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CONTROLLED FUSION FRAMES

AMIR KHOSRAVI AND KAMRAN MUSAZADEH

ABSTRACT. We use two appropriate bounded invertible operators to define a con-
trolled fusion frame with optimal fusion frame bounds to improve the numerical
efficiency of iterative algorithms for inverting the fusion frame operator. We show
that controlled fusion frames as a generalization of fusion frames give a generalized
way to obtain numerical advantage in the sense of preconditioning to check the fusion
frame condition. Also, we consider locally controlled frames for each locally space to
obtain new globally controlled frames for our Hilbert space. We develop some well
known results in fusion frames to the controlled fusion frames case.

1. INTRODUCTION

Fusion frames formally were introduced in [5], studied in [10] and generalized in [9]
which is a weighted and distributed processing procedure that fuse together information
in all subspaces of a Hilbert space H in a fusion frame system to obtain the global
information in H.

Controlled frames for spherical wavelets were introduced in [3] to get a numerically
more efficient approximation algorithm and the related theory for general frames was
developed in [2]. For getting a numerical solution of a linear system of equations Az = b,
we can solve the system of equations PAx = Pb, where P is a suitable preconditioning
matrix to get a better iterative algorithm, which was the main motivation for intro-
ducing controlled frames in [3]. We generalize this concept to the case of fusion frames.
Although controlled fusion frames and fusion frames are mathematically equivalent, this
different view-point of fusion frames, as stated in [2], gives opportunities for efficient
implementations.

Furthermore, we give another reconstruction formula by using the controlled fusion
frame operator for a pair of controlled Bessel fusion sequences. We construct new con-
trolled fusion frames from a given one and we obtain some useful results about them.

Throughout this paper H is a separable Hilbert space, and GL(H) denotes the set
of all bounded linear operators which have bounded inverses. It is easy to see that if
S, T € GL(H), then T*, T~ and ST are also in GL(H). Let GLT(H) be the set of all
positive operators in GL(H).

A sequence (f;)icr in H is called a frame for H, if there exist constants 0 < C < D <
oo (lower and upper frame bounds) such that

CIFIP <D 1< f fi>P<D|fI?, VfeH.
iel
If C = D, then (f;)ier is called a C-tight frame, and if C = D = 1, it is called a
Parseval frame. A Bessel sequence (f;)ies is only required to fulfill the upper frame
bound estimate but not necessarily the lower estimate.
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The frame operator Sf = Y .., < f,fi > [fi associated with a frame (f;)ics is a
bounded, invertible, and positive operator on H. This provides the reconstruction for-
mulas

F=8718f=) < S i>STi=) <S>
i€l il
Furthermore, CIdy < S < DIdg. See [7].

Let T € GL(H). A frame controlled by the operator T or T-controlled frame is a
family of vectors {f;}ier in H, such that there exist constants 0 < Cr < Dr < oo,
verifying

CrlfI?P <> < f fi><Tfi,f ><Dr|f|>, VfeH.
iel
The controlled frame operator St is defined by

Srf=> <|fi>Tf.

i€l

Definition 1.1. Let {W,};cr be a family of closed subspaces of a Hilbert space H. Let
{v; }ier be a family of weights, i.e., v; > 0 for all i € I. Then W = {(W;, v;) }s¢cr is called
a fusion frame, if there exist constants 0 < C' < D < oo such that

CIFIP <> vflmw: ()N < DIFIP, VS € H,
icl
where 7y, is the orthogonal projection onto the subspace W;. We call C' and D lower
and upper fusion frame bounds, respectively. We call W a C-tight fusion frame if C = D
and a Parseval fusion frame if C = D = 1. If only the second inequality is required, we
call W a Bessel fusion sequence. Moreover, we call it v-uniform if v = v; for all i € I.
As we have in [5] the fusion frame operator Syy is defined by

Sw(f)=> vimw,f, VfeH.
il
Sy is a positive and invertible operator and we have
Cldy < Sy < DIdy,
hence

1 _ 1
Hldn < St < o ldn.

Let {(W;,vi)}ier be a fusion frame for H, and let {f;;};cs, be a frame for W; for
each ¢ € I. Then {(W;,vi, {fij}jes)}ier is called a fusion frame system for H. C and
D are called associated fusion frame bounds, if they are the fusion frame bounds for
{(Wi,vi) Yier-

For convenience we state the following lemmas.

