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THE INTEGRATION OF OPERATOR-VALUED FUNCTIONS WITH

RESPECT TO VECTOR-VALUED MEASURES

VOLODYMYR TESKO

Abstract. We investigate the H-stochastic integral introduced in [24]. It is known
that this integral generalizes the classical Itô stochastic integral and the Itô integral

on a Fock space. In the present paper we construct and study an extension of the
H-stochastic integral which will generalize the Hitsuda-Skorokhod integral.

1. Introduction

It is well known that the Itô integral of adapted square integrable functions plays
a fundamental role in the classical stochastic calculus. In the case of scalar-valued in-
tegrands this integral has a very simple interpretation in the framework of functional
analysis. Namely, let L2(Ω,A, P ) be a space of square integrable functions on a com-
plete probability space (Ω,A, P ), {At}t∈[0,T ] be a filtration of σ-algebras satisfying the
usual conditions and {Mt}t∈[0,T ] be a square integrable martingale on (Ω,A, P ) with

respect to {At}t∈[0,T ] (here T > 0 is fixed). Then the Itô integral
∫
[0,T ]

F (t) dMt of a

scalar-valued (non-random) function F : [0, T ] → C can be interpreted as an ordinary
spectral integral

∫
[0,T ]

F (t) dEt applied to MT , i.e.,

∫

[0,T ]

F (t) dMt =

(∫

[0,T ]

F (t) dEt

)
MT ,

where Et := E[ · |At] denotes a conditional expectation with respect to the σ-algebra
At. It can be shown that Et is an orthogonal projection in the space L2(Ω,A, P ) onto
its subspace L2(Ω,At, P ) and, moreover, the corresponding projection-valued function
[0, T ] ∋ t 7→ Et is a resolution of identity in L2(Ω,A, P ). Note that Mt = EtMT for all
t ∈ [0, T ] since M is a martingale.

At the same time, it is considerably more difficult to establish a relation between the
Itô and spectral integrals for general adapted L2(Ω,A, P )-valued integrands, since the
main problem is to find an explicit expression for the corresponding spectral integral
(see, for example, [6] and reference therein). In this context a natural problem arises, –
to give a suitable definition of “spectral integral” which will generalize the Itô stochastic
integral.

The starting point for solving this problem is the observation that an L2(Ω,A, P )-
valued function [0, T ] ∋ t 7→ F (t) ∈ L2(Ω,A, P ) (integrand) can be naturally viewed
as an operator-valued function [0, T ] ∋ t 7→ AF (t) whose values are operators AF (t) of
multiplication by the function F (t) = F (t, ·) in the space L2(Ω,A, P ). This suggests the
consideration of the above mentioned problem in a more comprehensive sense. Namely,
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the problem is to give a definition of the integral

(1.1)

∫

[0,T ]

A(t) dMt, Mt := EtMT ,

which will generalize the Itô stochastic integral. Here [0, T ] ∋ t 7→ Et is a resolution of
identity in a Hilbert space H, [0, T ] ∋ t 7→ A(t) is an operator-valued function whose
values are linear operators in H and MT ∈ H.

In the papers [24], [25] integral (1.1) was constructed and studied for a certain class of
operator-valued functions. This integral was defined as an element of the Hilbert space
H and called a Hilbert space-valued stochastic integral (H-stochastic integral for short). It
was shown that integral (1.1) generalizes the classical Itô stochastic integral with respect
to normal martingales and the Itô integral on a Fock space.

On the other hand, the concept of the Hitsuda-Skorokhod integral is of great impor-
tance in the stochastic calculus [12], [23]. This integral is one of the central objects of
study in the Gaussian analysis, since, on the one hand, it is a natural generalization of
the Itô integral for non-adapted integrands and, on the other hand, it is adjoint to the
stochastic derivative (also called Malliavin derivative). It should be stressed that these
properties of the Hitsuda-Skorokhod integral are a starting point in developing of the
anticipating stochastic calculus (see for example Nualart’s book [21]). Moreover, we note
that the Hitsuda-Skorokhod integral, defined as a “creation operator” on a Fock space,
is an extension of the Itô integral not only in the Gaussian case but in the case of any
normal martingale with the so-called Chaos Representation Property (see for instance
[19] and review [17]).

Since both the Hitsuda-Skorokhod integral and the H-stochastic integral are generali-
zation of the classical Itô integral, it is natural “to relate” these two objects. To this end,
in the present article we introduce and study a natural extension of H-stochastic inte-
gral (1.1) which will generalize the Hitsuda-Skorokhod integral. In our construction the
Berezansky-Gelfand-Kostyuchenko theorem (about the differentiability of an operator-
valued measure, see e.g. [5], [11]) will play a crucial role. Roughly speaking, applying
this theorem to the resolution of identity E we obtain the representation

E(α) =

∫

α

P (t) dµ(t), α ∈ B([0, T ]),

where [0, T ] ∋ t 7→ P (t) is an operator-valued function (an operator-valued density),
µ is the so-called spectral measure of the resolution of identity E, B([0, T ]) is a Borel
σ-algebra on [0, T ]. Using this integral representation of E, we define an extension of
H-stochastic integral (1.1) as a Bochner one of the form

(1.2)

∫

[0,T ]

A(t)P (t)MT dµ(t)

and show that (1.2) generalizes the Hitsuda-Skorokhod integral.
It should be noticed that (1.2) gives us a new understanding of the Hitsuda-Skorokhod

integral. More exactly, let
∫
[0,T ]

F (t) dNt be an Itô integral of a “fine” function F with

respect to a normal martingale N (by definition the process N = {Nt}t∈[0,T ] is a nor-

mal martingale if {Nt}t∈[0,T ] and {N2
t − t}t∈[0,T ] are both martingales). Applying the

Berezansky-Gelfand-Kostyuchenko theorem to the resolution of identity Et := E[ · |At]
and replacing Nt = EtNT by

∫
[0,t]

P (s)NT ds, the Itô integral can be rewritten (at least

formally) as
∫

[0,T ]

F (t) dNt =

∫

[0,T ]

F (t)P (t)NT dt.
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Since F (t)P (t)NT = F (t)♦〈·, δt〉 (here δt is the Dirac delta function and ♦ is the Wick
product), we see that

∫

[0,T ]

F (t) dNt =

∫

[0,T ]

F (t)♦〈·, δt〉 dt,

where the latter integral is the Hitsuda-Skorokhod integral.
The paper is organized in the following manner. In the forthcoming section we recall

the definition and properties of the H-stochastic integral. In Section 3 we present some
of the standard facts about the Hitsuda-Skorokhod integral on a Fock space. Finally,
in Section 4 we introduce and study an extension of the H-stochastic integral. This
extension we define as an ordinary Bochner integral and show that it generalizes the
Hitsuda-Skorokhod integral.

