly for each $g \in L_{a}^{2}(\mathbb{D})$.

Conversely, suppose that $\left\{S^{n} g\right\}$ converges weakly for each $g \in L_{a}^{2}(\mathbb{D})$. Then $T^{*} C_{a}^{*}=$ $C_{a}^{*} S^{*}$ and $\left\{S^{* n} g\right\}$ converges weakly for each $g \in L_{a}^{2}(\mathbb{D})$. As in the previous case, one can show that $\left\{T^{* n} h\right\}$ converges weakly for each $h \in L_{a}^{2}(\mathbb{D})$, and so $\left\{T^{n} h\right\}$ converges weakly for each $h \in L_{a}^{2}(\mathbb{D})$.
(iii) Suppose for each increasing subsequence of positive integer $\left\{n_{j}\right\}$ and every $h \in$ $L_{a}^{2}(\mathbb{D})$ the limit $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} T^{n_{j}} h$ exists in the norm topology. Then $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} S^{n_{j}} C_{a} h=$ $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} C_{a} T^{n_{j}} h$ exists for each $h \in L_{a}^{2}(\mathbb{D})$. Since Range $C_{a}=L_{a}^{2}$ and the sequence $\frac{1}{N} \sum_{j=1}^{N} T^{n_{j}}$ is bounded, the limit $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} S^{n_{j}} g$ exists for all $g \in L_{a}^{2}(\mathbb{D})$.
Corollary 3.5. Let $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Suppose $T C_{a}=C_{a} S$ and $T^{*} C_{a}=C_{a} S^{*}$ for some $a \in \mathbb{D}$. Then the operators S and T are unitarily equivalent and the following hold:
(i): If S is hyponormal (cohyponormal) then T is also hyponormal (cohyponormal).
(ii): If S is an isometry (coisometry) then T is also an isometry (coisometry).
(iii): If S is normal then T is also normal.

Proof. Let $C_{a}^{*}=W^{*} Q$ be the polar decomposition of C_{a}^{*} such that $\operatorname{ker} W^{*}=\operatorname{ker} Q$. Since $C_{a}^{2}=I$ we obtain $C_{a}^{* 2}=I$. Hence $C_{a}^{*} f=0$ implies $C_{a}^{* 2} f=0$. Therefore $f=0$. Thus C_{a}^{*} is injective and $\operatorname{ker} C_{a}^{*}=\{0\}$. The operator W^{*} is a partial isometry. That is, $\left\|W^{*} f\right\|=\|f\|$ for all $f \in\left(\operatorname{ker} W^{*}\right)^{\perp}$. Now $f \in \operatorname{ker} Q \operatorname{implies} f \in \operatorname{ker} C_{a}^{*}$. Hence $\operatorname{ker} Q \subseteq \operatorname{ker} C_{a}^{*}=\{0\}$. Thus $\operatorname{ker} Q=\{0\}$. But $\operatorname{ker} W^{*}=\operatorname{ker} Q$. Hence $\operatorname{ker} W^{*}=\{0\}$ and W^{*} is injective. Thus $\left\|W^{*} f\right\|=\|f\|$ for all $f \in\left(\operatorname{ker} W^{*}\right)^{\perp}=\{0\}^{\perp}=L_{a}^{2}(\mathbb{D})$. Thus W^{*} is an isometry.

Now $C_{a}^{*}=W^{*} Q$ implies $C_{a}=Q W$. If $f \in \operatorname{ker} W$ then $f \in \operatorname{ker} C_{a}$. But $\operatorname{ker} C_{a}=\{0\}$. Hence $\operatorname{ker} W=\{0\}$ and W is injective. Further, W^{*} is a partial isometry implies [2] the operator W is a partial isometry. That is, $\|W f\|=\|f\|$ for all $f \in(\operatorname{ker} W)^{\perp}=\{0\}^{\perp}=$ $L_{a}^{2}(\mathbb{D})$. Hence W is an isometry. Thus W is unitary and $Q^{2}=C_{a} C_{a}^{*}$ is injective. From equations $T C_{a}=C_{a} S$ and $T^{*} C_{a}=C_{a} S^{*}$, we have

$$
T C_{a} C_{a}^{*}=C_{a} S C_{a}^{*}, \quad C_{a} C_{a}^{*} T=C_{a} S C_{a}^{*}
$$

