
Methods of Functional Analysis and Topology
Vol. 18 (2012), no. 4, pp. 305–331

REALIZATIONS OF STATIONARY STOCHASTIC PROCESSES:

APPLICATIONS OF PASSIVE SYSTEM THEORY

D. Z. AROV AND N. A. ROZHENKO

Abstract. In the paper, we investigate realizations of a p-dimensional regular weak
stationary discrete time stochastic process y(t) as the output data of a passive linear

bi-stable discrete time dynamical system. The state x(t) is assumed to tend to zero
as t tends to −∞, and the input data is the m-dimensional white noise. The results
are based on author’s development of the Darlington method for passive impedance

systems with losses of the scattering channels. Here we establish that considering
realization for a discrete time process is possible, if the spectral density ρ(eiµ) of the
process is a nontangential boundary value of a matrix valued meromorphic function
ρ(z) of rank m with bounded Nevanlinna characteristic in the open unit disk. A

parameterization of all such realizations is given and minimal, optimal minimal, and
*-optimal minimal realizations are obtained. The last two coincide with those which
are obtained by Kalman filters. This is a further development of the Lindquist-Picci

realization theory.

1. Introduction

In our works [6]–[11] we developed the Darlington method for passive linear time-
invariant impedance systems. The present work was initiated by the Lindquist-Picci
theory of the realization of p-dimensional weak stationary stochastic processes by Kalman
filters, that was developed in [28]–[30]. This theory is closely connected with the Lax-
Phillips scattering scheme and scattering matrix s for such a scheme. For details about
this scheme, its scattering matrix and its connection with the theory of the characte-
ristic functions of contractive and dissipative operators (or unitary operator nodes and
dissipative Livshic-Brodsky nodes, respectively) see e.g. [26], [1], [5]. Some results of
[6]–[7] were interpreted by the authors as respective results of Lindquist-Picci realization
theory. This interpretation was first presented by the first author at the international
conference in MAA–2007, dedicated to 100-birthday of M. G. Krein (see [8]) and later
by the second author at the conference [10] (see [35]). In the present work we discuss
this interpretation in more details.

Following Kolmogorov ([19], [20]), Krein ([21], [22]) and Wiener ([38], [39]) the study
of stationary (in weak sense) stochastic processes usually connects with the factorization
of the spectral density ρ = ϕ∗ϕ. If ρ has rank m, then ϕ is an outer matrix function
of the size m × p from the Smirnov class in Ξ, which is defined as the open unit disc D

for discrete time processes or the upper half plane C+ for continuous time processes (see
[32], [33]). The matrix function ρ is the spectral density of the matrix function c(z) from
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the Caratheodory class ℓp×p of analytical in Ξ functions of order p with ℜc(z) ≥ 0. This
matrix function c(z) has an integral representation in terms of ρ, given by the so-called
Riesz-Herglotz-Nevanlinna formula. The matrix functions s and ϕ are also connected
with each other in the certain way (see [28]).

In Kalman filtering and realization theory, the p-dimensional discrete-time regular
stochastic stationary process y(t) of rank m is considered as output data of the linear
discrete time dynamical system

(1) (Σf )

{

xf (t+ 1) = Axf (t) +Kwf (t),
y(t) = Cxf (t) + Lwf (t)

with coefficients A,K,C,L, that are linear bounded operators acting between corres-
ponding spaces. The main operator A : Xo → Xo, where Xo is a Hilbert space. If c
(as well as ρ, ϕ and s) is rational matrix function with MacMillan degree deg c < ∞,
then dimXo = deg c; otherwise, dimXo = ∞. The other operators K : Cm → Xo,
C : Xo → C

p, and L : Cm → C
p. The input data of this system is m-dimensional white

noise wf .These realizations are discussed in more details in the body of the text. In the
case of rational density ρ realizations by Kalman filters are more preferable than the
models used by Kolmogorov and followers, where y(t) = U ty(0) with unitary operator U
in Hilbert space X with dimX = ∞ (see [37], [25] and [34]). For discrete-time processes
Kolmogorov-Wiener’s model is connected with the spectral theory of unitary operators,
while for continuous-time processes it is connected with the spectral theory of selfad-
joint operators and continuous groups of unitary operators (see [32]–[34]). In the class
of spectral densities considered in this paper, matrix functions c(z) have meromorphic
pseudocontinuation in the exterior De of D. We study realizations (1) with contractive
main operators A : Xo → Xo such that

(2) At → 0 and (A∗)t → 0 when t→ +∞ (A ∈ C00).

Moreover, they are the main operators of unitary operator nodes with characteristic
matrix functions α(z) that belong to the class Sp×pin of inner in D matrix functions of
an order p. See [15] for discussion of the unitary operator nodes and their characteristic
functions. Such unitary node corresponds to the Lax-Phillips scattering model and α(z)
is a scattering matrix in this model (see [1], [3]). Thus the results of harmonic analysis
of contractive operators from class C00 in a Hilbert space are applicable for the study of
such realizations and these results are available, for example, in [15], [36]. Similarly, for
realizations of continuous time processes α is characteristic function of Livshits-Brodsky’s
dissipative node with the main operator that is generator of a semigroup of contractions
from class C00 ([5], [16]). The application of results of harmonic analysis of non-unitary
and non-selfadjoint operators to correlation theory of non-stationary processes, presented
in [27], chapter VIII, is different from that which is presented here.

In the present work, the matrix function c(z) is considered as a block of a matrix
function θ(z) of the form

(3) θ(z) =





α(z) β(z) 0
γ(z) c(z) Ip
0 Ip 0





that is holomorphic and Jp,m-inner in D, i.e. it is Jp,m-contractive in D

θ(z)∗Jp,mθ(z) ≤ Jp,m, z ∈ D

with Jp,m-unitary non-tangential boundary values a.e. on the boundary of D

θ(ζ)∗Jp,mθ(ζ) = Jp,m a.e. ζ ∈ ∂D,
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where

Jp,m =





Im 0 0
0 0 −Ip
0 −Ip 0



 .

The matrix function θ is the transfer function of a conservative transmission system
without losses and it is also the characteristic matrix function of the Jp,m-unitary node
with contractive main operator from class C00, see [4] and [7]. In [6]–[9] all such θ and
corresponding transmission systems are described and some special types such as optimal,
*-optimal, minimal θ were considered.

Note that the results of the present paper are directly connected with the work [17]
where problems related to acoustic wave filters are studied. In such systems the input
data are incoming waves and voltages, and the output data are the reflected waves and
currents. The transfer function of such a filter is the so-called ”mixing matrix”

[

α β
γ c

]

that coincides with the informative part of the transmission matrix θ of the system Σ̃ in
our considerations.

We will make use of basic concepts and results of spectral operator theory in Hilbert
spaces and the theory of stationary in the weak-sense discrete time stochastic processes
which can be found, for example, in monographs [37], [34]. We also utilize the theory of
stochastic realizations and Kalman filters which can be found, for example, in [18].

Notations and assumptions

All Hilbert spaces considered in this paper are assumed to be separable, and subspaces
are closed and linear in the space;

C is the set of complex numbers;
Z = {0,±1,±2, . . .} is the set of all integers;
Z
+ = {t ∈ Z : t ≥ 0};

Z
− = {t ∈ Z : t < 0};

C
p = {u = col{uk}

p
k=1 : uk ∈ C};

D = {z ∈ C : |z| < 1} is the open unit disk;
De = {z ∈ C : 1 < |z| ≤ ∞} is the exterior of the unit disk in the extended complex

plane C̄ = C ∪∞;
T = {ζ ∈ C : |ζ| = 1} is the unit circle;
Ip is the identity matrix of the order p;
IU is the identity operator in a space U;
B(X,Y ) is the space of linear bounded operators from a Hilbert space X to a Hilbert

space Y ; B(X) := B(X,X);
∨

α∈ADα is the closed linear span of vectors from Dα when α changes in the index
set A;
PD is the orthogonal projection on a subspace D;
A|D is the restriction of the operator A on a subspace D;
Λf is the set of points where function f is holomorphic;
f∼(z) = f(z̄)∗;
f ♯(z) = f(1/z̄)∗;
Lp×qr (T) with 1 ≤ r <∞ is the space of measurable on T matrix functions f(ζ) of the

size p× q such that

‖f‖rr =
1

2π

∫

T

trace{f(ζ)∗f(ζ)}r/2 |dζ| <∞;
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Hp×q
2 is the space of holomorphic in D matrix functions f(z) of size p× q such that

‖f‖22 = sup
r<1

∫

T

trace{f(rζ)∗f(rζ)} |dζ| <∞;

ℓp×p is Caratheodory class of holomorphic in D matrix functions c(z) of the order p
such that ℜc(z) ≥ 0 in D;
Sp×q is Schur class of holomorphic in D matrix functions s(z) of the size p × q such

that s(z)∗s(z) ≤ Iq for all z ∈ D;

Sp×pin is the class of bi-inner matrix functions s(z) of the order p, i.e. such that s ∈ Sp×p

and s(ζ)∗s(ζ) = Ip a.e. when ζ ∈ T;
Np×q is the class of meromorphic in D matrix functions f(z) of the size p × q with

bounded Nevanlinna characteristic, i.e. such that

f = h−1g,

where g is a holomorphic in D bounded matrix function of the size p × q, and h is a
holomorphic in D bounded scalar function;

Πp×q is subclass of functions f ∈ Np×q which have meromorphic pseudocontinuation
in De, i.e. such that there exists a meromorphic in De function f− that satisfies the
conditions

f ♯− ∈ Nq×p, f(ζ) := lim
r↑1

f(rζ) = lim
r↓1

f−(rζ) a.e. ζ ∈ T;

Xp×qΠ is the intersection of the classes Xp×q and Πp×q.

2. Stochastic stationary vector processes

In this section we present some concepts and results of stochastic stationary (in a
weak sense) process theory which will be used in the paper.

