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TRACE FORMULAE FOR GRAPH LAPLACIANS WITH

APPLICATIONS TO RECOVERING MATCHING CONDITIONS

YULIA ERSHOVA AND ALEXANDER V. KISELEV

Abstract. Graph Laplacians on finite compact metric graphs are considered under
the assumption that the matching conditions at the graph vertices are of either δ or
δ′ type. In either case, an infinite series of trace formulae which link together two dif-
ferent graph Laplacians provided that their spectra coincide is derived. Applications
are given to the problem of reconstructing matching conditions for a graph Laplacian
based on its spectrum.

1. Introduction

A graph Laplacian is a particular case of a quantum graph, i.e., a metric graph Γ
and an associated second-order differential operator acting on the Hilbert space L2(Γ) of
square summable functions on the graph with an additional assumption that the functions
belonging to the domain of the operator are coupled by certain matching conditions at
the graph vertices. These matching conditions reflect the graph connectivity and usually
are assumed to guarantee self-adjointness of the operator. Recently these operators have
attracted a considerable interest of both physicists and mathematicians due to a number
of important physical applications, e.g., to the study of quantum wavequides. Extensive
literature on the subject is surveyed in, e.g., [14].

In the situation of a graph Laplacian the above-mentioned second-order differential
operator is simply the operator of negative second derivative.

The present paper is devoted to the study of the inverse spectral problem for graph
Laplacians on finite compact metric graphs. One might classify the possible inverse
problems for graph Laplacians in the following way.

(i) Given spectral data and the matching conditions (usually one assumes standard
matching conditions, see below), to reconstruct the metric graph;

(ii) Given the metric graph and spectral data, to reconstruct the matching conditions.

There exists an extensive literature devoted to the problem (i). To name just a few, we
would like to mention the pioneering works [19, 11, 8] and later contributions [15, 16, 1, 9].
These papers utilize an approach to the problem (i) based on the so-called trace formula
which relates the spectrum of the quantum graph to the set of closed paths on the
underlying metric graph.

On the other hand, the problem (ii) has to the best of our knowledge surprisingly
attracted much less interest. After being mentioned in [16], it was treated in [2], but
only in the case of star graphs.
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The present paper is devoted to the analysis of the same problem (ii). Unlike [2],
we consider the case of a general connected compact finite metric graph (in particular,
this graph is allowed to possess cycles and loops), but only for two classes of matching
conditions at the graph vertices, namely, in either the case of δ type matching conditions
at the vertices or the case of δ′ type matching conditions (see Section 2 for definitions).
The methods and mathematical apparatus applied by us in both cases are identical, but
the results prove to be somewhat different. The named two classes singled out by us
prove to be physically viable [5, 6].

In contrast to [2], where the spectral data used in order to reconstruct the match-
ing conditions it taken to be the Weyl-Titchmarsh M-function (or Dirichlet-to-Neumann
map) of the graph boundary, we use the spectrum of graph Laplacian (counting multi-
plicities) as the data known to us from the outset.

The approach suggested is based on the celebrated theory of boundary triples [7].
Explicit construction a generalized Weyl-Titchmarsh M-function for a properly chosen
maximal (adjoint to a symmetric, which we refer to as minimal) operator allows us to
reduce the study of the spectrum of a graph Laplacian to the study of “zeroes” of the
corresponding finite-dimensional analytic matrix function. In order to achieve this goal,
we surely have to construct an M-function for the whole graph rather than consider
the Dirichlet-to-Neumann map pertaining to the graph boundary. On this path we are
then able to derive an infinite series of trace formulae which link together two different
graph Laplacians provided that their spectra coincide. These trace formula surprisingly
only involve the (diagonal) matrices of coupling constants (i.e., constants appearing in
matching conditions) and the diagonal matrix of the vertex valences of the graph Γ.

We would like to point out that the approach suggested seems to be applicable to the
analysis of more general differential operators on a given metric graph, most notably, of
Schrödinger operators. We leave this question aside for the time being as we plan to
make it a subject of a forthcoming publication.

The paper is organized as follows.
Section 2 introduces the notation and contains a brief summary of the material on the

boundary triples used by us in the sequel. We continue by providing an explicit “natural”
form of the Weyl-Titchmarsh M-function for the case of δ type matching conditions (δ′

type, respectively), suitable for our goal. We further pay special attention to the problem
of simplicity of our minimal operator, which turns out to be equivalent to the question
of whether the M-function together with the matrix of coupling constants accounts for
all of the spectrum of graph Laplacian or not.

Section 3 contains our main result, i.e., the trace formulae for graph Laplacians with
δ type (δ′ type, respectively) matching conditions. In this Section we also draw certain
corollaries from the trace formulae obtained pertaining to the inverse spectral problem
for graph Laplacians in the setting (ii).

2. Boundary triples approach

Definition of the Laplacian on a quantum graph. In order to define the quantum
Laplacian, i.e., the Laplace operator on a quantum graph, we begin with the following

Definition 2.1. We call Γ = Γ(EΓ, σ) a finite compact metric graph, if it is a collection of
a finite non-empty set EΓ of finite closed intervals ∆j = [x2j−1, x2j ], j = 1, 2, . . . , n, called

edges, and of a partition σ of the set of endpoints {xk}2nk=1 into N classes, VΓ =
⋃N

m=1 Vm.
The equivalence classes Vm, m = 1, 2, . . . , N will be called vertices and the number of
elements belonging to the set Vm will be called the valence of the vertex Vm.
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With a finite compact metric graph Γ we associate the Hilbert space

L2(Γ) =
n
⊕
j=1

L2(∆j).

This Hilbert space obviously doesn’t feel the connectivity of the graph, being the same
for each graph with the same number of edges of the same lengths.

In what follows, we single out two natural [5] classes of so-called matching condi-
tions which lead to a properly defined self-adjoint operator on the graph Γ, namely, the
matching conditions of δ and δ′ types. In order to describe these, we will introduce the
following notation. For a smooth enough function f ∈ L2(Γ), we will use throughout the
following definition of the normal derivative on a finite compact metric graph:

∂nf(xj) =

{

f ′(xj), if xj is the left endpoint of the edge,
−f ′(xj), if xj is the right endpoint of the edge.