Lemma 1.2. [11]. Let A be a C*-algebra. If a,b € A", then

(i) a+be AT;

(i1) ab € AT if and only if ab = ba.

Lemma 1.3. [5]. Let {W;}icr be a family of closed subspaces of a Hilbert space H.
Let {vi}icr be a family of weights, and let Syw(f) = > ,c; vimw, f. Then the following
conditions are equivalent:

(2) {(W;,vi) }ier is a (C, D)-fusion frame for H;

(ii) We have Cldy < Sy < DIdy.
Lemma 1.4. [2]. Let T : H — H be a linear operator. Then the following statements

are equivalent:
(1) CIdg < T < DIdg, for some0 < C <D < o0 ;
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(ii) T is positive and C||f||* < ||T%f||2 < D||f|?, for some 0 < C < D < oo ;
(114) T € GLT(H).
The following well known result describes the relation between fusion frames, associ-

ated local frames and global frames for a Hilbert space.

Proposition 1.5. [4]. For eachi € I, let W; be a closed subspace of H, and let {fi;};ecu,
be a frame for W; with frame bounds A; and B;. Suppose that
0<A=infA; <supB; =B < oc.
i€l icl
Then the following conditions are equivalent:

(2) {(Wi,vi) Yier is a fusion frame for H;

(1) {vifij}ier ier is a frame for H.

In particular, if {(Wi,vi,{fij}jer.)}ier is a fusion frame system for H with fusion
frame bounds C' and D, then {v;fij}jes, icr is a frame for H with frame bounds AC
and BD. Also if {vifij}jer.icr is a frame for H with frame bounds C and D, then
{(Wi,vi, {fij}ies,) bier is a fusion frame system for H with fusion frame bounds %
and %.

2. CONTROLLED FUSION FRAMES

In this section we introduce controlled fusion frames and we show that they are gene-
ralizations of fusion frames.

Definition 2.1. Let {W;};c; be a family of closed subspaces of a Hilbert space H. Let
{v;}ier be a family of weights, and let T, U € GL(H). Then W = {(W;,v;) }ier is called
a fusion frame controlled by T and U or (T, U)-controlled fusion frame if there exist two
constants
0<Cruyu <Dpy < o0
such that
CrollfI* <) vf <mw,Ufinw,Tf >< Dro||fI°, Vf € H.
iel

We call W a (T, U)-controlled Parseval fusion frame if Cry = Dpy = 1. If only the
second inequality is required, we call W a (T, U)-controlled Bessel fusion sequence. More-
over, we call it v-uniform if v = v; for all i € I.

If W is a (T, U)-controlled fusion frame and T*my,U is a positive operator for each
1 € I, then T*my, U = U*mw, T and we have

CrullfI? <Y v (T*mw,U)E fI* < Droul fI?, Vf € H.
il
We define the controlled analysis operator by
brv: H— K, Oru(f) = (T 7w, U)? ficr, Vf € H,
where

e

K = {0 e | Fe By < (D A)

It is easy to see that K is closed and 07y is well defined. Moreover 67y is a bounded
linear operator with adjoint (the controlled synthesis operator) 675, defined by

Oy : K — H, 05y ((0i(T"mw,U)? fier) = _viT mw,Uf, Vf € H.
il
Therefore, we define the controlled fusion frame operator Sty on H by

Sruf = 03u0ru(f) =Y oiT*mw,Uf, VfeH.
el
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It is easy to see that Sy is well defined and
Cruldy < Sty < Dryldy.

Hence Sty is a bounded, invertible, self-adjoint and positive linear operator by Lemma 1.3.
Therefore, we have Sty = Sty = Sur.

A special case occurs when U = Idy. In this case we call W a T-controlled fusion
frame for H.

Similarly, we call (f;);er a (T, U)-controlled frame if there exists 0 < Cry < Dry < 00
such that

Crullf]? < E <Uf, fi >< f;,Tf >< Dry||f||?>, VfeH.
i€l
Also we call

Sruf =Y _ <Uf fi >T"f;
icl
the controlled frame operator. It is easy to see that if for each i € I, the operator
f = Uf, foT* f; is positive, then Spy is well defined. It is a positive and invertible
linear operator.