Let Ω be a space of elements ω, elementary events, with σ-algebra F of ω-sets where
the probability measure P (dω) is defined, and B(C) is the smallest σ-algebra of sets of
complex numbers which contains the sets {z : z = x + iy, a1 < x ≤ b1, a2 < y ≤ b2}
(aj , bj ∈ R). A complex valued function ξ(ω) defined on the space Ω is called a complex
random variable if for any B ∈ B(C) the condition {ω : ξ(ω) ∈ B} ⊂ F hold. Such
variables ξ will be considered further.

The primary numerical characteristics of an arbitrary random variable ξ are its mean
Eξ, defined by the formula

Eξ =

∫

Ω

ξ(ω)dP (ω) =

∫

Ω

ξdP,

and its dispersion (or variance)

Dξ = E|ξ − Eξ|2.

Here we consider only ξ for which Eξ and Dξ are finite. We will denote by H the Hilbert
space of all complex random variables ξ, which are defined in probability space Ω and
have finite E |ξ|2 (and, consequently, a finite mean and dispersion).

The scalar product in H is defined by the formula

〈ξ, η〉 = Eξη̄, ξ, η ∈ H.

In H the random variables that coincide with probability 1 are identified. Further we will
consider the random variables ξ from the space H with zero mean. This case is always
achieved by centering of the random variable, i.e. considering ξ −Eξ instead of ξ. Thus
the orthogonal complement in H to the space of random variables ξ(ω) = const will be
considered.
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The ordered set of p random variables y(ω) = col{yk(ω)}
p
k=1 is said to be a random

vector of order p; the family y(t, ω) = col{yk(t, ω)}
p
k=1 of random p-dimensional vectors

that depend on parameter t ∈ Z (time) is called a p-dimensional stochastic process with
discrete time. We will use the shorter notations for y(ω) and y(t, ω): y = col{yk}

p
k=1 =

{yk}
p
k=1 and y(t) = y(t, ω), respectively.

If y(t) = {yk(t)}
p
k=1 is a p-dimensional stochastic process then matrix functionR(t, s) =

{Rkj(t, s)}
p
k,j=1 with elements

Rkj(t, s) = Eyk(t)yj(s) := 〈yk(t), yj(s)〉, 1 ≤ k, j ≤ p,

is called correlation function of the process y(t). A stochastic process y(t) = {yk(t)}
p
k=1

with zero mean is said to be stationary in the weak sense if its correlation matrix function

R(t, s) = {Eyk(t)yj(s)}
p
k,j=1

depends on the difference t − s only: R(t, s) = R(t − s). Stationary in the weak sense
stochastic processes

y(t) = {yk(t)}
p
k=1, x(t) = {xj(t)}

m
j=1

are said to be stationary connected if the following correlation matrix function

Ryx(t, s) = {Eyk(t)xj(s)}
j=1,m

k=1,p

depends on the difference t− s only: Ryx(t, s) = Ryx(t− s).
Let y(t) = {yk(t)}

p
k=1 be a p-dimensional stationary (in a weak sense) stochastic

processes and

H(y) =
∨

t∈Z,1≤k≤p

{yk(t)}

be Hilbert space of the values of y(t) that is the subspace of the space H. Consider the
unitary shift operator U : H(y) → H(y) such that

(4) Uyk(t) = yk(t+ 1), k = 1, . . . , p, t ∈ Z.

The operator U admits spectral representation

U =

∫ π

−π

e−iµE(dµ),

where E(dµ) is the spectral family of orthogonal projectors in the space H(y) (unit
decomposition). For Ut, t ∈ Z the next representation is true

Ut =

∫ π

−π

e−itµE(dµ).

Then as yk(t) = Utyk(0), k = 1, . . . , p, it follows from the last statement that

(5) yk(t) =

∫ π

−π

e−itµE(dµ)yk(0) =

∫ π

−π

e−itµFk(dµ), k = 1, . . . , p.

In (5) quantities Fk(dµ) = E(dµ)yk(0) are random σ-additive measures with the pro-
perties: 1) E|Fk(∆)|2 ≤ E|yk(0)|

2, k = 1, . . . , p, for any measurable set ∆ ⊂ [−π, π];

2) EFk(∆)Fl(∆′) = 0 for all k, l = 1, . . . , p and ∆ ∩∆′ = ∅.
Equation (5) is called spectral representation of the process y(t) and F (dµ) =

{Fk(dµ)}
p
k=1 is called the spectral random measure of the p-dimensional stochastic pro-

cess y(t). Therefore an arbitrary stationary stochastic process y(t) = {yk(t)}
p
k=1 admits

spectral representation (5) as an integral with respect to its spectral random measure
F (dµ) = {Fk(dµ)}

p
k=1.
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The next integral representation holds for the correlation matrix function R(t) =
{Rkj(t)}

p
k,j=1 of the stationary stochastic vector process y(t) = {yk(t)}

p
k=1

Rkj(t) =

∫ π

−π

e−itµΦkj(dµ),

where

Φkj(dµ) = EFk(dµ)Fj(dµ), 1 ≤ k, j ≤ p.

The matrix Φ = {Φkl}
p
k,l=1 is said to be the spectral measure of the process y(t).

Setting σ(µ) = Φ([−π, µ)) for µ ∈ (−π, π] and σ(−π) = 0 we will get that σ(µ) =
σ(µ − 0) and σ(µ) is nondecreasing bounded nonnegative valued matrix function on
[−π, π] of size p× p and

Φ(∆) =

∫

∆

dσ(µ).

The matrix function R(t) can be presented in the form

R(t) =

∫ π

−π

e−itµdσ(µ), t ∈ Z,

and σ(µ) under respective normalization can be defined via R(t) using the Stieltjes inverse
formula. The matrix function

c(z) =
1

2
R(0) +

∞
∑

t=1

R(t)zt =
1

2

∫ π

−π

eiµ + z

eiµ − z
dσ(µ)

belongs to the Caratheodory class ℓp×p.
In the case when σ(µ) is absolutely continuous on [−π, π], i.e.

σ(µ) =

∫ µ

−π

ρ(eiu)du, where ρ ∈ Lp×p1 (T),

matrix function ρ(eiµ) is called the spectral density of stochastic stationary process y(t).
In this case

R(t) =

∫ π

−π

e−itµρ(eiµ)dµ.

A stationary stochastic process w(t) = {wk(t)}
m
k=1 with the spectral density

ρw(e
iµ) =

1

2π
Im

is said to be white noise. The correlation matrix function of the white noise w(t) is such
that

Rw(t) =

{

Im, if t = 0,
0, if t 6= 0.

The Hilbert space H(w) of the values of white noise w(t) has the next property

H(w) =

+∞
⊕

t=−∞

Ht(w), where Ht(w) =
∨

{wk(t), k = 1, . . . ,m}.

Let H(y) be the Hilbert space of values of stationary stochastic process y(t); H−(y)
and H+(y) are ”past” and ”future” subspaces of the process y(t), i.e.

H−(y) =
∨

{yj(t) : t ∈ Z
−; 1 ≤ j ≤ p},

H+(y) =
∨

{yj(t) : t ∈ Z
+; 1 ≤ j ≤ p}.

Then it is obvious that

H(y) = H−(y)
∨

H+(y).
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The stationary stochastic process y(t) is called regular if
⋂

t<0

U tH−(y) = {0}.

This last condition holds if and only if
1) the spectral function of the process y(t) is absolutely continuous and corresponding

spectral density ρ(eiµ) has constant rank m a.e. on [−π, π]; and
2) there exists a holomorphic in D matrix function ψ(z) of the size p×m that is the

solution of factorization equation

(6) ρ(eiµ) = ψ(eiµ)ψ(eiµ)∗ a.e. on [−π, π]

and belongs to Hardy class Hp×m
2 . In this case ψ is called a spectral factor of the matrix

function ρ.
The number m := dim

(

H−(y)⊖U−1H−(y)
)

is said to be the rank of the process y(t).
Note that if y(t) satisfies condition 1) from above then it has rank m, and the spectral
density ρ(eiµ) with the function ψ in (6) satisfy the following condition:

rankρ(eiµ) = rankψ(eiµ) a.e. on [−π, π] .

If for the given stationary (in a weak sense) stochastic process y(t) of order p there
exists white noise w(t) of order m stationary connected with y(t) and such that

– H−(y) ⊂ H−(w),
– H(y) = H(w), and unitary shift operators of the processes y and w are coincide in

this space,

then process y(t) is regular of rank m and there exists a spectral factor ψ of rank m of
the density ρ(eiµ) such that

(7) Fy(dµ) = ψ(eiµ)Fw(dµ),

where Fy(dµ) is the spectral random measure of the process y(t) and Fw(dµ) is the
spectral random measure of white noise w(t). It is possible to build white noise w(t) of
order m with above properties using an arbitrary factor ψ of rank m of the density ρ
(see for example [33], [29]).

Matrix functions ψ1 and ψ2 of size p×m defined on T are said to be unitary equivalent
if there exists a unitary matrix T of order m such that ψ1(e

iµ) = ψ2(e
iµ)T for almost

all µ ∈ [π, π]. Let us now identify all m-dimensional white noises w1 and w2 such that
w1(t) = Tw2(t) for all t ∈ Z where T is a unitary matrix of order m. Then it can
be shown that there exists a one-to-one correspondence between white noises w(t) with
above properties and classes of unitary equivalent spectral factors ψ of the density ρ of
the process y(t).

3. Passive linear discrete time-invariant systems

3.1. Linear time-invariant dynamical systems. The evolution of the linear time-
invariant dynamical system Σ = (A,B,C,D;X,U, Y ) with the discrete time t ∈ Z and
Hilbert spaces of input data U and output data Y and state space X can be described
by the equations

{

x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

where x(t) ∈ X, u(t) ∈ U , y(t) ∈ Y , t ∈ Z and

A ∈ B(X), B ∈ B(U,X), C ∈ B(X,Y ), D ∈ B(U, Y ).

Let
Xc

Σ =
∨

k≥0

AkBU, Xo
Σ =

∨

k≥0

(A∗)kC∗Y.
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System Σ is said to be
– controllable if X = Xc

Σ;
– observable if X = Xo

Σ;
– simple if X = Xc

Σ ∨Xo
Σ.