2. H-stochastic integral

In this section we recall a definition of the H-stochastic integral and describe the
connection of this integral with both the classical Itô integral and the Itô integral on
a Fock space. For the convenience of the reader we repeat the relevant material from
[24, 25] without proofs, thus making our exposition self-contained.

2.1. Definition and properties of the H-stochastic integral. Here and subse-
quently, we fix T > 0. Let H be a complex Hilbert space with the inner product (· , ·)H
and the norm ‖ · ‖H, L(H) be a space of all bounded linear operators in H.

Suppose that E : [0, T ] → L(H) is a right-continuous resolution of identity in H, i.e.,
{Et}t∈[0,T ] is a right-continuous and increasing family of orthogonal projections in H
and ET = 1. Sometimes it will be convenient for us to regard E as a projection-valued
measure

E : B([0, T ]) → L(H), α 7→ E(α),

on the Borel σ-algebra B([0, T ]). To do this, we set

E((s, t]) := Et − Es, E({0}) := E0, E(∅) := 0,

for any interval (s, t] ⊂ [0, T ] and then extend this definition to all Borel subsets of [0, T ].
A slight generalization of the notion of square integrable martingale is the following.

Definition 2.1. A function M : [0, T ] → H, t 7→ Mt, is called an H-valued martingale
with respect to E if Mt = EtMT for all t ∈ [0, T ].

It is clear that an ordinary square integrable martingaleM : [0, T ] → L2(Ω,A, P ) with
respect to the filtration {At}t∈[0,T ] is an L2(Ω,A, P )-valued martingale with respect to
the resolution of identity Et := E[ · |At].

In the sequel we will regard the martingale M as a H-valued measure

M : B([0, T ]) → H, α 7→M(α) := E(α)MT .

Using this martingale we construct a nonnegative Borel measure

µ : B([0, T ]) → R+, α 7→ µ(α) := ‖M(α)‖2H.

Let us recall the definition of the H-stochastic integral
∫

[0,T ]

A(t) dMt ∈ H

of operator-valued functions [0, T ] ∋ t 7→ A(t) whose values are linear operators in the
spaceH. The construction of this integral is given step-by-step, starting from the simplest
class of operator-valued functions. Namely, for t ∈ [0, T ], denote by

HM (t) := span{M((s1, s2]) | (s1, s2] ⊂ (t, T ]} ⊂ H
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the linear span of the set {M((s1, s2]) | (s1, s2] ⊂ (t, T ]}, and

LM (t) = L(HM (t),H)

will represent the set of linear operators in H that continuously act from HM (t) to
H. Note that the set LM (t) consists of all linear (bounded or non-bounded) operators
A : H → H such that

‖A‖LM (t) := sup

{
‖Ag‖H
‖g‖H

∣∣∣∣ g ∈ HM (t), g 6= 0

}
<∞.

Definition 2.2. A family {A(t)}t∈[0,T ] of linear operators in H is called an M -adapted
operator-valued function if, for every t ∈ [0, T ),

(i) A(t) ∈ LM (t) and ‖A(t)‖LM (t) = ‖A(t)‖LM (s) for all s ∈ [t, T ).
(ii) A(t) is partially commuting with the resolution of identity E. More precisely,

A(t)Esg = EsA(t)g, g ∈ HM (t), s ∈ [t, T ].

An M -adapted operator-valued function [0, T ] ∋ t 7→ A(t) is called simple if there
exists a partition 0 = t0 < t1 < · · · < tn = T of [0, T ] such that

(2.3) A(t) =

n−1∑

k=0

Ak1I(tk,tk+1](t), t ∈ [0, T ],

where 1Iα(·) denotes the characteristic function of a Borel set α ∈ B([0, T ]). Denote by
S = S(M) the space of all simple M -adapted operator-valued functions on [0, T ]. For
each A ∈ S of kind (2.3), we introduce a seminorm

(2.4) ‖A‖S2
:=

(∫

[0,T ]

‖A(t)‖2LM (t) dµ(t)

) 1
2

:=

(n−1∑

k=0

‖Ak‖
2
LM (tk)

µ((tk, tk+1])

) 1
2

.

Since A is the M -adapted function, we conclude that, for each t ∈ [0, T ],

‖A(t)‖LM (t) = ‖A(t)‖LM (s), s ∈ [t, T ].

Due to the latter equality and finite additivity of the measure µ, definition (2.4) is correct,
i.e., it does not depend on the choice of representation A in S.

According to [24], [25], for A ∈ S of kind (2.3), the H-stochastic integral with respect
to M is defined as an element of H given by

∫

[0,T ]

A(t) dMt :=

n−1∑

k=0

AkM((tk, tk+1])

and has the property

(2.5)
∥∥∥
∫

[0,T ]

A(t) dMt

∥∥∥
2

H
≤

∫

[0,T ]

‖A(t)‖2LM (t) dµ(t).

Inequality (2.5) allows us to extend the H-stochastic integral to operator-valued func-
tions [0, T ] ∋ t 7→ A(t) which are not necessarily simple. Namely, denote by S2 = S2(M)
a Banach space associated with the seminorm ‖ · ‖S2

. For its construction, at first it is

necessary to pass from S to the factor space Ṡ := S/{A ∈ S | ‖A‖S2
= 0} and then to

take the completion of Ṡ. It is not difficult to understand that the elements of the space
S2 are equivalence classes of operator-valued functions on [0, T ] whose values are linear
operators in the space H. In what follows we will not distinguish between the equivalence
class and operator-valued function from this class.

Definition 2.3. An operator-valued function [0, T ] ∋ t 7→ A(t) is said to be H-stochastic
integrable with respect to M if A belongs to the space S2, i.e. there exists a sequence
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(An)
∞
n=0 of simple operator-valued functions An ∈ S such that

(2.6)

∫

[0,T ]

‖A(t)−An(t)‖
2
LM (t) dµ(t) → 0 as n→ ∞.