Definition 2.2. If f ∈ ⊕n
j=1 W

2
2 (∆j) and αm is a complex number (referred to below as

a coupling constant),

(δ) the condition of continuity of the function f through the vertex Vm (i.e., f(xj) =
f(xk) if xj , xk ∈ Vm) together with the condition

∑

xj∈Vm

∂nf(xj) = αmf(Vm)

is called δ-type matching at the vertex Vm;
(δ′) the condition of continuity of the normal derivative ∂nf through the vertex Vm

(i.e., ∂nf(xj) = ∂nf(xk) if xj , xk ∈ Vm) together with the condition
∑

xj∈Vm

f(xj) = αm∂nf(Vm)

is called δ′-type matching at the vertex Vm.

Remark 2.3. Note that the δ-type matching condition in a particular case when
αm = 0 reduces to the so-called standard, or Kirchhoff, matching condition at the vertex
Vm. Note also that at the graph boundary (i.e., at the set of vertices of valence equal to
1) the δ- and δ′-type conditions reduce to the usual 3rd type one, whereas the standard
matching conditions lead to the Neumann condition at the graph boundary.

We are all set now to define the graph Laplacian (i.e., the Laplace operator on a graph)
on the graph Γ with δ- or δ′-type matching conditions.

Definition 2.4. The graph Laplacian A on a graph Γ with δ-type (δ′-type, respectively)
matching conditions is the operator of negative second derivative in the Hilbert space
L2(Γ) on the domain of functions belonging to the Sobolev space ⊕n

j=1 W
2
2 (∆j) and

satisfying δ-type (δ′-type, respectively) matching conditions at every vertex Vm, m =
1, 2, . . . , N.

Remark 2.5. Note that the matching conditions reflect the graph connectivity: if two
graphs with the same edges have different topology, the resulting operators are different.

Provided that all coupling constants αm, m = 1, . . . , N , are real, it is easy to verify that
the Laplacian A is a self-adjoint operator in the Hilbert space L2(Γ) [5, 10]. Throughout
the present paper, we are going to consider this self-adjoint situation only, although it
has to be noted that the approach developed can be used for the purpose of analysis of
the general non-self-adjoint situation as well.

Clearly, the self-adjoint operator thus defined on a finite compact metric graph has
purely discrete spectrum that might accumulate to +∞ only. In order to ascertain this,
one only has to note that the operator considered is a finite-dimensional perturbation
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in the resolvent sense of the direct sum of Sturm-Liouville operators on the individual
edges.

Remark 2.6. Note that w.l.o.g. each edge ∆j of the graph Γ can be considered to be an
interval [0, lj ], where lj = x2j −x2j−1, j = 1 . . . n is the length of the corresponding edge.
Indeed, performing the corresponding linear change of variable one reduces the general
situation to the one where all the operator properties depend on the lengths of the edges
rather than on the actual edge endpoints.

We now pass over to the main subject of the present paper, i.e., to the derivation of an
infinite series of trace formulae for the graph Laplacian with δ- or δ′ matching conditions
at the vertices. In order to do so, we will first need to establish an explicit formula for the
generalized Weyl-Titchmarsh M-function of the operator considered. The most elegant
and straightforward way to do so is in our view by utilizing the apparatus of boundary
triples developed in [7, 12, 13, 4]. We briefly recall the results essential for our work.

Boundary triplets and the Weyl-Titchmarsh matrix M-function. Suppose that
Amin is a symmetric densely defined closed linear operator acting in the Hilbert space H
(D(Amin) ≡ DAmin

and R(Amin) ≡ RAmin
denoting its domain and range respectively;

D(Amax) ≡ DAmax
, R(Amax) ≡ RAmax

denoting the domain and range of operator Amax

adjoint to Amin). Assume that Amin is completely nonselfadjoint (simple), i.e., there
exists no reducing subspace H0 in H such that the restriction Amin|H0 is a selfadjoint
operator in H0. Further assume that the deficiency indices of Amin (probably being
infinite) are equal: n+(Amin) = n−(Amin) ≤ ∞.

Definition 2.7. ([7, 12, 4]). Let Γ0, Γ1 be linear mappings of DAmax
to H – a separable

Hilbert space. The triple (H,Γ0,Γ1) is called a boundary triple for the operator Amax if:

(1) for all f, g ∈ DAmax

(Amaxf, g)H − (f,Amaxg)H = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H.

(2) the mapping γ defined as f 7−→ (Γ0f ; Γ1f), f ∈ DAmax
is surjective, i.e., for all

Y0, Y1 ∈ H there exists such y ∈ DAmax
that Γ0y = Y0, Γ1y = Y1.

A boundary triple can be constructed for any operator Amin of the class considered.
Moreover, the space H can be chosen in a way such that dimH = n+ = n−.

Definition 2.8. ([7, 4]). A nontrivial extension AB of the operator Amin such that
Amin ⊂ AB ⊂ Amax is called almost solvable if there exists a boundary triple (H,Γ0,Γ1)
for Amax and a bounded linear operator B defined everywhere on H such that for every
f ∈ DAmax

f ∈ DAB
if and only if Γ1f = BΓ0f.

It can be shown that if an extension AB of Amin, Amin ⊂ AB ⊂ Amax, has regular
points (i.e., the points belonging to the resolvent set) in both upper and lower half-planes
of the complex plane, then this extension is almost solvable.

The following theorem holds:

Theorem 2.9. ([7, 4]). Let Amin be a closed densely defined symmetric operator with
n+(Amin) = n−(Amin), let (H,Γ0,Γ1) be a boundary triple of Amax. Consider the almost
solvable extension AB of Amin corresponding to the bounded operator B in H. Then

(1) y ∈ DAmin
if and only if Γ0y = Γ1y = 0,

(2) AB is maximal, i.e., ρ(AB) 6= ∅,
(3) (AB)

∗ ⊂ Amax, (AB)
∗ = AB∗ ,

(4) operator AB is dissipative if and only if B is dissipative,
(5) (AB)

∗ = AB if and only if B∗ = B.
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The generalized Weyl-Titchmarsh M-function is then defined as follows.

Definition 2.10. ([4, 7, 13]). Let Amin be a closed densely defined symmetric operator,
n+(Amin) = n−(Amin), (H,Γ0,Γ1) is its space of boundary values. The operator-function
M(λ), defined by

(1) M(λ)Γ0fλ = Γ1fλ, fλ ∈ ker(Amax − λ), λ ∈ C±,

is called the Weyl-Titchmarsh M-function of a symmetric operator Amin.

