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ON SELF-ADJOINTNESS OF 1–D SCHRÖDINGER OPERATORS

WITH δ-INTERACTIONS

I. I. KARPENKO AND D. L. TYSHKEVICH

Abstract. In the present work we consider the Schrödinger operator HX,α = − d2

dx2
+

∑
∞

n=1 αnδ(x−xn) acting in L2(R+). We investigate and complete the conditions of
self-adjointness and nontriviality of deficiency indices for HX,α obtained in [13]. We

generalize the conditions found earlier in the special case dn := xn − xn−1 = 1/n,

n ∈ N, to a wider class of sequences {xn}∞n=1. Namely, for xn = 1
nγ lnη n

with

〈γ, η〉 ∈ (1/2, 1)×(−∞,+∞) ∪ {1}×(−∞, 1], the description of asymptotic behavior

of the sequence {αn}∞n=1 is obtained for HX,α either to be self-adjoint or to have
nontrivial deficiency indices.

1. Introduction

Let X = {xn}∞n=0 be a strictly increasing sequence of nonnegative numbers, x0 = 0,
and limn→∞ xn = ∞. Let also α = {αn}∞1 be a sequence of real numbers.

The differential expression

(1) lX,α := − d2

dx2
+

∞∑

n=1

αnδ(x− xn)

on L2(0,+∞) is connected with the symmetric differential operator

(2) H0
X,α := − d2

dx2

with domain

dom(H0
X,α) =

{
f ∈ W 2,2(R+ \X) ∩ L2

comp(R+) | f ′(0) = 0,

f ′(xn+)− f ′(xn−) = αnf(xn)
}
.

(3)

Denote by HX,α the closure of the operator H0
X,α.

Schrödinger operators with distributional potentials have attracted considerable inte-
rest in the last decades, in particular, because they can be used as solvable models in many
situations, see [2, 3, 4, 5, 7, 9, 14, 15]. For instance, the operator H0

X,α can be regarded
as a Hamiltonian for a δ–interaction at points xn with intensity αn. In the general case,
the operator HX,α does not need to be self-adjoint. One of the important problems in
the spectral analysis of this operator is to find necessary and sufficient conditions for
the operator HX,α to be self-adjoint. A thorough study of this problem was recently
undertaken in the case of lower semi-bounded Hamiltonians. Namely, it is proved in [3]
(see also [11]) that HX,α is always self-adjoint provided that it is lower semi-bounded.

Spectral properties of the operator HX,α depend on both the sequence α and the
sequence X. In the latter case, the behavior of the sequence

(4) dn := xn − xn−1, n ∈ N,
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is an important characteristic. In particular, if d∗ := infn∈Ndn > 0, then the operator
HX,α is always self-adjoint [9].

This result is sharp in the sense that there is a sequence dn satisfying limn→∞ dn = 0
such that the Hamiltonian HX,α has nontrivial deficiency indices for some sequences
α ⊂ R. Namely, C. Shubin Christ and G. Stolz showed in [15] that n±(HX,α) = 1 if
dn = 1/n and αn = −2n − 1, n ∈ N. Thus the case d∗ = 0 is fundamentally different
from the case d∗ > 0 since nontrivial deficiency indices can be realized there.

In [13], A. S. Kostenko and M. M. Malamud studied the Hamiltonian HX,α in the
framework of boundary triplets and the corresponding Weyl function. Such an approach
to the theory of extensions of symmetric operators was initiated about thirty years ago
and still is being actively developed, see [6, 7, 8, 9, 10].

Using a corresponding boundary triple, the authors in [13] parameterized the set of
Hamiltonians HX,α with certain classes of Jacobi matrices (three-diagonal matrices). It
was also found there that spectral properties of the Hamiltonian HX,α are closely linked
with the same properties of the corresponding Jacobi matrix,

(5) BX,α =




r−2
1 (α1 +

1
d1

+ 1
d2
) −r−1

1 r−1
2 d−1

2 0 . . .

−r−1
1 r−1

2 d−1
2 r−2

2 (α2 +
1
d2

+ 1
d3
) −r−1

2 r−1
3 d−1

3 . . .

0 −r−1
2 r−1

3 d−1
3 r−2

3 (α3 +
1
d3

+ 1
d4
) . . .

. . . . . . . . . . . .


 ,

where

(6) rn =
√

dn + dn+1, n ∈ N.

As it turned out the deficiency indices for HX,α and BX,α coincide, n±(HX,α) = n±(BX,α)
([13, Theorem 5.4]) and, consequently, n±(HX,α) ≤ 1, see [7]. In particular, HX,α is self-
adjoint if and only if the matrix BX,α is self-adjoint.

Using the Carleman criterion A. S. Kostenko and M. M. Malamud obtained the fol-
lowing result [13, Proposition 5.7]:

if
∑∞

n=1 d
2
n = ∞, then the operator HX,α is self-adjoint for any sequence α ⊂ R.