An H-stochastic integral of A ∈ S2 with respect to M is defined by
∫

[0,T ]

A(t) dMt := lim
n→∞

∫

[0,T ]

An(t) dMt ∈ H,

where (An)
∞
n=0 ⊂ S is any sequence satisfying (2.6).

Note that due to inequality (2.5) the latter limit exists in H and does not depend on
the choice of the sequence (An)

∞
n=0 ⊂ S satisfying (2.6).

2.2. The Itô stochastic integral as the H-stochastic one. We start from the defi-
nition of the classical Itô stochastic integral, see books [18], [15], [20], [22] for details. We
will consider only normal martingales in our presentation of stochastic integration. This
family of martingales includes Brownian motion, the compensated Poisson process and
the Azéma martingales as particular cases, see e.g. [13], [10], [20], [19], [3].

Let (Ω,A, P ) be a complete probability space endowed with a right continuous fil-
tration A := {At}t∈[0,T ], i.e., with a family {At}t∈[0,T ] of σ-algebras At ⊂ A such that
As ⊂ At if s ≤ t and At =

⋂
s>t As for all t ∈ [0, T ]. Furthermore, we assume that

A0 contains all the P -null sets of A, A = AT and A0 is trivial (i.e., every α ∈ A0 has
probability 0 or 1).

By definition, a process N = {Nt}t∈[0,T ] is a normal martingale on (Ω,A, P ) with

respect to {At}t∈[0,T ] if {Nt}t∈[0,T ] and {N2
t − t}t∈[0,T ] are martingales with respect

to {At}t∈[0,T ]. In other words, N is a normal martingale if Nt ∈ L2(Ω,At, P ) for all
t ∈ [0, T ] and

E[Nt −Ns|As] = 0, E[(Nt −Ns)
2|As] = t− s

for all s, t ∈ [0, T ] such that s ≤ t (in what follows, without loss of generality we will
assume that N0 = 0). Recall that a conditional expectation E[ · |At] is the orthogonal
projection in the space L2(Ω,A, P ) onto its subspace L2(Ω,At, P ) and, moreover, the
corresponding projection-valued function

E : [0, T ] → L(H), t 7→ Et := E[ · |At],

is a resolution of identity in L2(Ω,A, P ).
Let us introduce the space of functions for which the Itô integral is defined. We will

denote by L2([0, T ] × Ω) the space of all B([0, T ]) × A-measurable functions (classes of
functions) F : [0, T ]× Ω → C such that

∫

[0,T ]

∫

Ω

|F (t, ω)|2 dP (ω) dt =

∫

[0,T ]

‖F (t)‖2L2(Ω,A,P ) dt <∞,

and L2
a([0, T ] × Ω) will present the subspace of A-adapted functions. Recall that a

function F ∈ L2([0, T ]×Ω) is called A-adapted if F (t, ·) is At-measurable for almost all
t ∈ [0, T ], i.e., F (t, ·) = E[F (t, ·)|At] for almost all t ∈ [0, T ].

Assume that F (t) = F (t, ω) is a simple function from the space L2
a([0, T ] × Ω), i.e.,

there exists a partition 0 = t0 < t1 < · · · < tn = T of [0, T ] such that

F (·) =

n−1∑

k=0

Fk1I(tk,tk+1](·) ∈ L2
a([0, T ]× Ω).

The Itô integral of such function F with respect to N is defined by

(2.7)

∫

[0,T ]

F (t) dNt :=

n−1∑

k=0

Fk(Ntk+1
−Ntk) ∈ L2(Ω,A, P )
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and satisfies the Itô isometry property
∥∥∥
∫

[0,T ]

F (t) dNt

∥∥∥
2

L2(Ω,A,P )
=

∫

[0,T ]

‖F (t)‖2L2(Ω,A,P ) dt.

Since the set L2
a,s([0, T ] × Ω) of all simple functions from L2

a([0, T ] × Ω) is dense in the

space L2
a([0, T ]× Ω), extending the mapping

L2
a([0, T ]× Ω) ⊃ L2

a,s([0, T ]× Ω) ∋ F 7→

∫

[0,T ]

F (t) dNt ∈ L2(Ω,A, P )

by continuity, we obtain a definition of the Itô integral on L2
a([0, T ]×Ω). In what follows,

we keep the same notation
∫
[0,T ]

F (t) dNt for the extension.

From [24] (Theorems 2 and 3) it follows that the Itô stochastic integral with respect
to the normal martingale N can be interpreted as the H-stochastic integral. Namely, we
set H := L2(Ω,A, P ) and consider in this space a resolution of identity

E : [0, T ] → L(H), t 7→ Et := E[ · |At],

generated by the filtration {At}t∈[0,T ]. It is easy to see that the normal martingale N is

the L2(Ω,A, P )-valued martingale with respect to E and

µ([0, t]) = ‖Nt‖
2
L2(Ω,A,P ) = E[N2

t ] = E[N2
t | A0] = t

is the ordinary Lebesgue measure on [0, T ].

Theorem 2.1. For a given function F ∈ L2([0, T ]×Ω) the family {AF (t)}t∈[0,T ] of the

operators AF (t) of multiplication by F (t) ∈ L2(Ω,A, P ) in the space L2(Ω,A, P ),

L2(Ω,A, P ) ⊃ Dom(AF (t)) ∋ G 7→ AF (t)G := F (t)G ∈ L2(Ω,A, P ),

Dom(AF (t)) := {G ∈ L2(Ω,A, P ) |F (t)G ∈ L2(Ω,A, P )},

is H-stochastic integrable with respect to the normal martingale N (i.e. AF belongs to
S2 = S2(N)) if and only if F belongs to the space L2

a([0, T ]× Ω).
Moreover, if F ∈ L2

a([0, T ]× Ω) then
∫

[0,T ]

AF (t) dNt =

∫

[0,T ]

F (t) dNt.

2.3. The Itô integral on a Fock space as the H-stochastic integral. Let us denote
by L2([0, T ]) := L2([0, T ], dt) a complex L2-space with respect to the Lebesgue measure
dt = dm(t). The corresponding symmetric Fock space is defined as

F := C⊕
∞⊕

n=1

L2([0, T ])⊙nn!,

where ⊙ stands for the symmetric tensor product (⊗ is the ordinary tensor product).
Thus, F is a complex Hilbert space of sequences f = (fn)

∞
n=0 such that each fn belongs

to L2([0, T ])⊙n and

‖f‖2F = |f0|
2 +

∞∑

n=1

‖fn‖
2
L2([0,T ])⊙nn! <∞.

