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CONTROLLED FUSION FRAMES

AMIR KHOSRAVI AND KAMRAN MUSAZADEH

Abstract. We use two appropriate bounded invertible operators to define a con-

trolled fusion frame with optimal fusion frame bounds to improve the numerical
efficiency of iterative algorithms for inverting the fusion frame operator. We show
that controlled fusion frames as a generalization of fusion frames give a generalized
way to obtain numerical advantage in the sense of preconditioning to check the fusion

frame condition. Also, we consider locally controlled frames for each locally space to
obtain new globally controlled frames for our Hilbert space. We develop some well
known results in fusion frames to the controlled fusion frames case.

1. Introduction

Fusion frames formally were introduced in [5], studied in [10] and generalized in [9]
which is a weighted and distributed processing procedure that fuse together information
in all subspaces of a Hilbert space H in a fusion frame system to obtain the global
information in H.

Controlled frames for spherical wavelets were introduced in [3] to get a numerically
more efficient approximation algorithm and the related theory for general frames was
developed in [2]. For getting a numerical solution of a linear system of equations Ax = b,
we can solve the system of equations PAx = Pb, where P is a suitable preconditioning
matrix to get a better iterative algorithm, which was the main motivation for intro-
ducing controlled frames in [3]. We generalize this concept to the case of fusion frames.
Although controlled fusion frames and fusion frames are mathematically equivalent, this
different view-point of fusion frames, as stated in [2], gives opportunities for efficient
implementations.

Furthermore, we give another reconstruction formula by using the controlled fusion
frame operator for a pair of controlled Bessel fusion sequences. We construct new con-
trolled fusion frames from a given one and we obtain some useful results about them.

Throughout this paper H is a separable Hilbert space, and GL(H) denotes the set
of all bounded linear operators which have bounded inverses. It is easy to see that if
S, T ∈ GL(H), then T ∗, T−1 and ST are also in GL(H). Let GL+(H) be the set of all
positive operators in GL(H).

A sequence (fi)i∈I in H is called a frame for H, if there exist constants 0 < C ≤ D <

∞ (lower and upper frame bounds) such that

C‖f‖2 ≤
∑

i∈I

| < f, fi > |2 ≤ D‖f‖2, ∀f ∈ H.

If C = D, then (fi)i∈I is called a C-tight frame, and if C = D = 1, it is called a
Parseval frame. A Bessel sequence (fi)i∈I is only required to fulfill the upper frame
bound estimate but not necessarily the lower estimate.
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The frame operator Sf =
∑

i∈I < f, fi > fi associated with a frame (fi)i∈I is a
bounded, invertible, and positive operator on H. This provides the reconstruction for-
mulas

f = S−1Sf =
∑

i∈I

< f, fi > S−1fi =
∑

i∈I

< f, S−1fi > fi.

Furthermore, CIdH ≤ S ≤ DIdH . See [7].
Let T ∈ GL(H). A frame controlled by the operator T or T -controlled frame is a

family of vectors {fi}i∈I in H, such that there exist constants 0 < CT ≤ DT < ∞,
verifying

CT ‖f‖
2 ≤

∑

i∈I

< f, fi >< Tfi, f >≤ DT ‖f‖
2, ∀f ∈ H.

The controlled frame operator ST is defined by

ST f =
∑

i∈I

< f, fi > Tfi.

Definition 1.1. Let {Wi}i∈I be a family of closed subspaces of a Hilbert space H. Let
{υi}i∈I be a family of weights, i.e., υi > 0 for all i ∈ I. Then W = {(Wi, υi)}i∈I is called
a fusion frame, if there exist constants 0 < C ≤ D < ∞ such that

C‖f‖2 ≤
∑

i∈I

υ2
i ‖πWi

(f)‖2 ≤ D‖f‖2, ∀f ∈ H,

where πWi
is the orthogonal projection onto the subspace Wi. We call C and D lower

and upper fusion frame bounds, respectively. We call W a C-tight fusion frame if C = D

and a Parseval fusion frame if C = D = 1. If only the second inequality is required, we
call W a Bessel fusion sequence. Moreover, we call it υ-uniform if υ = υi for all i ∈ I.
As we have in [5] the fusion frame operator SW is defined by

SW(f) =
∑

i∈I

υ2
i πWi

f, ∀f ∈ H.