In comparison with the mentioned result from [3], [11], this statement from [13] gives
new information only for not lower semi-bounded Hamiltonians HX,α.

Clearly, the result on self-adjointness of the operator HX,α for d∗ := infn∈Ndn > 0 is
a particular case of the latter statement.

Moreover, the example of Shubin Christ and Stolz in [15] was significantly specified
in [13], namely,

if dn = 1/n, then
1. n±(HX,α) = 0 if αn ≤ −2(2n+ 1) + C1

n , C1 > 0, or αn ≥ −C2

n , C2 > 0;
2. n±(HX,α) = 1 if αn = a(2n+ 1) +O(1/n), a ∈ (−2, 0).

Note that the estimates in 1 follow from the estimates in (ii), (iii) below that were
obtained for a more general case of {dn}∞1 ∈ ℓ2 \ ℓ1 in [13, Proposition 5.11] with the use
of sufficient conditions for a Jacobi matrix to be self-adjoint.

Proposition 1. [13, Proposition 5.11]. The operator HX,α is self-adjoint on L2(R+)
if the sequence α = {αn}∞1 and the sequences {dn}∞1 , {rn}∞1 defined by (4) and (6),
correspondingly, satisfy one of the following conditions:

(i)
∑∞

n=1 |αn|dndn+1rn−1rn+1 = ∞;
(ii) there exists a constant C1 > 0 such that

αn +
1

dn

(
1 +

rn
rn−1

)
+

1

dn+1

(
1 +

rn
rn+1

)
≤ C1(dn + dn+1), n ∈ N;



362 I. I. KARPENKO AND D. L. TYSHKEVICH

(iii) there exists a constant C2 > 0 such that

αn +
1

dn

(
1− rn

rn−1

)
+

1

dn+1

(
1− rn

rn+1

)
≥ −C2(dn + dn+1), n ∈ N.

In this paper, we continue the study of the conditions obtained in [13] for the Schrödin-
ger operator HX,α to be self-adjoint or to have nontrivial deficiency indices. It turned out
that the conditions found for dn = 1/n can be generalized to a broader class of sequences,

see Propositions 4, 5, 6. For example, for a class of the sequences
{ 1

nγ lnη n

}∞

2
that

belong to ℓ2 \ ℓ1 if 〈γ, η〉 ∈ (1/2, 1)×(−∞,+∞) ∪ {1}×(−∞, 1], we obtain a description
for the asymptotic behavior of the sequence α such that the operator HX,α would either
be self-adjoint or have nontrivial deficiency indices.

2. Sufficient conditions for self-adjointness of the operator HX,α

Taking into account the above considerations, we will mention some properties of
sequences {dn}∞1 ∈ ℓ2 \ ℓ1 of positive numbers. The most important of them is the
property

(7) lim inf
n→∞

dn+1

dn
≤ 1 ≤ lim sup

n→∞

dn+1

dn
,

which follows from the d’Alembert test for series. This immediately implies that if there

exists the limn→∞
dn+1

dn
for a sequence {dn}∞1 ∈ ℓ2 \ ℓ1 of positive numbers, then this

limit equals 1. Using (7) and making certain restrictions on the sequence {dn}∞1 we can
significantly simplify the sufficient conditions of self-adjointness in (i)–(iii).

Proposition 2. Let the sequence {dn}∞1 of positive numbers defined by (4) belongs to
ℓ2 \ ℓ1 and satisfies the relation

(8) lim inf
n→∞

dn+1

dn
> 0.

Then HX,α is self-adjoint provided that there holds the following condition:

(I)
∑∞

n=1 |αn|d3n = ∞.

Proof. In fact, condition (8) implies that there exists a C > 0 such that

dn+1 > Cdn, n ∈ N.

It follows that

dndn+1rn−1rn+1 = dndn+1

√
dn−1 + dn

√
dn+1 + dn+2

> dn(Cdn)
√

dn
√
Cdn + C2dn > C

√
C + C2d3n, n ∈ N.

(9)

Thus, the divergence of series (I) implies the divergence of series (i) in Proposition 1,
and there holds the sufficient condition for HX,α to be self-adjoint. �

Note that, for the class of sequences {dn}∞1 ∈ ℓ2\ℓ1 satisfying the additional constraint

(10) 0 < lim inf
n→∞

dn+1

dn
≤ lim sup

n→∞

dn+1

dn
< ∞,

both series (I) and (i) converge and diverge simultaneously. Hence test (i) as well as
Proposition 2 can be applied for such sequences.