In what follows, we always identify in the natural way the space L2([0, T ])⊙n with the
space L2

sym([0, T ]
n) of all complex-valued symmetric functions from L2([0, T ]n). It is

easy to see that

‖fn‖
2
L2([0,T ])⊙n =

∫

[0,T ]n
|fn(t1, . . . , tn)|

2 dt1 . . . dtn

= n!

T∫

0

tn∫

0

· · ·

( t2∫

0

|fn(t1, . . . , tn)|
2 dt1

)
. . . dtn−1 dtn
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for all fn ∈ L2([0, T ])⊙n ∼= L2
sym([0, T ]

n).
Denote by ♦ the Wick product in the Fock space F . For given f = (fn)

∞
n=0 and

g = (gn)
∞
n=0 from F the Wick product f♦g is defined by

f♦g :=
( n∑

m=0

fm ⊙ gn−m

)∞

n=0
,

provided the latter sequence belongs to the Fock space F . Let

L2([0, T ];F) := L2([0, T ], dt;F)

be the Hilbert space of F-valued functions

f : [0, T ] → F , ‖f‖2L2([0,T ];F) :=

∫

[0,T ]

‖f(t)‖2F dt <∞,

with the corresponding scalar product.
Now we are ready to recall the definition of the Itô integral on the Fock space proposed

in [4] (see also [2]). First of all a function f(·) = (fn(·))
∞
n=0 ∈ L2([0, T ];F) is said to be

Itô integrable if, for almost all t ∈ [0, T ],

f(t) = (f0(t), 1I[0,t]f1(t), . . . , 1I[0,t]nfn(t), . . .).

The set of all Itô integrable functions will be denoted by L2
a([0, T ];F).

Observe that each component fn(t1, . . . , tn; t) of a function

f(·) = (fn(·))
∞
n=0 ∈ L2([0, T ];F)

belongs to the space L2
sym([0, T ]

n)⊗L2([0, T ]). It means that fn belongs to L2([0, T ]n+1)
and it is a symmetric function in the first n variables, i.e., for m-almost all t ∈ [0, T ] and
for m⊗n-almost all (t1, . . . , tn) ∈ [0, T ]n,

fn(t1, . . . , tn; t) =
1

n!

∑

σ

fn(tσ(1), . . . , tσ(n); t),

where σ running over all permutations of {1, . . . , n}, m is the Lebesgue measure.
Denote by L2

a,s([0, T ];F) the space of all simple Itô integrable functions. By definition,

f ∈ L2
a,s([0, T ];F) if and only if there exists a partition 0 = t0 < t1 < · · · < tn = T of

[0, T ] such that

f(·) =

n−1∑

k=0

f(k)1I(tk,tk+1](·) ∈ L2
a([0, T ];F).

It can be shown that the set L2
a,s([0, T ];F) is dense in the space L2

a([0, T ];F).

The Itô integral I(f) of a simple function f ∈ L2
a,s([0, T ];F) is defined by

(2.8) I(f) :=

n−1∑

k=0

f(k)♦(0, 1I(tk,tk+1], 0, 0, . . .) ∈ F

and satisfies the following isometry property (see e.g. [2, 1])

∥∥I(f)
∥∥2
F
=

∫

[0,T ]

∥∥f(t)
∥∥2
F
dt.

The latter property allows us to extend the mapping

L2
a([0, T ];F) ⊃ L2

a,s([0, T ];F) ∋ f 7→ I(f) ∈ F

by continuity and obtain a definition of the Itô integral I(f) for each f ∈ L2
a([0, T ];F)

(we keep the same notation I for the extension).
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From [25] (Theorem 5.1) it follows that the Itô integral I(f) of f ∈ L2
a([0, T ];F) can

be considered as the H-stochastic integral. Namely, we set H := F and consider in this
space a resolution of identity

Exp1I : [0, T ] → L(F), t 7→ Exp1I[0,t] := id⊕

∞⊕

n=1

1I[0,t]n ,

generated by a resolution of identity

[0, T ] ∋ t 7→ 1I[0,t]g ∈ L2([0, T ]), g ∈ L2([0, T ]).

Thus, we have

Exp1I[0,t]f := (f0, 1I[0,t]f1, . . . , 1I[0,t]nfn, . . .) ∈ F , f = (fn)
∞
n=0 ∈ F .

It is clear that
Z : [0, T ] → F , t 7→ Zt := (0, 1I[0,t], 0, 0, . . .),

is the F-valued martingale with respect to Exp1I[0,t] and

µ([0, t]) := ‖Zt‖
2
F = ‖1I[0,t]‖

2
L2([0,T ]) = m([0, t]) = t

is the Lebesgue measure on [0, T ].

Theorem 2.2. A function f ∈ L2([0, T ];F) belongs to the space L2
a([0, T ];F) if and

only if the corresponding operator-valued function [0, T ] ∋ t 7→ Af (t) whose values are
operators Af (t) of Wick multiplication by f(t) ∈ F in the Fock space F ,

F ⊃ Dom(Af (t)) ∋ g 7→ Af (t)g := f(t)♦g ∈ F ,

Dom(Af (t)) := {g ∈ F | f(t)♦g ∈ F},

belongs to the space S2 = S2(Z).
Moreover, if f ∈ L2

a([0, T ];F) then

I(f) =

∫

[0,T ]

Af (t) dZt.

Taking into account Theorem 2.2 it is natural to denote the Itô integral I(f) of f ∈
L2
a([0, T ];F) by

∫
[0,T ]

f(t) dZt. Note that such integral can be expressed in terms of the

Fock space F structure, see e.g. [25] (Theorem 5.2). Namely, for any f(·) = (fn(·))
∞
n=0 ∈

L2
a([0, T ];F) we have

(2.9)

∫

[0,T ]

f(t) dZt = (0, f̂1, . . . , f̂n, . . .) ∈ F ,

where f̂n(t1, . . . , tn) denotes the symmetrization of fn−1(t1, . . . , tn−1; t) with respect to
n variables. Since fn−1(t1, . . . , tn−1; t) is symmetric in the first n− 1 variables, we have

f̂n(t1, . . . , tn) :=
1

n

n∑

k=1

fn−1(t1, . . . , tk� , . . . , tn; tk).

