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ABSTRACT INTERPOLATION PROBLEM IN GENERALIZED
NEVANLINNA CLASSES

EVGEN NEIMAN

ABSTRACT. The abstract interpolation problem (AIP) in the Schur class was posed
by V. Katznelson, A. Kheifets, and P. Yuditskii in 1987. In the present paper we
consider an analog of AIP for the generalized Nevanlinna class N, (£) in the non-
degenerate case. We associate with the data set of the AIP a symmetric linear
relation A acting in a Pontryagin space. The description of all solutions of the AIP
is reduced to the problem of description of all L-resolvents of this symmetric linear
relation A. The latter set is parametrized by application of the indefinite version
of Krein’s representation theory for symmetric linear relations in Pontryagin spaces
developed by M. G. Kreln and H. Langer in [22] and a formula for the L-resolvent
matrix obtained by V. Derkach and M. Malamud in [11].

1. INTRODUCTION

The abstract interpolation problem (AIP) was posed by V. Katznelson, A. Kheifets,
and P. Yuditskii in [15] as an extension of the V. P. Potapov’s approach to interpolation
problems [19]. A description of the set of all solutions of the ATP was reduced in [15] to the
description of all scattering matrices of unitary extensions of a given partial isometry V'
([4])- In several papers ([5], [24], [17], [16]) it was shown that many problems of analysis,
such as the bitangential interpolation problem, moment problem, lifting problem, and
others can be included into the general scheme of the AIP.

A parallel version of the AIP for the Nevanlinna class N(£) was considered by
V. A. Derkach in [10]. The class N[L] consists of all operator valued functions m(\)
which are holomorphic in the upper halfplane C; and take values in the set [L] of
bounded linear operators in a Hilbert space £, such that the kernel

m(A) —m(w)*

A—w@
is nonnegative on C,. In the present paper we consider an analog of AIP for the gene-
ralized Nevanlinna class N, (£) ([21]) in the non-degenerate case.

The kernel N”*()\) is said to have k negative squares and it is written sg_N = & if for
any choice set of points wq,...,w, in Q and vectors uq, ..., u, the quadratic form

{(ij (wi)uy, ui)ﬁ}

has at most ~ negative eigenvalues, and for some choice of n, wj, u; it has exactly &
negative squares ([1]). Remind that the class N (L) consists of operator valued functions

m(A) meromorphic in C; U C_ such that m(A) = m(\)* and the kernel (1.1) has &
negative squares on the domain of holomorphy §,, of the function m.

(1.1) NZ'(A) =

n

4,5=1
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Let H(m) be the Pontryagin space of vector valued functions meromorphic in C \ R
with the reproducing kernel N”'(\) (see [7], [3]). This space is characterized by the
properties:

(1) N'(-)u € H(m) for all w € C\R and u € L;
(2) for every f € H(m) the following identity holds

(12) (FO) NI idpmy = ' F (), wEC\R, we L.

Let X be a complex linear space, let £ be a Hilbert space, let By, Bs be linear operators
in X, let C, C5 be linear operators from X to £ and let K be a nonnegative sesquilinear
form on X which has v negative squares. Consider the following indefinite analog of the
ATP.

Problem AIP, (B, By, C1,Co, K). Let the data set (B, Ba, C1,Co, K) satisfies the
assumptions

(A].) K(th, Blg) — K(Blh, ng) = (Clh, ng),c — (Ogh, Clg)/; Vh,g € X;

(A2) ker K = {0}, where ker K = {h € X : K(h,u)=0 Yu € X}.
Find a function m(\) from the class N, (L) such that for some linear mapping F : X —
H(m) the following conditions hold for all h € X:

(C1) (FBoh)(N) = MFBh)N) = [ Ie —m(\) | [

Note that the condition v < k is necessary for the solvability AIP,; (see Remark 3.1).
Define the Pontryagin space H as the completion of X endowed with the scalar product

(1'3) <hvg>7-l = K(hvg)> h,geX.

We identify the linear operators By, Bs : X — X with the linear operators By, B :
X = H.

In the present paper we will use the notion of a linear relation in a Pontryagin space $).
Recall, that a subspace T' of 72 is called the linear relation in §. For a linear relation T'
in $) the symbols dom T, ker T', ran T', and mul 7" stand for the domain, kernel, range, and
the multivalued part, respectively, (see [1]). The adjoint T* is the closed linear relation
in $) defined by

Cih |
Coh |’

T ={{h.k} € H*: (k. f)s = (h.g)s, {9} € T}.
Recall that a linear relation T in §) is called symmetric (selfadjoint), if T C T* (T = T*,

respectively).
It follows from (A1) that the linear relation

~ Bih Bsh )
=l [ & ])re
is symmetric in H & L.

Let us impose some additional assumptions on the data set
(A3) By = Iy and the operators By : X CH — H, C1,Cs : X CH — L are bounded.
(A4) for some choice of A\; € C4 (j =1,...,k) the following condition holds:
ker [C5 (1-MBi)7'Cs (1-XBj)™'Cs -~ (1-A\Bj)"'C3] ={0}.
The main result of the paper is the following description of all solutions of the AIP;.

Theorem 1.1. Let the data set (By, Ba, Cy,Ca, K) satisfy the assumptions (A1)-(A4).
Then the Problem AIP,(Bi, Ba,Cy,Cs, K) is solvable and the set of its solutions m(\)
is parameterized as follows

m(\) = Pe(A= N1 (Ie + AP(A—= N1 .) 7
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where A ranges over the set of all selfadjoint L-regular extensions OfA\ with the exit in
a Pontryagin space H & L D H @ L. The corresponding linear mapping F : X — H(m)
is given by

(FR)(A) = Pe(A—=X)"'h, heX.

Due to Theorem 1.1 the description of all solutions m of the AT P, (B, B2, C1,Co, K) is
reduced to the problem of description of all L-regular L-resolvents of the linear relation A.
The latter description goes back to M. G. Krein in [20] (see also [23], [11]).

The pair {p, ¢} of the [£]-valued function is called the Nevanlinna pair if the functions
p(+), ¢(-) are holomorphic on Cy and such that

A)*p(@) — p(N\)*q(@
(i) NPa(x) = q(A) p(wA) PN (@)
“ - -
(i) ¢(A)*p(A) = p(N)"q(A) =0, A € Cy;

(iii) 0 € p( (A) = Ag(A)), A € Cs.

