REPRESENTATIONS OF RELATIONS WITH ORTHOGONALITY CONDITION AND THEIR DEFORMATIONS

V. L. OSTROVSKYI, D. P. PROSKURIN, AND R. Y. YAKYMIV

Abstract

Irreducible representations of $*$-algebras A_{q} generated by relations of the form $a_{i}^{*} a_{i}+a_{i} a_{i}^{*}=1, i=1,2, a_{1}^{*} a_{2}=q a_{2} a_{1}^{*}$, where $q \in(0,1)$ is fixed, are classified up to the unitary equivalence. The case $q=0$ is considered separately. It is shown that the C^{*}-algebras \mathcal{A}_{q}^{F} and \mathcal{A}_{0}^{F} generated by operators of Fock representations of A_{q} and A_{0} are isomorphic for any $q \in(0,1)$. A realisation of the universal C^{*}-algebra \mathcal{A}_{0} generated by A_{0} as an algebra of continuous operator-valued functions is given.

InTroduction

In this note we study irreducible representations of a subclass of the so-called $q_{i j}$ - CCR introduced by M. Bozejko and R. Speicher, see [1]. Namely, $q_{i j}$-CCR with d degrees of freedom is a $*$-algebra generated by $a_{i}, i=1, \ldots, d$, satisfying commutation relations of the following form:

$$
\begin{equation*}
a_{i}^{*} a_{j}=1+q_{i j} a_{j} a_{i}^{*}, \quad q_{j i}=\bar{q}_{i j} \in \mathbb{C}, \quad\left|q_{i j}\right| \leq 1, \quad i, j=1, \ldots, d . \tag{1}
\end{equation*}
$$

If all of $q_{i j}=0$, we get the Cuntz-Toeplitz algebra $\mathcal{O}_{d}^{(0)}$, see [2]. The case $\left|q_{i j}\right|=1$ if $i \neq j$ corresponds to an algebra of generalized quons introduced by W. Marcinek and M. Ralowski, see [5], [6]. If we put all of $q_{i j}=1$ we get the Wick algebra associated with canonical commutation relations and the case $q_{i j}=-1, i, j=1, \ldots, d$ determines the Wick version of canonical anti-commutation relations, see [3].

We study representations of $*$-algebras A_{q} generated by pairs of elements, a_{1}, a_{2}, satisfying, for fixed $q \in(0,1)$, the following commutation relations:

$$
\begin{equation*}
a_{1}^{*} a_{1}+a_{1} a_{1}^{*}=1, \quad a_{2}^{*} a_{2}+a_{2} a_{2}^{*}=1, \quad a_{1}^{*} a_{2}=q a_{2} a_{1}^{*} . \tag{2}
\end{equation*}
$$

Namely, in Section 2 we give a complete classification, up to the unitary equivalence, of irreducible representations of (2). In Section 3, the case $q=0$ is considered separately. In particular it follows that in both cases the Fock representation is positive. In Section 4 we prove that the C^{*}-algebras \mathcal{A}_{q}^{F} and \mathcal{A}_{0}^{F} generated by operators of Fock representation of A_{q} and A_{0} are, respectively, isomorphic.

1. Preliminaries

In this section we collect some results on representation theory of canonical anticommutation and q-canonical commutation relations with one degree of freedom, which will be useful for us below. For details see the book [8] and the references therein.

[^0]First we recall the description of irreducible representations of the one-dimensional Wick version of CAR, i.e., of the $*$-algebra, generated by a, a^{*} subject to the relation

$$
\begin{equation*}
a^{*} a=1-a a^{*} \tag{3}
\end{equation*}
$$

Obviously, any Hilbert space representation of (3) is bounded, namely in any representation one has $\|a\| \leq 1$. The C^{*}-algebra, generated by (3) is called the quantum analog of the algebra of continuous functions on the unit circle, see for example [7].

The proof of the following statement can be found in [8].
Theorem 1. Any irreducible representation of (3) is unitary equivalent to some of the presented below.

1. The Fock representation: π_{F} acting on \mathbb{C}^{2},

$$
\pi_{F}(a)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

2. The regular representations: $\pi_{x, \phi}$ acting on \mathbb{C}^{2},

$$
\pi_{x, \phi}(a)=\left(\begin{array}{cc}
0 & e^{i \phi_{1}} \sqrt{1-x} \\
\sqrt{x} & 0
\end{array}\right)
$$

where $\phi \in[0,2 \pi)$ and $0<x<\frac{1}{2}$ are fixed.
3. The one-dimensional representations: ρ_{ϕ} acting on \mathbb{C},

$$
\rho_{\phi}(a)=\frac{e^{i \phi}}{\sqrt{2}}, \quad \phi \in[0,2 \pi)
$$

Representations corresponding to different types or to different values of the parameters are non-equivalent.