The following Theorem describing the properties of the M-function clarifies its me-
aning.

Theorem 2.11. ([7, 4], in the form adopted in [20]). Let M(λ) be the M-function of
a symmetric operator Amin with equal deficiency indices (n+(Amin) = n−(Amin) < ∞).
Let AB be an almost solvable extension of Amin corresponding to a bounded operator B.
Then for every λ ∈ C :

(1) M(λ) is analytic operator-function when Imλ 6= 0, its values being bounded linear
operators in H.

(2) (Im M(λ))Imλ > 0 when Imλ 6= 0.
(3) M(λ)∗ = M(λ) when Imλ 6= 0.
(4) λ0 ∈ ρ(AB) if and only if (B − M(λ))−1 admits bounded analytic continuation

into the point λ0.

In view of the last Theorem, one is tempted to reduce the study of the spectral
properties of the Laplacian on a quantum graph to the study of the corresponding Weyl-
Titchmarsh M-function. Indeed, if one considers the operator under investigation as
an extension of a properly chosen symmetric operator defined on the same graph and
constructs a boundary triple for the latter, one might utilize all the might of the complex
analysis and the theory of analytic matrix R-functions, since in this new setting the (pure
point) spectrum of the quantum Laplacian is located exactly at the points into which
the matrix-function (B − M(λ))−1 cannot be extended analytically (vaguely speaking,
these are “zeroes” of the named matrix-function).

It might appear as if the non-uniqueness of the space of boundary values and the
resulting non-uniqueness of the Weyl-Titchmarsh M-function leads to some problems on
this path; but on the contrary, this flexibility of the apparatus is an advantage of the
theory rather than its weakness. Indeed, as we are going to show below, this allows us
to “separate” the data describing the metric graph (this information will be carried by
the M-function) from the data describing the matching conditions at the vertices (this
bit of information will be taken care of by the matrix B parameterizing the extension).
In turn, this “separation” proves to be quite fruitful in view of applications that we have
in mind.

There is yet another question to be taken care of along the way. As mentioned above,
in order to make the approach suggested work one must ensure that the symmetric
operator Amin is simple, i.e., does not have self-adjoint “parts”. If it so happens that
this operator looses simplicity (as we will show below, this certainly happens if the graph
contains loops and might happen if it contains cycles), one then ends up with the matrix-
function B−M(λ) which no longer carries all the information about the spectrum of the
corresponding quantum Laplacian. Namely, all the (point) spectrum of the self-adjoint
“part” of the symmetric operator Amin will be invisible for this matrix-function.

Although as it is easily seen this is hardly a problem from the point of view of the
present paper, it might complicate the issue when investigating other kinds of direct and
inverse spectral problems. It is due to this reason that we have elected to cover the
question of simplicity in some details in the present paper (see Theorems 2.22 and 2.26
towards the end of this Section).
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We proceed with an explicit construction of the “natural” boundary triple and
M-function in the case of graph Laplacians.

Construction of a boundary triple and calculation of the M-function in the
case of a quantum Laplacian. Let Γ be a fixed finite compact metric graph. Let us
denote by ∂Γ the graph boundary, i.e., all the vertices of the graph which have valence 1.
W.l.o.g. we further assume that at all the vertices the matching conditions are of δ type
(the case when they are of δ′ type is treated along the same lines and we provide the
corresponding results without a proof; the mixed case can be looked at in more or less
the same fashion; we omit any discussion of the latter in order to improve readability of
the paper).

As the operator Amax rather then Amin is crucial from the point of view of construction
of a boundary triple, we start with this maximal operator and explicitly describe its action

and domain: Amax = − d2

dx2 ,

(2) D(Amax) =

{

f ∈
n

⊕

j=1

W 2
2 (∆j) | ∀ Vm ∈ VΓ\∂Γ f is continuous at Vm

}

.

Remark 2.12. Note that the operator chosen is not the “most maximal” maximal one: one
could of course skip the condition of continuity through internal vertices; nevertheless,
the choice made proves to be the most natural from the point of view expressed above.
This is exactly due to the fact that the graph connectivity is thus reflected in the domain
of the maximal operator and therefore propels itself into the expression for the M-matrix.
Moreover, it should be noted that this choice is also natural since the dimension of the
M-matrix will be exactly equal to the number of graph vertices.

The choice of the operators Γ0 and Γ1, acting onto CN , N = |VΓ| is made as follows
(cf., e.g., [17] where a similar choice is suggested, but only for the graph boundary):

(3) Γ0f =









f(V1)
f(V2)
. . .

f(VN )









, Γ1f =

















∑

xj :xj∈V1

∂nf(xj)

∑

xj :xj∈V2

∂nf(xj)

. . .
∑

xj :xj∈VN

∂nf(xj)

















.

Here the symbol f(Vj) denotes the value of the function f(x) at the vertex Vj . The latter
is meaningful because of the choice of the domain of the maximal operator.

Remark 2.13. If one ascertains that the triple (CN ,Γ0,Γ1) satisfies Definition 2.7, the

corresponding minimal operator Amin will therefore be the following one: Amin = − d2

dx2 ,

(4) D(Amin) =

{

f ∈
n

⊕

j=1

W 2
2 (∆j) | ∀ Vm, m = 1, . . . , N, f(Vm) = 0,

∀ Vm, m = 1, . . . , N,
∑

xj∈Vm

∂nf(xj) = 0

}

.

This operator will be symmetric with deficiency indices (N,N). This follows from the fact
that the domain of the minimal operator admits the following characterization in terms
of boundary triples: D(Amin) = {f ∈ D(Amax)|Γ0f = Γ1f = 0} (see Theorem 2.9).

Lemma 2.14. The triple (CN ; Γ0,Γ1), N = |VΓ| is a boundary triple for the operator
Amax in the sense of Definition 2.7.