The set of Nevanlinna pairs of [£]-valued functions is denoting by N(L£). Two Nevanlinna

pairs {p,q} and {p1,q1} are said to be equivalent if p;(A) = p(A)x(\) and ¢1(\) =

g(A)x(A) for some operator function x(-) € [£], which is holomorphic and invertible on

Cx. The set of all equivalence classes of Nevanlinna pairs in £ will be denoted by N(L).
Define the operator valued function © by the formula

) o= ) g~ teae A |G (- am) -G c).

is nonnegative on Cy;

Theorem 1.2. Let the AIP, data set (B1, By, C1,Cs, K) satisfy the assumptions (A1)-
(A4) K =v, and let ©(N) be defined by (1.4). Then the formula

(1.5) m(A) = (011 (\)a(N) + 12(N)p(N) (B21(\)a(A) + 22 (\)p(X) ™

establishes a one-to-one correspondence between the set of all solutions m(\) of the
AIP,(By, By, Cy,C5, K) and the set of all equivalence classes of Nevanlinna pairs {p,q} €
N(L) such that the function m defined by the formula (1.5) belongs to the class N (L).

The assertions of Theorem 1.1 and Theorem 1.2 remain valid under less restrictive
assumptions. Namely, (A1)—(A2) for Theorem 1.1, and (A1)—(A3) for Theorem 1.2.
However, in this case the problem AIP, should be considered in the class of the multi-
valued N-functions i.e. the N,-pairs (see Definition 2.1).

The paper is organized as follows. In Section 2 we recall the definition of the class of
Ny-pairs N «(L). To each selfadjoint linear relation A and a scale spaces L we associate
an N,-pair {¢,1}, which is normalized by the condition ¢(\) — Ap(A) = Iz, by the

formula
(1.6) Y(A) = Pe(A= Nz, o\ =TI+ APL(A= N7z, A€ p(A).

Conversely, given an N,-pair {¢, %} we construct a functional model for a selfadjoint
linear relation A = A(¢p, ) such that the pair {, 1} is related to A(p, ) via (1.6). The
main results of this part were presented by the author in [26]. In Section 3 we formulate
the AIP in the classes of Nj-pairs. In this section we prove a structure theorem for the
solutions of the AIP,. In Section 4 we give explicit formulas describing all solutions
of the problem in terms of the N, -pair. In this section we study the uniqueness of the
construction of the map F' via a solution of the AIP,. In Section 5 we prove the main
results of this paper Theorem 1.1 and Theorem 1.2.

Applications of these results to an indefinite moment problem will be presented in
another paper.
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2. FUNCTIONAL MODEL OF A SELFADJOINT LINEAR RELATION
2.1. Generalized Nevanlinna pairs. Let £ be a Hilbert space.

Definition 2.1. A pair {®, U} of [£]-valued functions ®(-), ¥(-) meromorphic on C\R
with a common domain of holomorphy hey is said to be an N,-pair (generalized Nevan-
linna pair) if

(i) the kernel

NEY () =

has x negative squares on how;
(if) T(A)*®(N) — D(A)*T(A) =0 for all A € hou;
(iii) for all A € hgy N C4 there exists p € C4 such that

0 € p(®(A) — p¥(N)) and 0 € p(®(X) — BE(N)).

Note that for kK = 0 we get the definition of the Nevanlinna pair.

Two N,.-pairs {®, U} and {®1, ¥, } are said to be equivalent, if &1(\) = ®(N\)x(\) and
T (A) = ¥(A)x(N) for some [£]-valued function x(-), which is holomorphic and invertible
on hgy. The set of all equivalence classes of N,-pairs in £ will be denoted by NK(L).
We will write, for short, {®, U} € N, (L) for the generalized Nevanlinna pair {®, U}.

If ®(\) = I, where I is the identity operator in the space £ then the Definition 2.1
means that U(\) is an N, (L)-function in the sense of [21]. In this case the condition
(iii) is satisfied automatically. Clearly, if {®, ¥} is an Ny-pair such that 0 € p(®()))
A € hoy, then it is equivalent to the pair {Iz, U(A)®(A)~'}, where ¥O~! € N, (L).

Definition 2.2. An Nj-pair {¢, 1} is said to be a normalized N,-pair if
(iii") @A) — AMp(\) = I for all A € by,

Clearly, every N,-pair {®, U} such that 0 € p(®(X\) —A¥(N)) for A € hoy is equivalent
to a unique normalized N,-pair {y, %} given by
-1 —1
21) e = 2@ —AT() T B = B (@) — ae(n)
2.2. N,-pair corresponding to a selfadjoint linear relation and a scale. Let $
— be a vector space with a sesquilinear form [, -|s : $ x $§ — C. Two elements u and
v of § are said to be orthogonal if [u,v]s = 0. Similarly, two subspaces of $) are said
to be orthogonal if every element of the first space is orthogonal to every element of the

second. The linear space (.67 [ ]) is called a Pontryagin space if there exists a direct
orthogonal decomposition $ = H4 & H_, where H, is a Hilbert space with the form
[,"]s and $_ is a Hilbert space of finite dimension with the form —[-,]s. The space 9

is called Pontryagin space with the negative index x (Il,-space) if the dimension of §_
is K < oo ([1]).
Let ‘H be a Pontryagin space and L be a Hilbert space.

Definition 2.3. A linear relation A = A* in # & L is said to be £-minimal if
(2.2) Ho :=span{Py (A —\)"'L: X e p(A)} =,
where Py is the orthogonal projection onto the Pontryagin space H.

Definition 2.4. A linear relation A = A* in H & £ is said to be L-regular if H © Hy is
a Hilbert space. Here Hg is defined by (2.2).

In the case of an isometric operator in a Pontryagin space the notion of L-regularity
was given in [9)].
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Let A be a selfadjoint linear relation in H @ £ and let P, be the orthogonal projection
onto the scale space L. Define the operator valued functions

(2.3) @\ =1+ APL(A= N I, v = Pe(A-N"H e (A e p(A)).
Clearly,

(2.4) eV =0(), YA =9Q) (A€ p(4)).

Proposition 2.5. ([26]) Let H be a Il;-space, let L be a Hilbert space and let A be
a selfadjoint linear relation in H @ L. The pair of operator valued functions {p,v}
associated with A via (2.3) is a normalized N, -pair with 0 < ' < r. If, additionally,
the linear relation A is L-minimal then k' = k.

Definition 2.6. The pair of operator valued functions {y, %} determined by (2.3) will
be called the Nj-pair corresponding to the selfadjoint linear relation A and the scale L.