SW is a positive and invertible operator and we have

CIdH ≤ SW ≤ DIdH ,

hence
1

D
IdH ≤ S−1

W ≤
1

C
IdH .

Let {(Wi, υi)}i∈I be a fusion frame for H, and let {fij}j∈Ji
be a frame for Wi for

each i ∈ I. Then {(Wi, υi, {fij}j∈Ji
)}i∈I is called a fusion frame system for H. C and

D are called associated fusion frame bounds, if they are the fusion frame bounds for
{(Wi, υi)}i∈I .

For convenience we state the following lemmas.

Lemma 1.2. [11]. Let A be a C∗-algebra. If a, b ∈ A+, then
(i) a+ b ∈ A+;
(ii) ab ∈ A+ if and only if ab = ba.

Lemma 1.3. [5]. Let {Wi}i∈I be a family of closed subspaces of a Hilbert space H.
Let {υi}i∈I be a family of weights, and let SW(f) =

∑

i∈I υ
2
i πWi

f . Then the following
conditions are equivalent:

(i) {(Wi, υi)}i∈I is a (C,D)-fusion frame for H;
(ii) We have CIdH ≤ SW ≤ DIdH .

Lemma 1.4. [2]. Let T : H → H be a linear operator. Then the following statements
are equivalent:

(i) CIdH ≤ T ≤ DIdH , for some 0 < C ≤ D < ∞ ;
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(ii) T is positive and C‖f‖2 ≤
∥

∥T
1

2 f
∥

∥

2
≤ D‖f‖2, for some 0 < C ≤ D < ∞ ;

(iii) T ∈ GL+(H).

The following well known result describes the relation between fusion frames, associ-
ated local frames and global frames for a Hilbert space.

Proposition 1.5. [4]. For each i ∈ I, let Wi be a closed subspace of H, and let {fij}j∈Ji

be a frame for Wi with frame bounds Ai and Bi. Suppose that

0 < A = inf
i∈I

Ai ≤ sup
i∈I

Bi = B < ∞.

Then the following conditions are equivalent:
(i) {(Wi, υi)}i∈I is a fusion frame for H;
(ii) {υifij}j∈Ji,i∈I is a frame for H.
In particular, if {(Wi, υi, {fij}j∈Ji

)}i∈I is a fusion frame system for H with fusion
frame bounds C and D, then {υifij}j∈Ji,i∈I is a frame for H with frame bounds AC

and BD. Also if {υifij}j∈Ji,i∈I is a frame for H with frame bounds C and D, then

{(Wi, υi, {fij}j∈Ji
)}i∈I is a fusion frame system for H with fusion frame bounds C

B

and D
A .

2. Controlled fusion frames

In this section we introduce controlled fusion frames and we show that they are gene-
ralizations of fusion frames.

Definition 2.1. Let {Wi}i∈I be a family of closed subspaces of a Hilbert space H. Let
{υi}i∈I be a family of weights, and let T,U ∈ GL(H). Then W = {(Wi, υi)}i∈I is called
a fusion frame controlled by T and U or (T,U)-controlled fusion frame if there exist two
constants

0 < CTU ≤ DTU < ∞

such that

CTU‖f‖
2 ≤

∑

i∈I

υ2
i < πWi

Uf, πWi
Tf >≤ DTU‖f‖

2, ∀f ∈ H.

We call W a (T,U)-controlled Parseval fusion frame if CTU = DTU = 1. If only the
second inequality is required, we call W a (T,U)-controlled Bessel fusion sequence. More-
over, we call it υ-uniform if υ = υi for all i ∈ I.

If W is a (T,U)-controlled fusion frame and T ∗πWi
U is a positive operator for each

i ∈ I, then T ∗πWi
U = U∗πWi

T and we have

CTU‖f‖
2 ≤

∑

i∈I

υ2
i ‖(T

∗πWi
U)

1

2 f‖2 ≤ DTU‖f‖
2, ∀f ∈ H.

We define the controlled analysis operator by

θTU : H → K, θTU (f) = (υi(T
∗πWi

U)
1

2 f)i∈I , ∀f ∈ H,

where

K =
{

(υi(T
∗πWi

U)
1

2 f)i∈I | f ∈ H
}

⊆
(

⊕

i∈I

H
)

ℓ2
.

It is easy to see that K is closed and θTU is well defined. Moreover θTU is a bounded
linear operator with adjoint (the controlled synthesis operator) θ∗TU defined by

θ∗TU : K → H, θ∗TU ((υi(T
∗πWi

U)
1

2 f)i∈I) =
∑

i∈I

υ2
i T

∗πWi
Uf, ∀f ∈ H.