2.4. Relationship between the classical Itô integral and the Itô integral on the

Fock space F . Without going into details, let us give a brief exposition of probabilistic
interpretations of the Fock space F , see e.g. [20], [14] for more details. As before, let
(Ω,A, P ) be a complete probability space with a right continuous filtration {At}t∈[0,T ],
A0 be the trivial σ-algebra containing all the P -null sets of A and A = AT . Suppose that
N = {Nt}t∈[0,T ], N0 = 0, is a normal martingale on (Ω,A, P ) with respect to {At}t∈[0,T ].

Let IN,0(f0) := f0 ∈ C and, for each n ∈ N,

IN,n(fn) := n!

∫

∆n

fn(t1, . . . , tn) dNt1 . . . dNtn ,

∆n := {(t1, . . . , tn) ∈ [0, T ] | t1 < · · · < tn}, fn ∈ L2
sym([0, T ]

n),
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be an n-iterated stochastic integral with respect to N . It is known that the integral
IN,n(fn) has the isometry property

‖IN,n(fn)‖
2
L2(Ω,A,P ) = (n!)2

∫

∆n

|fn(t1, . . . , tn)|
2 dt1 . . . dtn = ‖fn‖

2
L2([0,T ])⊙nn!,

and, moreover, the orthogonality property

(IN,n(fn), IN,m(fm))L2(Ω,A,P ) =

{
0, n 6= m;
‖fn‖

2
L2([0,T ])⊙nn!, n = m.

Hence, the mapping

(2.10) IN : F → L2(Ω,A, P ), f = (fn)
∞
n=0 7→ INf :=

∞∑

n=0

IN,n(fn),

is a well-defined isometry. When IN : F → L2(Ω,A, P ) is a unitary operator (i.e., IN
isometrically maps the whole space F onto whole L2(Ω,A, P )) one says that N possesses
the Chaotic Representation Property (CRP). In this case the unique decomposition of
F ∈ L2(Ω,A, P ) as F =

∑∞

n=0 IN,n(fn) is called the chaotic expansion of F . We observe
that the Brownian motion, the compensated Poisson process and some Azéma martin-
gales are examples of normal martingales which possess the CRP, see for instance [20],
[14], [13], [19], [3].

Let N be a normal martingale with CRP. It is not difficult to show that the normal
martingale N is the IN -image of the F-valued martingale

Z : [0, T ] → F , t 7→ Zt := (0, 1I[0,t], 0, 0, . . .).

More exactly,

Nt = INZt, t ∈ [0, T ].

Moreover, according to [25] (Lemma 6.1) the resolution of identity

E : [0, T ] → L(H), t 7→ Et := E[ · |At],

is the IN -image of the resolution of identity

Exp1I : [0, T ] → L(F), t 7→ Exp1I[0,t] := id⊕

∞⊕

n=1

1I[0,t]n .

Namely,

Exp1I[0,t] = I−1
N EtIN , t ∈ [0, T ].

Before establishing the relationship between the classical Itô integral and the Itô inte-
gral on the Fock space F we note that the spaces L2([0, T ]×Ω) and L2([0, T ];F) can be
interpreted as tensor products L2([0, T ]) ⊗ L2(Ω,A, P ) and L2([0, T ]) ⊗ F respectively.
Therefore

1⊗ IN : L2([0, T ];F) → L2([0, T ]× Ω)

is a well-defined unitary operator. From [25] (Theorem 6.1) we get the following result.

Theorem 2.3. We have L2
a([0, T ]× Ω) = (1⊗ IN )L2

a([0, T ];F) and

IN

(∫

[0,T ]

f(t) dZt

)
=

∫

[0,T ]

INf(t) dNt

for every f ∈ L2
a([0, T ];F).

Remark 2.1. It should be stressed that for any normal martingale N with CRP the
I−1
N -image of the Itô integral with respect to N coincides with the integral I on F .
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Remark 2.2. Comparing (2.7) and (2.8) one can see the relationship between the Wick
multiplication ♦ on F and the ordinary multiplication on L2(Ω,A, P ). Namely, suppose
t ∈ [0, T ] and F ∈ L2(Ω,A, P ) is an At-adapted function. Then, for each interval
(s1, s2] ⊂ (t, T ], we have

∫

[0,T ]

F1I(s1,s2](t) dNt = F (Ns2 −Ns1).

On the other hand
∫

[0,T ]

F1I(s1,s2](t) dNt = IN

(∫

[0,T ]

I−1
N (F )1I(s1,s2](t) dZt

)
= IN

(
I−1
N (F )♦(Zs2 − Zs1)

)
.

Since Nt = INZt we conclude that

I−1(F (Ns2 −Ns1)) = I−1
N (F )♦

(
I−1
N (Ns2)− I−1

N (Ns1)
)
.

However it can be shown that in general case the IN -image of the Wick multiplication
♦ distinguishes from the ordinary multiplication.

Remark 2.3. Since L2
a([0, T ] × Ω) = (1 ⊗ IN )L2

a([0, T ];F), for any F ∈ L2
a([0, T ] × Ω)

there exists a uniquely defined vector f(·) = (fn(·))
∞
n=0 ∈ L2

a([0, T ];F) such that

F (t) = INf(t) =
∞∑

n=0

IN,n(fn(t))

for almost all t ∈ [0, T ]. Hence, by (2.9), (2.10) and Theorem 2.3, we immediately get
the “Fock-space” representation of the classical Itô integral

∫

[0,T ]

F (t) dNt = IN

(∫

[0,T ]

f(t) dZt

)

= IN (0, f̂1, . . . , f̂n, . . .) =

∞∑

n=1

IN,n(f̂n) ∈ L2(Ω,A, P ).

3. Hitsuda-Skorokhod integral on a Fock space

In this section we recall some standard facts about the Hitsuda-Skorokhod integral
(a natural generalization of the Itô integral I) on a Fock space and its rigging. For the
proof we refer the reader to e.g. [19, 1, 17].

The most naive and natural idea is to define a generalization of the Itô integral I by

formula (2.9) for all functions f(·) = (fn(·))
∞
n=0 ∈ L2([0, T ];F) such that (0, f̂0, f̂1, . . . )

belongs to F . Namely, we accept the following definition.