Note that for vector valued functions ¢(\) and ¥()) defined by (2.3) we have b,y =
btp = hw~
2.3. Functional model of a selfadjoint linear relation. Consider the Pontryagin

space H(p, 1) with the reproducing kernel N£¥()). It follows from (1.2) that the evalu-
ation operator

EQ) = fe f) (feHpy))
is a bounded operator from H (i, 1) to £. Note also that the set of functions {N£¥(-)u :
w € by, u € L} is total in H(p, ) ([1]).

In [26] author constructed A functional model of a selfadjoint linear relation A con-
nected with a given N, -pair {¢, 1 }. Recall the main results of this work.

Theorem 2.7. ([26]) Let L be a Hilbert space and let {p, ¥} be a normalized pair from
N, (L). Then the linear relation

(25) Al ¥) = {{[ i } v [ f; H ENACVE {fj(cxf - s(;(oi?u);—u&lé;)eu’ﬁ;k € by }

is a selfadjoint linear relation in H(p,v) & L and the pair {p,¥} is the Ng-pair cor-
responding to A(p, ) and L.

Remark 2.8. The linear relation A(p,1)) given by (2.5) is £L-minimal.

Remark 2.9. Let the function m(\) belong to the class N,(L£) and let the operator
I — Am(A) be invertible for all A € CL N bh,,. Then the pair {Ig, m()\)} is equivalent to
the normalized N-pair

{p.0} = { (L = Am(0) ™ m) (L = xm(2) ' |,

and the corresponding functional model can be rewritten as

_ g 9 |\, 9,9" € H(m); u, v’ € L;
o o= {11010 gt SEe S e
The functions f, f’ from the functional model (2.5) are connected with the functions g, ¢’
from the functional model (2.6) by the relationships

g =T =AmN)f(A) and g'(A) = (I = Am(N))f'(A).
Proposition 2.10. ([26]) For every normalized N,-pair {¢,¥} and h € H(p, ) the
following identity holds:

27) Pe(A(e.) = N7 o] =) (e
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The operator F : H — H(p, ) given by the formula
(2.8) his (FR)(A) = Pr(A—=X)"'h (heH)
is called the generalized Fourier transform associated with A and the scale L.

Theorem 2.11. ([26]) Let A be a selfadjoint linear relation in H & £ and let {p, )} be
the corresponding N-pair and let Ho be defined by (2.2). Then the generalized Fourier
transform F maps isometrically the subspace Ho onto H(p, ) and F is identically equal
to 0 on H O Hp.

Corollary 2.12. Let the linear relation A be L-minimal. Then it is unitary equivalent
to the linear relation A(p, ) via the formula

oo - (7L AR D3

The operator F @ I establishes this unitary equivalence.

! ~
Proposition 2.13. ([26]) For every {[ﬂ , [i,} } € A the following identity holds:

u

(2.10) EOVF —AD = [o() —o(V)] [“] .

3. SOLUBILITY OF THE ABSTRACT INTERPOLATION PROBLEM

3.1. Formulation of the problem. Let X be a complex linear space, let £ be a Hilbert
space, let By, By be linear operators in X, let C;, Cy be linear operators from X to L.
Let K be a sesquilinear form on X which has v negative squares. Consider the following
continuous analog of the abstract interpolation problem.

Problem AIP, (B, By, C1,Co, K). Let the data set (B, Ba, C1,Co, K) satisfies the
assumptions (A1)-(A2). Find a N,-pair {, )} € N(L) such that for some linear mapping
F : X — H(p,v) the following conditions hold:

(C1) (FBah)(A) — A(F'B1h)(A) = [ oA =¥\ } { g;z ], for all h € X;

(C2) (Fh, Fh)ypp) < K(h,h), for all h € X.

The AIP with x = v = 0 had been considered in [10].

Remark 3.1. For the solvability of the problem it is necessary that x > v. Indeed, let
us decompose the space X into the direct sum of the negative subspace X_ and the
non-negative subspace X, according to the form K (h,h)
(3.1) X =X_+X,.
Also dimclos (X¥_) = v < oo hence the set X_ is the close subspace of the space X
it follows from (C2) that (Fh, Fh)i(w py < 0 for any h(# 0) € X_. Thus the linear
mapping F is not equal to 0 at the subspace X_ (except at the zero-vector). Hence the
restriction of the mapping F' to the finite-dimensional subspace A_ is invertible and thus
it saves the dimension

dim F(X_) = v.
The set F(X_) is a part of the negative subspaces of H(p, ). Therefore the dimension
of the negative subspace of the space H(p, ) is not less than v.

Let the space H be the completion of the space X with respect to the scalar product
(32) <h7g>7'l :K(hvg)7 hag e X.

Clearly the space H is a Pontryagin space with the negative index v. We identify linear
operators By, By : X — X with linear operators By, By : X — H.
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3.2. Structure of the solutions.

Proposition 3.2. Let the data set (By, Ba,C1,Cs, K) satisfies the assumption (Al).
Then the linear relation

~ Bih Baoh .
(3.3) A_{{[Clh],[@h”.hex}
is symmetric in H H L.

Proof. The statement is implied by (A1) since

Bsh Bih _ Bih Byh
Coh || b [y " \LCb 7L Cob | ) e
— K(Bsh, Bih) + (Cah, C1h) - — K (Bih, Bsh) — (Cih, Cah)z = 0.

O

Theorem 3.3. Let the data set (By, By, C1, Ca, K) satisfies the assumptions (A1)-(A2).
Then the Problem AIP,(Bi,Ba,C1,Co, K) is solvable and the set of its normalized so-
lutions is parametrized by the formula

(3.4) [:ﬁ&; } _ [ I IOE } {PL(Z—IEA)‘% 7

where A ranges over the set of all selfadjoint L-regular extensions ofﬁ with the exit in a

Pontryagin space H® L D H @ L. The corresponding linear mapping F : X — H(p, V)

is given by

(3.5) (FR)(A) = Pe(A—X)"'h, heX.

Proof. Sufficiency. Let A be a selfadjomt extension of A and let {gp 1} be the nor-

malized N,-pair corresponding to A and the scale £ and let F : H — H(p, 1) be the

corresponding generalized Fourier transform. Then the formula (3.4) is implied by (2.3).
Let F : H — H(yp, 1) be the generalized Fourier transform associated with A and the

scale £. In view of (2.8) the linear mapping F' : X — H(¢, 1) given by (3.5) is connected
to F via the formula

(3.6) Fh=Fh (heX).
Since F satisfies the identity (2.10) and

Bih Bsh ~
e[ enjeies
one obtains from (2.10)

(F'Bah)(A) = A(FB1h)(A) = (FBzh)(A) = A(FB1h)(A)

— [ o))~ ] { g;z ] Vh e X.