TRACE FORMULAE FOR GRAPH LAPLACIANS 349

Proof. First, we verify the abstract Green formula. Indeed, performing double integration
by parts,

〈Amaxf, g〉 − 〈f,Amaxg〉

=

n
∑

j=1

[−f(x2j)ḡ
′(x2j) + f(x2j−1)ḡ

′(x2j−1) + f ′(x2j)ḡ(x2j)

−f ′(x2j−1)ḡ(x2j−1)] =

2n
∑

k=1

[∂nf(xk)ḡ(xk)− f(xk)∂nḡ(xk)] ,

where the definition of the normal derivative on the graph has been taken into account.
Splitting the last sum into parts corresponding the graph vertices, one arrives at:

〈Amaxf, g〉 − 〈f,Amaxg〉

=

N
∑

i=1

∑

k:xk∈Vi

∂nf(xk)ḡ(xk)−
N
∑

i=1

∑

k:xk∈Vi

f(xk)∂nḡ(xk)

= 〈Γ1f,Γ0g〉Cn
− 〈Γ0f,Γ1g〉Cn

,

as required.
It remains to be shown that the mapping f 7→ Γ0f ⊕ Γ1f , f ∈ D(Amax) is surjective

as a mapping onto Cn ⊕ Cn.
All we need to do is to show that for a pair of arbitrary vectors y = (y1, . . . , yN ),

z = (z1, . . . , zN ) there exists a function f ∈ D(Amax) such that Γ0f = y, Γ1f = z.
Consider the vertex V1 of valence v1. Fix some edge containing V1 and denote it

γ1. The rest of the edges containing V1 will be numbered in some arbitrary order and
denoted γ2, . . . , γv1

. Put ∂nfγ1
(V1) = z1, ∂nfγj

(V1) = 0, j = 2, . . . , v1 and fγj
(V1) = y1,

j = 1, . . . , v1. Then both required conditions are satisfied: the function to be constructed
is continuous through the vertex V1, whereas

∑

xj∈V1

∂nf(xj) = z1. Now pick the remaining

vertices one by one. We end up with the trivial task of finding a function belonging to
⊕n

j=1W
2
2 (∆j) such that on each individual interval ∆j the values of the function itself

and of its derivative at both endpoints are fixed to some predetermined values. �

Remark 2.15. If one considers a graph Laplacian with matching conditions of δ′ type,
the choice of the maximal operator and the corresponding boundary triple (an analogue
of Lemma 2.14 can be obtained along the same lines) has to change accordingly: Amax =

− d2

dx2 ,

D(Amax) =

{

f ∈
n

⊕

j=1

W 2
2 (∆j)|∀ Vm ∈ VΓ\∂Γ ∂nf is continuous at Vm

}

,(5)

Γ0f =









∂nf(V1)
∂nf(V2)

. . .
∂nf(VN )









, Γ1f =

















∑

xj :xj∈V1

f(xj)

∑

xj :xj∈V2

f(xj)

. . .
∑

xj :xj∈VN

f(xj)

















.(6)
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Then the minimal operator Amin = − d2

dx2 on the domain

(7) D(Amin) =

{

f ∈
n

⊕

j=1

W 2
2 (∆j) | ∀ Vm, m = 1, . . . , N ∂nf(Vm) = 0,

∀ Vm,m = 1, . . . , N,
∑

xj∈Vm

f(xj) = 0

}

is again a symmetric operator with deficiency indices equal to (N,N).

We are now ready to formulate our main result of the present section, namely, the
formula for the Weyl-Titchmarsh M-function associated with the boundary triple (3).

Theorem 2.16. Let Γ be a finite compact metric graph. Let the operator Amax be the
negative second derivative on the domain (2). Let the boundary triple for Amax be chosen
as (CN ,Γ0,Γ1), where N is the number of vertices of Γ and the operators Γ0 and Γ1 are
defined by (3). Then the generalized Weyl-Titchmarsh M-function is an N × N matrix
with matrix elements given by the following formula.

(8) mjp =







































−k
∑

∆t∈Ej

cot klt+2k
∑

∆t∈Lj

tan
klt
2

, j=p,

k
∑

∆t∈Cj,p

1

sin klt
, j 6=p,vertices Vjand Vp

are connected by an edge,

0, j 6=p, verticesVj andVp

are not connected by an edge.

Here k =
√
λ (the branch of the square root is fixed so that Im k ≥ 0), Ej is the set of the

graph edges such that they are not loops and one of their endpoints belongs to the vertex
Vj, Lj is the set of the loops attached to the vertex Vj, and finally, Cj,p is the set of all
graph edges which have both Vj and Vp as endpoints (i.e., graph edges connecting vertices
Vj and Vp).

Proof. The proof is an explicit calculation.
Consider the set of functions fλ ∈ Ker(Amax − λI). Clearly, on each edge ∆t of the

graph Γ the function fλ|∆t
is of the form a+t e

ikx + a−t e
−ikx, where a+t and a−t are some

constants. These constants are chosen in a way such that the function fλ is continuous
through every internal vertex of the graph.

By definition of the Weyl-Titchmarsh M-matrix (see Definition 2.10), the identity
M(λ)Γ0f

λ = Γ1f
λ has to hold for all fλ such that fλ ∈ Ker(Amax − λI).

Consider a vertex Vj having valence vj and check that

M j(k)Γ0f
λ = (Γ1f

λ)j ,

where M j(k) is the j-th row of the matrix M(k) given by the formula (8). Since Γ0fλ =
(fλ(V1), f

λ(V2), . . . , f
λ(VN )), we immediately obtain

(9) M j(k)Γ0fλ =

[

− k
∑

∆t∈Ej

cot klt + 2k
∑

∆t∈Lj

tan
klt
2

]

fλ(Vj)

+ k
∑

p:Cj,p 6=∅

∑

∆t∈Cj,p

1

sin klt
fλ
∆t

(Vp),

where fλ
∆t

:= fλ|∆t
.

Note that in our notation ∪p:Cj,p 6=∅Cj,p = Ej . Moreover, due to continuity of the

function fλ through the vertex Vj one has: fλ(Vj) = fλ
∆t

(Vj) for all t : ∆t ∈ Ej . This
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gives ground to the separate consideration of terms in the last sum, related to each
particular edge ∆t and connecting the vertex Vj with a vertex Vp for any admissible p
(for the moment we shift our attention away from the loops attached to Vj , thus p 6= j).
If the vertex Vj is the left endpoint of the edge ∆t = [0, lt] and the vertex Vp is the right
one, we obtain

1

sin (klt)
fλ
∆t

(Vp)− cot (klt)f
λ
∆t

(Vj)

=
1

sin (klt)

(

a+∆t
[exp (iklt)− cos (klt)] + a−∆t

[exp (−iklt)− cos (klt)]
)

= i
(

a+∆t
− a−∆t

)

= ifλ
∆t

′
(0) = i∂nf

λ
∆t

(Vj).