Therefore, we define the controlled fusion frame operator STU on H by

STUf = θ∗TUθTU (f) =
∑

i∈I

υ2
i T

∗πWi
Uf, ∀f ∈ H.
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It is easy to see that STU is well defined and

CTUIdH ≤ STU ≤ DTUIdH .

Hence STU is a bounded, invertible, self-adjoint and positive linear operator by Lemma 1.3.
Therefore, we have STU = S∗

TU = SUT .
A special case occurs when U = IdH . In this case we call W a T -controlled fusion

frame for H.
Similarly, we call (fi)i∈I a (T,U)-controlled frame if there exists 0 < CTU ≤ DTU < ∞

such that

CTU‖f‖
2 ≤

∑

i∈I

< Uf, fi >< fi, T f >≤ DTU‖f‖
2, ∀f ∈ H.

Also we call

STUf =
∑

i∈I

< Uf, fi > T ∗fi

the controlled frame operator. It is easy to see that if for each i ∈ I, the operator
f 7→ 〈Uf, fi〉T

∗fi is positive, then STU is well defined. It is a positive and invertible
linear operator.

Controlled fusion frames are generalizations of fusion frames. Our next result proves
this.

Proposition 2.2. (a) Let T,U ∈ GL(H) and W = {(Wi, υi)}i∈I be a (T,U)-controlled
fusion frame for H. Then W is a fusion frame for H. Furthermore T ∗SWU = U∗SWT.

(b) Let T ∈ GL(H). Then W = {(Wi, υi)}i∈I is a fusion frame (resp. Bessel fusion
sequence) if and only if it is a (T, T )-controlled fusion frame (resp. (T, T )-controlled
Bessel fusion sequence) for H.

Proof. (a) Let f be an arbitrary element of H. Since W is a (T,U)-controlled fusion
frame for H, STU is a positive linear operator and since (T ∗)−1 ∈ GL(H), the map
S : H → H defined by

S(f) = (T ∗)−1STUU
−1(f) =

∑

i∈I

υ2
i πWi

f,

is well defined. It is easy to see that S is a bounded, positive linear operator on H, and
also we have

‖S−1‖ = ‖US−1
TUT

∗‖ ≤ ‖U‖‖S−1
TU‖‖T

∗‖ ≤
1

CTU
‖U‖‖T‖.

Hence S ∈ GL+(H). Then by Lemmas 1.3 and 1.4 {(Wi, υi)}i∈I is a fusion frame and
S = SW is its fusion frame operator. Furthermore,

T ∗SWU = STU = S∗
TU = U∗SWT.

(b) Since STT = T ∗SWT , then CIdH ≤ SW ≤ DIdH is equivalent to

CT ∗T ≤ STT ≤ DT ∗T

for fusion frame bounds C,D. Furthermore,

1

‖T−1‖2
IdH ≤ T ∗T ≤ ‖T‖2IdH

and we have the result. �

Remark. By the above proposition we have the following formulas:

f = S−1(S(f)) =
∑

i∈I

v2iUS−1
TUT

∗πWi
(f), ∀f ∈ H,
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and

f = S(S−1(f)) =
∑

i∈I

v2i πWi
US−1

TUT
∗(f), ∀f ∈ H.

Example 2.3. Let T ∈ GL(H) and {fi}i∈I be a T -controlled frame for H. If we take
Wi := {λfi : λ ∈ C} for each i ∈ I, then πWi

(f) =< f, fi > fi for each f ∈ H. So
{(Wi, 1) : i ∈ I} is a (T, IdH)-controlled fusion frame for H because there exist constants
0 < CTI ≤ DTI < ∞ such that

CTI‖f‖
2 ≤

∑

i∈I

< Tf, fi >< fi, f >≤ DTI‖f‖
2, ∀f ∈ H.

But this is equivalent to

CTI‖f‖
2 ≤

∑

i∈I

< πWi
Tf, f >≤ DTI‖f‖

2, ∀f ∈ H.

So we have the result.

Corollary 2.4. Let W be a fusion frame for H and T,U ∈ GL(H) be self-adjoint.
Suppose that T ,U and SW mutually commute and TU is positive. Then W is a (T,U)-
controlled fusion frame for H.