In the next assertion, we present conditions sufficient for tests (ii), (iii) of Propo-
sition 1 to hold (for now, without any additional restrictions on the sequence {dn}∞1 ).
These conditions will allow us to find simpler sufficient conditions for the Hamiltonian
HX,α to be self-adjoint.
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Proposition 3. Let sequences {dn}∞1 ∈ ℓ2 \ ℓ1 and {rn}∞1 be defined by (4), (6), and
let the function

(11) F (n) =
1

dn

( rn
rn−1

− 1
)
+

1

dn+1

( rn
rn+1

− 1
)

(n ∈ N)

allow the representation of the form

(12) F (n) = G(n) +O(dn) (n ∈ N)

(for definiteness, we put r0 := 1). Then the Hamiltonian HX,α is self-adjoint provided
that one of the following conditions hold:

(II) there exists a constant C1 > 0 such that

αn ≤ −
( 2

dn
+

2

dn+1
+G(n)

)
+ C1dn (n ∈ N);

(III) there exists a constant C2 > 0 such that αn ≥ G(n)− C2dn (n ∈ N).

Proof. By condition (II), we have

αn +
2

dn
+

2

dn+1
+G(n) ≤ C1dn (n ∈ N).

Then

αn +
2

dn
+

2

dn+1
+ F (n)−O(dn) ≤ C1dn (n ∈ N).

Since the sequence {dn}∞1 is positive, we conclude that

αn +
1

dn

(
1 +

rn
rn−1

)
+

1

dn+1

(
1 +

rn
rn+1

)
≤ Cdn ≤ C(dn + dn+1) (n ∈ N)

for some C > 0. Consequently, it follows from the sufficient condition (ii) of Proposition 1
that the Hamiltonian HX,α is self-adjoint.

Arguing similarly we can prove that condition (III) implies estimate (iii) of Proposi-
tion 1. �

It is important to note that, for sequences {dn}∞1 ∈ ℓ2 \ ℓ1 satisfying (10), both
estimates (ii), (II) and (iii),(III) are fulfilled or not fulfilled simultaneously. Hence
Proposition 1 and Proposition 3 are equivalent for such sequences. Note also that tests
(II) and (III) are of common use only in the case when the function G in decomposition
(12) has simpler form than the function F . In this case, there are of great interest
sequences {dn}∞1 such that G can be chosen as zero function1: due to test (III), all the
Hamiltonians HX,α with nonnegative sequences α are self-adjoint. In the propositions
below, we present a number of requirements to properties of the sequence {dn}∞1 in order
to provide the asymptotics F (n) = O(dn).

Proposition 4. Let a sequence {dn}∞1 ∈ ℓ2 \ ℓ1 satisfies the following asymptotic esti-
mate:

(13)
dn+1

dn
= 1 + Cdn +O(d2n).

Then F (n) = O(dn).

Proof. Using (13) and carrying out direct calculations we can show that the following
relations hold:

(a0) dn

dn+1
= 1− Cdn +O(d2n).

1See Proposition 5 and Example 2 below. Relation (12) implies directly that G is zero function if

and only if supn∈N

F (n)
dn

< ∞.
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(a1) rn
rn−1

=
√

dn+dn+1

dn−1+dn
=

√
1+dn+1/dn

1+dn−1/dn
=

√
2+Cdn+O(d2

n)
2−Cdn+O(dn)

= 1 + Cdn +O(d2n);

(a2) Similarly, rn
rn+1

= 1− Cdn +O(d2n).

In this case, we obtain the following relations:

F (n) = 1
dn

(
rn

rn−1
− 1

)
+ 1

dn+1

(
rn

rn+1
− 1

)
= 1

dn

(
rn

rn−1
− 1 + dn

dn+1

(
rn

rn+1
− 1

))

a0–a2
= 1

dn

(
Cdn +O(d2n) +

(
1− Cdn +O(d2n)

)(
− Cdn +O(d2n)

))

= 1
dn

(
Cdn +O(d2n)− Cdn +O(d2n)

)
= 1

dn
O(d2n) = O(dn).

�

Example 1. Suppose that the Hamiltonian HX,α is generated by the differential expres-
sion (1) as explained in Introduction, with X = {xn}∞0 defined by the relations

x0 = 0, xn = xn−1 + dn (n ∈ N),

dn =
1

nγ
, γ ∈ (1/2, 1).(14)

Then HX,α is self-adjoint provided that there holds one of the following conditions:

(s1)
∑∞

n=1 |αn|n−3γ = ∞ .

(s2) There exists a constant C1 > 0 such that

αn ≤ −2
(
nγ + (n+ 1)γ

)
+

C1

nγ
(n ∈ N).

(s3) There exists a constant C2 > 0 such that αn ≥ −C2
1
nγ (n ∈ N).

Indeed, in this case we have {dn}∞1 ∈ ℓ2 \ ℓ1 and, by direct calculations, we conclude

that dn+1

dn
= 1 − 1

nγ + O( 1
n2γ ). Then, in view of Proposition 2, condition (s1) provides

the self-adjointness of the operator HX,α. To prove that (s2) and (s3) can be applied, it
suffices to note that the sequence {dn}∞1 satisfies the assumptions of Proposition 4 and,
therefore, G(n) = 0. Further, we can use conditions (II), (III) of Proposition 3 directly.