If on the other hand Vj is the right endpoint of the edge ∆t = [0, lt], Vp being the left
one, then

1

sin (klt)
fλ
∆t

(Vp)− cot (klt)f
λ
∆t

(Vj) =
1

sin (klt)
fλ
∆t

(0)− cot (klt)f
λ
∆t

(lt)

=
1

sin (klt)

(

a+∆t
[1− exp (iklt) cos (klt)] + a−∆t

[1− exp (−iklt) cos (klt)]
)

= −ia+∆t
exp (iklt) + a−∆t

exp (−iklt) = −ifλ
∆t

′
(lt) = i∂nf

λ
∆t

(Vj).

If, finally, a loop ∆ = [0, l] is attached to the vertex Vj , the set Lj is non-empty and

the sum over Lj in (9) gives us the corresponding term of the form 2k tan kl
2 . Then

2k tan
kl

2
fλ
∆(Vj) = k tan

kl

2

[

fλ
∆(0) + fλ

∆(l)
]

= k tan
kl

2

[

α+
δ (1 + exp (ikl)) + α−

δ (1 + exp (−ikl))
]

= −ik
exp (ikl)2 )− exp (i−klt

2 )

exp (ikl2 ) + exp (−ikl2 )

[

α+
δ (1 + exp (ikl)) + α−

δ (1 + exp (−ikl))
]

= −ik

[

α+
δ (1 + exp (ikl))

exp (ikl)− 1

exp (ikl) + 1

+ α−
δ (1 + exp (−iklt))

1− exp (−ikl)

1 + exp (−ikl)

]

= ik
[

α+
δ (1− exp (ikl))− α−

δ (1− exp (−ikl))
]

= i
(

fλ
∆

′
(0)− fλ

∆

′
(l)

)

.

Thus we have ascertained that

M j(k)Γ0f
λ = ik

∑

∂nf
λ
∆t

(Vj) = (Γ1f
λ)j ,

where the sum in the last formula is taken over all edges coming into or out of the
vertex Vj .

Since j = 1, . . . , N is arbitrary, this completes the proof. �
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Example 2.17. Suppose the graph Γ is

l1

l2

l3

l4 l5V1 V2 V3 V4

Then the Weyl-Titchmarsh M-function of Theorem 2.16 for this graph has the follow-
ing form:















−k cot(kl1)
k

sin(kl1)
0 0

k

sin(kl1)
−k

3∑

t=1
cot(klt) k

3∑

t=2

1
sin(klt)

0

0 k

3∑

t=2

1
sin(klt)

−k

4∑

t=2
cot(klt)

k

sin(kl4)

0 0 k

sin(kl4)
−k cot(kl4) + 2k tan( kl5

2
)















.

A few remarks are in order.

Remark 2.18. As follows from the proof given, the Weyl-Titchmarsh M-function in our
setting does not depend on the directions of graph edges, i.e., the M-function stays the
same if on any of the graph edges the left endpoint and the right endpoint swap places.
This effect is of course well in line with what is well-known about spectra of quantum
graphs, see e.g., [16, 14].

Remark 2.19. Provided that the graph has no loops, the value of M-function at zero,
M(0) := limλ→0 M(λ), turns out to be equal to the adjacency matrix CΓ of the metric
graph defined in the following way:

{CΓ}jp :=

{

∑

∆t∈Ej

1
lt
, j = p,

∑

∆t∈Cj,p

1
lt
, j 6= p.

This adjacency matrix in the special case when all the edges have unit lengths is exactly
the sum of the classical adjacency matrix AΓ and the diagonal matrix of vertex valences,
where AΓ is defined as follows:

{AΓ}jp :=

{

0, j = p,
∑

∆t∈Cj,p
1, j 6= p.

Thus one might convince oneself that the information on the connectivity of the graph is
actually represented in the M-function (w.r.t. the boundary triple used by us) in a very
transparent way.

In the situation when matching conditions at all the graph vertices are of δ′ type (and
the maximal operator Amax and the boundary triple for is are chosen accordingly) the
following result can be easily obtained along the same lines.

Theorem 2.20. Let Γ be a finite compact metric graph. Let the operator Amax be the
negative second derivative on the domain (5). Let the boundary triple for Amax be chosen
as (CN ,Γ0,Γ1), where N is the number of vertices of Γ and the operators Γ0 and Γ1 are
defined by (6). Then the generalized Weyl-Titchmarsh M-function is an N × N matrix
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with matrix elements given by the following formula:

mjp =







































1

k

∑

∆t∈Ej

cot (klt)+2 1

k

∑

∆t∈Lj

cot
klt
2

, j=p,

k
∑

∆t∈Cj,p

1

sin klt
, j 6=p,vertices Vjand Vp

are connected by an edge,

0, j 6=p, verticesVj andVp

are not connected by an edge.

Here k =
√
λ (the branch of the square root is fixed so that Im k ≥ 0), Ej is the set of the

graph edges such that they are not loops and one of their endpoints belongs to the vertex
Vj, Lj is the set of the loops attached to the vertex Vj, and finally, Cj,p is the set of all
graph edges which have both Vj and Vp as endpoints (i.e., graph edges connecting vertices
Vj and Vp).

Now the following obvious statement demonstrates that the choice of maximal opera-
tors made in (2) ((5), respectively) and of boundary triples made in (3) ((6), respectively)
is indeed natural for the study of spectral properties of quantum Laplacians with mat-
ching conditions of δ type (δ′ type, respectively).

Lemma 2.21. (i) A quantum Laplacian with δ-type matching conditions in the sense of
Definition 2.4 is an almost solvable extension of the symmetric operator Amin = A∗

max,
where Amax is defined by (2), w.r.t. the boundary triple (CN ,Γ0,Γ1) with Γ0 and Γ1

defined by (3). Its parameterizing matrix B w.r.t. this boundary triple is diagonal,
B = diag(α1, . . . , αN ), where {αk}Nk=1 are the coupling constants of Definition 2.2.
(ii) A quantum Laplacian with δ′-type matching conditions in the sense of Definition 2.4
is an almost solvable extension of the symmetric operator Amin = A∗

max, where Amax is
defined by (5), w.r.t. the boundary triple (CN ,Γ0,Γ1) with Γ0 and Γ1 defined by (6). Its
parameterizing matrix B w.r.t. this boundary triple is diagonal, B = diag(α1, . . . , αN ),
where {αk}Nk=1 are the coupling constants of Definition 2.2.