Proof. Since STU = TSWU = TUSW , we have the result. �

One of the main objects in frame and fusion frame theory is to solve the equation
Sf = h or SWf = h and by using controlled frames and controlled fusion frames we
choose an operator C as preconditioning matrix (see [2]) and we solve the equation

CSf = Ch or CSWf = Ch.

If we find an operator C such that

‖(CSW)−1‖‖CSW‖ < ‖S−1
W ‖‖SW‖,

then the Neumann algorithm is more stable and we get a better approximation of the
inverse operator, see [2].

Lemma 2.5. Let T ∈ GL+(H) and let W be a T -controlled fusion frame for H. Then
(

1
‖(TSW)−1‖ , ‖TSW‖

)

,
(

1
‖T−1‖ , ‖T‖

)

and
(

1
‖(SW)−1‖ , ‖SW‖

)

, are the optimal bounds for

the controlled fusion frame operator TSW , the operator T and the fusion frame operator
SW , respectively. Moreover,

IdH

‖T−1‖‖S−1
W ‖

≤ TSW ≤ ‖TSW‖IdH ≤ ‖T‖‖SW‖IdH .

Proof. It is enough to observe that TSW = SWT . �

Our next result provides a sufficient condition on a family of closed subspaces of H to
be a controlled fusion frame, in the presence of another controlled fusion frame. In fact
it is a generalization of Proposition 2.4 in [1] and Proposition 4.1 in [6].

Proposition 2.6. Let T,U ∈ GL(H) and let {(Wi, υi)}i∈I be a (T,U)-controlled fusion
frame for H with lower and upper bounds CTU and DTU , respectively. Let {Vi}i∈I be a
family of closed subspaces of H. If there exists a number 0 < R < CTU such that

0 ≤
∑

i∈I

υ2
i < T ∗(πVi

− πWi
)Uf, f >≤ R‖f‖2, ∀f ∈ H,

then {(Vi, υi)}i∈I is also a (T,U)-controlled fusion frame for H.
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Proof. Let f be an arbitrary element of H. Since {(Wi, υi)}i∈I is a (T,U)-controlled
fusion frame for H, we have

CTU‖f‖
2 ≤

∑

i∈I

υ2
i < T ∗πWi

Uf, f >≤ DTU‖f‖
2.

Hence
∑

i∈I

υ2
i < T ∗πVi

Uf, f > =
∑

i∈I

υ2
i < T ∗(πVi

− πWi
)Uf, f > +

∑

i∈I

υ2
i < T ∗πWi

Uf, f >

≤ R‖f‖2 +DTU‖f‖
2 = (R+DTU )‖f‖

2.

On the other hand
∑

i∈I

υ2
i < T ∗πVi

Uf, f > =
∑

i∈I

υ2
i < T ∗πWi

Uf, f > +
∑

i∈I

υ2
i < T ∗(πVi

− πWi
)Uf, f >

≥
∑

i∈I

υ2
i < T ∗πWi

Uf, f > −
∑

i∈I

υ2
i < T ∗(πVi

− πWi
)Uf, f >

≥ CTU‖f‖
2 −R‖f‖2 = (CTU −R)‖f‖2.

So we have the result. �

Our next result is a generalization of Theorem 2.8 in [1].

Proposition 2.7. Let T,U ∈ GL(H) and let {(Wi, υi)}i∈I be a (T,U)-controlled fusion
frame for H. Let {Vi}i∈I be a family of closed subspaces of H. Suppose that Φ : H → H

defined by

Φ(f) =
∑

i∈I

υ2
i T (πVi

− πWi
)Uf, ∀f ∈ H,

is a positive and compact operator. Then {(Vi, υi)}i∈I is a (T,U)-controlled fusion frame
for span{Vi}i∈I .

Proof. Let {(Wi, υi)}i∈I be a (T,U)-controlled fusion frame for H. Then by Proposition
2.2, it is a fusion frame for H. On the other hand since Φ is a compact operator,
T−1ΦU−1 is also a compact operator. But

T−1ΦU−1f =
∑

i∈I

υ2
i (πVi

− πWi
)f, ∀f ∈ H.