Thus we have shown that the condition (C1) holds.
Since A is the L-regular extensions of A then one obtains from Theorem 2.11

(3.8) (Fh, Fh)p o) < (hyh)3 (b€ H).

Indeed, the generalized Fourier transform F maps isometrically the Pontryagin space Hg
on H(p, ) and is identically equal to 0 on a Hilbert space H & H,.
Next, it follows from (3.6) and (3.2) that for all h € X

(Fh, Fh)3(p.p) = (Fh, Fh)p ) < (b, )3 = K(h,h),

(3.7)

since A is L-regular. This proves (C2).
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Hence N,-pair {¢, 1} is a solution of the AIP,.

Necessity. Let a normalized Ny-pair {¢,1} be a solution of the AIP, and let the
mapping F : X — H(p, 1) satisfies (C1)—(C2). We will construct a selfadjoint L-regular
exit space extension A of A such that (3.4) and (3.5) hold.

Step 1. Isometric embedding of H. Consider the mapping F' : H — H(p, 1) as an
extension of F : X — H(p, ) to the space H D X.

The mapping F is contractive due to (C2)
((FRYN), (FRYN)) 0y = (ERYA) (FRYA)) gy, < K (1) = (BB

Thus the operator I, — F*F:H —His nonnegative.
Let D = D*(> 0) be the defect operator of the contraction F' defined by
(3.9) D?=I—-FF:H—>H

and let D = tan D be the defect subspace of Fin M. The space D is Hilbert space since
the operator D is nonnegative. Consider the column extension F' of the operator F to

the isometric mapping from H to D @& H(p, ) by the formula
~ Dh

1 Fh=| ~ .

(3.10) h { 7h ] , he#H

Step 2. Construction of a selfadjoint linear relation A. Let Ap be a linear relation in
D defined by

Ap = {{DB1h,DBsh}: h e X}.
We will prove that Ap is a symmetric linear relation in D. We must show that
(3.11) (DBsh,DB1h)y — (DB1h, DBh)3 = 0.
It follows from (3.9) that
(DBsh, DB1h)3 — (DB1h, DBoh)y
= ((I — F*F)Byh, Bih)3 — (I — F*F)Byh, Byh)
= (Bgh, B1h)y — (B1h, Boh)y
— (FBh, FB1h)yy . ) + (FBih, FBah)yy(p.y)
= K(Bsh, B1h) — K(B1h, Boh)
— (FBah, FB1h)yy, ) + (FBih, FBah)ayp.0).

(3.12)

As follows from (C1)
(FByh)(A) — A(FB1h)(A) = (FByh)(A) — A(FB1h)())

Cih

3.13
(3.13) =[ o) —1/;(/\)}[02h} Vh e X.

The Theorem 2.7 implies that
FBih FBsh
A .
{70 ] 2 ]} e acw
Since A(p, 1)) is a selfadjoint linear relation then
(FBah, FBih)yy 4 + (C2h, Cih) g — (FBih, FBah)yy ) — (Cih, Coh) e = 0.

Therefore the right hand part of (3.12) can be rewritten as
I((th7 Blh) - K(Blh, th) — (Clh, Cgh)ﬁ + (Cgh, Clh)g,
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which is vanishing due to (Al). Thus the equality (3.11) has showed and hence the
relation Ap is a symmetric linear relation in D.
Let Ap be a selfadjoint extension of Ap in a Hilbert space D > D and let

(3.14) A=Ap & Ap, ).

Note that A is a selfadjoint linear relation as a direct sum of selfadjoint linear relations.

Step 8. Linear relation A satisfies (3.4) and (3. 5) Under the identification of the
vector h € H with Fh the symmetric linear relation Ain H & £ can be identified with
the symmetric linear relation

Al = (ﬁ@]ﬁ);{(ﬁ@]ﬁ)_l

DB1h DBsh
= FBih |, | FByh thex
Cih Csh

in H := D & H(p, ) & L. Moreover, it follows from the results of Step 2 of this theo-
rem that A; is contained in the selfadjoint linear relation A = Ap @ A(p,1). Indeed,
{DB1h7DB2h} € AD C AD and

(22} ) s
The formula (3.4) is implied by the analogous formula for A(p, )
[ ey } _ { Ir 0 } { Pe(A(p, ) =N ]
©(A) My I Ir
since
Pr(Alp, ) =N p=Pe(A= N7,

It follows from the definition of the linear relation A and the mapping F that for all
heX

pei-n [ B ] < petaten -0 [ 1]
—Peate ) -7 [ .

Next, substituting (2.7) in the equality (3.15) we get

(3.15)

PeA-n [ B ] = Emon,

In view of the identification Fh and h this completes the proof of the formula (3.5).
Step 4. The L-reqularity of the extensions A. Consider the space

Ho = W{Pﬁw(w) (A-N"'L: e p(i)}.
Since A(p,1) in L-minimal and
PogenyA =N = Prean(Alp,0) =) 7' .,
then Ho = H(p,1). Thus the subspace
(Do) oHo

coincides with the Hilbert space D. (Il
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4. DESCRIPTION OF SOLUTIONS OF ABSTRACT INTERPOLATION PROBLEM

In this section we will assume that the number of negative squares of the kernel N¥ ()
is equal to the number of negative squares of the form K. In other words we will study
AIP,. with k = v.

Let A be a selfadjoint L-regular extensions of A with the exit in a Pontryagin space
HoL.

Definition 4.1. The compression Ry = Pg(ﬁ — A)7! L of the resolvent of A on the
space L is said to be the L-resolvent of the relation A.
The L-resolvent R is said to be L-regular if A is the L-regular lineal relation.

In view of Theorem 3.3 a description of the set of solutions of the AIP, is reduced to
the description of L-regular L-resolvents of the linear relation A.

4.1. Symmetric linear relation A. Let us impose some additional assumptions on the
data set (Bi, Ba, C1, Ca, K):

(A3) By = Iy and the operators By : X CH — H, C1,Cy : X CH — L are bounded.

The symmetric linear relation A can be rewritten as

w (A

In view of (A3) the closures of A take the form

(4.2) A;_closﬁ_{{[giﬂ,{czh”:heﬂ}.