It follows now from Theorem 2.11 out that at least a part of the spectrum of a quan-
tum Laplacian with δ or δ′ matching conditions can be characterized in terms of the
N × N analytic matrix R-function B − M(λ), where B is the diagonal matrix of cou-
pling constants and M(λ) is the corresponding Weyl-Titchmarsh M-function. Moreover,
provided that the corresponding minimal operator Amin is simple, i.e., has no reducing
self-adjoint parts, all of the spectrum of the quantum Laplacian can be characterized
this way. It turns out that in our situation we are able to give a criterion of when this
happens.

Theorem 2.22. Suppose that Γ is a finite compact metric graph. Let the operator Amax

be the negative second derivative on the domain (2). Let Amin = A∗
max (the domain of

Amin is then described by (4)). Then the symmetric operator Amin is simple if and only
if (i) the graph Γ has no loops and (ii) every cycle belonging to the graph Γ has rationally
independent edge lengths.

In order to carry out the proof of this Theorem, we start with the following almost
obvious Lemma.

Lemma 2.23. In the setting of the preceding Theorem, the operator Amin is simple if
and only if it has no real eigenvalues.

Proof of Lemma. Suppose first that the operator Amin has an eigenvalue λ0 with an
associated eigenfunction φ0. Then the subspace generated by φ0 is invariant for Amin

and hence reducing [3]. It follows immediately that the operator Amin is not simple.
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On the other hand, let Amin have no eigenvalues and suppose that it has a reducing
subspace H0, the restriction of the operator onto which is self-adjoint. Then this subspace
will be necessarily reducing for every extension of the operator Amin, in particular, for the
self-adjoint operator of Dirichlet decoupling AD defined as the negative second derivative
on the following domain:

D(AD) =
{

f ∈
n

⊕

j=1

W 2
2 (∆j)|∀xk, k = 1, . . . , 2n, f(xk) = 0

}

.

Moreover, since Amin|H0 is already self-adjoint by assumption, the following equality
holds: Amin|H0 = AD|H0. The operator AD is equal to the orthogonal sum over all the
graph edges of regular Sturm-Liouville operators with Dirichlet boundary conditions,

(10)
AD = ⊕n

j=1AD(∆j), where AD(∆j) = − d2

dx2
on

D(AD(∆j)) = {f ∈ W 2
2 (∆j)|f(x2j−1) = f(x2j) = 0}.

It follows that AD (and thus AD|H0) has purely discrete spectrum. Therefore we arrive
at the conclusion that the operator Amin|H0 ought to have at least one real eigenvalue,
and thus the same applies to Amin. The contradiction we have arrived to completes the
proof. �

We are now all set to continue with the proof of Theorem 2.22.

Proof of Theorem. We first prove that if the graph Γ has no cycles and if every cycle
belonging to it has rationally independent edge lengths, then the operator Amin has no
real eigenvalues. Assume the opposite. Let λ0 be its eigenvalue and φ0 be the associated
eigenfunction.

First, we will show that φ0 cannot be supported by a tree (in the case when Γ is a
tree graph, this will complete the proof). Indeed, let Γ0 ⊂ Γ be a tree and suppose that
φ0 is supported by Γ0. Since on every edge ∆j = [x2j−1, x2j ] of Γ not belonging to Γ0

the eigenfunction φ0 is identically equal to zero and thus satisfies boundary conditions
φ0(x2j−1) = φ0(x2j) = φ′

0(x2j−1) = φ′
0(x2j) = 0, on Γ0 the function φ0 ought to satisfy

the boundary conditions (4) as long as it satisfies them on the larger graph Γ. Now
pick any boundary vertex Vk ∈ ∂Γ0 (i.e., a vertex having valence 1). At this vertex the
function φ0 together with its first derivative must therefore be zero, from where it follows
immediately that the edge leading to the vertex Vk does not support φ0.

The same applies to all vertices forming the graph boundary and to all the edges
leading to them. As these do not support the function φ0, one may then drop them
altogether, which leads to a smaller graph Γ̃0 ⊂ Γ0, which is still a tree. The procedure
of trimming the tree graph Γ0 can be repeated as many times, as required. Since Γ0 is a
tree by assumption, after some finite number of iterations we are left with a graph with
no edges.

Having established the fact that φ0 cannot be supported by a tree subgraph of Γ,
we immediately obtain that it must be supported by at least one cycle belonging to Γ.
Indeed, if this is not so, φ0 must be supported by a tree or a collection of trees leading
to an immediate contradiction.

Now pick a cycle Γ1 ⊂ Γ which belongs to the support of φ0. The function φ0 has to
be equal to sin(

√
λ0x) on each edge ∆j = [0, lj ] (shifting as before w.l.o.g. the edge ∆j

so that its left endpoint is at zero) forming this cycle as the solution of the differential
equation −φ′′

0 = λ0φ0 with zero boundary condition at the left endpoint. It is clear now
that in order for the non-trivial (i.e., supported by all edges of Γ1) function φ0 to be
equal to zero at all the right endpoints of the edges forming Γ1 it is necessary for the
lengths of these edges to be rationally dependent.
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Repeating this argument for every cycle of Γ we arrive at the contradiction sought.
The proof of the inverse implication is by explicit construction. Indeed, in order to

show that Amin on a graph Γ containing a cycle with rationally dependent edge lengths
has an eigenvalue, one simply constructs an eigenfunction supported solely by this cycle.
On every edge ∆j is has to be equal to sin(

√
λ0x). The existence of such non-trivial

function is guaranteed by the fact that the edge lengths are rationally dependent. The
case of a loop is treated analogously. �

Remark 2.24. In terms of the operator of Dirichlet decoupling AD defined in (10) it is
easy to see that eigenvalues of Amin (if any) might occur only at points (πm

lj
)2, where

m ∈ Z\{0}, j = 1, . . . , n. Moreover, the eigenfunctions (if any) of Amin are equal to those
eigenfunctions of AD which satisfy the matching conditions for the normal derivatives
in (4).