A system Σ̂ = (Â, B̂, Ĉ, D̂; X̂, U, Y ) is called the dilation of the system

Σ = (A,B,C,D;X,U, Y )

if X is the subspace of X̂ and for some subspaces D∗ and D of the space X̂ the following
conditions hold:

(8) X̂ = D∗ ⊕X ⊕D, Â∗D∗ ⊂ D∗, ÂD ⊂ D, B̂∗D∗ = {0}, ĈD = {0},

and

(9) A = PXÂ|X , B = PXB̂, C = Ĉ|X , D = D̂.

In this case Σ is called the restriction of the system Σ̂. System Σ is said to be minimal
if it has no nontrivial restriction i.e. if it is not the dilation of any other system. It
is known that system Σ is minimal if and only if it is controllable and observable i.e.
X = Xc

Σ = Xo
Σ (see for example [4]).

A B(U, Y )-valued function θΣ defined by the formula

(10) θΣ(z) = D + zC(I − zA)−1B, z ∈ ΛA,

is said to be the transfer function of the system Σ = (A,B,C,D;X,U, Y ). Here ΛA is
the subset of C̄ := C∪∞ of such z ∈ C for which (I − zA) has bounded inverse, defined
on whole space X, and ∞ ∈ ΛA if A has inverse A−1 in B(X), and θΣ(∞) = D+CA−1B.

If two holomorphic in the neighborhood of z = 0 functions f1(z) and f2(z) are such

that f1(z) ≡ f2(z) in some neighborhood of z = 0 we write f1 ≃ f2. If Σ̂ is the dilation
of the system Σ then θΣ̂ ≃ θΣ. If θ ≃ θΣ then the system Σ is called the realization
of the function θ(z); moreover, if Σ is a minimal system then it is called the minimal
realization of the function θ(z).

Two systems Σi = (Ai, Bi, Ci, Di;Xi, U, Y ), i = 1, 2, are called similar (unitary simi-
lar) if there exists an operator R ∈ B(X1, X2) with R

−1 ∈ B(X2, X1) (unitary operator,
respectively) such that

A2 = RA1R
−1, B2 = RB1, C2 = C1R

−1, D2 = D1.

If the main operator A of the system Σ satisfies the condition

(a) s− lim
n→∞

An = 0 or (b) s− lim
n→∞

(A∗)n = 0,

or both conditions (a) and (b) simultaneously, then system Σ is said to be stable,
*-stable or bi-stable, respectively. If, in addition, A is contraction operator then we
write: (a) A ∈ C0·, (b) A ∈ C·0 orA ∈ C00, respectively.

A system Σ = (A,B,C,D;X,U, Y ) is called a Φ-forward passive if, for any initial
state x(0) and for any input data {u(t)}, the following condition holds:

(11) ‖x(t+ 1)‖2 − ‖x(t)‖2 ≤

(

Φ

[

u(t)
y(t)

]

,

[

u(t)
y(t)

])

U⊕Y

, t ∈ Z
+,

where Φ ∈ B(U ⊕ Y ), Φ = Φ∗.
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3.2. Passive scattering systems. A system Σ = (A,B,C,D;X,U, Y ) is called passive
scattering system if, for any initial state x(0) and for any input data {u(t)}, condition
(11) holds with

Φ =

[

IU 0
0 −IY

]

.

This condition means that operator

MΣ =

[

A B
C D

]

(

∈ B(X ⊕ U,X ⊕ Y )
)

is contractive. A system Σ = (A,B,C,D;X,U, Y ) is a passive scattering system if and
only if the adjoint system Σ∗ = (A∗, C∗, B∗, D∗;X,Y, U) is a passive scattering system.
The last statement is true because MΣ∗ =M∗

Σ and the operator adjoint of a contraction
is a contraction as well.

A system Σ is called a conservative scattering system if its block operator MΣ is
unitary, i.e. following equalities hold:

M∗
ΣMΣ = IX⊕U , MΣM

∗
Σ = IX⊕Y .

An arbitrary passive scattering system is a restriction of some conservative scattering
system and it is the dilation of a minimal passive scattering system, see [4].

The transfer function θΣ(z) of a passive scattering system Σ is called a scattering
matrix. The main operator A of a passive scattering system is necessarily a contraction
and that is why D ⊂ ΛA. It is known that a restriction of the scattering matrix of an
arbitrary passive scattering system on the unit disk D belongs to the Schur class S(U, Y )
of holomorphic in D functions s(z) with values from B(U, Y ) such that ‖s(z)‖ ≤ 1 in
D. Conversely, an arbitrary function θ(z) from class S(U, Y ) is a restriction on D of the
scattering matrix of some simple conservative scattering system that can be defined by
θ up to unitary similarity, see [3], [4].

For any function s(z) from class S(U, Y ) there exists

s− lim
r↑1

s(rζ) = s(ζ) a.e. ζ ∈ T.

We denote Sin(U, Y ) the subclass of functions b(z) from Schur class S(U, Y ) that are
bi-inner, i.e. such b ∈ S(U, Y ) which has unitary boundary values b(ζ) a.e. on T

(12) b(ζ)∗b(ζ) = IU , b(ζ)b(ζ)∗ = IY a.e. ζ ∈ T.

A function b ∈ S(U, Y ) is said to be inner (*-inner) if it satisfies the first (second) equality
in (12) a.e. on the unit circle T. A simple conservative scattering system is stable,
*-stable or bi-stable if and only if the restriction on D of its scattering matrix is inner,
*-inner or bi-inner (belongs to the class Sin(U, Y )), respectively, see [3].

In operator theory the colligation Σ = (A,B,C,D;X,U, Y ) where corresponding ope-
rator MΣ is unitary, is called as an unitary node, and respective function θΣ is called
characteristic function of this node. Thus the results of the theory of conservative scat-
tering systems and their scattering matrices on the operator theory language are the
results on the unitary nodes and their characteristic functions.

3.3. Passive impedance systems. A system Σ = (A,B,C,D;X,U, Y ) is called a pas-
sive impedance system if Y = U and for any initial state x(0) and any input data {u(t)}
condition (11) holds with

Φ =

[

0 IU
IU 0

]

.

This condition is equivalent to the following inequality for the coefficients of the system

(13)

[

I −A∗A C∗ −A∗B
C −B∗A 2ℜD −B∗B

]

≥ 0.
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For simplicity we denote a passive impedance system Σ = (A,B,C,D;X,U) because
Y = U . A system Σ = (A,B,C,D;X,U) is a passive impedance system if and only if
the adjoint system Σ∗ = (A∗, C∗, B∗, D∗;X,U) is passive impedance, i.e. the following
condition holds:

(14)

[

I −AA∗ B −AC∗

B∗ − CA∗ 2ℜD − CC∗

]

≥ 0

(see [9], for example).
A passive impedance system Σ is said to be conservative impedance system if there

are equalities in (13) and (14), i.e. if A is unitary, C = B∗A and 2ℜD = B∗B. For such
a system

θΣ(z) = iℑD +
1

2
B∗(I + zA)(I − zA)−1B.

A restriction Σ = (A,B,C,D;X,U) of the passive impedance system Σ̂ = (Â, B̂, Ĉ,

D̂; X̂, U) is also a passive impedance system. For any passive impedance system there
exists a conservative impedance system which is its dilation. Passive impedance system
Σ is minimal if it has no nontrivial restriction. Any passive impedance system has a
restriction that is a minimal passive impedance system.

Transfer functions θΣ(z) of passive impedance systems are called impedance matrices.
The main operator A of an arbitrary passive impedance system Σ is a contraction, that
is why D ⊂ ΛA and its impedance matrix is holomorphic in D. Restrictions on the open
unit disk D of impedance matrices of passive impedance systems form the class ℓ(U) of
holomorphic in D functions c(z) with values from B(U) that have ℜc(z) ≥ 0 in D. An
arbitrary function c ∈ ℓ(U) is a restriction on D of an impedance matrix of some simple
conservative impedance system which can be defined by c(z) up to unitary similarity.
Note that the impedance matrix θΣ∗ of adjoint system Σ∗ to the passive impedance
system Σ is such that θΣ∗(z) = θ∼Σ (z), z ∈ D.

A passive impedance system Σo = (Ao, Bo, Co, Do;Xo, U) with impedance matrix
θΣo(z) is said to be optimal if for any other passive impedance system Σ = (A,B,C,D;
X,U) with impedance matrix θΣ(z) ≡ θΣo(z) in D and for any u(k) ∈ U and n ≥ 0, the
following condition holds:

∥

∥

∥

n
∑

k=0

AkoBou(k)
∥

∥

∥
≤

∥

∥

∥

n
∑

k=0

AkBu(k)
∥

∥

∥
.

If Σo is an optimal passive impedance system then always Xc
Σo

⊂ Xo
Σo

. That is why
controllable optimal passive impedance system is always observable, and thus minimal.

An observable passive impedance system Σ1 = (A1, B1, C1, D1;X1, U) is called *-op-
timal if for any other observable passive impedance system Σ = (A,B,C,D;X,U) with
the same impedance matrix in D we have

∥

∥

∥

n
∑

k=0

AkBu(k)
∥

∥

∥
≤

∥

∥

∥

n
∑

k=0

Ak1B1u(k)
∥

∥

∥
∀u(k), n ≥ 0.

From an arbitrary conservative passive impedance system Σ̂ with impedance matrix
θΣ̂ = c(∈ ℓ(U)) in D it is possible to get minimal passive impedance systems Σ◦ and Σ•

using the restriction Σ̂ on the subspaces X = X◦ and X = X•, respectively, where

(15) X◦ = PXo
Σ̂
Xc

Σ̂
, X• = PXc

Σ̂
Xo

Σ̂
.

Moreover, these minimal passive impedance systems Σ◦ and Σ• are optimal and *-optimal,
respectively. Minimal optimal and minimal *-optimal realizations of the function c ∈ ℓ(U)
can be defined by c up to unitary similarity. A system

Σ = (A,B,C,D;X,U)
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is a minimal *-optimal passive impedance system if and only if the adjoint system Σ∗ =
(A∗, C∗, B∗, D∗;X,U) is minimal optimal passive impedance system.