Now by Theorem 2.8 in [1], we conclude that {(Vi, υi)}i∈I is a fusion frame for span{Vi}i∈I .
Let SV be its associated fusion frame operator. Since Φ = TSVU − USWT , then
TSVU = Φ+USWT . But Φ and USWT (= STUW) are positive operators. Therefore, by
Lemma 1.2 , TSVU is a bounded positive operator. So {(Vi, υi)}i∈I is a (T,U)-controlled
fusion frame for span{Vi}i∈I . �

Example 2.8. Let {e1, e2, e3} be the standard orthonormal basis for R
3 and W =

{(Wi, 1)}
3
i=1 be a 1-uniform fusion frame for it, in which W1 = span{e1, e2},W2 =

span{e1, e3} and W3 = span{e3}. It is easy to see that

‖f‖2 ≤

3
∑

i=1

‖πWi
f‖2 ≤ 2‖f‖2, ∀f ∈ R

3.

Let T (x1, x2, x3) = (5x1, 4x2, 5x3) and U(x1, x2, x3) = ( 16x1,
1
3x2,

1
6x3) be two operators

on R
3. It is easy to see that T,U ∈ GL+(R3) , TU = UT , TSW = SWT and USW =

SWU . Now an easy computation shows that

4

3
‖f‖2 ≤

3
∑

i=1

< πWi
Tf, Uf >≤

5

3
‖f‖2, ∀f ∈ R

3.

So {(Wi, 1)}
3
i=1 is a (T,U)-controlled fusion frame for R3 as we expect from Corollary 2.4.
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In the above example, we have 5
4 = DTU

CTU

< D
C = 2. Therefore, ‖IdH−STU‖ ≪ ‖IdH−

SW‖. Hence using a Neumann algorithm as described in [2], gives a good approximation
of S−1

TU . So an important work specially on infinite dimensional Hilbert spaces is to find
appropriate operators T and U for which ‖IdH − STU‖ ≪ ‖IdH − SW‖.

In the following result we consider locally controlled frames for each Wi in a controlled
fusion frame W to obtain new globally controlled frames for H.

Theorem 2.9. Let T,U ∈ GL(H) and let {Wi}i∈I be a family of closed subspaces of H
and {vi}i∈I be a family of weights. Suppose that {fij : j ∈ Ji} is a frame for Wi with
frame operator Si, for each i ∈ I. Then {(Wi, vi) : i ∈ I} is a (T,U)-controlled fusion

frame (Bessel) for H if and only if {viS
−1/2
i fij : i ∈ I, j ∈ Ji} is a (T,U)-controlled

frame (Bessel).

Proof. Let {(Wi, υi) : i ∈ I} be a fusion frame, with bounds C and D. Since for each

i ∈ I, {fij : j ∈ Ji} is a frame for Wi with frame operator Si, we have that {S
−1/2
i fij :

j ∈ Ji} is a Parseval frame for Wi and for every f ∈ H, we have

πWi
Uf = Σj∈Ji

〈Uf, S
−1/2
i fij〉S

−1/2
i fij .

On the other hand by using (1) we conclude that

C||f ||2 ≤ Σi∈Iv
2
i 〈πWi

Uf, Tf〉 ≤ D||f ||2

is equivalent to

C||f ||2 ≤ Σi∈IΣj∈Ji
〈Uf, viS

−1/2
i fij〉〈viS

−1/2
i fij , T f〉 ≤ D||f ||2,

which shows that {viS
−1/2
i fij : i ∈ I, j ∈ Ji} is a (T,U)-controlled frame for H if and

only if {(Wi, vi) : i ∈ I} is a (T,U)-controlled fusion frame for H. �

Our next result is a characterization theorem for (T,U)-controlled fusion frames.

Theorem 2.10. Let T,U ∈ GL(H) and let {Wi}i∈I be a family of closed subspaces of
H and {υi}i∈I be a family of weights. Suppose that {eij : j ∈ Ji} is an orthonormal basis
for Wi for each i ∈ I. Then W = {(Wi, υi)}i∈I is a (T,U)-controlled fusion frame for
H if and only if Ψ = {υiU

∗eij : i ∈ I, j ∈ Ji} is a T ∗(U∗)−1-controlled frame for H with
controlled frame operator T ∗SWU .

Proof. Let {eij : j ∈ Ji} be an orthonormal basis for Wi for each i ∈ I. Then

πWi
(Tf) =

∑

j∈Ji

< πWi
Tf, eij > eij =

∑

j∈Ji

< Tf, eij > eij , ∀f ∈ H.