A point A € C is said to be a regular type point for a closed symmetric linear relation
A if ran (A — A) is closed in H @ L. Let p(A) be the set of all regular type points for
linear relation A and let ps(A, L) := p(A, L) N p(A, L). It is well known ([13]) that for
symmetric linear relation A in II,-space p(A) coincides with C; U C_ (with a possible
exception of at most & pairs of complex numbers symmetric with respect to the real axis)
and the defect subspaces

M (A) = (H®L)Sran (A — )

have the same dimensions ny(A) and n_(A) for A € C, and A € C_, respectively,
which are called the defect numbers of the symmetric linear relation A. In the following
proposition we show, that the symmetric linear relation A in (4.2) has equal defect
numbers ny (A) = n_(A) = dim £ and, moreover, 0 € p(A).

Proposition 4.2. Let the data set (By, By, C1, Co, K) satisfy the assumptions (A1)-
(A3). Then

1) the adjoint linear relation A* takes the form

c_Js_fl9 g 1l. wvveLygen ,
(4.3) A_{g_{{v}’{v’}}'g:Bi‘g’-ﬁ-Cfv’—CQ*v ’
2) the set p(A) of reqular type points for symmetric linear relation A contains the
resolvent set of the linear relation By *

p(Br) ={x € (C\{0}): 1/x € p(B1)} U {0},
and the defect subspace My(A) for X € p(By*) consists of vectors

(4.4) [ —F)"u

u

}, u € L,
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where the function F(X) : H — L is defined by
(4.5) F(A) = (Co = XCv)(Iy — AB1) ™"
Proof. 1) Let

’g\:{{ g },[ “z: }} eA* (9,9 € H;v,v' €L).
Then it follows from (4.2) that
(¢, Bih)y3y — (g, h)3 + (v',C1h)z — (v,Cah) . =0
for all h € H. From the nondegeneracy of the Pontryagin space H it follows that
Big' —g+Civ' —Civ=0

or in the equivalent form

(4.6) g=Bi¢ + Civ' — Cv.
2) It follows from (4.2) that
oy Bih (Iy — AB1)h )
o {{[ B[ ) e
and hence

ran (A — \) = {[F&h} he H}

where F()\) is given by (4.5). Therefore the set ran (A — \) in closed for all A € p(By!).
If A € p(By!) and § € My (A) = ker(A* — \) then ¢’ = Ag, v’ = Av. Substituting these
equalities in (4.6) one obtains

(Iy = ABy)g = —(C5 — ACY)v.

This proves the second statement since g = —F (\)*v. O

4.2. Krein’s representation theory for symmetric linear relation A. Recall some
facts from M. G. Krein’s representation theory following ([20], [12]).

Definition 4.3. Let A a symmetric linear relation in H& L. It is said that A is L-regular
point for A (in short A € p(A, £)) if A s a regular type point for A and
(4.8) HeL=ran(A— N+ L.

It is also put ps(A4, L) := p(A, L) N p(A, L).

For every A € p(A, L) the operator valued function P(\) : H — L is defined as a skew
projection onto £ in the decomposition (4.8) and Q(\) : H — L is given by

(4.9) Q) = Pe(A—N)"HI-P(\), Aep(AL).
Let the matrix J € £ @ L be given by

10 =il
7= L‘I c 0 } '
In the next theorem we will describe P(A) and Q()\) through the data set of the

problem AIP,.

Theorem 4.4. Let By, B, C1, Ca, K satisfy the assumptions (A1)—(A3). We define
the operator valued function F(X) by the formula (4.5). Then
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1) p(A, L) = p(By") and for X € p(A, L) the operator valued functions P(\), Q(\)
are given by

(4.10) P(A){Z}uF(A)f, feH, uel,
(4.11) Q(\) { Z } =Ci(Iy —AB)"'f, feH.

2) The adjoint operators to P(\), Q(A) : [ ?Z } — L take the form
(4.12) P(A)*u = [ _F(UA)*“ } weL, Aep(A L),
(4.13) Q) u = [ (B = X%f)_lcl*“ } weL, Aep(A L)

Proof. 1) Assume that X € p(A, £) and the decomposition (4.8) holds. Then for f € H,
u € L there are unique h € H and v € L such that

(4.14) (IH - )\Bl)h = f, (CQ - /\Cl)h +v=u.
This implies, in particular, that A € p(B; ).

Conversely, if A € p(B; '), then the equations (4.14) have unique solutions i € H and
v € L. Hence A € p(A, L). In view of (4.14) these solutions take the form

(4.15) h= Iy —AB1)"'f, v=P(\) [ / ] =u—F(\)f.
It follows from (4.9), (4.15) and (4.7) that
ow| I | =reta-nta-ron | 1]

—PO)
== | i |

_ By (I = AB1) "' f
=P {01(61’2 ! )\Cl)_llFO‘)f}

=Cy(Iy — A\By) 7' f.

2) The formulas (4.12), (4.13) are implied by (4.10), (4.11) and the equalities

RN T — R T
(oo ] DW — (0, Cr(I — ABY) e

() 1],
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4.3. The boundary triplet for A*. Let us recall the definition of a boundary triplet
which will be used later in calculation of L-resolvent matrix of the operator A. For a
Hilbert space densely determined symmetric operator A it was introduced in [18] (see
also [14]). To the case of non-densely defined symmetric operator it was extended in [25]
(see also [12]). For a Pontryagin space symmetric operator it was extended in [8].

Definition 4.5. A triplet II = {£,T1,T3} where I'; : A* — £, i = 1,2, is said to be
a boundary triplet for A* if for all f = {f, f'}, g = {9,9'} € A" the abstract Green’s
formula holds

(4.16) (', mac — (f.9 ) nec = (T1f.T29)c — (D2, T1g)c
and the mapping I' := T P AF — £ is surjective.
'y L

As was proved in [8] the set of all selfadjoint extensions A of A can be parametrized

by the set of selfadjoint linear relations 7 in £ via the formula
feAdsTfer

Let the operator-valued functions P(A\)* and Q(\)* be given by

(4.17) PN u={PN)u, \P(\)*u}, ueL,

(4.18) O\ u = {Q\) u,u+ AQ(N)u}, wuceL,
where P(A)*, Q(A)* : L — H are adjoint operators to P(A), Q(A) : H — L.

Theorem 4.6. ([8], [11], [12]) Let A € ps(A, L) then the linear relation A* can be
decomposed in the following direct sum:

(4.19) A=A+ PN L+ ONL.

Proposition 4.7. Let the data set (By, Ba, C1, Ca, K) satisfy the assumptions (A1)-
(A3). Then a boundary triplet I1 = {L£,T1,T2} for A* can be defined by

(420) F1§ =V — Olg/, F2§ = *’Ul + ng/.