A passive impedance system Σ is said to be a system with losses of scattering channels
if the restriction on D of its impedance matrix c(z) is such that at least one of following
factorization inequalities

(16) ϕ(z)∗ϕ(z) ≤ 2ℜc(z), ψ(z)ψ(z)∗ ≤ 2ℜc(z), z ∈ D,

has nontrivial solutions in classes of holomorphic in D functions with values from B(U, Yϕ)
and B(Uψ, U), respectively. Otherwise, Σ is said to be a passive impedance system
without loses of scattering channels.

The case when factorization equations

(17) (1) ϕ(ζ)∗ϕ(ζ) = 2ℜc(ζ), (2) ψ(ζ)ψ(ζ)∗ = 2ℜc(ζ) a.e. ζ ∈ T,

have nonzero solutions ϕ ∈ H2(U, Yϕ) and ψ∼ ∈ H2(U,Uψ) is most important for us.
We treat equations (17) as follows: for any u ∈ U and for almost all ζ ∈ T

(18) lim
r↑1

‖ϕ(rζ)u‖2 = lim
r↑1

2ℜ(c(rζ)u, u), lim
r↑1

‖ψ(rζ)∗u‖2 = lim
r↑1

2ℜ(c(rζ)u, u).

If factorization problems (17) are solvable then sets of their solutions, respectively,
can be described by formulas

ϕ(z) = b1(z)ϕe(z), ψ(z) = ψe(z)b2(z),

where ϕe is outer solution of the problem (1) in (17) with values from B(U, Yϕe), i.e.
∨

n≥0

znϕe(z)U = H2(Yϕe),

ψe is *-outer solution of the problem (2) in (17) with values from B(Uψe , U), i.e. ψ∼
e

is outer function; b1 and b2 are arbitrary inner and *-inner functions with values from
B(Yϕe , Yϕ) and B(Uψ, Uψe), respectively; dimYϕe ≤ dimYϕ, dimUψe ≤ dimUψ.

Under the normalization ϕe(0)|Yϕe > 0, ψe(0)
∗|Uψe > 0, Yϕe ⊂ U , Uψe ⊂ U func-

tions ϕe and ψe are determined uniquely by c. If dimU < ∞ then dimension of the
spaces Yϕe and Uψe are determined by the following equality: dimYϕe = rankℜc(ζ) =
dimUψe a.e.ζ ∈ T. Thus if factorization problems (17) are solvable then

mc = rankℜc(ζ) = dim [ℜc(ζ)U ]

is constant a.e. on the unit circle T.

3.4. Conservative transmission SI-systems. Let Ũ and Ỹ be Hilbert spaces. J1 ∈
B(Ũ) and J2 ∈ B(Ỹ ) are signature operators, i.e.

J∗
i = Ji, i = 1, 2; J2

1 = IŨ , J2
2 = IỸ .

These operators determine the indefinite metrics < ., . > in Ũ and Ỹ such that

〈ũ, ũ′〉 = (J1ũ, ũ
′) , 〈ỹ, ỹ′〉 = (J2ỹ, ỹ

′) ũ, ũ′ ∈ Ũ , ỹ, ỹ′ ∈ Ỹ .

A system Σ̃ = (Ã, B̃, C̃, D̃; X̃, Ũ , Ỹ ) is called conservative transmission system if for any

initial state x̃(0) ∈ X̃ and for any input data {ũ(t)} the following condition holds

‖x̃(t+ 1)‖2 − ‖x̃(t)‖2 =

(

ΦJ1,J2

[

ũ(t)
ỹ(t)

]

,

[

ũ(t)
ỹ(t)

])

Ũ⊕Ỹ

,

where

ΦJ1,J2 =

[

J1 0
0 −J2

]
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for all t ∈ Z
+, and the dual equality holds for the adjoint system Σ̃∗ = (Ã∗, C̃∗, B̃∗, D̃∗;

X̃, Ỹ ∗, Ũ∗) with operator

ΦJ2,J1 =

[

J2 0
0 −J1

]

.

The fact that Σ̃ is conservative transmission system means that the operator

MΣ̃ =

[

Ã B̃

C̃ D̃

]

∈ B

(

X̃ ⊕ Ũ , X̃ ⊕ Ỹ
)

is (J̃1, J̃2)-unitary, i.e.

(19) M∗

Σ̃
J̃2MΣ̃ = J̃1, MΣ̃J̃1M

∗

Σ̃
= J̃2, where J̃i =

[

IX 0
0 Ji

]

, i = 1, 2.

It was shown in [7] that an arbitrary passive impedance system Σ = (A,B,C, D;X,U)

with losses of scattering channels is the part of a conservative transmission system Σ̃ =
(Ã, B̃, C̃, D̃;X, Ũ , Ỹ ) in the following sense. The outer spaces Ũ , Ỹ and corresponding

signature operators J1 and J2 of a conservative transmission system Σ̃ are such that

Ũ = U1 ⊕ U ⊕ U, Ỹ = Y1 ⊕ U ⊕ U,

(20) J1 =





IU1
0 0

0 0 −IU
0 −IU 0



 , J2 =





IY1
0 0

0 0 −IU
0 −IU 0





and the operators Σ̃ have a special block structure

(21) Ã = A, B̃ =
[

K B 0
]

, C̃ =





M
C
0



 , D̃ =





S N 0
L D IU
0 IU 0



 .

It follows from (19)–(21) that the operatorsM ∈ B(X,Y1), K ∈ B(U1, X), S ∈ B(U1, Y1),
N ∈ B(U, Y1) and L ∈ B(U1, Y ) are such that the following equalities hold:

[

I −A∗A C∗ −A∗B
C −B∗A 2ℜD −B∗B

]

=

[

M∗M M∗N
N∗M N∗N

]

=

[

M∗

N∗

]

[

M N
]

,

[

I −AA∗ B −AC∗

B∗ − CA∗ 2ℜD − CC∗

]

=

[

KK∗ KL∗

LK∗ LL∗

]

=

[

K
L

]

[

K∗ L∗
]

,

L = B∗K +N∗S, N =MC∗ + SL∗,

and the operator

(22) V =

[

A K
M S

]

∈ B(X ⊕ U1, X ⊕ Y1)

is unitary. These conditions are equivalent to (19).

The inverse statement is also true. If Σ̃ = (Ã, B̃, C̃, D̃;X, Ũ , Ỹ ) is a conservative

transmission system with special block representation (21) of operators B̃, C̃, D̃, and
operators J1 and J2 which are defined in (20), then the corresponding system Σ =
(A,B,C,D;X,U) is a passive impedance system with losses of scattering channels. Sys-

tems Σ̃ of this type with special operators J1 and J2 of the form (20) and with corre-
sponding block representations of coefficients of the form (21), are called conservative
transmission SI-systems (scattering-impedance).
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A restriction on D of the transfer function θ̃J1,J2(z) of a conservative transmission SI-

system Σ̃ = (Ã, B̃, C̃, D̃;X, Ũ , Ỹ ) is a holomorphic bi-(J1, J2)-contractive in D function,
i.e. it is such that

θ(z)∗J2θ(z) ≤ J1, θ(z)J1θ(z)
∗ ≤ J2, z ∈ D,

with special block structure

(23) θ(z) =





α(z) β(z) 0
γ(z) δ(z) IU
0 IU 0



 , δ(z) = c(z), z ∈ D,

where the operators J1 and J2 are defined by the formula (20), and

(24)
α(z) = S + zM(I − zA)−1K, β(z) = N + zM(I − zA)−1B, z ∈ D,
γ(z) = L+ zC(I − zA)−1K, δ(z) = D + zC(I − zA)−1B, z ∈ D.

Moreover, an arbitrary function θ with block structure (23) that satisfies properties
stated above is a restriction on D of the transmission matrix of some simple conservative
transmission SI-system that can be determined by θ up to unitary similarity.

It was shown in [7] that a function c(z) from D to B(U) is a restriction on D of the
impedance matrix of some passive bi-stable impedance system Σ = (A,B,C,D;X,U) if
and only if there exists a bi-(J1, J2)-inner function θ with values from B(U1⊕U ⊕U, Y1⊕
U ⊕U) with special block structure (23), where U1 and Y1 are some Hilbert spaces, and
J1 and J2 are operators of the form (20). Here the function θ(z) is bi-(J1, J2)-inner in
the sense that it is holomorphic in D, takes bi-(J1, J2)-contractive values in D and for
any ũ ∈ U1 ⊕ U ⊕ U and ỹ ∈ Y1 ⊕ U ⊕ U

(25) lim
r↑1

(θ(rζ)∗J2θ(rζ)ũ, ũ) = (J1ũ, ũ), lim
r↑1

(θ(rζ)J1θ(rζ)
∗ỹ, ỹ) = (J2ỹ, ỹ)

a.e. on T.
Blocks of the function θ(z) have the following properties:
1) β ∈ H2(U, Y1) and γ

∼ ∈ H2(U,U1) are the solutions of factorization problems (1)
and (2) in (17);

2) δ(= c) ∈ ℓ(U);
3) α(z) is a bi-inner scattering matrix of the conservative scattering system Σscat =

(A,K,M,S; X,U1, Y1), where operators K ∈ B(U1, X),M ∈ B(X,Y1) and S ∈ B(U1, Y1)
appear as blocks of the unitary operator V in (22);

4) α, β and γ are connected with each other by the following relation:

α(ζ)∗β(ζ) = γ(ζ)∗ a.e. ζ ∈ T.

A function θ(z) with given block δ(z) = c(z) in D that satisfies above properties is
said to be a bi-(J1, J2)-inner SI-dilation of the function c(z).