Remark 2.25. If Γ is a finite compact metric graph, the operator Amax is the negative
second derivative on the domain (2) and the boundary triple for Amax is chosen as
(CN ,Γ0,Γ1), where N is the number of vertices of Γ and the operators Γ0 and Γ1 are
defined by (3), the generalized Weyl-Titchmarsh M-function has poles precisely at the
points of the spectrum of the operator AD of Dirichlet decoupling (10) provided that
the graph Γ has no loops and the edge lengths along every cycle of Γ are rationally
independent.

The elementary proof of this is based on the explicit form of the M-function, see
Theorem 2.16, and the work done in the proof of Theorem 2.22.

If instead of the operator Amax treated by Theorem 2.22 one considers the operator
of the negative second derivative on Γ defined on the domain (5), Lemma 2.23 continues
to hold (with an elementary substitution of Dirichlet decoupling by the Neumann one).
Unfortunately, in this situation Theorem 2.22 fails. Instead, one can prove the following
modification of it.

Theorem 2.26. Suppose that Γ is a finite compact metric graph. Let the operator Amax

be negative second derivative on the domain (5). Let Amin = A∗
max (the domain of Amin

is then described by (7)). Then the symmetric operator Amin has no eigenvalues away
from zero if and only if (i) the graph Γ has no loops and (ii) every cycle belonging to the
graph Γ has rationally independent edge lengths.

The proof follows essentially the same lines as the proof of Theorem 2.22. The only
difference comes when one considers the candidate for an eigenfunction on the cyclic part
of the graph. On a cycle with an even number of edges, even despite the fact that the
edge lengths are chosen to be rationally independent, one can construct an eigenfunction
of the operator Amin corresponding to the point λ = 0 by putting it to be equal to 1 on
all odd edges and -1 on all even edges.

It follows that in the situation of graph Laplacians with δ′ matching even the condition
that the graph Γ contains no loops and the edge lengths over all cycles are rationally
independent does not in general guarantee that the matrix-function B − M(λ) carries
all the spectral information about the extension AB . Nevertheless, it still carries full
information about the spectrum away from zero.

3. Trace formulae for a pair of graph Laplacians

In the present section, we apply the mathematical apparatus developed in Section 2
in order to study isospectral (i.e., having the same spectrum, counting multiplicities)
quantum Laplacians defined on a finite compact metric graph Γ. In order to do so, we
will assume that the graph itself is given. Moreover, we will assume that the matching
conditions at all its vertices are of δ type (δ′ type, respectively).
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Considering a pair of such Laplacians which differ only in coupling constants defining
the matching conditions we will derive an infinite series of trace formulae.

We proceed with our main theorem of this section.

Theorem 3.1. Let Γ be a finite compact metric graph having N vertices. Let AB1
and

AB2
be two graph Laplacians on the graph Γ with δ-type matching conditions (B1 =

diag{α̃1, . . . , α̃N} and B2 = diag{α1, . . . , αN}, where both sets {α̃m} and {αm} are the
sets of coupling constants in the sense of Definition 2.2). Let the (point) spectra of these
two operators (counting multiplicities) be equal, σ(AB1

) = σ(AB2
).

Then the following infinite series of trace formulae holds:
m
∑

j=1

1

j
Cm−j

m−1 Tr(D
jBm−j

2 Γ−m
N ) = 0, m = 1, 2, . . . ,

where D := B1−B2 and the matrix ΓN is the matrix of valences, ΓN = diag{γ1, . . . , γN},
γk being the valence of the vertex Vk.

Proof. We will use the apparatus developed in Section 2. Namely, we choose the ma-
ximal operator Amax as in (2), the boundary triple (3) and use the expression for the
Weyl-Titchmarsh M-function of Amax obtained in Theorem 2.16. Then w.r.t. the cho-
sen boundary triple the operators AB1

and AB2
are both almost solvable extensions

of the operator Amin = A∗
max, parameterized by the matrices B1 and B2, respectively.

Throughout we of course assume that D 6= 0.
We will now show that provided that the spectra of both given operators coincide,

det(B1 −M(λ))(B2 −M(λ))−1 ≡ 1. This is done by a Liouville-like argument. Indeed,

consider two matrix-functions Mj = (Bj −M(λ))
(

sin(
√
λl1) sin(

√
λl2)··· sin(

√
λln)

(
√
λ)N

)

, j = 1, 2.

Put Fj := detMj . Then, as can be easily seen from Theorem 2.16, F1, F2 are two scalar
analytic entire functions in C. By Theorem 2.11 their fraction F1/F2 has no poles and
no zeroes, since the spectra of operators AB1

and AB2
coincide.

Now it can be easily ascertained that both F1 and F2 are of normal type and of order
at least not greater than 1 [18]. Then their fraction is again an entire function of order
not greater than 1 [18]. Finally, by Hadamard’s theorem F1

F2
= eaλ+b.

It remains to be seen that a = b = 0. This follows immediately from the asymptotic
behavior of the matrix-function M(λ) as λ → −∞. Namely, M(

√
λ) =

√
λA(

√
λ) (see

Theorem 2.16), where A(
√
λ) → iΓN as λ → −∞. In fact, A(

√
λ) = iΓN + ō( 1

|
√
λ|M ) for

any M > 0, which essentially makes the rest of the proof work.
We have thus obtained the following identity:

1 ≡ det(B1 −M(λ))(B2 −M(λ))−1 = det(I +D(B2 −M(λ))−1).

Since the analytic matrix-function (B1−M(λ))(B2−M(λ))−1 tends to I as λ → −∞, it
is can be diagonalized there. We are then able to apply the standard formula connecting
determinant and trace

ln det(I +D(B2 −M(λ))−1) = Tr ln(I +D(B2 −M(λ))−1).

Then

(11) 0 = Tr ln(I +D(B2 −M(λ))−1) =

∞
∑

j=1

(−1)j+1

j
Tr

(

D(B2 −M)−1
)j

.

The sum is absolutely convergent since
∥

∥(B2 −M(λ))−1
∥

∥ ≪ 1 as λ → −∞, which again
follows from the asymptotic behavior of M(λ) outlined above.