Using the description of irreducible representations one can get an analog of the Wold decomposition for the operator $A: \mathcal{H} \rightarrow \mathcal{H}$ satisfying (3). Namely, let $A=U C$, where $C=\left(A^{*} A\right)^{\frac{1}{2}}, U$ is a partial isometry with $\operatorname{ker} U=\operatorname{ker} C=\operatorname{ker} A$, be the polar decomposition. Then one can decompose

$$
\mathcal{H}=\mathcal{H}_{F} \oplus \mathcal{H}_{u}
$$

such that \mathcal{H}_{F} and \mathcal{H}_{u} are invariant with respect to A, A^{*}, and the restriction of A onto \mathcal{H}_{F} is a multiple of the Fock representation and the phase operator of restriction of A onto \mathcal{H}_{u} is unitary.

Below we will also use a description of irreducible bounded representations of the quantum disk $D_{q}, 0<q<1$, see $[7,8]$. Recall that the $*$-algebra D_{q} of polynomials on a non-commutative unit disk is generated by elements b, b^{*} satisfying the following relation:

$$
\begin{equation*}
b^{*} b=\left(1-q^{2}\right) 1+q^{2} b b^{*} . \tag{4}
\end{equation*}
$$

Theorem 2. Any bounded irreducible representation of (4) is unitary equivalent to one of the described below

1. The Fock representation π_{F} acting on $l_{2}\left(\mathbb{Z}_{+}\right)$

$$
\begin{equation*}
\pi_{F}(b)=T_{q}, \quad T_{q} e_{n}=\sqrt{1-q^{2(n+1)}} e_{n+1}, \quad n \in \mathbb{Z}_{+} \tag{5}
\end{equation*}
$$

where $\left\{e_{n}, n \in \mathbb{Z}_{+}\right\}$is the standard orthonormal basis of $l_{2}(\mathbb{Z})$.
2. The one-dimensional representations $\pi_{\phi}, \phi \in[0,2 \pi)$

$$
\pi_{\phi}(b)=e^{i \phi}
$$

Representations corresponding to different values of ϕ are non-equivalent.
As in the case of a non-commutative circle, one can formulate an analog of the Wold decomposition for an operator $B: \mathcal{H} \rightarrow \mathcal{H}$ satisfying (4). Namely, in this case we can decompose \mathcal{H} into an orthogonal sum of subspaces that are invariant with respect to B and B^{*},

$$
\mathcal{H}=\mathcal{H}_{F} \oplus \mathcal{H}_{u}
$$

such that $\mathcal{H}_{F} \simeq l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathcal{K}$ for some Hilbert space \mathcal{K} and $B_{\mid \mathcal{H}_{F}}$ is unitary equivalent to $T_{q} \otimes \mathbf{1}_{\mathcal{K}}$ and $B_{\mid \mathcal{H}_{u}}=U$ for some unitary U.

Recall the definition of the universal C^{*}-algebra generated by a *-algebra.
Definition 1. Let A be $a *$-algebra. The C^{*}-algebra \mathcal{A} is called the universal C^{*} algebra generated by A or the universal bounded representation of A if there exists a *-homomorphism $\psi: A \rightarrow \mathcal{A}$ such that for any representation $\pi: A \rightarrow B(\mathcal{H})$ one can construct a unique $\widetilde{\pi}: \mathcal{A} \rightarrow B(\mathcal{H})$ such that

$$
\pi=\tilde{\pi} \circ \psi
$$

Recall also that \mathcal{A} exists iff the set $\operatorname{Rep}(A)$ of bounded representations of A is nonempty and, for any $a \in A$,

$$
\sup _{\pi \in \operatorname{Rep}(A)}\|\pi(a)\|=C_{a}<\infty
$$

In this case \mathcal{A} is a completion of the quotient of A by $\operatorname{Rad} A$, where

$$
\operatorname{Rad} A=\{a \in A \mid \pi(a)=0 \text { for any } \pi \in \operatorname{Rep}(A)\}
$$

with respect to the norm defined as follows:

$$
\|a+\operatorname{Rad} A\|=\sup _{\pi \in \operatorname{Rep}(A)}\|\pi(a)\|
$$

Below we will sometimes use the same notations for the generators $a_{i}, i=1,2$, of the algebras under consideration and their images in the representations.

2. Representations of A_{q}

Let the operators a_{1}, a_{2} acting on a Hilbert space \mathcal{H} determine an irreducible representation of A_{q}. Construct $C_{1}=a_{1}^{2}, C_{2}=a_{2}^{2}$.
Proposition 1. The operators C_{1}, C_{2} are normal and $C_{1} C_{2}=C_{2} C_{1}=0$. The kernel of each of them is invariant with respect to the action of $a_{i}, a_{i}^{*}, i=1,2$.
Proof. Indeed,

$$
\begin{aligned}
C_{i}^{*} C_{i} & =\left(a_{i}^{2}\right)^{*} a_{i}^{2}=a_{i}^{*}\left(\mathbf{1}-a_{i} a_{i}^{*}\right) a_{i}=\mathbf{1}-a_{i} a_{i}^{*}-\left(\mathbf{1}-a_{i} a_{i}^{*}\right)\left(\mathbf{1}-a_{i} a_{i}^{*}\right) \\
& =\mathbf{1}-a_{i} a_{i}^{*}-1+2 a_{i} a_{i}^{*}-a_{i} a_{i}^{*} a_{i} a_{i}^{*}=a_{i} a_{i}^{*}-a_{i}\left(\mathbf{1}-a_{i} a_{i}^{*}\right) a_{i}^{*}=a_{i}^{2}\left(a_{i}^{2}\right)^{*} \\
& =C_{i} C_{i}^{*}
\end{aligned}
$$