Proof. For two vectors
b e L e

(pn— g n+ W) — (u,0') e = (W, 0) e — (u,0)
+(f",Big' + Civ' — C3v)n — (B{ f' + Ciu' — C5u, g ).
It follows from (1) that the right hand part of (4.21) takes the form
(Bif's 9"y — (f', B1g s + (Cof ,0) e — (Caf',v)c

— (W, 019" ) e + (u,Cog’) e + (W 0) e — (u,0') 2
= (Cof',C1g' ) = (C1f', Cag) e + (CoLf, 0 ) e — (Cof',v)c
— (W, C19" ) + (u,Cog’) e + (W) — (u,0') 2
= (Cof —u/,C1g' —v)r — (C1f —u,Cog’ — ') .

Hence the abstract Green’s formula (4.16) holds for the maps I'y and I's defined by the

formulas (4.20).
Since 0 € p(A, £) one can rewrite the formula (4.19) in the form

A* = A+ P(0)* L+ O(0)L.

one obtains

(4.21)
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Due to (4.12), (4.13), (4.17), (4.18) one obtains for every u € £

N fégu 0 PRV Ciu 0
rore={[ 7 L [0 ]} cor={[ T[]}
It follows from (4.20) that
5 * u N * 0
P”P(O)u-{o}, I‘Q(O)u-{_u]
and hence the mapping I' : A* — L& L is surjective. So {£,T'1,T'2} is a boundary triplet
for A*. |

4.4. L-resolvent matrix. We define the block operator-functions V(A) = [_

—Q()\)*].

[H,L£ & L] and V(A\)* = B00-

Definition 4.8. ([23]) A matrix-function W, (A) is called an L-resolvent matrix for the
symmetric linear relation A if it satisfies the identity

(4.22) WeNIWe(p)* = J +i(A = mVAV()* (A€ p(A, L))

We emphasize that identity (4.22) defines a family of L-resolvent matrices for the
linear relation A. At the same time, it was shown in [11, 12] that with any boundary
triplet IT = {£,T'1,Ty} for A* and any scale subspace L it is naturally associated the
(unique) matrix function Wy (+) that satisfies (4.22). It is called the L-resolvent matrix
of A corresponding to the triplet II or just the IIL-resolvent matrix of A. It was shown
in [11, 12] that Wiz (+) is expressed in terms of boundary mappings I';} and the function

V().

Theorem 4.9. ([11], [12]) Let IT = {£,T1,T2} be a boundary triplet for A* and X €
ps(A,L). Then the corresponding ILL-resolvent matric Wi is given by

~1,0(0)" TyP(V)*
—T19(N)* T1P(\)*
Proposition 4.10. Let the data set (By, Ba, C1, Co, K) satisfy the assumptions (A1)-

(A3) and let the boundary triplex 11 = {L£,T'1,T2} for A* be given by (4.20). Then the
corresponding ILL-resolvent matriz of A is given by

(4.23) Wiie(A) = [wij (V)7 =1 = [ = ([V()7)™

[ Iz 0 e B Lol
(4.24) Whe (M) = [ NI ] (IHA[ s ](IH AB)) [ C ] J).
Proof. One obtains from (4.17), (4.12) and (4.20) that
(4.25) LyP(A)*v = —Av — ACo F(\)*0,
(4.26) T P(A)*v = v + AC F(A)* .
Similarly (4.18), (4.13) and (4.20) imply
(4.27) —T50(\)*v = v — ACy (I — ABY)~1Cfv,
(4.28) ~T19(\)*v = ACy (I, — AB}) " Crv.

It follows from (4.25)—(4.28) and (4.23) that

* 1 _5\ Y C N R*\— * * VWaii
Wiz (M) :[ o I }—)\[ —C2H }(IH—)\Bl) L[y ¢35 -Gy
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and hence
I O Cl — * *
an(A):[ Y [}—)\[CQAQ ](IH—ABl) t[cs -Cf]
I O C — * *
= [ g } (Iceaz:—A[ Cs } (I = AB1) ™" [C3 —01]>,
which coincides with the formula (4.24). O

We recall the basic properties of L-resolvent matrix Wryy.

Proposition 4.11. ([8], [11]) Let A be a symmetric lineal relation in HOL and ps(A, L) #
0. Let I = {L£,T1,T2} be a boundary triplet for A* and W(\) = Wne(X) be the L-
resolvent matriz of A corresponding to I1. Then

1) 0 € p(W (X)) for all A € ps(A, L).
A

2) If0 € p(A, L) then there is a choice of the boundary triplet I1 = {L£,T1,T2} such
that W(0) = I and
(4.29) W) =T+iAVA)V0)"T (A€ p(4,L)).

3) The L-resolvent matriz W () belongs to the generalized Potapov class P, (J) that
is the kernel
WA JW (w)* —J
i\ —)

Ko(A) = (A w e p(4, L))

has k negative squares on p(A, L).
4) The class of L-resolvent matrices of A corresponding to Il is invariant under the
multiplication by a right J-unitary factor.

We obtain a formula in calculating the L-resolvent matrix of A for a more general
setting statement.

Corollary 4.12. Let the data set (By, Ba, C1,Ca, K) satisfy (A1), (A2) and assume that

(A3') the operator D = By — uBy is an isomorphism in X for some u € R, and the
operators BiD™1 : X — X, G(u) : X — L2 are bounded, where the operator
G(p) : X — L2 is defined by

(4:30) 6 =[Gl B —uB) " wem),

Then one of the L-resolvent matrices of A can be found from

R E R

: C 1/ wo1 [ O]
=T+iA—p) | 2| (Ba=AB) ' By —uB)™ Y| 2| U
CQ 02
Proof. The data set
(B1(By — uB1) ™, Ix, C1(By — pB1) ™', (C2 — uC1) (B2 — uB1) ™', K)

satisfies the assumptions (A1)-(A3). Indeed, the assumption (1) verified by substitution
into (A1) the vectors

h=(By — uB1)h', g= (B2 —uB1)g,

and assumptions (2) and (3) follow from (3’).
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Note that the linear relation A defined by the formula (4.2) has the same form for the
problems AIPK(B]_, By, Cq,Cs, K) and AIPN(Bl <B2_MB1)_17 Ix,Cy (Bz—/,LB]_)_l7 (CQ—
uCh)(Bs — uB1)~ Y, K). Consider the linear relation A — u

= {{[ B0 ooy e

Due to (4.24) its L-resolvent matrix W (\) satisfies the equality

I R

_ ~ G _ (gt _ , pr\-1 Cy "
I£@L+ZA{02_MOI ](BQ (A4 p)By)” (Bs — uBY) [02—1101} J.