Also,

πWi
(Uf) =

∑

j∈Ji

< πWi
Uf, eij > eij =

∑

j∈Ji

< Uf, eij > eij , ∀f ∈ H.

Hence,

< πWi
(Uf), πWi

Tf >=
∑

j∈Ji

< Uf, eij >< eij , T f >=
∑

j∈Ji

< f,U∗eij >< T ∗eij , f > .

Now if we take fij := υiU
∗eij and C := T ∗(U∗)−1 then

CTU‖f‖
2 ≤

∑

i∈I

υ2
i < πWi

Uf, πWi
Tf >≤ DTU‖f‖

2

is equivalent to

CTU‖f‖
2 ≤

∑

i∈I

∑

j∈Ji

< f, fij >< Cfij , f >≤ DTU‖f‖
2
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and we have the first result. Furthermore, by Proposition 3.2 in [2], Ψ is a frame with
the frame operator T ∗(U∗)−1SΨ. But SΨ = U∗SWU . So we have the result. �

If UT ∗ = TU∗, then C = T ∗(U∗)−1 is self-adjoint and by Proposition 3.3 in [2] we
have the following result.

Proposition 2.11. Let T,U ∈ GL(H) and UT ∗ = TU∗. Then W = {(Wi, υi)}i∈I is a
(T,U)-controlled fusion frame for H if and only if W is a fusion frame, C = T ∗(U∗)−1

is positive and commutes with T ∗SWU .

Proof. The result follows by the above theorem and by Proposition 3.3 in [2]. �

By the above results, finding suitable operators T and U such that W = {(Wi, υi)}i∈I

forms a (T,U)-controlled fusion frame for H with optimal bounds, is equivalent to finding
suitable operators T and U such that Ψ = {υiU

∗eij : i ∈ I, j ∈ Ji} forms a T ∗(U∗)−1-
controlled frame for H with optimal frame bounds. And for this, we can use the results
obtained in [2].

3. Resolutions of the identity

In this section we want to find new resolutions of the identity. It is easy to see that the
family {υ2

i S
−1
TUT

∗πWi
U}i∈I of bounded operators is a resolution of the identity, where

T,U ∈ GL(H) and {(Wi, υi)}i∈I is a (T,U)-controlled fusion frame for H. In fact we
have

f =
∑

i∈I

υ2
i S

−1
TUT

∗πWi
Uf =

∑

i∈I

υ2
i T

∗πWi
US−1

TUf.

Furthermore, as a corollary of Theorem 2.9 with its hypothesis we have the following
reconstruction formula:

f =
∑

i∈I

∑

j∈Ji

υ2
i < Uf, S

−1/2
i fij > S−1

TUT
∗S

−1/2
i fij .

As mentioned before, by choosing suitable control operators we may have more suitable
approximations for S−1

TU and S−1
i than S−1

W . Now we want to get a new resolution of the
identity by using two controlled fusion frames.

Definition 3.1. Let T,U ∈ GL(H) and let W = {(Wi, υi)}i∈I and V = {(Vi, ωi)}i∈I be
(T, T )-controlled and (U,U)-controlled Bessel fusion sequences, respectively. We define
a (T,U)-controlled fusion frame operator STWVU for this pair of controlled fusion frames
as follows:

STWVUf =
∑

i∈I

υiωiT
∗πWi

πVi
Uf, ∀f ∈ H.

As mentioned before, {(Wi, υi)}i∈I and {(Vi, ωi)}i∈I are also two Bessel fusion sequences.
So by [8] the fusion frame operator SWVf =

∑

i∈I υiωiπWi
πVi

f for this pair of Bessel
fusion sequences is well defined and bounded. But STWVU = T ∗SWVU . Therefore,
STWVU is well defined and a bounded operator. Furthermore, S∗

TWVU = SUVWT .

Theorem 3.2. Let T ∈ GL(H) and let W = {(Wi, υi)}i∈I be a (T, T )-controlled Bessel
fusion sequence. Then W is a (T, T )-controlled fusion frame if and only if there exist an
operator U ∈ GL(H) and a (U,U)-controlled Bessel fusion sequence V = {(Vi, ωi)}i∈I

such that SUVWT ≥ mIdH on H, for some m > 0.