As was mentioned before, the particular case γ = 1 was considered in [13] (see 1 on
p. 361).

In some cases (see Example 2) condition (13) is too strict. Nevertheless, if (13) does
not hold, it is possible to carry out a more refined analysis of properties of the sequence
{dn}∞1 leading to the asymptotics F (n) = O(dn).

Proposition 5. Let p ∈ N, and let the sequence {dn}∞1 ∈ ℓ2 \ ℓ1 be generated by a
function d : dn := d(n) (n ∈ p,∞) defined on the interval (p,∞) and twice continuously
differentiable on it. Let also the function d satisfy the following conditions:

(d0) dn+1

dn
= 1 +O(dn).

(d1) d′(n) 6= 0 (n ∈ m+ 1,∞) and supn∈m+1,∞
ζ,η∈[−1,2]

|d′(n+ζ)|
|d′(n+η)| < ∞ for some number

m ∈ p,∞.

(d2) d′′(n) 6= 0 (n ∈ m+ 1,∞) and supn∈m+1,∞
ζ,η∈[−1,2]

|d′′(n+ζ)|
|d′′(n+η)| < ∞ for some number

m ∈ p,∞.

(d3) d′′(n)
d′(n) = O(dn).

Then F (n) = O(dn).
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Proof. Since dn → 0, n → ∞, for arbitrary positive numbers u, v the following relations
hold:

(15) a)
(
u+O(dn)

)−1
= u−1 +O(dn); b)

√
u+O(dn)

v +O(dn)
=

√
u

v
+O(dn).

Then condition (d0) implies the preliminary asymptotic estimates

(b0) dn

dn+1
= 1 +O(dn);

(b1) rn
rn−1

= 1 +O(dn);

(b2) rn
rn+1

= 1 +O(dn).

In this case, the following relations hold:

F (n)= 1
dn

(
rn

rn−1
− 1

)
+ 1

dn+1

(
rn

rn+1
− 1

)
= 1

dn

(
rn

rn−1
− 1

)(
1 + dn

dn+1
· rn−1

rn+1
· rn−rn+1

rn−rn−1

)

(b1)
= 1

dn
O(dn)

(
1 + dn

dn+1
· rn−1

rn+1
· rn+rn−1

rn+rn+1
· r2n−r2n+1

r2n−r2
n−1

)

= 1
dn

O(dn)
(
1 + dn

dn+1
·
( rn−1

rn+1

)2 · rn/rn−1+1
rn/rn+1+1 · r2n−r2n+1

r2n−r2
n−1

)

(b0–b2,15,6)
= 1

dn
O(dn)

(
1 +

(
1 +O(dn)

)(
1 +O(dn)

)2 · 2+O(dn)
2+O(dn)

· dn−dn+2

dn+1−dn−1

)

(15)
= 1

dn
O(dn)

(
1 +

(
1 +O(dn)

) dn−dn+2

dn+1−dn−1

)

= 1
dn

O(dn)
( (dn+1−dn−1)−(dn+2−dn)

dn+1−dn−1
+O(dn)

dn−dn+2

dn+1−dn−1

)
.

(16)

Below we will need properties (d1–d3) of the sequence {dn}∞1 . Namely, for a suffi-
ciently large n and for some C > 0 we obtain

(dn+1 − dn−1)− (dn+2 − dn)

dn+1 − dn−1
= 2

d′(n+ ζn)− d′(n+ θn)

d′(n+ ζn)

= 2(ζn − θn)
d′′(n+ ξn)

d′(n+ ζn)
= 2(ζn − θn)

d′′(n+ ξn)

d′′(n)
· d′(n)

d′(n+ ζn)
· d

′′(n)

d′(n)

(d1–d3)
= O(dn),

∣∣∣
dn − dn+2

dn+1 − dn−1

∣∣∣ =
∣∣∣
d′(n+ θn)

d′(n+ ζn)

∣∣∣
(d1)
< C,

where ζn ∈ [−1, 1], θn ∈ [0, 2], ξn ∈ [−1, 2]. Then (16) implies the following estimate of
the function F (n):

F (n) =
1

dn
O(dn) ·O(dn) = O(dn).

�

Assumptions of Proposition 5 can already be used for wider classes of sequences. Let
us apply the above results to a two-parametric family of sequences including Example 1
as well.

Example 2. Suppose that the Hamiltonian HX,α is generated by the differential expres-
sion (1) as explained in Introduction, with X = {xn}∞0 defined by the relations

x0 = 0, xn = xn−1 + dn (n ∈ N),

d1 > 0, dn =
1

nγ lnη n
(n ∈ 2,∞),(17)

〈γ, η〉 ∈ (1/2, 1)×(−∞,+∞) ∪ {1}×(−∞, 0].