Then the matrix W#(X\) = W(\ — u) is the L-resolvent matrix of A and hence

9] =] 0] vaew

- <IL@L+Z'(AM) { g; ] (B2 = ABy) ™M (B3 — puBi) ™! [ g; T‘]) [ i (; } '

This prove (4.31) since the class of L-resolvent matrices is invariant under the multipli-
cation by a right J-unitary factor. |

Theorem 4.13. Let A be a symmetric lineal relation in H ® L let I1 = {L,T1,T2} be a
boundary triplet for A* and Wiz (X) be the corresponding L-resolvent matriz of A. Then
the set of L—resolvents of A is parametrized by the formula

(4.32) PL(!Z = N7 e = (w1 (N)g(A) + wi2(N)p(A)) (wa1 (N)g(A) + waz(A)p(X) 7,

where {p, q} ranges over the set N(/ﬁ) of all equivalence classes of Nevanlinna pairs such
that

0 € p(war (N)g(A) + w2 (MN)p(A))  for some X € C.

Moreover, the L-resolvent Py (A — AL o defined by (4.32) is L-regular if and only if
the Nevanlinna pair {p,q} satisfies the condition

(4.33) (wi1(N)g(A) + wi2(M)p(A)) (w21 (N g(A) + w22 (Ap(A)) ™" € Ne(L).

Proof. The first statement of this Theorem was proved in [8, Prop. 5.3].
Let the L-resolvent Pz(A — \)71] , is L-regular. Then the subspace

Ho = span{ Py (A — N) 'L X\ € p(A)},

is a nondegenerate Pontryagin space with the negative index equal to k (Il,-space). As
follows from Theorem 2.11 the generalized Fourier transform F maps isometrically the
subspace Ho onto H(p, ) where the functions ¢, are defined by the formula (2.3).
Hence the space H(p, ) is also a II.-space and, therefore, {¢, %} € N, (£). This state-
ment is equivalent to the condition (4.33).

Now, let {p,9} € N4(L). Then the space H(p,v) is a Il,-space and, therefore,
the space Hgo is Il;-space. The latter statement means that the linear relation Ais
L-regular. |
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4.5. Parametrization of the set of solutions of AIP,.. To describe solutions of the
AIP, it remains to combine Theorem 3.3 and Theorem 4.13. Let the operator valued

function © = {911 912] be defined by
021 022

434 O = { L ]W(A) _ (I—A[ g; } (I — AB)) "' [C3 Cﬂ).

Theorem 4.14. Let the data set AIP,(B1, Ba, C1, C2, K) satisfies (A1)-(A3) and
sq_K = k. Then the formula

(1.3 U =00 90 ] i) + waa )

establishes a one-to-one correspondence between the set of all normalized solutions {p, 1}
of the AIP,(By, B2,Cy,Co, K) and the set of all equivalence classes of Nevanlinna pairs
{p,q} € N(L) such that (4.33) is satisfied. The corresponding mapping F : X — H(p, V)
in (C1)-(C2), is defined by the solution {®,v}

(4.36) (Fg)() = [¢(n) —v(W)] G(wg (n€O,geX),

where O is a neighborhood of 0 and
C _
G(p) = {Cj (In —pB1)™" (neO).

Proof. The description (4.35) is implied by the Theorem 4.13 and the formulas (3.4),
(4.34). Indeed,

(4.37)
[wm] _ {IL 0} {PM - A)‘lu]
@(A) LA IL I£
- [fﬁ 0 } {(wqum +wia(Mp(A)) (w21 (N)g(A) + wzz(A)p(A))_l}
)\ IL IL
— oW (N)! [(wu()\)q()\) + w12(>\)p()\))g21(>\)q(>\) + wzz()\)p()\))l} .

Using the relation

W {(J] _ {wuq + wup}
p w214 + Wo2p

we rewrite the right side of (4.37) as

Y| _ 1 q(\)
LP()\)] =ONW )T W(A) {p(k)] (wa1(N)g(A) + waz(N)p(N))

-1

=° B&ﬂ (wa1(Na(X) + wzz(A)P(A))_l'

Therefore, the formula (4.35) is proved.

Let O is a neighborhood of 0 such that the operator (I — pB1) is invertible in H
for p € O, and let g € (I — uB1)X (u € O). Applying (C1) to the vector h = h, =
(I — uB1)~1g, one obtains
(Fg)(N) = (Fhy)(A) = p(FBihy)(A)

=[p(N) =¥V G(r)g + (X = w)(FBihy)(N).
Setting in (4.38) A = p one obtains

(4.39) (Fg)(u) = [p(pn) —v(p)] Glu)g (neO,ge(I—puB)X).

(4.38)
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Let g € X, g, € (I — uB1)X and g, — g as n — oo (where the convergence is meant in
the Pontryagin space sense). Then taking the limit in

(Fgn)(1) = [¢(n)  —¢(w)] G(1)gn
one obtains (4.36) for g € X. O

Theorem 4.15. Let the data set (By, By, C1,Ca, K) satisfy (A1), (A2), (A3’) (sq-K =
k) and let

o= | 1 |

— (I—i—i()\—u) [ g; ] (By — ABy)"Y(Bs — uB;)™! [ g; }J) V.
Then the formula
(1.40) U0 e | 5] ] ok an + s pn)

establishes the one-to-one correspondence between the set of all normalized solutions
{¢, ¥} of the AIP,(By, Ba,Cy,Cs, K) and the set of all equivalence classes of Nevanlinna

pairs {p,q} € N(L) such that (4.33) is satisfied.
Proof. The theorem follows from the just proved Theorem 4.14 and Corollary 4.12. [

4.6. Uniqueness of the mapping F'. In general, the mapping F' : X — H(p,?) in
(C1)—(C2) is not uniquely defined by the solution {p, ¢} of the AIP,(B1, Ba,C1,Cs, K).
We impose an additional assumption on the data set which ensures the uniqueness of F'.

(U) Let the mapping Bs —AB; be an isomorphism in X" for all A in nonempty domains
Oy CcCy.
Let us set

Gy
C

Proposition 4.16. Let the data set (By, Ba, C1,Cs, K) satisfies the assumptions (A1)
(A2) and (U) (v < k). Then the mapping F : X — H(p, ) in (C1)-(C3) is uniquely
defined by the solution {p,¥} of the AIP,(By, Ba,C1,Cs, K) by the formula

(4.42) (FR)N) = [e(A) = (N] GMh (A€ Ox).
Proof. Applying (C1) to the vector
h:h# = (327,U'B1)7lg (IU’GO:I:,gGX)a

(4.41) G\ = [ ] (Ba —AB1)™' (A€ O4).

one obtains

(Fg)(A) = (F'Bzhy)(A) — p(FBrhy)(A)
(4.43) = (FBQhu)(/\ - )‘(FBlh;L)(/\) + (/\ - .U)(FBlhu)(/\)
= [p(\)  —vN)] G(u)g + (A = p)(FBihy,)(N).