Controlled fusion frames are generalizations of fusion frames. Our next result proves
this.

Proposition 2.2. (a) Let T,U € GL(H) and W = {(W;,v;) }ier be a (T,U)-controlled
fusion frame for H. Then W is a fusion frame for H. Furthermore T*SywU = U*SWT.
(b) Let T € GL(H). Then W = {(W;,v;)}ier s a fusion frame (resp. Bessel fusion
sequence) if and only if it is a (T,T)-controlled fusion frame (resp. (T,T)-controlled
Bessel fusion sequence) for H.

Proof. (a) Let f be an arbitrary element of H. Since W is a (T, U)-controlled fusion
frame for H, Sty is a positive linear operator and since (T*)~! € GL(H), the map
S : H — H defined by

S(f) = (T SrpU~'(f) = ZUiQﬂ—Wifv
il
is well defined. It is easy to see that S is a bounded, positive linear operator on H, and
also we have

_ — * — * 1
IS7H = 1TSpo T < NTNIS 7o T I < Z— T
TU
Hence S € GL*(H). Then by Lemmas 1.3 and 1.4 {(W;,v;)}ier is a fusion frame and
S = Syy is its fusion frame operator. Furthermore,
T*SwU = Sty = Sty = U*SWT.
(b) Since Spr = T*SwT, then Cldy < Sy < DIdy is equivalent to
CT*T < Sppr < DT*T

for fusion frame bounds C, D. Furthermore,

1 * 2
WIdH <TT < ||T|*Idu

and we have the result. O

Remark. By the above proposition we have the following formulas:

f=8"1S(H) =Y _viUSpy T mw,(f), Vf€H,

iel
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and

F=S8SNp) =D vimw USp,T*(f), Vf€H.

icl

Example 2.3. Let T' € GL(H) and {f;}ic1 be a T-controlled frame for H. If we take
W; = {\f; : A € C} for each i € I, then mw,(f) =< f,f; > fi for each f € H. So
{(W;,1) :i € I} is a (T, Idg)-controlled fusion frame for H because there exist constants
0 < Cr; < Dyp < oo such that

CrillfI? <> < Tf. fi >< fi, f >< Drr||fIIP, Vf € H.
il
But this is equivalent to
Crillf|? < Z <7w,Tf, f><Dri|f|?, VfeH
il
So we have the result.
Corollary 2.4. Let W be a fusion frame for H and T,U € GL(H) be self-adjoint.

Suppose that T ,U and Syy mutually commute and TU is positive. Then W is a (T,U)-
controlled fusion frame for H.

Proof. Since Sty = T'SywU = TUS)y, we have the result. O

One of the main objects in frame and fusion frame theory is to solve the equation
Sf = h or Syf = h and by using controlled frames and controlled fusion frames we
choose an operator C' as preconditioning matrix (see [2]) and we solve the equation

CSf=Ch or CSwf=Ch.
If we find an operator C' such that
1(CSw)HIIICSWI < IS THSwll,

then the Neumann algorithm is more stable and we get a better approximation of the
inverse operator, see [2].

Lemma 2.5. Let T € GLY(H) and let W be a T-controlled fusion frame for H. Then
(W,HTSWH), (ﬁ,”T”) and (H(Tl)*ll\’ 1Swl|), are the optimal bounds for
the controlled fusion frame operator T'Syy, the operator T and the fusion frame operator

Syw, respectively. Moreover,

1d
_17H_1 <TSw < |[TSwllIdu < |T|[|SwlIdm-
IT=HH1Sy
Proof. 1t is enough to observe that T'Syy = SwT. ]

Our next result provides a sufficient condition on a family of closed subspaces of H to
be a controlled fusion frame, in the presence of another controlled fusion frame. In fact
it is a generalization of Proposition 2.4 in [1] and Proposition 4.1 in [6].