4. Realizations of stochastic stationary processes

In this section the authors results on the functional models of the forward and back-
ward realizations of p-dimensional regular discrete time weak stationary stochastic pro-
cesses of rank m with spectral density ρ(eiµ) where ρ ∈ Np×pΠ are presented. The
results of the passive discrete time invariant impedance systems with losses theory that
were discussed in the previous section are essentially used here. These results were ob-
tained by authors under the influence of the works [28]–[31] on the forward and backward
realizations of weak stationary stochastic processes via input/state/output linear time
invariant systems. Below a reader will see how from the results of section 3 the new
results for Lindquist-Picci realization theory follow.
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4.1. The problem of stochastic realization. Let y(t) = {yk(t)}
p
k=1 be the stationary

(in a weak sense) regular stochastic process with spectral density ρ(eiµ) of rank m and
taking values in the Hilbert space H(y). The realizations of stochastic process y(t) as an
output data of the systems

(26) (Σf )

{

xf (t+ 1) = Axf (t) +Kwf (t),
y(t) = Cxf (t) + Lwf (t),

(Σb)

{

xb(t− 1) = Ãxb(t) + K̃wb(t),

y(t) = C̃xb(t) + L̃wb(t)

with C
m, Cp and X as an input, output and state space, respectively, were considered in

[28]–[29] (more specific information about the structure of the space X can be found in
[28] or below). The first one of these systems, Σf , develops forward in time t ∈ Z (index
f comes from forward), while the second one Σb develops backward in time t ∈ Z (index
b comes from backward). There are vector white noises wf and wb of order m stationary
connected with y in the systems (26) such that

(27) H(wf ) = H(wb) = H(y), H−(y) ⊂ H−(wf ), H+(y) ⊂ H+(wb)

and generate the same unitary shift operator on considering space; xf and xb are inner
states such that

(28) H(xf ) ⊂ H(y), lim
t→−∞

xf (t) = 0, xb(t− 1) = xf (t);

A,K,C,L, Ã, K̃, C̃, L̃ are linear bounded operators between relevant subspaces such that
A ∈ C00 and

(29) Ã = A∗, I = AA∗+KK∗ = A∗A+K̃K̃∗, C̃ = CA∗+LK∗, C = C̃A+ L̃K̃∗,

(30) E{y(0)y(0)∗} = CC∗ + LL∗ = C̃C̃∗ + L̃L̃∗.

The following theorem is the criterion of solvability of the stochastic realization prob-
lem for stationary stochastic process y(t) with the spectral density ρ.

Theorem 1. The stationary stochastic process y(t) = {yk(t)}
p
k=1 of rank m with spectral

density ρ(eiµ) can be represented as an output data of stochastic systems (26) which have
the main operator A ∈ C00 and satisfy the properties (27)–(30) if and only if its spectral
density is the nontangential boundary value of a function from class Np×p.

The sufficient condition of this theorem will be proved in the next subsection. A
detailed proof of the necessity will be presented by the second author in a separate
paper.

4.2. Realizations of stationary processes using the model of a passive impe-

dance system with losses of scattering channels. Let matrix function ρ(eiµ) be the
spectral density of some stochastic stationary (in a weak sense) process y(t) = {yk(t)}

p
k=1

of rank m. Suppose that ρ(eiµ) satisfies the conditions of Theorem 1. Our aim now is to
construct stochastic systems of the form (26), the output data of which are the values of
the stationary process y(t) with given spectral density ρ(eiµ). To do this we are going to
use our model of a passive impedance system with losses of scattering channels included
in the conservative transmission SI-system, as described in Section 3.4. Also, we are going
to give the description of a class of stationary stochastic processes with given spectral
density, which can be received this way.

We assume the density ρ(eiµ) is the nontangential boundary value of some matrix
function ρ from the class Np×p. Then ρ ∈ Np×pΠ because ρ(eiµ) ≥ 0 a.e. on [−π, π],
and meromorphic pseudocontinuation of the function ρ(z) can be determined by the
symmetry principle

ρ(z) = ρ(1/z)∗, z ∈ De.
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Let us now consider corresponding matrix function cρ(z) from Caratheodory class ℓp×p

with spectral density ρ(ζ) determined by the formula

(31) cρ(z) =
1

2
R(0) +

∞
∑

t=1

R(t)zt,

where R(t) are the Fourier coefficients of ρ(ζ). In this case cρ also has meromorphic
pseudocontinuation in the exterior De of the open unit disk D, thus cρ ∈ ℓp×pΠ and

2ℜcρ(ζ) = ρ(ζ), ζ = eiµ.

In [6], Theorem 1, it was shown that for cρ(z) there exists a representation as a
2× 2-block of a Jp,m-inner matrix function θ(z) of the form

(32) θ(z) =





α(z) β(z) 0
γ(z) cρ(z) Ip
0 Ip 0



 .

The matrix function θ is Jp,m-inner in that sense that it is holomorphic in the disk D,
takes Jp,m-contractive values in D

θ(z)∗Jp,mθ(z) ≤ Jp,m, z ∈ D

and has Jp,m-unitary nontangential values a.e. on the unit circle

θ(ζ)∗Jp,mθ(ζ) = Jp,m a.e. ζ ∈ T,

where

Jp,m =





Im 0 0
0 0 −Ip
0 −Ip 0



 .

The matrix function θ is called the Jp,m-inner dilation of the matrix function cρ.
Let a matrix function θ(z) be such a dilation of cρ. Then blocks of θ(z) have the

following properties:

α ∈ Sm×m
in , β ∈ Hm×p

2 Π, γ ∈ Hp×m
2 Π,

β(z)∗β(z) ≤ 2ℜcρ(z), γ(z)γ(z)∗ ≤ 2ℜcρ(z), z ∈ D,

β(ζ)∗β(ζ) = ρ(ζ)(= 2ℜcρ(ζ)), γ(ζ)γ(ζ)∗ = ρ(ζ)(= 2ℜcρ(ζ)) a.e. ζ ∈ T,

α(ζ)∗β(ζ) = γ(ζ)∗ a.e. ζ ∈ T.

Using matrix function θ(z) and results of [7] (section 5, pp. 644–647) we construct

the following functional model of a simple conservative transmission SI-system ˙̃Σ =

( ˙̃A, ˙̃B, ˙̃C, ˙̃D; Ẋ, Ũ , Ỹ ) with the transfer function θ̃J1,J2 ≡ θ in D:

Ũ = Ỹ = C
m ⊕ C

p ⊕ C
p, Ẋ = Hm

2 ⊖ αHm
2 , w ∈ C

m, u ∈ C
p, x ∈ Ẋ;

[

˙̃A ˙̃B
˙̃C ˙̃D

]

=









Ȧ K̇ Ḃ 0

Ṁ Ṡ Ṅ 0

Ċ L̇ Ḋ Ip
0 0 Ip 0









: Ẋ ⊕ Ũ −→ Ẋ ⊕ Ỹ ;

˙̃A = Ȧ : Ẋ −→ Ẋ, Ȧx = ζ−1 [x(ζ)− x(0)] ;
˙̃B =

[

K̇ Ḃ 0
]

: Ũ −→ Ẋ;

K̇ : C
m −→ Ẋ, K̇w = ζ−1 [α(ζ)− α(0)]w;

Ḃ : C
p −→ Ẋ, Ḃu = ζ−1 [β(ζ)− β(0)]u;

˙̃C =





Ṁ

Ċ
0



 : Ẋ −→ Ỹ ;



320 D. Z. AROV AND N. A. ROZHENKO

Ṁ : Ẋ −→ C
m, Ṁx = x(0);

Ċ : Ẋ −→ C
p, Ċx =

∫

T

β(ζ)∗x(ζ) |dζ| ;

˙̃D =





Ṡ Ṅ 0

L̇ Ḋ Ip
0 Ip 0



 : Ũ −→ Ỹ ;

Ṡ : C
m −→ C

m, Ṡw = α(0)w;

Ṅ : C
p −→ C

m, Ṅu = β(0)u;

Ḋ : C
p −→ C

p, Ḋu = cρ(0)u;

L̇ : C
m −→ C

p, (L̇w, u)Cp = (K̇w, Ḃu)Lm2 (T) + (Ṡw, Ṅu)Cm .

By the construction system Σscat = (Ȧ, K̇, Ṁ , Ṡ; Ẋ,Cm,Cm) is a simple conservative
scattering system with bi-inner scattering matrix α(z)

(33) α(z) = Ṡ + zṀ(Im − zȦ)−1K̇, z ∈ ΛȦ.

It follows from the simplicity of Σscat that conservative transmission system ˙̃Σ is simple.

Minimality of ˙̃Σ follows from the minimality of Σscat because its main operator belongs
to the class C00.

It follows from Theorem 3.1 in [7] that the system Σimp = (Ȧ, Ḃ, Ċ, Ḋ; Ẋ,Cp) is a
passive bi-stable impedance system with the impedance matrix

(34) cρ(z) = Ḋ + zĊ(Im − zȦ)−1Ḃ, z ∈ D.

The operators of conservative transmission SI-system ˙̃Σ are connected with each other
via the following relations:

(35) Im − Ȧ∗Ȧ = Ṁ∗Ṁ, Ċ∗ − Ȧ∗Ḃ = Ṁ∗Ṅ , 2Ḋ − Ḃ∗Ḃ = Ṅ∗Ṅ ,

(36) Im − ȦȦ∗ = K̇K̇∗, Ḃ − ȦĊ∗ = K̇L̇∗, 2Ḋ − ĊĊ∗ = L̇L̇∗,

(37) L̇ = Ḃ∗K̇ + Ṅ∗Ṡ, Ṅ = ṀĊ∗ + ṠL̇∗,

(38) Ȧ∗K̇ = −Ṁ∗Ṡ, Im − Ṡ∗Ṡ = K̇∗K̇, ȦṀ∗ = −K̇Ṡ∗, Im − ṠṠ∗ = ṀṀ∗.

Let us consider simple conservative system

(39) (Σscat)

{

xf (t+ 1) = Ȧxf (t) + K̇wf (t),

wb(t) = Ṁxf (t) + Ṡwf (t)

with bi-inner scattering matrix α, the input data of which is m-dimensional white noise
wf (t), and states xf (t) satisfy the condition

(40) s− lim
t→−∞

xf (t) = 0.