Then HX,α is self-adjoint provided that there holds one of the following conditions:

(sa1)
∑∞

n=1 |αn|n−3γ ln−3η n = ∞ .
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(sa2) There exists a constant C1 > 0 such that

αn ≤ −2
(
nγ lnη n+ (n+ 1)γ lnη(n+ 1)

)
+

C1

nγ lnη n
(n ∈ N).

(sa3) There exists a constant C2 > 0 such that αn ≥ − C2

nγ lnη n (n ∈ N).

Indeed, in this case we have {dn}∞1 ∈ ℓ2 \ ℓ1 and, by direct calculations, we conclude

that dn+1

dn
= 1 + O(dn). It is important to note that the sequence dn+1

dn
does not satisfy

estimate (13) if η 6= 0. To prove that (sa1) can be applied, we use Proposition 2.

To prove that (sa2) and (sa3) are applicable, consider the function d(x) =
1

xγ lnη x
generating the sequence {dn}∞1 . Derivatives of this function are of the form

d′(x) = −(γ lnx+ η)x−γ−1 ln−η−1 x;

d′′(x) =
(
γ(γ + 1) ln2 x+ (2γ + 1)η lnx+ η(η + 1)

)
x−γ−2 ln−η−2 x.

This immediately implies conditions (d1), (d2) of Proposition 5.
The relation

d′′(n)

d′(n)dn
= −

(
γ(γ + 1) ln2 n+ (2γ + 1)η lnn+ η(η + 1)

)

(γ ln2 n+ η lnn)
· nγ−1 lnη n

shows that condition (d3) is fulfilled either for 1
2 < γ < 1, η ∈ (−∞,+∞), or for

γ = 1, η ≤ 0.

Note that in the two-parametric family of sequences of form (17) lying in ℓ2 \ ℓ1
there is a ”gap” consisting of sequences of the form

{
1

n lnη n

}
, η ∈ (0, 1]. Condition

(d0) is violated for sequences from this ”gap” (despite the fact that limn→∞
dn+1

dn
= 1).

To investigate these cases, we must know additional properties of the sequence {dn}∞1 .
Below, in Proposition 6, we present analytic conditions on the function d generating the
sequence {dn}∞1 such that we can choose the function G of (12) to verify estimate (II)
of Proposition 3.

Proposition 6. Let p ∈ N, and let a sequence {dn}∞1 be generated by a function d : dn :=
d(n) (n ∈ p,∞) that is defined on the interval (p,∞) and is continuously differentiable
on it. Assume also fulfillment of conditions (d0), (d1) of Proposition 5 as well as the
following condition:

(d4) There exists a k ∈ N such that
∣∣d′(n)

dn

∣∣k = O(d2n).

Then there exist numbers {Ci}i∈0,k−1 such that, for k from (d4), we have

(18) F (n) =
1

dn

k−1∑

i=1

Ciu(n)
i +

1

dn+1

k−1∑

i=1

Civ(n)
i +O(dn) (n ∈ p,∞),

where u(n) = dn+1−dn−1

dn+dn−1
, v(n) = dn−dn+2

dn+1+dn+2
.

Proof. Taking into account (11) we obtain

F (n) =
1

dn

( rn
rn−1

− 1
)
+

1

dn+1

( rn
rn+1

− 1
)
,

where

rn
rn−1

=

√
dn + dn+1

dn + dn−1
=

√
1 + u(n),

rn
rn+1

=

√
dn + dn+1

dn+1 + dn+2
=

√
1 + v(n).
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Using Taylor’s series expansion of the function
√
1 + x = 1 +

∑∞
i=1 Cix

i we have

(19) F (n) =
1

dn

∞∑

i=1

Ciu(n)
i +

1

dn+1

∞∑

i=1

Civ(n)
i.

Let us estimate the behavior of terms of these series at infinity. In view of (d0), (d1),
for some ζn ∈ [−1, 1], θn ∈ [0, 2] we have

u(n) = 2
d′(n+ ζn)

dn + dn−1
= 2

d′(n+ ζn)

d′(n)
· dn
dn + dn−1

· d
′(n)

dn
= O

( |d′(n)|
dn

)
;

v(n) = −2
d′(n+ θn)

dn+1 + dn+2
= −2

d′(n+ θn)

d′(n)
· dn
dn+1 + dn+2

· d
′(n)

dn
= O

( |d′(n)|
dn

)
.

Then, for k ∈ N from (d4), we obtain
∞∑

i=k

Ciu(n)
i = O

(
u(n)k

)
= O

( |d′(n)|k
dkn

)
= O(d2n).