Proposition 2.6. Let T,U € GL(H) and let {(W;,v;)}icr be a (T,U)-controlled fusion
frame for H with lower and upper bounds Cry and Dry, respectively. Let {V;}ier be a
family of closed subspaces of H. If there exists a number 0 < R < Cpy such that

0< Y v <T*(ny, — 7w, )US, f >< R|f|?, VfeH,
iel
then {(Vi,vi) bier is also a (T, U)-controlled fusion frame for H.
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Proof. Let f be an arbitrary element of H. Since {(W;,v;)}ier is a (T, U)-controlled
fusion frame for H, we have

CrullfI* <Y v} <T*nw,Uf, f >< Drul|f|*-

il
Hence
va <T*my,Uf, f>= va <T*(my, —7w,)Uf, f > —i—va <T*mw,Uf, >
il il il

< R||f|I> + DrullfII” = (R+ Dro)lIfI>-
On the other hand

va <T*my,Uf, f> :ZUE <T*7rW1,,Uf,f>—|—2:Ui2 <T*(mvy, — 7w, )US, [ >

il iel iel
> va <Trmw,Uf, f > —Z’U? <T*(my, — 7w, )USf, [ >
il iel
> CrullfII” = RIfII” = (Crv — R)|IfI1*.
So we have the result. O

Our next result is a generalization of Theorem 2.8 in [1].

Proposition 2.7. Let T,U € GL(H) and let {(W;,v;)}ier be a (T,U)-controlled fusion
frame for H. Let {V;};cr be a family of closed subspaces of H. Suppose that ® : H — H
defined by
O(f) =Y viT(my, —7w,)Uf, VfE€H,
icl
is a positive and compact operator. Then {(Vi,v;)}ier s a (T, U)-controlled fusion frame
for span{V;}ier.

Proof. Let {(W;,v;)}icr be a (T, U)-controlled fusion frame for H. Then by Proposition
2.2, it is a fusion frame for H. On the other hand since ® is a compact operator,
T—1®U~! is also a compact operator. But

T'oUT f = wi(ny, —ww,)f, Vf€H.
iel
Now by Theorem 2.8 in [1], we conclude that {(V;, v;) }ier is a fusion frame for span{V; }ier.
Let Sy be its associated fusion frame operator. Since ® = TS,U — USyT, then
TSyU = &+ USyT. But ® and USwT (= Styw) are positive operators. Therefore, by
Lemma 1.2 , T'SyU is a bounded positive operator. So {(V;,v;)}icr is a (T, U)-controlled
fusion frame for span{V;}c;. O

Example 2.8. Let {ej,ea,e3} be the standard orthonormal basis for R? and W
{(W;,1)}2_, be a l-uniform fusion frame for it, in which Wi = span{e,es},Ws
span{e1, es} and W3 = span{es}. It is easy to see that

3
AP <> llmw FIIP < 201f11°, Vf € R,

i=1
Let T'(z1,x2,x3) = (bx1, 4o, bxs) and U(z1,x2,23) = (%xl, %x27 %(E;),) be two operators
on R3. It is easy to see that T,U € GLT(R?) , TU = UT, TSyy = SwT and USyy =
SwU. Now an easy computation shows that

3

4 5

SIFIP <D <mw THUf><SlIfIP, VfeR
=1

So {(W;,1)}2_; is a (T, U)-controlled fusion frame for R? as we expect from Corollary 2.4.
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In the above example, we have 2 = g?” < L =2. Therefore, ||Idy — Srv|| < ||[Idy—
Sw|. Hence using a Neumann algorithm as described in [2], gives a good approximation
of S;llj. So an important work specially on infinite dimensional Hilbert spaces is to find
appropriate operators T and U for which ||Idy — Stu|| < ||[Idg — Sw|-

In the following result we consider locally controlled frames for each W; in a controlled
fusion frame W to obtain new globally controlled frames for H.

Theorem 2.9. Let T,U € GL(H) and let {W,;};er be a family of closed subspaces of H
and {v;}ier be a family of weights. Suppose that {fi; : j € J;} is a frame for W; with
frame operator S;, for each i € I. Then {(W;,v;) : i € I} is a (T,U)-controlled fusion
frame (Bessel) for H if and only if {viS;l/inj ci e 1,5 € J;}ois a (T,U)-controlled
frame (Bessel).
Proof. Let {(W;,v;) : i € I} be a fusion frame, with bounds C' and D. Since for each
i€I,{fi:je€ Ji}is aframe for W; with frame operator .S;, we have that {87;_1/2.]01']' :
j € J;} is a Parseval frame for W; and for every f € H, we have