It follows from [12], [13] that in this case the output data of the system Σscat is m-
dimensional white noise wb(t). Moreover, from (39) and (40) it follows that

ŵb(ζ) = α(ζ)ŵf (ζ) a.e. ζ ∈ T,

where ŵf (ζ) ∈ Lm2 (T) and ŵb(ζ) ∈ Lm2 (T) are the Fourier transforms of wf (t) and wb(t),
respectively. White noises wf and wb are stationary connected and such that

H(wb) = H(wf ), H−(wb) ⊂ H−(wf )

with the same unitary shift operator. The spectral random measures Fwf (dµ) and
Fwb(dµ) of these processes are connected via the equality

(41) Fwb(dµ) = α(eiµ)Fwf (dµ)
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and

wb(t) =

∫ π

−π

e−itµα(eiµ)Fwf (dµ).

Set
y(t) = Ċxf (t) + L̇wf (t), t ∈ Z,

and consider the system

(42) (Σf )

{

xf (t+ 1) = Ȧxf (t) + K̇wf (t),

y(t) = Ċxf (t) + L̇wf (t).

By induction from (42) using (40) it follows that

(43) y(t) =

t−1
∑

k=−∞

ĊȦt−k−1K̇wf (k) + L̇wf (t), t ∈ Z,

in particular, the considering above series converges. Moreover, the Fourier transform
ŷ(ζ) of y(t) is in Lp1(T) if ŵf (ζ) ∈ Lm2 (T) and

(44) ŷ(ζ) = γ(ζ)ŵf (ζ) a.e. ζ ∈ T.

Lemma 1. y(t) is stationary (in a weak sense) p-dimensional stochastic process with
the sequence of correlations

(45) R(τ) =







ĊȦτ−1Ḃ, τ > 0,

2Ḋ, τ = 0,

Ḃ∗(Ȧ∗)−τ−1Ċ∗, τ < 0.

Proof. It follows from (43) that

yj(t) =

t−1
∑

k=−∞

(ĊȦt−k−1K̇wf (k), ej)Cp + (L̇wf (t), ej)Cp

=

t−1
∑

k=−∞

(wf (k), K̇
∗(Ȧ∗)t−k−1Ċ∗ej)Cp + (wf (t), L̇

∗ej)Cp ,

where ej , 1 ≤ j ≤ p, is standard orthonormal basis in C
p. Since in H all components of

the last sum are orthogonal,

‖yj(t)‖
2
H =

∞
∑

k=0

‖(wf (t− k − 1), K̇∗(Ȧ∗)kĊ∗ej)Cp‖
2
H + ‖(wf (t), L̇

∗ej)Cp‖
2
H.

Moreover, if hs, 1 ≤ s ≤ m, is standard orthonormal basis in C
m, then

(46) yj(t) =
∞
∑

k=0

m
∑

s=1

(hs, K̇
∗(Ȧ∗)t−k−1Ċ∗ej)Cmwfs(k) +

m
∑

s=1

(hs, L
∗ej)Cmwfs(t).

If τ > 0 from (46) with account that wfs(t), 1 ≤ s ≤ m, is an orthonormal basis in
H(wf ), it follows that

(yi(t+ τ), yj(t))H =
t−1
∑

k=−∞

m
∑

s=1

(hs, K̇
∗(Ȧ∗)t+τ−k−1Ċ∗ei)Cm(K̇

∗(Ȧ∗)t−k−1Ċ∗ej , hs)Cm

+

m
∑

s=1

(hs, K̇
∗(Ȧ∗)τ−1Ċ∗ei)Cm(L

∗ej , hs)Cm

Last equality means that

Rij(τ, t) =

∞
∑

k=0

m
∑

s=1

(ĊȦk+τ K̇)is(K̇
∗(Ȧ∗)kĊ∗)sj +

m
∑

s=1

(ĊȦτ−1K̇)is(L̇
∗)sj .
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This expression gives

R(τ, t) =
∞
∑

k=0

ĊȦk+τ K̇K̇∗(Ȧ∗)kĊ∗ + ĊȦτ−1K̇L̇∗.

Using (36) we obtain

R(τ, t) = R(τ) = ĊȦτ−1Ḃ, τ > 0.

Corresponding expressions for R(τ, t) in the cases τ = 0 and τ < 0 can be obtained
analogically. Therefore, y(t) is weak stationary p-dimensional stochastic process. �

Lemma 2. In the settings of lemma 1, y(t) is a regular stationary process with spectral
density ρ(eiµ).

Proof. Let π+ be the orthogonal projection from Lm2 (T) onto Hm
2 . Then the formulas

for Ȧ and Ḃ may be rewritten as

Ȧx = π+Ux, x ∈ Ẋ; Ḃu = π+Uβu, u ∈ C
p,

where U is the operator of the multiplication on ζ−1 of vector functions x(ζ) from
Lm2 (T). Consequently,

Ȧk−1x = π+U
k−1x, Ȧk−1Ḃu = π+U

kβu ⇒

∞
∑

k=1

Ȧk−1Ḃuzk = zπ+U(I − zU)−1βu = z
β(ζ)− β(z)

ζ − z
u

and
∞
∑

k=1

R(k)zk =

∫

T

β(ζ)∗z
β(ζ)− β(z)

ζ − z
ζ−1u |dζ| = z

∫

T

ρ(ζ)

ζ − z
u |dζ| .

Then, with the account that

Ḋ =
1

2
R(0) =

1

2

∫

T

β(ζ)∗β(ζ) |dζ| =
1

2

∫

T

ρ(ζ) |dζ| ,

we obtain that

cρ =
1

2
R(0) +

∞
∑

k=1

R(k)zk =
1

2

∫

T

ζ − z

ζ + z
ρ(ζ) |dζ| .

This establish the assertion of lemma. �

Thus, y(t) is a regular stationary process with the spectral density

(47) ρ(eiµ) = γ(eiµ)γ(eiµ)∗ a.e. µ ∈ [−π, π].

Hence, system Σf := (Ȧ, K̇, Ċ, L̇; Ẋ,Cm,Cp) in (42) is developing forward in time reali-
zation of the process y(t) with the spectral density ρ as an output data. Block γ of the

dilation θ is a restriction on the open unit disk D of the transfer function of system Σ̇f

(48) γ(z) = L̇+ zĊ(Im − zȦ)−1K̇, z ∈ D,

and it is a spectral factor of the rank m of density ρ, i.e. γ belongs to Hp×m
2 Π and

satisfies (47). The matrix function γ corresponds to white noise wf in the sense that

H(wf ) = H(y), H−(y) ⊂ H−(wf ),

the same unitary shift operator corresponds to y and wf and the spectral random mea-
sures Fy(dµ) and Fwf (dµ) of processes y and wf , respectively, are connected via the
relation

(49) Fy(dµ) = γ(eiµ)Fwf (dµ).
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It follows from (49) that the values of the process y(t) can be represented in the
following integral form:

(50) y(t) =

∫ π

−π

e−itµγ(eitµ)Fwf (dµ).

Using equalities Ȧ∗Ȧ + Ṁ∗Ṁ = I and Ȧ∗K̇ + Ṁ∗Ṡ = 0 and the first and the second
equations in (42) and (39), respectively, we have

xf (t) = (Ȧ∗Ȧ+ Ṁ∗Ṁ)xf (t) + (Ȧ∗K̇ + Ṁ∗Ṡ)wf (t) =⇒

xf (t) = Ȧ∗(Ȧxf (t) + K̇wf (t)) + Ṁ∗(Ṁxf (t) + Ṡwf (t)) =⇒

(51) xf (t) = Ȧ∗xf (t+ 1) + Ṁ∗wb(t).

Using equalities K̇∗Ȧ+ Ṡ∗Ṁ = 0 and K̇∗K̇ + Ṡ∗Ṡ = I and also the first and the second
equations in (42) and (39), respectively, we have

wf (t) = (K̇∗Ȧ+ Ṡ∗Ṁ)xf (t) + (K̇∗K̇ + Ṡ∗Ṡ)wf (t) =⇒

wf (t) = K̇∗(Ȧxf (t) + K̇wf (t)) + Ṡ∗(Ṁxf (t) + Ṡwf (t)) =⇒

(52) wf (t) = K̇∗xf (t+ 1) + Ṡ∗wb(t).

It follows from the relations (51), (52) and results [12], [13], that simple conservative

scattering system Σ̇∗
scat = (Ȧ∗, Ṁ∗, K̇∗, Ṡ∗; Ẋ,Cm,Cm) with scattering matrix α(z̄)∗ in

D turned backward in time with a shift of one step connects white noises wf and wb with
each other in the following way:

(53)

{

xb(t− 1) = Ȧ∗xb(t) + Ṁ∗wb(t),

wf (t) = K̇∗xb(t) + Ṡ∗wb(t),

where

(54) xb(t) := xf (t+ 1).

In this case

Fwf (dµ) = α(eiµ)∗Fwb(dµ),

and

wf (t) =

∫ π

−π

e−itµα(eiµ)∗Fwb(dµ).

Furthermore, using Ċ = Ḃ∗Ȧ+ Ṅ∗Ṁ and L̇ = Ḃ∗K̇ + Ṅ∗Ṡ from the second equation
in (42) we have

y(t) = (Ḃ∗Ȧ+ Ṅ∗Ṁ)xf (t) + (Ḃ∗K̇ + Ṅ∗Ṡ)wf (t) =⇒

y(t) = Ḃ∗(Ȧxf (t) + K̇wf (t)) + Ṅ∗(Ṁxf (t) + Ṡwf (t)) =⇒

(55) y(t) = Ḃ∗xf (t+ 1) + Ṅ∗wb(t).

Consider the adjoint system Σb := (Ȧ∗, Ṁ∗, Ḃ∗, Ṅ∗; Ẋ,Cm,Cp). A restriction on D of
the transfer function of this system is coincides with β∼(z)

(56) β∼(z) = Ṅ∗ + zḂ∗(Im − zȦ∗)−1Ṁ∗, z ∈ D.

It follows from (51), (55) and (54) that the system Σb turned backward in time with shift
of one step is the realization of the process y(t) such that if the values of the noise wb(t)
are the input data, then the values of y(t) are the output data of Σb

(57)

{

xb(t− 1) = Ȧ∗xb(t) + Ṁ∗wb(t),

y(t) = Ḃ∗xb(t) + Ṅ∗wb(t).
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Note that matrix function β∼ is a spectral factor of rank m of the density ρ∼(eiµ) =

ρ(e−iµ) of the process ỹ(t) := y(−t), i.e. β ∈ Hm×p
2 Π and

β∼(eiµ)(β∼(eiµ))∗ = ρ∼(eiµ) a.e. µ ∈ [−π, π].