Definition 3.1. For a function f(·) = (fn(·))
∞
n=0 ∈ L2([0, T ];F) such that

(3.11) (0, f̂0, f̂1, . . . ) ∈ F or, equivalently,
∞∑

n=0

‖f̂n‖
2
L2([0,T ])⊙n+1(n+ 1)! <∞

the Hitsuda-Skorokhod integral on F is defined by the formula

Iext(f) := (0, f̂0, f̂1, . . .).

Remark 3.1. Let N be a normal martingale with CRP. Applying the unitary operator
IN to Iext, we obtain a definition of the Hitsuda-Skorokhod integral on L2(Ω,A, P ), see
e.g. [19]. Note that, in the case when N is a Brownian motion, exactly in such a way
the extended stochastic integral was defined by Hitsuda [12] and Skorokhod [23, 16].

It is known that the integral Iext can be extended to a Bochner one. Before formulation
the corresponding result, let as first look at the following heuristic argumentation.
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According to (2.8) for a simple Itô integrable function

f(·) =
n−1∑

k=0

f(k)1I(tk,tk+1](·) ∈ L2
a([0, T ];F)

we have

I(f) =

n−1∑

k=0

f(k)♦(0, 1I(tk,tk+1], 0, 0, . . .).

Using this equality and the formal representation

(0, 1I(tk,tk+1], 0, 0, . . .) =

∫

(tk,tk+1]

(0, δt, 0, 0, . . .) dt

(here δt denotes the Dirac delta function at t) we obtain (at least formally)

I(f) =
n−1∑

k=0

f(k)♦(0, 1I(tk,tk+1], 0, 0, . . .) =
n−1∑

k=0

f(k)♦

∫

(tk,tk+1]

(0, δt, 0, 0, . . .) dt

=

n−1∑

k=0

∫

(tk,tk+1]

f(k)♦(0, δt, 0, 0, . . .) dt

=

∫

[0,T ]

( n−1∑

k=0

f(k)1I(tk,tk+1](t)
)
♦(0, δt, 0, 0, . . .) dt

=

∫

[0,T ]

f(t)♦(0, δt, 0, 0, . . .) dt.

Since the delta-function δt is not a square integrable one, the last formula can not be
accepted as an extension of I on L2([0, T ];F). However it can be shown that this formula
holds in some bigger space than L2([0, T ];F). To this end, it is necessary to introduce
an appropriate rigging of the Fock space F .

Namely, let us fix a rigging of L2([0, T ]),

(3.12) W 2
−p ⊃ L2([0, T ]) ⊃W 2

p ,

whereW 2
p :=W 2

p ([0, T ], dt), p ∈ N, is the Sobolev space. By definition, W 2
p is the closure

of C∞([0, T ]) in the norm ‖ · ‖W 2
p
generated by the scalar product

(ϕ,ψ)W 2
p
=

p∑

k=0

(∫

[0,T ]

(dkϕ
dtk

)
(t)

(dkψ
dtk

)
(t) dt

)
.

Here C∞([0, T ]) denotes the set of all real-valued infinite differentiable functions on [0, T ].
It is well known (see, e.g., [7], [8]) that for all p ∈ N the space W 2

p is densely and

continuously embedded into the space L2([0, T ]), and this embedding is quasinuclear, i.e.
of Hilbert-Schmidt type. The spaceW 2

−p is dual toW 2
p with respect to the zero space H0

(see, e.g., [7], [8] for more details). We denote by 〈· , ·〉 the dual pairing between elements
of W 2

−p and W 2
p inducted by the scalar product in L2([0, T ]). We preserve the notation

〈· , ·〉 for the dual pairings in tensor powers of chain (3.12).
Now we are ready to introduce the so-called Kondratiev-type Fock spaces F(p, q).

Namely, for p, q ∈ N we set

F(p, q) :=
∞⊕

n=0

(W 2
p )

⊙n(n!)22qn, F+ := pr lim
p,q∈N

F(p, q),
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where F(p, q) denotes a complex Hilbert space of sequences f = (fn)
∞
n=0 such that

fn ∈ (W 2
p )

⊙n ((W 2
p )

⊙0 := C) and

‖f‖2F(p,q) :=
∞∑

n=0

‖fn‖
2
(W 2

p )
⊙n(n!)22qn <∞.

It can be shown that, for all p, q ∈ N, the embedding F(p, q) →֒ F is dense and quasinu-
clear (see, e.g., [7] for details) and one can construct a rigging

F(−p,−q) ⊃ F ⊃ F(p, q),

where the space

F(−p,−q) =
∞⊕

n=0

(W 2
−p)

⊙n2−qn

is dual one of F(p, q) with respect to the zero space F . We denote by 〈〈· , ·〉〉F the dual
pairing between elements of F(−p,−q) and F(p, q) inducted by the scalar product in F .

From results of [1] the correctness of the following definition follows.

Definition 3.2. The Hitsuda-Skorokhod integral of a function ξ ∈ L2([0, T ];F(−p,−q))
is defined as a Bochner one in the space F(−p,−q) by the formula

Îext(ξ) :=

∫

[0,T ]

ξ(t)♦(0, δt, 0, 0, . . .) dt ∈ F(−p,−q).

Remark 3.2. By direct calculations we have (see, e.g., [1], Theorem 3.1)

Iext(f) = Îext(f), f ∈ Dom(Iext).

This result explains the same name for the integrals Iext and Îext.

Remark 3.3. For each t ∈ R+ we define the annihilation operator a−(δt) on F(p, q) and
the creation operator a+(δt) on F(−p,−q) by setting “on coordinates”

(a−(δt)ϕn)(t1, . . . , tn−1) := nϕn(t1, . . . , tn−1, t), (a+(δt)ξn) := δt ⊙ ξn.

It is easy to show (see, e.g., [9]) that a−(δt) and a+(δt) are continuous operators on
F(p, q) and F(−p,−q) respectively, and a+(δt) is the dual operator of a−(δt) in the
sense that for all ξ ∈ F(−p,−q) and ϕ ∈ F(p, q)

〈〈a+(δt)ξ, ϕ〉〉F = 〈〈ξ, a−(δt)ϕ〉〉F .

It is obvious that

a+(δt)ξ = ξ♦(0, δt, 0, 0, . . .), ξ ∈ F(−p,−q),

and, for all ξ ∈ L2([0, T ];F(−p,−q)),

Îext(ξ) =

∫

[0,T ]

a+(δt)ξ(t) dt ∈ F(−p,−q).