ﬂ-Wsz - EjEJi<Uf7 Si_1/2fij>si_1/2fij'
On the other hand by using (1) we conclude that

ClIfI* < Siervi (mw,Uf, Tf) < DI f|[?
is equivalent to

ClAP < SierSies (Uf, 0872 i) (wiS7V? fi5,TF) < DI fI,
which shows that {viSi_l/inj cie€l,je J;}isa (T,U)-controlled frame for H if and
only if {(W;,v;) :i € I} is a (T, U)-controlled fusion frame for H. O
Our next result is a characterization theorem for (7', U)-controlled fusion frames.

Theorem 2.10. Let T,U € GL(H) and let {W;};cr be a family of closed subspaces of
H and {v;}icr be a family of weights. Suppose that {e;; : j € J;} is an orthonormal basis
for W; for each i € I. Then W = {(W;,v;) hier is a (T,U)-controlled fusion frame for
H if and only if ¥ = {v;U%¢;; :i € I,j € J;} is a T*(U*) ™ -controlled frame for H with
controlled frame operator T*SwU .

Proof. Let {e;; : j € J;} be an orthonormal basis for W; for each i € I. Then
qu(Tf): Z <7TWin,eij>eij: Z <Tf,6ij>6ij, VfEH

Jj€J; J€Ji
Also,
ﬂ'W@(Uf):Z <7TWivaeij>6ij:Z <Uf,€ij>€ij, VfGH
JEJ; JjEJ;
Hence,
<mw,(Uf),mw,Tf>=> <Ufe; ><e;;,Tf>=Y_ < fU%;; ><T"e;j, f > .
Jj€J; J€J;

Now if we take fi; :=v;U*e;; and C := T*(U*)~! then
CrullfIIP <> v} < 7w, Uf, 7w, Tf >< Drul|f|*
iel
is equivalent to

Crullfl? < Z Z < [, fij ><Cfij, f >< Drou| fII°

el jed;
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and we have the first result. Furthermore, by Proposition 3.2 in [2], ¥ is a frame with
the frame operator T*(U*)~1Sy. But Sg = U*SyU. So we have the result. O

If UT* = TU*, then C = T*(U*)~! is self-adjoint and by Proposition 3.3 in [2] we
have the following result.

Proposition 2.11. Let T,U € GL(H) and UT* = TU*. Then W = {(W;,v;) }icr is a
(T, U)-controlled fusion frame for H if and only if W is a fusion frame, C = T*(U*)~*
is positive and commutes with T*SyU.

Proof. The result follows by the above theorem and by Proposition 3.3 in [2]. |

By the above results, finding suitable operators T' and U such that W = {(W;,v;) }ier
forms a (T, U)-controlled fusion frame for H with optimal bounds, is equivalent to finding
suitable operators T and U such that ¥ = {v;U%e;; : i € I,j € J;} forms a T*(U*)~!-
controlled frame for H with optimal frame bounds. And for this, we can use the results
obtained in [2].

3. RESOLUTIONS OF THE IDENTITY

In this section we want to find new resolutions of the identity. It is easy to see that the
family {U?S;lle*ﬂ'WiU }ier of bounded operators is a resolution of the identity, where
T,U € GL(H) and {(W;,v;)}ier is a (T, U)-controlled fusion frame for H. In fact we
have

F=Y ST rw,Uf = T mw,USy |-
i€l el
Furthermore, as a corollary of Theorem 2.9 with its hypothesis we have the following
reconstruction formula:
—1/2 — *o—1/2
f:ZZU? <Uf,S; / fij >ST(§T S; / fij-
iel jeJ;
As mentioned before, by choosing suitable control operators we may have more suitable
approximations for S;llj and S, ! than S;Vl. Now we want to get a new resolution of the
identity by using two controlled fusion frames.