Since blocks α, β and γ of the dilation θ are connected via the relation

γ(eiµ) = β(eiµ)∗α(eiµ) a.e. µ ∈ [−π, π],

and because of (49) and (41) the following equality holds for the spectral random mea-
sures of the processes y and wb

(58) Fy(dµ) = γ(eiµ)Fwf (dµ) = β(eiµ)∗α(eiµ)Fwf (dµ) = β(eiµ)∗Fwb(dµ).

Consequently, block β of Jp,m-inner dilation θ corresponds to the white noise wb(t) in
the sense that

H(wb) = H(y), H+(y) ⊂ H+(wb),

the same unitary shift operator corresponds to y and wb and spectral random measures
Fy(dµ) and Fwb(dµ) of the processes y and wb are connected via the relation (58). In
this case the values of the process y(t) can be represented in the integral form

(59) y(t) =

∫ π

−π

e−itµβ(eitµ)∗Fwb(dµ).

Thus, we can present now the following theorem.

Theorem 2. Let ρ(ζ) be a rank m matrix function from Lp×p1 (T) which is nonnegative
a.e. on T and it is the nontangential boundary value of a function ρ(z) from the class
Np×p; a matrix function cρ ∈ ℓp×pΠ is determined by ρ via formula (31).

Let a realization model

{Σf ,Σb,Σscat,Σimp}

is defined by ρ as it was done above in this subsection using an Jp,m-inner dilation θ of
cρ. Then

1) the system Σf is a forward in time realization of the stationary p-dimensional
stochastic process y(t) of rank m with given spectral density ρ, with the values of the
white noise wf (t) as an input data; the system Σb is a backward in time realization of
the process y(t) with the values of the white noise wb(t) as an input data;

2) inner states of the systems Σf and Σb are connected via the relation

xb(t) = xf (t+ 1);

3) white noises wf and wb are connected with each other via the simple conservative
bi-stable scattering system Σscat.

Remark. Consider a matrix function

θ∼(z) =





α∼(z) β∼(z) 0
γ∼(z) c∼ρ (z) Ip

0 Ip 0



 =





α(z̄)∗ γ(z̄)∗ 0
β(z̄)∗ cρ(z̄)

∗ Ip
0 Ip 0



 .

This function is a Jp,m-inner dilation of the matrix function c∼ρ (z). It is easy to see that
θ∼(z) corresponds to stationary stochastic process ỹ(t) = y(−t) with spectral density

ρ∼(eiµ) = ρ(e−iµ) and realization model {Σ̃f , Σ̃b, Σ̃scat, Σ̃imp}, where

Σ̃scat = Σ∗
scat, Σ̃imp = Σ∗

imp,

Σ̃f = (Ȧ∗, Ṁ∗, Ḃ∗, Ṅ∗; Ẋ,Cm,Cp),

and realization Σ̃b of the process ỹ(t) is the system Σf = (Ȧ, K̇, Ċ, L̇; Ẋ,Cm,Cp) turned
backward in time with the one step shift.
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For the description of the various realizations Σf and Σb of a stationary regular sto-
chastic process with given spectral density ρ ∈ Πp×p we need a parameterization of the
set of all Jp,m-inner dilations of matrix function c(z) from the class ℓp×pΠ, that was
presented in [6]. Namely, consider matrix function c ∈ ℓp×pΠ with

m = rank2ℜc(ζ) a.e. ζ ∈ T.

Let functions ϕe ∈ Hm×p
2 and ψe ∈ Hp×m

2 be normalized outer and *-outer solutions of
the factorization problems

2ℜc(ζ) = ϕ(ζ)∗ϕ(ζ), 2ℜc(ζ) = ψ(ζ)ψ(ζ)∗ a.e. ζ ∈ T,

and sc ∈ Nm×m be the scattering suboperator determined by the relation

sc(z)ψ
♯
e(z) = ϕe(z), z ∈ Λϕe ∩ Λψ♯e ∩ Λsc

that takes unitary values a.e. on the unit circle. Then an arbitrary Jp,m-inner SI-dilation
θ of matrix function c(z) can be uniquely presented in the form

(60)

θ(z) =





α(z) β(z) 0
γ(z) c(z) Ip
0 Ip 0



 =





b1(z)sc(z)b2(z) b1(z)ϕe(z) 0
ψe(z)b2(z) c(z) Ip

0 Ip 0





=





b1(z) 0 0
0 Ip 0
0 0 Ip









sc(z) ϕe(z) 0
ψe(z) c(z) Ip
0 Ip 0









b2(z) 0 0
0 Ip 0
0 0 Ip



 ,

where {b1, b2} is a denominator of matrix function sc, i.e. ordered pair of functions from
the class Sm×m

in , such that the product b1scb2 belongs to Sm×m
in (look at [6], [7] for the

details).
In the following theorem the above realization models are parameterizing by denomi-

nators of sc.

Theorem 3. Let ρ(ζ) be a matrix function of rank m from Lp×p1 (T) that is nonnegative
a.e. on T and it is the nontangential boundary value of a function ρ(z) from Np×p; let

corresponding matrix functions cρ ∈ ℓp×pΠ, ϕe ∈ Hm×p
2 , ψe ∈ Hp×m and sc ∈ Nm×m

are determined by ρ as above.
Let the Jp,m-inner dilation θ of the matrix function cρ be defined by the formula (60);

let wf and wb be m-dimensional white noises with the spectral measures Fwf (dµ) and
Fwb(dµ), respectively, such that

(61) Fwb(dµ) = α(eiµ)Fwf (dµ) = b1(e
iµ)sc(e

iµ)b2(e
iµ)Fwf (dµ),

where {b1, b2} is a denominator of sc ∈ Nm×m in representation (60). Determine y(t)
by the formulas

(62)

y(t) =

∫ π

−π

e−itµγ(eiµ)Fwf (dµ) =

∫ π

−π

e−itµψe(e
iµ)b2(e

iµ)Fwf (dµ)

=

∫ π

−π

e−itµβ(eiµ)∗Fwb(dµ) =

∫ π

−π

e−itµϕe(e
iµ)∗b1(e

iµ)∗Fwb(dµ).

Then y(t) is stationary stochastic process of rank m with spectral density ρ(eiµ).

Proof. Let θ be a Jp,m-inner dilation of matrix function cρ ∈ ℓp×pΠ. Its blocks can be
uniquely presented in the form

(63) α = b1scb2, β = b1ϕe, γ = ψeb2,
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where {b1, b2} is a denominator of matrix function sc ∈ Nm×m. Using these matrix
functions it is possible to obtain a pair of the white noises {wf , wb} and to construct
realization systems {Σf ,Σb,Σscat,Σimp} as it was shown above. System Σscat connects
processes wf and wb with each other, and their random spectral measures satisfy the
condition (41). Using (63) we have (61).

The output data of the systems Σf and Σb are the values of some stationary process
y(t) of rank m with the spectral density ρ(eiµ). The values of this process can be
presented in the form (50) and (59). Using this fact and equalities (63) we get (62). �

In end of this section we will notice that the following result holds.

Lemma 3. Systems Σf = (Ȧ, K̇, Ċ, L̇; Ẋ,Cm,Cp) and Σ̃f = (Ȧ∗, Ṁ∗, Ḃ∗, Ṅ∗; Ẋ,
C
m,Cp) are Φ-forward-passive with

Φ =

[

Im 0
0 0

]

.

Proof. For an arbitrary linear stationary dynamical system Σ = (A,B,C,D;X,U, Y )
the condition of Φ-forward-passivity (11) is equivalent to the following inequality for the
operators of the system:

(64)

[

A∗A− IX A∗B
B∗A B∗B

]

−

[

0 C∗

IX D∗

]

Φ

[

0 IX
C D

]

≤ 0.

For the realization system Σf = (Ȧ, K̇, Ċ, L̇; Ẋ,Cm,Cp) we can write the left part of
(64) using the relations (35) and (38) in the form

[

Ȧ∗Ȧ− Im Ȧ∗K̇

K̇∗Ȧ K̇∗K̇

]

−

[

0 Ċ∗

Im L̇∗

] [

Im 0
0 0

] [

0 Im
Ċ L̇

]

=

[

Ȧ∗Ȧ− Im Ȧ∗K̇

K̇∗Ȧ K̇∗K̇ − Im

]

=

[

−Ṁ∗Ṁ −Ṁ∗Ṡ

−Ṡ∗Ṁ −Ṡ∗Ṡ

]

= −

[

Ṁ∗

Ṡ∗

]

[

Ṁ Ṡ
]

≤ 0.

For the realization system Σ̃f = (Ȧ∗, Ṁ∗, Ḃ∗, Ṅ∗; Ẋ,Cm,Cp) the condition (11) of
Φ-forward-passivity can be obtained in similarly way. �

4.3. Minimal realizations of stationary stochastic processes. We call a forward
realization Σf of the stationary stochastic process y(t) minimal if the system Σf =

(Ȧ, K̇, Ċ, L̇; Ẋ,Cm,Cp) is minimal. Similarly, a backward realization Σb of the process

y(t) is said to be minimal if the system Σ̃f = (Ȧ∗, Ṁ∗, Ḃ∗, Ṅ∗; Ẋ,Cm,Cp) is minimal. It
will be shown in this section how to construct minimal realizations of the process with
given spectral density using corresponding Jp,m-inner dilations θ(z). A dilation θ of the
matrix function c(z) is called minimal if it can not be presented in the form

θ(z) =





u(z) 0 0
0 Ip 0
0 0 Ip



 θ̃(z)





v(z) 0 0
0 Ip 0
0 0 0



 ,

where θ̃ is a Jp,m-inner dilation of c, matrix functions u and v belong to Sm×m
in and at least

one of them is not constant. A Jp,m-inner dilation θ of matrix function c(z) is minimal
if and only if the corresponding denominator {b1, b2} of the scattering suboperator sc in

representation (60) is minimal, i.e. there exists no such a denominator {b̃1, b̃2} of sc that
is a nontrivial divisor of denominator {b1, b2}. It means that, if

u1 = b̃−1
1 b1 ∈ Sm×m

in , u2 = b2b̃
−1
2 ∈ Sm×m

in and b̃1scb̃2 ∈ Sm×m
in ,
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then both u1 and u2 are constant unitary matrices.
The minimality condition for a Jp,m-inner dilation θ of the matrix function c(z) can

be reformulated in the form of the following two conditions:

(65) (i) (α, γ)R = I, (ii) (α, β)L = I.