Thus, $Q^{2}=C_{a} C_{a}^{*}$ commutes with T, and [2] so $Q T=T Q$. Hence we obtain

$$
Q T W=T Q W=T C_{a}=C_{a} S=Q W S
$$

which implies that $T W=W S$ because Q is injective.
Since W is a coisometry, we have

$$
\begin{equation*}
T=T W W^{*}=W S W^{*} \tag{8}
\end{equation*}
$$

Hence from (8) it follows that S and T are unitarily equivalent. From the equations $C_{a}^{*} T=S C_{a}^{*}$ and $T Q=Q T$, we have

$$
W^{*} T Q=W^{*} Q T=C_{a}^{*} T=S C_{a}^{*}=S W^{*} Q
$$

which implies that $W^{*} T=S W^{*}$. This is so as $\overline{\operatorname{Range} Q}=(\operatorname{ker} Q)^{\perp}=\left(\operatorname{ker} W^{*}\right)^{\perp}=$ $\{0\}^{\perp}=L_{a}^{2}(\mathbb{D})$. Hence

$$
W^{*} W S=W^{*} T W=S W^{*} W
$$

Suppose now that S is normal. Since $S^{*} S=S S^{*}$, we have

$$
\begin{aligned}
T^{*} T & =\left(W S W^{*}\right)^{*}\left(W S W^{*}\right)=W S^{*} W^{*} W S W^{*}=W S^{*} S W^{*} W W^{*} \\
& =W S^{*} S W^{*}=W S S^{*} W^{*}=W W^{*} W S S^{*} W^{*}=\left(W S W^{*}\right)\left(W S W^{*}\right)^{*}=T T^{*}
\end{aligned}
$$

Thus T is normal. This proves (iii).
To prove (i), assume that S is hyponormal (respectively, cohyponormal). Since $S^{*} S \geq$ $S S^{*}$ (respectively, $S S^{*} \geq S^{*} S$), from the above arguments it follows that $T^{*} T=$ $W S^{*} S W^{*} \geq W S S^{*} W^{*}=T T^{*}$ (respectively, $T T^{*}=W S S^{*} W^{*} \geq W S^{*} S W^{*}=T^{*} T$) and the result follows.

To prove (ii), assume that S is an isometry (respectively, coisometry). Again, by the above computation, $T^{*} T=W S^{*} S W^{*}=W W^{*}=I$ (respectively, $T T^{*}=W S S^{*} W^{*}=$ $W W^{*}=I$). Thus T is an isometry (respectively, coisometry). So (ii) is established.

Corollary 3.6. Let $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ are such that T is a paranormal contraction, S^{*} is an isometry and $T C_{a}=C_{a} S$ for some $a \in \mathbb{D}$. Then T and S are unitary operators.
Proof. Let f be a nonzero vector in $L_{a}^{2}(\mathbb{D})$. Then $C_{a} f \neq 0$. Let $g_{n}=C_{a} S^{* n} f, n=$ $0,1,2, \cdots$. Then $T g_{n+1}=T C_{a} S^{* n+1} f=C_{a} S S^{* n+1} f=C_{a} S^{* n} f=g_{n}$. Since T is a contraction,

$$
\left\|g_{n}\right\|=\left\|T g_{n+1}\right\| \leq\left\|g_{n+1}\right\|=\left\|C_{a} S^{* n+1} f\right\| \leq\left\|C_{a}\right\|\|f\|
$$

and hence $\left\{\left\|g_{n+1}\right\|\right\}$ is a monotone increasing convergent sequence. Since T is paranormal, we obtain

$$
\left\|g_{n}\right\|^{2}=\left\|T g_{n+1}\right\|^{2} \leq\left\|T^{2} g_{n+1}\right\|\left\|g_{n+1}\right\|=\left\|g_{n+1}\right\|\left\|g_{n+1}\right\|
$$

and

$$
1 \geq \frac{\left\|g_{0}\right\|}{\left\|g_{1}\right\|} \geq \frac{\left\|g_{1}\right\|}{\left\|g_{2}\right\|} \geq \cdots \geq \frac{\left\|g_{n-1}\right\|}{\left\|g_{n}\right\|} \rightarrow 1
$$

as $n \rightarrow \infty$. In particular, $\left\|g_{0}\right\|=\left\|g_{1}\right\|$, that is, $\left\|C_{a} f\right\|=\left\|C_{a} S^{*} f\right\|$. Thus

$$
\left\|C_{a} S^{*} f\right\|=\left\|C_{a} f\right\|=\left\|C_{a} S S^{*} f\right\|=\left\|T C_{a} S^{*} f\right\| \leq\left\|C_{a} S^{*} f\right\|
$$

and so

$$
\left\|C_{a} S^{*} f\right\|=\left\|C_{a} f\right\|=\left\|T C_{a} S^{*} f\right\|
$$

If $f=0$ then

$$
\left\|C_{a} S^{*} f\right\|=\left\|C_{a} f\right\|=\left\|T C_{a} S^{*} f\right\|=0
$$