Definition 3.1. Let T,U € GL(H) and let W = {(W;,v;) }ier and V = {(V;,w;) }ier be
(T, T)-controlled and (U, U)-controlled Bessel fusion sequences, respectively. We define
a (T, U)-controlled fusion frame operator Sy for this pair of controlled fusion frames
as follows:
Srwyu f = ZUiWiT*ﬂ'Wﬂ'Viva VfeH.
i€l

As mentioned before, {(W;,v;) }ier and {(V;,w;) }ier are also two Bessel fusion sequences.
So by [8] the fusion frame operator Sywyf = 3, viwimw, 7y, f for this pair of Bessel
fusion sequences is well defined and bounded. But Stwyy = T*SywyU. Therefore,
Stwyu is well defined and a bounded operator. Furthermore, Sty = Svvwr-

Theorem 3.2. Let T € GL(H) and let W = {(W;,v;) }ier be a (T, T)-controlled Bessel
fusion sequence. Then W is a (T, T)-controlled fusion frame if and only if there exist an
operator U € GL(H) and a (U,U)-controlled Bessel fusion sequence V = {(V;,w;) bier
such that Syywr > mldy on H, for some m > 0.

Proof. Let W be a (T, T)-controlled fusion frame with lower and upper fusion frame
bounds C7 and Dy, respectively. Then we take U = T, V; = W, and w; = v;, for all
i € I. Hence we have

(Srwwr f, f) = Q_viT=w,Tf, f) =Y _vi{mw,Tf, 7w, Tf) > Cr| f|*

i€l i€l
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for all f € H. Furthermore,

CrllfI? < |Stwwrf|* < DrllfIP.
So STWWT =Spr € GL+(H) by Lemma 1.4.
Conversely, suppose that there exist an operator U € GL(H) and a (U, U)-controlled
Bessel fusion sequence V = {(V;,w;) }ier with Bessel fusion bound Dy. Also let 0 < m
be a constant such that

m||fI* < (Svvwrf, f)
for all f € H. Then we have

m|fI” < (Svvwr f, ) =Y _(vimw, T f,wimy,U f)

icl

< (vauwwﬁﬂﬁ)z(wanmvfnZ)Z

i€l icl
%
< VBl X s
il
by the Cauchy-Schwartz inequality. Therefore,
PR <Y ol T
-DU — . A Wi °
i€l
Hence we have the result. O
Our next result is an analog of Theorem 2.15 in [10].

Proposition 3.3. Let W and V be controlled Bessel fusion sequences as mentioned in
Definition 3.1. Suppose that there exists 0 < M < 1 such that

| f = Svvwr fll < M||fll, YfeH.

Then W and V are (T,T)-controlled and (U,U)-controlled fusion frames, respectively.
Furthermore, Syywr is invertible.

Proof. Firstly ||[Idg — Suvwr|| < M < 1, therefore Syywr is invertible, secondly let f
be an arbitrary element of H. Then we have

ISovwr fll = [ fIl = I.f = Svvwr fl| = (1 = M)| f]].

Hence Syywr is bounded below and we have

A= < ISovwrf | = swp (D viwU*mymw.Tf.g)|

geH |lgll=1"\ 457

%
< s (S Fmnts?)” (D wklimiUgl?)
iel i€l

geH, |gll=1

< /Dy (X v lmw )

el

=

Hence ( )2
1-M 2 2 2
TUHfH < Zvi [mw, T fI7,
el
where Dy is a controlled Bessel fusion bound for V. Therefore, W is a (T, T')-controlled
fusion frame. On the other hand we have

HIdH — STWVUH = ||(IdH - SUVWT)*” < M.

Hence similarly we can say that V is a (U, U)-controlled fusion frame. ]
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Let Syvwr and so Stwyy be invertible. Then the family
{iniS[}%;WTU*WViWWiT}iGI
is a resolution of the identity. Also we have the following reconstruction formulas:
f= Z iniSE]l/WTU*WVi mw,Tf = Z viw; U my, TrWiTS[}%)WT
il i€l
and
f= Z iniS;)}vVUT*ﬂWi m,Uf = Z viw T mw, Ty, US;&VVUf.
iel i€l
Suppose that ||[Idg — Syywrl|l < 1. Then as we mentioned in Proposition 3.3, Syywr
is invertible and we have

Sovwr = Z(IdH — Svvwr)".
n=0
Furthermore,
ISgywrll < (1= 11di = Spvwerl) ™"
Therefore,

{ini(IdH — SUVWT)nU*ﬂ'Vi’lTWiT :1€l,ne Z+}
is a new resolution of the identity.
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