Relation (i) ( respectively, (ii)) in (65) means that matrix functions α and γ (respectively,
α and β) have no nontrivial common bi-inner right (respectively, left) divider.

Assume now that stationary stochastic process y(t) = {yk(t)}
p
k=1 of rank m with

spectral density ρ(eiµ) and matrix function cρ ∈ ℓp×pΠ, which is determined by ρ via (31),
is realized as an output data of the systems Σf and Σb as it was show in subsection 4.2.
Assume that a matrix function θ(z) is a Jp,m-inner dilation of cρ, and Σimp is the bi-stable
passive impedance system with impedance matrix cρ constructed as part of the simple

conservative transmission SI-system Σ̃ with transfer function θ(z) in D using the method
described in the previous section. According to [7] the system Σimp with impedance
matrix cρ is controllable (observable) if and only if the condition (i)((ii)) in (65) holds.

Controllability of the realization system Σf immediately follows from controllability
of minimal conservative scattering system Σscat with scattering matrix α(z), described
by the equations (39). It is easy to see that the system Σf is observable if and only if the
corresponding passive impedance system Σimp is observable. Similarly, controllability
of the backward realization system Σb follows from observability of the corresponding
minimal conservative scattering system Σscat. And the realization Σb is observable if
and only if the corresponding passive impedance system Σimp is controllable. Thus, as
described above the following theorem is proved.

Theorem 4. In the settings of theorems 2 and 3, the following assertions hold:
1) the forward realization Σf of the process y is minimal if and only if blocks of the

dilation θ satisfy the condition (ii) in (65);
2) the backward realization Σb of the process y is minimal if and only if blocks of the

dilation θ satisfy the condition (i) in (65);
3) the forward and backward realizations Σf ,Σb of the process y are both minimal if

and only if the corresponding Jp,m-inner dilation θ is minimal.
Moreover, last condition holds if and only if in the representation (60) of θ the de-

nominator {b1, b2} of sc is minimal, and this holds if and only if both conditions (i) and
(ii) in (65) are satisfied.

4.4. Minimal and optimal, minimal and *-optimal realizations and stationary

Kalman filters. We will now consider some special realizations of stochastic processes:
minimal and optimal, minimal and *-optimal. Constructions of these realizations will
lead us to the forward and backward stationary Kalman filters.

Let ρ(eiµ) be the spectral density of a stationary stochastic process y(t) = {yk(t)}
p
k=1

of rank m, which is the nontangential boundary value of a matrix function ρ from the
class Np×p; a matrix function cρ ∈ ℓp×pΠ is determined by ρ in (31); a matrix func-
tion θ of the form (60) is a Jp,m-inner dilation of cρ. The corresponding realization
{Σf ,Σb,Σscat,Σimp} of the process y, constructed via blocks of θ using the method
described in the subsection 4.2, is called optimal (*-optimal) if its passive impedance
system Σimp is optimal (*-optimal). In [6] the definition of optimal (*-optimal) dilation
was given. A Jp,m-inner dilation θ of the matrix function c ∈ ℓp×pΠ is said to be optimal
if β = ϕe in its representation (60), and *-optimal if γ = ψe in (60).
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All optimal Jp,m-inner dilations of the matrix function c ∈ ℓp×pΠ can be described by
the formula

(66) θ◦(z) =





sc(z)b◦(z) ϕe(z) 0
ψe(z)b◦(z) c(z) Ip

0 Ip 0



 ,

where {Im, b◦} is a (right) denominator of sc. In this case an optimal dilation θ is minimal
if and only if the corresponding right denominator {Im, b◦} of the matrix function sc is
minimal. Such a denominator exists and is essentially unique.

It follows from Theorem 3.3 in [7] that the passive impedance system Σimp with
impedance matrix c ∈ ℓp×pΠ, that is obtained in the considering above way, is optimal
if and only if the transfer function θ of the corresponding conservative transmission SI-
system Σ̃ (i.e. Jp,m-inner dilation of the function c) is optimal.

All *-optimal Jp,m-inner dilations of the matrix function c ∈ ℓp×pΠ can be described
by the formula

(67) θ•(z) =





b•(z)sc(z) b•(z)ϕe(z) 0
ψe(z) c(z) Ip
0 Ip 0



 ,

where {b•, Im} is a (left) denominator of sc. In this case a *-optimal Jp,m-inner dilation
θ is minimal if and only if the corresponding left denominator {b•, Im} of the matrix
function sc is minimal. Such a denominator exists and is essentially unique.

Consider a spectral density ρ(eiµ) of rank m which is the nontangential boundary
value of a matrix function ρ from the class Np×p and corresponding matrix function
cρ ∈ ℓp×pΠ, determined via ρ by the formula (31). Let θ◦ and θ• be minimal optimal
and minimal *-optimal Jp,m-inner dilations of the matrix function cρ, respectively. Using
matrix functions θ◦ and θ• construct corresponding conservative transmission SI-systems
Σ̃◦ and Σ̃• like it was shown in the subsection 4.2. By means of these systems we will have
the realizations {Σf◦,Σb◦,Σscat ◦,Σimp ◦} and {Σf•,Σb•,Σscat •,Σimp •}, respectively.

Let us first consider the realization {Σf◦,Σb◦,Σscat ◦,Σimp ◦} that corresponds to the
dilation θ◦. As the matrix-function θ◦ is a minimal Jp,m - inner SI-dilation of the matrix
function cρ, it follows from the Theorem 3 that the considered realization is minimal.
Furthermore, it follows from the optimality of the dilation θ◦ that its block β = ϕe.
Then, using Theorem 3.3 in [7] we have that the passive impedance system Σimp ◦ =
(A◦, B◦, C◦, D◦;X◦,C

p) is optimal. Consequently, the realization {Σf◦,Σb◦,Σscat ◦,
Σimp ◦} is optimal.

The outer matrix function ϕe is such that ϕ∼
e (z) (z ∈ D) is the transfer function

of the backward realization Σb◦ = (A∗
◦,M

∗
◦ , B

∗
◦ , N

∗
◦ ;X◦,C

m,Cp) of stationary stochastic
process y◦ with the spectral density ρ. The evolution of this system is described by the
following equations:

(68) (Σb◦)

{

xb◦(t− 1) = A∗
◦xb◦(t) +M∗

◦wb◦(t),
y◦(t) = B∗

◦xb◦(t) +N∗
◦wb◦(t).

Let us consider now the realization {Σf•,Σb•,Σscat •,Σimp •}, that corresponds to
a minimal and *-optimal Jp,m-inner dilation θ•. The minimality of the systems Σf•,
Σb•, Σimp • immediately follow from the minimality of the dilation θ• according to the
Theorem 3. As θ• is a *-optimal Jp,m-inner dilation of the matrix function cρ, its block
γ = ψe, and the matrix function ψe(z)

∗ is an outer matrix function of the size m × p.

The adjoint system Σ∗
imp • is part of an adjoint transmission system Σ̃∗

• with transmission

matrix θ•(z̄)
∗, which is an optimal Jp,m-inner dilation of cρ(z̄)

∗ because of the properties
of the matrix function ψe. Consequently, the minimal passive impedance system Σ∗

imp • is
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optimal and, hence, the minimal passive impedance system Σimp • is *-optimal. Therefore
the realization {Σf•,Σb•,Σscat •,Σimp •}, constructed via θ•, is *-optimal.

Furthermore, the *-outer matrix function ψe is the transfer function of the forward
realization Σf• = (A•,K•, C•, L•;X•,C

m,Cp) of the process y• with spectral density ρ.
The evolution of this system is described by the equations:

(69) (Σf•)

{

xf•(t+ 1) = A•xf•(t) +K•wf•(t),
y•(t) = C•xf•(t) + L•wf•(t).

We are ready now to present the following theorem.

Theorem 5. The minimal backward realization Σb◦ is such that its state space X◦

coincides with backward prediction space, i.e.

X◦ = PH+(y◦)H
−(y◦),

where H−(y◦) and H+(y◦) are ”past” and ”future” subspaces of the stochastic process
y◦, defined in subsection 2.1.

The state space X• of the minimal forward realization Σf• coincides with forward
prediction space, i.e.

X• = PH−(y•)H
+(y•),

where H−(y•) and H
+(y•) are ”past” and ”future” subspaces of the stochastic process y•.

The equations (68) and (69), which describe the evolution of minimal systems Σb◦ and
Σf•, can be interpreted as a stationary backward and forward Kalman filters respectively.

Proof. Consider a simple conservative realization Σ̂imp = (Â, B̂, Ĉ, D̂; X̂,Cp) of the ma-
trix function cρ

X̂ = Lm2 (T), x ∈ X̂, u ∈ C
p;

Âx = ζ−1x(ζ), B̂u = ζ−1β◦(ζ)u,

Ĉ = B̂∗Â, D̂ =
1

2
B̂∗B̂.

Then the minimal and optimal passive impedance system Σimp ◦ is a restriction of the

conservative impedance system Σ̂imp. Statement of the theorem follows from the fact
that

Xc
Σ̂imp

=
∨

t≥0

ÂtB̂C
p = H−(y◦), Xo

Σ̂imp
=

∨

t≥0

(Â∗)tĈ∗
C
p = H+(y◦).

Proof of the statement about minimal forward realization Σf• is similar. �

It was shown in [28], [31] that the equations (68) of the system Σb◦ and the equations
(69) of the system Σf• can be written down in the form of stationary backward and
forward Kalman filter respectively.
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