Similarly, we conclude that
∑∞

i=k Civ(n)
i = O(d2n). Hence estimate (18) holds. �

In some cases, the right-hand side of (18) can be used to select from F ”the best”
estimator G satisfying the relation F (n) = G(n) + O(dn). Such a function G should

include all the ”parts” of sequences d′(n)i

di+1
n

(i ∈ 1, k − 1) that grow slower than dn at

infinity. Note that to obtain more effective estimates in assumptions of Proposition 6,
the following argument is useful. Since

1

dn
u(n)− 1

dn+1
v(n) =

1

dn
· d′(n+ ζ)

dn + dn−1
− 1

dn+1
· d′(n+ θ)

dn+1 + dn+2

=
dn

dn + dn+1
· d

′(n+ ζ)

d2n
− dn+1

dn+1 + dn+2
· d2n
d2n+1

· d
′(n+ θ)

d2n
,

and since both expressions dn

dn+dn+1
and dn+1

dn+1+dn+2
·
(

dn

dn+1

)2
are close to 1 for sufficiently

large n, we conclude that the behavior of the summand C1

(
1
dn

u(n)− 1
dn+1

v(n)
)
at infinity

is determined by the expression d′′(n)
d2
n

. Trying to avoid general definitions here we will

carry out the reasoning in the following example.

Example 3. Consider the sequences
{

1
n lnη n

}
, η ∈ (0, 1] (see the argument before

Proposition 5, p. 366).
Put d(x) = x−1 ln−η x, η ∈ (0, 1], and p = 3. The function d derives the sequence{
1

n lnη n

}
, is defined on the interval (3,∞) and is twice continuously differentiable on it.

We have

d′(x) = − ln x+η
x2 lnη+1 x

,

d′(x)
d(x) = − ln x+η

x ln x ,

from which we see that
(d ′(x)

d(x)

)3
= O(d2n). Hence k = 3, and for estimating the function

F (n) we need to consider the expressions

d′′(x) = 1
x3

(
2

lnη x + 3η−1
lnη+1 x

+ η+η2

lnη+2 x

)
;

d′′(x)
d2(x) = 2 lnη x

x + 3η−1
x ln1−η x

+ η+η2

x ln2−η x
;

d′(x)2

d3(x) = lnη x
x + 2η

x ln1−η x
+ η2

x ln2−η x
.

This makes it possible to presuppose that F admits the asymptotic representation

F (n) = w1
lnη n
n + w2

1
n ln1−η n

+O
(

1
n lnη n

)
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with some coefficients w1, w2. In fact, by direct calculations we can obtain that

lim
n→∞

n
lnη nF (n) = 1

4 ;

lim
n→∞

n ln1−η n
(
F (n)− 1

4
lnη n
n

)
= η;

lim
n→∞

n lnη n
(
F (n)− 1

4
lnη n
n − η

n ln1−η n

)
=

{
0, η ∈ (0, 1)
1
4 , η = 1

,

for η ∈ (0, 1], which gives the asymptotics

(20) F (n) =

{
1
4
lnη n
n +O

(
1

n lnη n

)
, η ∈ (0, 1

2 ]
1
4
lnη n
n + η

n ln1−η n
+O

(
1

n lnη n

)
, η ∈ ( 12 , 1]

.

Finally, we have G(n) =

{
1
4
lnη n
n , η ∈ (0, 1

2 ]
1
4
lnη n
n + η

n ln1−η n
, η ∈ ( 12 , 1]

. Let us summarize our con-

siderations in the form of sufficient conditions for the operator HX,α to be self-adjoint.

Suppose that the Hamiltonian HX,α is generated by the differential expression (1) as
explained in Introduction, with X = {xn}∞0 defined by the relations

x0 = 0, xn = xn−1 + dn (n ∈ N),

d1 > 0, dn = 1
n lnη n (n ∈ 2,∞ ), η ∈ (0, 1].

Then HX,α is self-adjoint provided that there holds one of the following conditions:

(sa1)
∑∞

n=1 |αn|n−3 ln−3η n = ∞ .

(sa2) There exists a constant C1 > 0 such that

αn ≤ −2
(
n lnη n+(n+1) lnη(n+1)

)
+

{
1
4
lnη n
n , η∈(0,

1
2 ]

1
4
lnη n
n + η

n ln1−η n
, η∈(

1
2 ,1]

+ C1

n lnη n .

(sa3) There exists a constant C2 > 0 such that

αn ≥
{

1
4
lnη n
n , η∈(0,

1
2 ]

1
4
lnη n
n + η

n ln1−η n
, η∈(

1
2 ,1]

− C2

n lnη n .

3. Sufficient conditions for non-triviality of n±(HX,α)

For a positive sequence {dn}∞1 , define the sequence {r̃n}∞1 recursively

(21) r̃1 := 1, r̃n+1 := −dn+1

r̃n
(n ∈ N)

(here we generalize the arguments from [13, Proposition 5.13] regarding the case dn =
1/n).

It is easy to show by induction that

(22) r̃n+1 := (−1)n
dn+1dn−1 . . .

dndn−2 . . .
(n ∈ N).