4. The H-stochastic integral as a Bochner one

4.1. Definition and properties. Let H be a complex separable Hilbert space and

H− ⊃ H ⊃ H+

be a rigging of H such that the embedding operator O : H+ → H is a Hilbert-Schmidt
type. It can be shown that the adjoint (with respect to H) operator O+ : H → H− is
also a Hilbert-Schmidt one and embeds H into H−. The space of all Hilbert-Schmidt
operators from H+ to H− will be denoted by S2 = S2(H+ → H−).

Let E : B([0, T ]) → L(H) be a resolution of the identity in H and M : [0, T ] → H be
an H-valued martingale with respect to E. Suppose that MT ∈ H+ and the measure
µ(α) := ‖M(α)‖2H is equivalent to E, i.e., µ is absolutely continuous with respect to E
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and vice versa. Then due to the Berezansky-Gel′fand-Kostyuchenko theorem (see, e.g.,
[5], [11]) the operator-valued measure

θ : B([0, T ]) → S2(H+ → H−), α 7→ θ(α) := O+E(α)O,

is differentiable with respect to µ. More exactly, there exists a weakly µ-measurable
non-negative operator-valued function [0, T ] ∋ t 7→ P (t) with values in S2(H+ → H−)
such that

(4.13) O+E(α)O =

∫

α

P (s) dµ(s), α ∈ B([0, T ]),

where the latter integral exists as a Bochner one in the space S2(H+ → H−). Moreover,
‖P (s)‖S2

≤ C for µ-almost all s ∈ [0, T ] and some C > 0. The function P (t) is called
the Radon-Nikodym derivative (dθ/dρ)(t) = P (t).

Since Mt = EtMT for all t ∈ [0, T ] and MT ∈ H+, using (4.13) we get

(4.14) O+Mt = O+EtOMT =

∫

[0,t]

P (s)MT dµ(s), t ∈ [0, T ].

Let us define an integral ∫

[0,T ]

A(t) dO+Mt

for a certain class of functions [0, T ] ∋ t 7→ A(t) whose values are linear operators in H−.
A construction of such integral we give step-by-step, beginning with the simplest class
of operator-valued functions. Let us introduce the required class of simple functions.

For each point t ∈ [0, T ], we denote by

HO+M (t) := span{O+M((s1, s2]) | (s1, s2] ⊂ (t, T ]} ⊂ H−

the closed linear span of the set {O+M((s1, s2]) | (s1, s2] ⊂ (t, T ]} in H− and by

LO+M (t) = L(HO+M (t) → H−)

the set of all linear operators in H− that continuously act from HO+M (t) to H−. It is
clear that HM (t) ⊂ HO+M (t) and P (t)MT ∈ HO+M (t) for µ-almost all t ∈ [0, T ].

Definition 4.1. A family {A(t)}t∈[0,T ] of linear operators in H− is called an O+M -
adapted operator-valued function [0, T ] ∋ t 7→ A(t) if A(t) ∈ LO+M (t) for every t ∈ [0, T ].

An O+M -adapted operator-valued function [0, T ] ∋ t 7→ A(t) is called simple if there
exists a partition 0 = t0 < t1 < · · · < tn = T of [0, T ] such that

(4.15) A(t) =

n−1∑

k=0

Ak1I(tk,tk+1](t), t ∈ [0, T ].

On the space S− = S−(O
+M) of all simple O+M -adapted operator-valued functions

[0, T ] ∋ t 7→ A(t) we introduce a seminorm

‖A‖S−,2
:=

(∫

[0,T ]

‖A(t)‖2L
O+M

(t) dµ(t)

) 1
2

:=

(n−1∑

k=0

‖Ak‖
2
L

O+M
(tk)

µ((tk, tk+1])

) 1
2

.

The corresponding Banach space we denote by S−,2 = S−,2(O
+M).

For A ∈ S− of kind (4.15) we define an extended H-stochastic integral with respect to
O+M as an element of H− given by

(4.16)

∫

[0,T ]

A(t) dO+Mt :=

n−1∑

k=0

AkO
+M((tk, tk+1]).
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Since A ∈ S− is an O+M -adapted operator-valued functions, taking into account (4.14)
and the properties of Bochner integral, we can rewrite (4.16) in the form

∫

[0,T ]

A(t) dO+Mt =

n−1∑

k=0

AkO
+M((tk, tk+1]) =

n−1∑

k=0

AkO
+E((tk, tk+1])OMT

=

n−1∑

k=0

Ak

∫

(tk,tk+1]

P (t)MT dµ(t)

=

∫

[0,T ]

n−1∑

k=0

Ak1I(tk,tk+1](t)P (t)MT dµ(t)

=

∫

[0,T ]

A(t)P (t)MT dµ(t).

So, integral (4.16) of a simple function A ∈ S− can be regarded as an ordinary Bochner
integral of vector-valued function [0, T ] ∋ t 7→ A(t)P (t)MT ∈ H−. This suggests to us to
take the following definition of the extended H-stochastic integral.

Definition 4.2. For A ∈ S−,2, an integral of A with respect to O+M is defined as an
element of H− given by

∫

[0,T ]

A(t) dO+Mt :=

∫

[0,T ]

A(t)P (t)MT dµ(t),

where in the right-hand side we have a Bochner integral of the vector-valued function
[0, T ] ∋ t 7→ A(t)P (t)MT ∈ H−.

The correctness of this definition follows from the following statement.

Lemma 4.1. If A ∈ S−,2 then the function [0, T ] ∋ t 7→ A(t)P (t)M ∈ H− is integrable
in the Bochner sense with respect to µ on [0, T ].

Proof. Since µ is a finite measure, A ∈ S−,2 and ‖P (t)‖HS ≤ C for µ-almost all t ∈ [0, T ]
and some C > 0, we get

∫

[0,T ]

‖A(t)P (t)MT ‖H−
dµ(t) ≤

∫

[0,T ]

‖A(t)‖L
O+M

(t)‖P (t)MT ‖H−
dµ(t)

≤
(∫

[0,T ]

‖A(t)‖2L
O+M

(t)µ(t)
) 1

2
(∫

[0,T ]

‖P (t)MT ‖
2
H−

dµ(t)
) 1

2

= L‖A‖S−,2
<∞, L :=

(∫

[0,T ]

‖P (t)MT ‖
2
H−

dµ(t)
) 1

2

,

whence the necessary statement follows. �

Let us show that
∫
[0,T ]

A(t) dO+Mt coincides with
∫
[0,T ]

A(t) dMt for all A ∈ S−2∩S2.