Consider Tr(D(B2 − M(λ))−1)j . First, again using the explicit formula for M(λ)
obtained in Theorem 2.16, we note that

B2 −M(λ) = B2 + τΓN + ō(τ−M ) for arbitrarily large M > 0,
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where for the sake of convenience we have put τ := −i
√
λ so that

√
λ = iτ , τ → +∞.

Now from the second Hilbert identity we immediately derive

(B2 −M(λ))−1 = (B2 + τΓN )−1 + ō(τ−M )

for an arbitrarily large positive M . Then, clearly,

(D(B2 −M(λ))−1)j = (D(B2 + τΓN )−1)j + ō(τ−M ) for all j.

Substituting this expression into (11), we have for an arbitrary large natural M

0 =
M
∑

j=1

(−1)j+1

j
Tr

(

D(B2 + τΓN )−1
)j

+ ō(τ−M ).

Note, that all the matrices D, B2 and ΓN are diagonal and thus commute. We will
then expand (B2 + τΓN )−j into the power series and substitute the result into the last
formula. One has

(B2 + τΓN )−j =
1

τ j

(

I +
Γ−1
N B2

τ

)−j

Γ−j
N

=
1

τ j

∞
∑

i=0

1

τ i
Ci

i+j−1Γ
−i
N Bi

2Γ
−j
N (−1)i =

∞
∑

m=j

1

τm
Cm−j

m−1Γ
−m
N Bm−j

2 (−1)m−j

=
M
∑

m=j

1

τm
Cm−j

m−1Γ
−m
N Bm−j

2 (−1)m−j + ō(τ−M ).

The identity (11) then yields

(12) 0 ≡ Tr ln(I +D(B2 −M(λ))−1)

= −
M
∑

j=1

1

j

M
∑

m=j

1

τm
Cm−j

m−1(−1)m Tr(DjΓ−m
N Bm−j

2 ) + ō(τ−M )

= −
M
∑

m=1

(−1)m

τm

m
∑

j=1

1

j
Cm−j

m−1 Tr(D
jΓ−m

N Bm−j
2 ) + ō(τ−M ).

Identity (12) holds for any natural M ≫ 1 and thus in the last sum each term of the
form βmτ−m ought to be equal to zero. This immediately yields the claim. �

Leaving the analysis of full countable set of trace formulae thus obtained for a forth-
coming publication, we derive a few corollaries from the last Theorem restricting consi-
deration to just the first formula.

Corollary 3.2. (i) Suppose that the matrices B1 and B2 are scalar (i.e., all the coupling
constants in matching conditions coincide for the operators AB1

, AB2
, respectively). Then

if σ(AB1
) = σ(AB2

), we obtain B1 = B2. In other words, different graph Laplacians
have under the assumption made different spectra, or, to put it the other way around, the
spectrum of graph Laplacian uniquely determines the coupling constants, provided that
all the coupling constants are equal.

(ii) If B1 = 0 (which corresponds to the case of a graph Laplacian with standard, or
Kirchhoff, matching conditions) and B2 ≥ 0, the corresponding operators AB1

and AB2

cannot have identical spectra.
(iii) If B1 ≥ B2 or B2 ≥ B1, the corresponding operators AB1

and AB2
again cannot

have identical spectra. Thus under the assumption that, roughly speaking, the strength of
matching condition is ordered, the spectrum of graph Laplacian uniquely determines all
the coupling constants.
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(iv) If all the coupling constants in the matching conditions are known to be zero but
for exactly one, the spectrum of graph Laplacian uniquely determines the operator.

Proof. The first trace formula obtained in the last Theorem reads

TrDΓ−1
N = 0.

All the assertions follow immediately from this since ΓN > 0 and has no zero diagonal
entries. �

The situation of graph Laplacian with δ′ type matching conditions is similar, but
somewhat different.

Theorem 3.3. Let Γ be a finite compact metric graph having N vertices. Let AB1
and

AB2
be two graph Laplacians on the graph Γ with δ′-type matching conditions (B1 =

diag{α̃1, . . . , α̃N} and B2 = diag{α1, . . . , αN}, where both sets {α̃m} and {αm} are the
sets of coupling constants in the sense of Definition 2.2). Let the (point) spectra of these
two operators (counting multiplicities) be equal, σ(AB1

) = σ(AB2
). Let further B1 and

B2 be invertible.
Then the following infinite series of trace formulae holds:

m
∑

j=1

1

j
Cm−j

m−1 Tr(D
jB−m+j

2 Γj+m
n ) = 0, m = 1, 2, . . . ,

where D := B−1
2 −B−1

1 and the matrix ΓN is the matrix of valences, ΓN = diag{γ1, . . . ,
γN}, γk being the valence of the vertex Vk.

A sketch of the proof. Certain minor technical differences compared to the proof of pre-
vious Theorem are due to the fact that in the case of δ′ type matching conditions the
diagonal of the matrix M(λ) decays as λ → −∞ instead of growing there. In order
to cope with this situation, one considers B−1

1 (B1 − M(λ)) instead of B1 − M(λ) and
B−1

2 (B2 − M(λ)) instead of B2 − M(λ). This is possible since by assumption both
matrices B1 and B2 are invertible.

Then

det
[

B−1
1 (B1 −M(λ))(B−1

2 (B2 −M(λ)))−1
]

= det(I +DM(λ)(I −B−1
2 M(λ))−1)

with the argument of determinant on the right having the required form of identity plus
a vanishing term. The rest of the proof is carried along the same lines as the proof of
Theorem 3.1. �

Due to the requirement that B1 and B2 are invertible, only the following two assertions
based on the first trace formula remain valid in the situation of graph Laplacians with
δ′ type matching conditions.

Corollary 3.4. (i) Suppose that the matrices B1 and B2 are scalar (i.e., all the coupling
constants in matching conditions coincide for the operators AB1

, AB2
, respectively). Then

if σ(AB1
) = σ(AB2

), we obtain B1 = B2.
(ii) If B1 ≥ B2 or B2 ≥ B1, the corresponding operators AB1

and AB2
cannot have

identical spectra.

The corollaries derived above from Theorems 3.1 and 3.3 are formulated implicitly, i.e.,
they do not provide an explicit procedure of reconstruction for the matrix B based on the
spectrum of the corresponding graph Laplacian AB . Yet the approach suggested by us
above can be utilized in order to obtain, at least in some special cases, such procedures.
We will discuss these elsewhere as in our view this discussion is beyond the scope of the
present paper.
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