Setting in (4.43) A =y one obtains (Fg)(u) = [p(n) —v (k)] G(n)g. O

Remark 4.17. Let the data set (By, Be, C1, Co, K) satisfies the assumptions (A1)—(A3).
Then this data set satisfies the assumption (U) automatically. Hence in the conditions
of Theorem 4.14 the mapping F : X — H(p,v) in (C1)—(C2) is uniquely defined by
the solution {¢, ¥} of the AIP,(B;, Bs,C1,Cs, K). The mapping F is defined by the
formula (4.36).



284 E. NEIMAN

5. A SOLUBILITY OF AIP, IN THE SET OF N,.-FUNCTION

A function m(A\) € N, (L) is called a solution of AIP, if the pair {I;, m} is equivalent
to the some N -pair {¢, 1} which is solution of AIP,. In general the AI P, mayn’t have
solutions in the class of operator-function. We impose an additional assumption on the
data set

(A4) that for some choice of numbers A; € C; (j = 1,...,x) the following condition
holds:
ker [C; (1—-X\BH))~'Cy (1—XBH) ey -+ (1- AKBT)_ng‘] = {0}.

Apparently, for the first time a condition of this type appeared in [27]. A similar
condition was used in [2] for solubility of some interpolation problem in a set of functions.
We can proceed to prove the main theorems.

Proof of Theorem 1.1. According to Theorem 3.3 it remains to show that every solution
of AIP,(B;,Bs,Cy,Cs, K) is operator-functions. Let the pair {¢,%} be a solution of
AIP, which is not equivalent to the pair of the form {I;,m}. This means that there is
a point A.11 € Cy(# Aj) and vectors f; € L (j =1,...,k + 1) such that the following
conditions hold:

(5.1) e\ fi =0, v\)fi#0 (G=1,....,5+1).

Since the Ny-pair {¢, 4} is normalized then ¢(X\)— A (A) = I.. Let a lineal relation A be
selfadjoint L-regular extensions of A with the exit to a Pontryagin space HOELOHDL
and the formula (3.4) holds. Let vectors h; € H @ L be given by

(5.2) hy = XNA=-XN)+f G=1,...,6+1).
Then
(53) {h7 — fj, )\]hj} c Av (j =1,...,k+ 1).

The vectors h; belong to the space 7—~[, because
Pehy = PeOy(A—=X) " 4+ 1) f5 = (X)) = 0.

Since the linear relation A is selfadjoint and the spaces H and L are orthogonal it
follows that for any j,k=1,...,k+ 1

0= (hj = fis Mchi) o — Nihgs hie = i) sge = A — M) (hys ha) -

Hence the span of k + 1 vectors h; is a neutral subspace of the space H. Since the

dimension of the neutral subspaces of space H does not exceed  then of the vectors
{h;};*" are linearly dependent, i.e. there are aj € C (j = 1,...,k + 1) such that

k+1

(54) Z Oéjhj =0.
=1
Assume that a1 = —1, ie.

n—i—l § ag

Then the inclusions (5.3) yield

=

1 ozj =
— — A
{)\KH (Prt1 = fry1) — )\ 0} €A,

<.

Jj=1
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therefore

u 1 1 1 "
. S o= - —— S LS A
(5:5) { “ ( )\j)h] Akt1 fetr + = Aj 15 O} ©

=1 )\nJrl

We define the vectors gp € £ and g € H by the formulas

(5.6) go = Z e =2 (Al - ;hj).
“ J

=1 k+1

Then the relation (5.5) can be rewritten as {go + J, 0} € A.

Since A is a selfadjoint extension of A= Bz , v :x € X ¢ then for
Clx CQiL’
allz e &

(5.7) 0= <§+ 90, [sz] >ﬁ@£ = (90, C2x)c + (9, %) 5

Substituting expressions (5.2) for h; into (5.6) one obtains

ZO‘J (n—i—l - 1)) h;
- Z ( e 1j) A=) 1) S

= Z(Aj(ﬁ— M)+ Dgj,

where the vectors g; € L are defined by

1 1
gj = (AHH —)\j>fj€£~

It follows from (4. 7) that

={{[I XBén] o)

{{ [(02 Aj 01)(33 — A_jBl)_l.r:| ’ [C(QI(I__/\&?}BBEQ;H e 7—[} :

Therefore K;j = KXj as A>Aisa selfadjoint lineal relation. So for all x € X

|
<

1

2] e nenixmrd)
|

b

I I
M 10
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Combining this equality with (5.7) one obtain

0= (g0, Cax)z + Y (gj, Co(I = \;B1)'2)e
j=1
(5.8) -
= (C3g0, x)o + D (I = X BY) "' Clg5, w).

j=1
This equality holds for all vectors x which belong to the dense subset X of the Pontryagin
space H. It follows from (A4) that

go=9g1=92="=9x =0,
and therefore
arfi=asfo="=apfr=0, for1=0.
This is a contradiction to the condition f.4+1 # 0.

Note, if the coefficient a1 in (5.4) is equal to 0 we also obtain a contradiction.
Indeed, representing any vector hy via the linear combination of the other x — 1 vectors
hj (1 <j <k, j#k), we prove that f; = 0.

Thus, there is no vector { f;}5! which satisfy the conditions (5.1). Hence the operator
function @(A) in the Ny-pair {p, 9} where p(\) is invertible for all A € C; with the

exception of at most k points. Therefore the N,-function m(\) = (A () is a
solution of the AIP;(By, Bs,C1,Co, K). g

Proof of Theorem 1.2. Let a pair {p, 1} be a solution of the AIP, (B, B2, C1,Cs, K).
It follows from the Theorem 4.14 that

SO T [0 (N)a() + 012(Np() ]
[¢M>}—[éhwin+ﬂﬁuﬁu>“”“”“”*w”“m“”l'

It follows from the Theorem 1.1 that the solution of the AIP,(Bi, Ba,C1,Cy, K) is the
N,.-function m(\) = ¥(A)p(A)~t. Hence the formula (1.5) holds. O
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