Proof. Let W be a (T, T )-controlled fusion frame with lower and upper fusion frame
bounds CT and DT , respectively. Then we take U = T , Vi = Wi and ωi = υi, for all
i ∈ I. Hence we have

〈STWWT f, f〉 = 〈
∑

i∈I

υ2
i T

∗πWi
Tf, f〉 =

∑

i∈I

υ2
i 〈πWi

Tf, πWi
Tf〉 ≥ CT ‖f‖

2
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for all f ∈ H. Furthermore,

CT ‖f‖
2 ≤

∥

∥S
1

2

TWWT f
∥

∥

2
≤ DT ‖f‖

2.

So STWWT = STT ∈ GL+(H) by Lemma 1.4.
Conversely, suppose that there exist an operator U ∈ GL(H) and a (U,U)-controlled

Bessel fusion sequence V = {(Vi, ωi)}i∈I with Bessel fusion bound DU . Also let 0 < m

be a constant such that

m‖f‖2 ≤ 〈SUVWT f, f〉

for all f ∈ H. Then we have

m‖f‖2 ≤ 〈SUVWT f, f〉 =
∑

i∈I

〈υiπWi
Tf, ωiπVi

Uf〉

≤

(

∑

i∈I

υ2
i ‖πWi

Tf‖2
)

1

2

(

∑

i∈I

ω2
i ‖πVi

Uf‖2
)

1

2

≤
√

DU‖f‖

(

∑

i∈I

υ2
i ‖πWi

Tf‖2
)

1

2

,

by the Cauchy-Schwartz inequality. Therefore,

m2

DU
‖f‖2 ≤

∑

i∈I

υ2
i ‖πWi

Tf‖2.

Hence we have the result. �

Our next result is an analog of Theorem 2.15 in [10].

Proposition 3.3. Let W and V be controlled Bessel fusion sequences as mentioned in
Definition 3.1. Suppose that there exists 0 < M < 1 such that

‖f − SUVWT f‖ ≤ M‖f‖, ∀f ∈ H.

Then W and V are (T, T )-controlled and (U,U)-controlled fusion frames, respectively.
Furthermore, SUVWT is invertible.

Proof. Firstly ||IdH − SUVWT || ≤ M < 1, therefore SUVWT is invertible, secondly let f
be an arbitrary element of H. Then we have

‖SUVWT f‖ ≥ ‖f‖ − ‖f − SUVWT f‖ ≥ (1−M)‖f‖.

Hence SUVWT is bounded below and we have

(1−M)‖f‖ ≤ ‖SUVWT f‖ = sup
g∈H,‖g‖=1

∣

∣

∣

〈

∑

i∈I

υiωiU
∗πVi

πWi
Tf, g

〉∣

∣

∣

≤ sup
g∈H,‖g‖=1

(

∑

i∈I

υ2
i ‖πWi

Tf‖2
)

1

2

(

∑

i∈I

ω2
i ‖πVi

Ug‖2
)

1

2

≤
√

DU

(

∑

i∈I

υ2
i ‖πWi

Tf‖2
)

1

2

.

Hence
(1−M)2

DU
‖f‖2 ≤

∑

i∈I

υ2
i ‖πWi

Tf‖2,

where DU is a controlled Bessel fusion bound for V. Therefore, W is a (T, T )-controlled
fusion frame. On the other hand we have

‖IdH − STWVU‖ = ‖(IdH − SUVWT )
∗‖ ≤ M.

Hence similarly we can say that V is a (U,U)-controlled fusion frame. �
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Let SUVWT and so STWVU be invertible. Then the family

{υiωiS
−1
UVWTU

∗πVi
πWi

T}i∈I

is a resolution of the identity. Also we have the following reconstruction formulas:

f =
∑

i∈I

υiωiS
−1
UVWTU

∗πVi
πWi

Tf =
∑

i∈I

υiωiU
∗πVi

πWi
TS−1

UVWT f

and
f =

∑

i∈I

υiωiS
−1
TWVUT

∗πWi
πVi

Uf =
∑

i∈I

υiωiT
∗πWi

πVi
US−1

TWVUf.

Suppose that ‖IdH − SUVWT ‖ < 1. Then as we mentioned in Proposition 3.3, SUVWT

is invertible and we have

S−1
UVWT =

∞
∑

n=0

(IdH − SUVWT )
n.

Furthermore,
‖S−1

UVWT ‖ ≤ (1− ‖IdH − SUVWT ‖)
−1.

Therefore,
{υiωi(IdH − SUVWT )

nU∗πVi
πWi

T : i ∈ I, n ∈ Z
+}

is a new resolution of the identity.
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