Hence

$$
\begin{aligned}
& \left\|T^{*} C_{a} f-C_{a} S^{*} f\right\|^{2} \\
& \quad=\left\|T^{*} C_{a} f\right\|^{2}+\left\|C_{a} S^{*} f\right\|^{2}-\left\langle T^{*} C_{a} f, C_{a} S^{*} f\right\rangle-\left\langle C_{a} S^{*} f, T^{*} C_{a} f\right\rangle \\
& \quad \leq 2\left\|C_{a} f\right\|^{2}-\left\langle C_{a} f, T C_{a} S^{*} f\right\rangle-\left\langle T C_{a} S^{*} f, C_{a} f\right\rangle \\
& \quad=2\left\|C_{a} f\right\|^{2}-\left\langle C_{a} f, C_{a} S S^{*} f\right\rangle-\left\langle C_{a} S S^{*} f, C_{a} f\right\rangle \\
& \quad=2\left\|C_{a} f\right\|^{2}-2\left\|C_{a} f\right\|^{2}=0
\end{aligned}
$$

for all $f \in L_{a}^{2}(\mathbb{D})$ and $T^{*} C_{a}=C_{a} S^{*}$. It follows from Corollary 3.5 that T is a coisometry. That is, $T T^{*}=I$. Since T is a paranormal contraction we have $\left\langle T^{*} T f, f\right\rangle=\langle T f, T f\rangle=$
$\|T f\|^{2} \leq\left\|T^{2} f\right\|\|f\| \leq\|T\|^{2}\|f\|^{2} \leq\|f\|^{2}$ for all $f \in L_{a}^{2}(\mathbb{D})$. Hence $T^{*} T \leq I=T T^{*}$. Thus T^{*} is hyponormal.

From [10] and [9] it follows that the operator T is unitary. Let $C_{a}^{*}=W^{*} Q$ be the polar decomposition of C_{a}^{*} such that $\operatorname{ker} W^{*}=\operatorname{ker} Q$. Then proceeding as in Corollary 3.5 one can show that W is unitary and $T=W S W^{*}$. Since T is an unitary operator, hence S is an unitary operator.

Recall that for $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, we have defined $\widehat{T}=\int_{\mathbb{D}} U_{a} T U_{a} d A(a)$ and for $\phi \in$ $L^{\infty}(D), \widehat{\phi}(z)=\int_{\mathbb{D}} \phi\left(\phi_{a}(z)\right) d A(a)$. The following holds.
Corollary 3.7. Let $\phi, \psi \in L^{\infty}(\mathbb{D})$. If $T_{\bar{\phi}} C_{a}=C_{a} T_{\bar{\psi}}$ for all $a \in \mathbb{D}$ then $\bar{\psi}-\widehat{\bar{\phi}} \in\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$. Further if T_{ϕ} is cyclic then T_{ψ} is cyclic. That is, if v is a cyclic vector for T_{ϕ}, then $C_{a}^{*} v$ is a cyclic vector for T_{ψ} for all $a \in \mathbb{D}$.

Proof. Suppose $T_{\bar{\phi}} C_{a}=C_{a} T_{\bar{\psi}}$ for all $a \in \mathbb{D}$. Then from Theorem 3.2 it follows that $\widehat{T_{\bar{\phi}}}=T_{\bar{\psi}}$. But for $f, g \in L_{a}^{2}(\mathbb{D})$ and $\phi \in L^{\infty}(\mathbb{D})$ we have

$$
\begin{aligned}
\left\langle\widehat{T_{\phi}} f, g\right\rangle & =\int_{\mathbb{D}}\left\langle U_{a} T_{\phi} U_{a} f, g\right\rangle d A(a)=\int_{\mathbb{D}}\left\langle T_{\phi} U_{a} f, U_{a} g\right\rangle d A(a) \\
& =\int_{\mathbb{D}}\left\langle P\left(\phi U_{a} f\right), U_{a} g\right\rangle d A(a)=\int_{\mathbb{D}}\left\langle\phi U_{a} f, P U_{a} g\right\rangle d A(a) \\
& =\int_{\mathbb{D}}\left\langle\phi U_{a} f, U_{a} P g\right\rangle d A(a)=\int_{\mathbb{D}}\left\langle\phi U_{a} f, U_{a} g\right\rangle d A(a)
\end{aligned}
$$

But

$$
\left\langle\phi U_{a} f, U_{a} g\right\rangle=\left\langle U_{a} M_{\phi} U_{a} f, g\right\rangle=\left\langle M_{\phi \circ \phi_{a}} f, g\right\rangle
$$

Thus

$$
\begin{aligned}
\int_{\mathbb{D}}\left\langle\phi U_{a} f, U_{a} g\right\rangle d A(a) & =\int_{\mathbb{D}}\left\langle M_{\phi \circ \phi_{a}} f, g\right\rangle d A(a)=\left\langle\left(\int_{\mathbb{D}}\left(\phi \circ \phi_{a}\right) d A(a)\right) f, g\right\rangle \\
& =\langle\widehat{\phi} f, g\rangle=\langle\widehat{\phi} f, P g\rangle=\langle P(\widehat{\phi} f), g\rangle=\left\langle T_{\widehat{\phi}} f, g\right\rangle
\end{aligned}
$$