Theorem 4.1. Let A ∈ S−2 ∩ S2. Then
∫

[0,T ]

A(t)P (t)MT dµ(t) =

∫

[0,T ]

A(t) dMt

in the space H−.

Proof. It follows from the proof of Lemma 4.1 that
∥∥∥
∫

[0,T ]

A(t) dO+Mt

∥∥∥
H−

≤ L‖A‖S−,2
, A ∈ S−,2.
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On the other hand, due to (2.4) and (2.5), we have
∥∥∥
∫

[0,T ]

A(t) dMt

∥∥∥
H

≤ ‖A‖S2
, A ∈ S2.

Therefore, taking into account the definitions of the integrals, it is sufficient to prove the
statement only for simple functions A ∈ S− ∩ S. But in this case the statement directly
follows from the definitions of the integrals. �

4.2. The Hitsuda-Skorokhod integral as the H-stochastic one. We set

F(−p,−q) ⊃ F ⊃ F(p, q)
q q q

H− H H+

and consider in the Fock space F the resolution of identity

Exp1I : [0, T ] → L(F), t 7→ E([0, t]) := Exp1I[0,t] = id⊕
∞⊕

n=1

1I[0,t]n ,

and the martingale

Z : [0, T ] → F , t 7→ Zt := (0, 1I[0,t], 0, 0, . . .).

It is easy to see that ZT ∈ F(p, q) and the Lebesgue measure µ([0, t]) := ‖Zt‖
2
F = t is

equivalent to E([0, t]) := Exp1I[0,t]. Hence, according to (4.13) we get

(4.17) O+Exp1I[0,t]O =

∫

[0,t]

P (s) ds, t ∈ [0, T ].

Now our purpose is to find an explicit expression of the operator-valued function
t 7→ P (t). To this end, for each t ∈ [0, T ], we introduce a linear continuous operator

δ̃t :W
2
p →W 2

−p by setting

δ̃tf := a+(δt)a−(δt)f = f(t)δt, f ∈W 2
p .

Theorem 4.2. For m-almost all t ∈ [0, T ], the operator P (t) : F(p, q) → F(−p,−q)
from representation (4.17) has the form

(4.18) P (t) = id⊕
∞⊕

n=1

δ̃t ⊗ 1I[0,t]n−1n,

i.e., for all f = (fn)
∞
n=0 ∈ F(p, q),

P (t)f = (f0, δ̃tf1, . . . , δ̃t ⊗ 1I[0,t]n−1nfn, . . .).

In particular,

PtZT = (0, δt, 0, 0, . . .).

Proof. In order to prove (4.18), it is sufficient to show that

(4.19) 〈〈Exp1I[0,t]f
⊗n, g⊗n〉〉F =

∫

[0,t]

〈〈δ̃s ⊗ 1I[0,s]n−1nf⊗n, g⊗n〉〉F ds

for any f, g ∈W 2
p , t ∈ [0, T ] and n ∈ N (here and below in this proof we identify fn with

(0, . . . , 0, fn, 0, 0, . . .), where fn standing at the n-th position).
On the one hand, we have

〈〈Exp1I[0,t]f
⊗n, g⊗n〉〉F = n!〈1I[0,t]nf

⊗n, g⊗n〉

= n!

∫

[0,t]n
f⊗n(t1, . . . , tn)g⊗n(t1, . . . , tn) dt1 . . . dtn.
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Taking into account that the functions f⊗n and g⊗n are symmetric with respect to all
variables, we get∫

[0,t]

〈〈δ̃s ⊗ 1I[0,s]n−1nf⊗n, g⊗n〉〉F ds = nn!

∫

[0,t]

〈(δ̃s ⊗ 1I[0,s]n−1)f⊗n, g⊗n〉 ds

=nn!

∫

[0,t]

〈δ̃sf, g〉〈1I[0,s]n−1f⊗n−1, g⊗n−1〉 ds

=nn!

∫

[0,t]

(
f(s)g(s)

∫

[0,s]n−1

f⊗n−1(t1, . . . , tn−1)g⊗n−1(t1, . . . , tn−1) dt1 . . . dtn−1

)
ds

=(n!)2
∫ t

0

∫ s

0

∫ tn−1

0

· · ·

∫ t2

0

f⊗n(s, t1, . . . , tn−1)g⊗n(s, t1, . . . , tn−1) dt1 . . . dtn−1ds

=n!

∫

[0,t]n
f⊗n(t1, . . . , tn)g⊗n(t1, . . . , tn) dt1 . . . dtn.

Hence, formula (4.19) holds. �

The following theorem shows that the Hitsuda-Skorokhod integral Îext(ξ) of the func-
tion ξ ∈ L2([0, T ];F(−p,−q)) can be regarded as the extended H-stochastic integral.

Theorem 4.3. Let ξ belongs to the space L2([0, T ];F(−p,−q)) and [0, T ] ∋ t 7→ Aξ(t)
be the corresponding operator-valued function whose values are operators Aξ(t) of Wick
multiplication by ξ(t) ∈ F(−p,−q) in the Fock space F(−p,−q), i.e.,

F(−p,−q) ⊃ Dom(Aξ(t)) ∋ η 7→ Aξ(t)η := ξ(t)♦η ∈ F(−p,−q),

Dom(Aξ(t)) := {η ∈ F(−p,−q) | ξ(t)♦η ∈ F(−p,−q)}.

Then, Aξ ∈ S−2 and

Îext(ξ) :=

∫

[0,T ]

ξ(t)♦(0, δt, 0, 0, . . .) dt =

∫

[0,T ]

Aξ(t)PtZT dt.

Proof. Let ξ ∈ L2([0, T ];F(−p,−q)). According to [9] (Lemma 11.2) we have

‖Aξ(t)η‖F(−p,−q) = ‖ξ(t)♦η‖F(−p,−q) ≤ 2−
q

2 ‖ξ(t)‖F(−p,−q)‖η‖W 2
−p

for m-almost all t ∈ [0, T ] and η ∈W 2
−p. Hence

‖Aξ(t)‖L
O+M

(t) ≤ 2−
q

2 ‖ξ(t)‖F(−p,−q)

and Aξ ∈ S−2. The last part of the statement is obvious since PtZT = (0, δt, 0, 0, . . .). �
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