We say that a sequence {dn}∞1 satisfies condition (A) if

{rnr̃n}∞1 ∈ ℓ2,

and we say that it satisfies condition (B) if
( 1

dn
+

1

dn+1

)
r̃2n = un +O(r2nr̃

2
n),

where {un}∞1 is a real periodic sequence.
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It follows from the results of [13] that the sequence dn = 1/n satisfies both conditions
(A) and (B), and the period of the sequence {un}∞1 equals 2; u1 = 4/π, u2 = π. As it
turns out, this result is general enough for sequences satisfying conditions (A) and (B).
Namely, the following statement holds.

Lemma 1. Suppose that a sequence {dn}∞1 ∈ ℓ2\ℓ1 such that limn→∞
dn+1

dn
= 1 satisfies

also conditions (A) and (B). Then the sequence {un}∞1 has the period equal to 2, with
u1u2 = 4.

Proof. Let the sequence {dn}∞1 satisfy conditions (A) and (B), and let N be the period
of the sequence {un}∞1 . We denote

ρn :=
( 1

dn
+

1

dn+1

)
r̃2n.

In view of condition (B), ρ1+kN = u1 + O(r21+kN r̃21+kN ). If 1 < s < N is an arbitrary
odd number, we have

(23) ρs+kN =
( 1

ds+kN
+

1

ds+kN+1

) ( ds+kNds+kN−2 . . .

ds+kN−1ds+kN−3 . . .

)2

= Θ(s, k)ρ1+kN ,

where

Θ(s, k) =
( 1

ds+kN
+

1

ds+kN+1

) ( 1

d1+kN
+

1

d2+kN

)−1( ds+kNds+kN−2 . . . d3+kN

ds+kN−1ds+kN−3 . . . d2+kN

)2

and also limk→∞ Θ(s, k) = 1. Since ρs+kN = us + O(r2s+kN r̃2s+kN ), by passing to the
limit in relation (23) as k → ∞, we obtain

us = u1.

Thus, for an arbitrary odd n = 2k + 1 we have

ρ2k+1 = u1 +O(r22k+1r̃
2
2k+1).

Arguing similarly we can show that for an arbitrary even n = 2k we obtain

ρ2k = u2 +O(r22k r̃
2
2k).

Since

ρ2kρ2k+1 =
(
1 +

d2k+1

d2k+2

)(
1 +

d2k+1

d2k

)
,

we arrive at the relation

(
u1 +O(r22k+1r̃

2
2k+1)

)(
u2 +O(r22k r̃

2
2k)

)
=

(
1 +

d2k+1

d2k+2

)(
1 +

d2k+1

d2k

)
.

Finally, by passing to the limit in the latter as k → ∞, we conclude that

u1u2 = 4.

�

Proposition 7. Suppose that the Hamiltonian HX,α is defined by the sequence {dn}∞1 ∈
ℓ2\ℓ1 such that limn→∞

dn+1

dn
= 1 and for which conditions (A) and (B) are satisfied.

If

αn = a
( 1

dn
+

1

dn+1

)
+O(dn),

where the parameter a satisfies the inequality −2 < a < 0, then the Hamiltonian HX,α is
a symmetric operator with deficiency indices n± = 1.
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Proof. Due to Lemma 1, for the given sequence dn, the real periodic sequence {un}∞1 in
condition (B) has the period equal to 2, with u1u2 = 4.

Consider the sequence

α0
n := −

( 1

dn
+

1

dn+1

)
+ (a+ 1)unr̃

−2
n .

It follows that

BX,α0 =




r−2
1 r̃−2

1 (a+ 1)u1 −r−1
1 r−1

2 d−1
2 0 . . .

−r−1
1 r−1

2 d−1
2 r−2

2 r̃−2
2 (a+ 1)u2 −r−1

2 r−1
3 d−1

3 . . .
0 −r−1

2 r−1
3 d−1

3 r−2
3 r̃−2

3 (a+ 1)u1 . . .
. . . . . . . . . . . .


 .

If RX = diag(rn), R̃1 = diag(r̃n), we have

R̃1RXBX,α0RXR̃1 =




(a+ 1)u1 −r̃1r̃2d
−1
2 0 . . .

−r̃1r̃2d
−1
2 (a+ 1)u2 −r̃2r̃3d

−1
3 . . .

0 −r̃2r̃3d
−1
3 (a+ 1)u1 . . .

. . . . . . . . . . . .


 .

Since −r̃nr̃n+1d
−1
n+1 = −r̃n · −dn+1

r̃n
· 1
dn+1

= 1, then

(24) R̃1RXBX,α0RXR̃1 = Ja,

where

Ja =




(a+ 1)u1 1 0 . . .
1 (a+ 1)u2 1 . . .
0 1 (a+ 1)u1 . . .
. . . . . . . . . . . .




is the periodic Jacobi matrix defined by both the sequence {un}∞1 and the real parame-
ter a.