Therefore $\widehat{T_{\bar{\phi}}}=T_{\widehat{\hat{\phi}}}$. Hence $T_{\bar{\psi}}=T_{\widehat{\hat{\phi}}}$. Thus $\bar{\psi}-\widehat{\bar{\phi}} \in\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$.
Since $T_{\bar{\phi}} C_{a}=C_{a} T_{\bar{\psi}}$ it follows that $C_{a}^{*} T_{\phi}=T_{\psi} C_{a}^{*}$. If $p(z)$ is any (analytic) polynomial, then $C_{a}^{*} p\left(T_{\phi}\right)=p\left(T_{\psi}\right) C_{a}^{*}$. Now let v be a cyclic vector for T_{ϕ}, so $C_{a}^{*} p\left(T_{\phi}\right) v=p\left(T_{\psi}\right) C_{a}^{*} v$. Since C_{a} is one-to-one, C_{a}^{*} has dense range, thus as p varies it follows that $C_{a}^{*} v$ is cyclic for T_{ψ}.
Corollary 3.8. If $\phi, \psi \in h^{\infty}(\mathbb{D})$, then $T_{\bar{\phi}} C_{a}=C_{a} T_{\bar{\psi}}$ for all $a \in \mathbb{D}$ if and only if $\bar{\psi}=\hat{\bar{\phi}}$.
Proof. Notice that if $\phi \in h^{\infty}(\mathbb{D})$ then $\widehat{\phi} \in h^{\infty}(\mathbb{D})$. In fact, if $\psi \in h^{\infty}(\mathbb{D})$ and $\psi(z)=$ $\sum_{n=0}^{\infty} a_{n} z^{n}+\sum_{n=0}^{\infty} b_{n} \bar{z}^{n}$ then $\widehat{\psi}(z)=a_{0}-\left(\frac{a_{1}}{2}\right) z-\left(\frac{b_{1}}{2}\right) \bar{z} \in h^{\infty}(\mathbb{D})$. If $\phi, \psi \in h^{\infty}(\mathbb{D})$, then by Corollary 3.7 we obtain $T_{\bar{\phi}} C_{a}=C_{a} T_{\bar{\psi}}$ for all $a \in \mathbb{D}$ if and only if $T_{\bar{\psi}}=\widehat{T_{\bar{\phi}}}$. That is, if and only if $T_{\bar{\psi}}=T_{\widehat{\bar{\phi}}}$ where $\widehat{\bar{\phi}}(z)=\int_{\mathbb{D}} \bar{\phi}\left(\phi_{a}(z)\right) d A(a)$. But from [1] it follows that $T_{\bar{\psi}-\widehat{\bar{\phi}}}=0$ if and only if $\bar{\psi}-\widehat{\bar{\phi}}=0$. Hence the result follows.

References

1. P. Ahern and V. Cuckovic, A theorem of Brown-Halmos type for Bergman space Toeplitz operators, J. Fucnt. Anal. 187 (2001), 200-210.
2. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
3. M. Engliś, Toeplitz operators on Bergman-type spaces, PhD thesis, MU CSAV, Praha, 1991.
4. M. Engliś, Functions invariant under the Berzin transform, J. Fucnt. Anal. 121 (1994), 233254.
5. G. M. Goluzin, Geometric Theory of Functions of Complex Variable, 2nd ed., Nauka, Moscow, 1966. (Russian); English transl. Transl. Math. Monographs, Vol. 26, Amer. Math. Soc., Providence, RI, 1969.
6. H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, Vol. 199, Springer-Verlag, New York, 2000.
7. S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, 1984.
8. S. G. Krantz, Function Theory of Several Complex Variables, John Wiley, New York, 1982.
9. M. H. M. Rashid, M. S. M. Noorani, and A. S. Saari, On the generalized Fuglede-Putnam theorem, Tamkang Journal of Mathematics 39 (2008), no. 3, 239-246.
10. T. Saito, On a theorem by S. M. Patel, Rev. Roumaine Math. Pures Appl. 21 (1976), 1407-1409.
11. G. Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II, J. Operator Theory 5 (1981), 3-16.
12. K. Zhu, Operator Theory in Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 139, Marcell Dekker, Inc., New York-Basel, 1990.
P. G. Department of Mathematics, Utkal University, Vanivihar, Bhubaneswar, 751004, Orissa, India

E-mail address: namitadas440@yahoo.co.in

[^0]: 2000 Mathematics Subject Classification. 47B35, 32M15.
 Key words and phrases. Bergman space, intertwining property, Berezin transform, composition operators, reproducing kernels.