In view of (24), the vector f0 is the solution of the equation Jaf = 0 if and only if

the vector h0 = RXR̃1f
0 is the solution of the equation BX,α0h = 0. If f0 = {fn} is a

bounded sequence, due to condition (A) we obtain that h0 = {rnr̃nfn} ∈ ℓ2.
As is known [16], solutions to the equation Jaf = 0 are bounded if there holds the

inequality |∆a(0)| < 1 for the Floquet discriminant. It follows from the above consider-
ations that the Jacobi matrix determined by the sequence {un}∞1 has the period equal
to 2. Consequently,

∆a(λ) = 1/2
(
−2 + (λ− (a+ 1)u1)(λ− (a+ 1)u2)

)
.

This yields ∆a(0) = 1/2(−2 + (a + 1)2u1u2) = 1/2(−2 + 4(a + 1)2) = 2(a + 1)2 − 1.
Hence, |∆a(0)| < 1 if −2 < a < 0. Thus, under this condition, a solution to the equation
BX,α0h = 0 belongs to ℓ2, and also BX,α0 is symmetric operator with deficiency indices
n± = 1.

We can simplify the general form of the sequence α0. Indeed, condition (B) implies
that

(a+ 1)unr̃
−2
n = (a+ 1)

( 1

dn
+

1

dn+1

)
+ (a+ 1)O(r2nr̃

2
n)r̃

−2
n ,

where (a+ 1)O(r2nr̃
2
n)r̃

−2
n = O(r2n) = O(dn). It follows that

(a+ 1)unr̃
−2
n = (a+ 1)

( 1

dn
+

1

dn+1

)
+O(dn),

and the sequence α of the form

αn = a
( 1

dn
+

1

dn+1

)
+O(dn)
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derives a bounded self-adjoint perturbation of the operator BX,α0 . Since deficiency indices
do not change under such a perturbation, we conclude that BX,α is a symmetric operator
with deficiency indices n± = 1 as well. �

Example 4. Let dn = 1
nγ (n ∈ N), γ ∈ ( 12 , 1]. For the given sequence, we have

r̃n = (−1)n−1
( (n−1)!!

n!!

)γ
(n ∈ N),

which implies that

(25) r̃2n =
( (n−1)!!

n!!

)2γ
= 1

(2n+1)γ

(
(2n+ 1)

( (n−1)!!
n!!

)2)γ
(n ∈ N).

Let us use the asymptotics

(26) (2n+ 1)
( (n−1)!!

n!!

)2
=

{
π +O(n−2), if n is odd
4
π +O(n−2), if n is even

obtained in [13, Proposition 5.13], and also the asymptotics derived by the chain of
relations

(27) nγ+(n+1)γ

(2n+1)γ =
1+

(
1+

1
n

)γ

2γ
(
1+

1
2n

)γ = 1
2γ

(
2+ γ

n+O(n−2)
)(
1− γ

2n+O(n−2)
)
= 21−γ+O(n−2).

We have several relations (n ∈ N)

dn = n−γ ∼ r2n , n−2 = O(n−2γ) , r̃2n
(25, 26)
= O(n−γ) .

They immediately yield that

(28) a) n−2 = O(dnr̃
2
n) , b) r2nr̃

2
n = O(n−2γ)

(here n ∈ N). In view of (28b), condition (A) holds for the sequence {dn}∞1 . Moreover,
putting w := (π, 4

π , π,
4
π , . . .) and un := 21−γwγ

n (n ∈ N), we obtain the chain

(
1
dn

+ 1
dn+1

)
r̃2n

(25)
= nγ+(n+1)γ

(2n+1)γ

(
(2n+ 1)

( (n−1)!!
n!!

)2)γ

(26, 27)
=

(
21−γ +O(n−2)

)(
wn +O(n−2)

)γ (28a)
= un +O(dnr̃

2
n) (n ∈ N).

We combine the essence of these considerations with particular case (sa2), (sa3) of Ex-
ample 2 for η = 0 (see p. 366) in order to demonstrate the dependence of the Hamiltonian
HX,α on an asymptotic behavior of the sequence α.

Suppose that the Hamiltonian HX,α is generated by the differential expression (1) as
explained in Introduction, with X = {xn}∞0 defined by the relations

x0 = 0, xn = xn−1 +
1
nγ (n ∈ N), γ ∈ ( 12 , 1].

Then we have
if αn ≤ −2

(
nγ + (n+ 1)γ

)
+ C1n

−γ (n ∈ N) for some C1 > 0,
then HX,α is self-adjoint;

if αn = a
(
nγ + (n+ 1)γ

)
+O(n−γ) (n ∈ N) for some a ∈ (−2, 0),

then n±(HX,α) = 1;
if αn ≥ −C2n

−γ (n ∈ N) for some C2 > 0, then HX,α is self-adjoint.
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