Further, $a_{1}^{*} a_{2}=q a_{2} a_{1}^{*}$ implies $C_{1}^{*} C_{2}=q^{4} C_{2} C_{1}^{*}$. Put $A=C_{1} C_{2}$, then

$$
A^{*} A=C_{2}^{*} C_{1}^{*} C_{1} C_{2}=C_{2}^{*} C_{1} C_{1}^{*} C_{2}=q^{8} C_{1} C_{2}^{*} C_{2} C_{1}^{*}=q^{8} C_{1} C_{2} C_{2}^{*} C_{1}^{*}=q^{8} A A^{*}
$$

Since A is bounded, the relation above is satisfied if and only if $A=C_{1} C_{2}=0$.
Let us show that ker $C_{i}, i=1,2$, are invariant with respect to $a_{j}, a_{j}^{*}, j=1,2$. Indeed,

$$
C_{1} a_{1}=a_{1} C_{1}, \quad C_{1} a_{1}^{*}=a_{1}^{*} C_{1}
$$

imply invariance of $\operatorname{ker} C_{1}$ w.r.t. a_{1}, a_{1}^{*}. Since $a_{2}^{*} C_{1}=q^{2} C_{1} a_{2}^{*}$, applying the FugledePutnam theorem, see [11], we get $a_{2}^{*} C_{1}^{*}=q^{2} C_{1}^{*} a_{2}^{*}$, and taking the adjoints we obtain $C_{1} a_{2}=q^{2} a_{2} C_{1}$. Therefore, $\operatorname{ker} C_{1}$ is invariant w.r.t. a_{2}, a_{2}^{*} too.

According to the proposition above, at least one of the operators C_{1}, C_{2} has nonzero kernel that is an invariant subspace.

Assume that ker C_{1} is nonzero. Then, for an irreducible representation, $\mathcal{H}=\operatorname{ker} C_{1}$, i.e. $a_{1}^{2}=0$ and a_{1} is unitary equivalent to a multiple of the operator defining the Fock representation of (3). Then \mathcal{H} can be decomposed as $\mathcal{H}=\mathbb{C}^{2} \otimes \mathcal{H}_{1}$, so that

$$
a_{1}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{\mathcal{H}_{1}}
$$

Consider the corresponding block-matrix form of a_{2},

$$
a_{2}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

Then $a_{21}=0$ and, for $A=a_{11}$ and $B=a_{12}$, one has

$$
\begin{align*}
B^{*} B+q^{2} A A^{*} & =\mathbf{1}-q^{2} A A^{*} \tag{6}\\
A^{*} A & =\mathbf{1}-A A^{*}-B B^{*} \tag{7}\\
B^{*} A & =-q A B^{*} \tag{8}
\end{align*}
$$

Using (7) one can present (6) in the following form:

$$
\begin{equation*}
B^{*} B=\left(1-q^{2}\right) \mathbf{1}+q^{2} B B^{*} \tag{9}
\end{equation*}
$$

Proposition 2. The representation of (2) given on $\mathcal{H}=\mathbb{C}^{2} \otimes \mathcal{H}_{1}$ by

$$
a_{1}=\left(\begin{array}{ll}
0 & 0 \\
\mathbf{1} & 0
\end{array}\right), \quad a_{2}=\left(\begin{array}{cc}
A & B \\
0 & q A
\end{array}\right)
$$

is irreducible iff the family $\left\{A, A^{*}, B, B^{*}\right\}$ is irreducible on \mathcal{H}_{1}. Representations of (2) corresponding to the families $\left\{A_{i}, A_{i}^{*}, B_{i}, B_{i}^{*}\right\}, i=1,2$, are unitary equivalent iff these families are unitary equivalent.

Proof. To prove the statement on irreducibility we use the Schur lemma. Indeed, it is easy to check that $C=\left(\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right)$ commutes with $a_{i}, a_{i}^{*}, i=1,2$, iff $C_{12}=C_{21}=0$, $C_{11}=C_{22}=\widetilde{C}$, and \widetilde{C} commutes with A, A^{*}, B, B^{*}. Therefore, C is scalar iff \widetilde{C} is scalar.

The statement on unitary equivalence can be proved analogously.
Let us classify the irreducible representations of (9), (7), (8).
Lemma 1. In any representation, we also have that $A B=-q B A$.
Proof. Indeed, let $Q=B A+q A B$. Then

$$
\begin{aligned}
A^{*} Q & =A^{*}(A B+q B A)=A^{*} A B+q A^{*} B A \\
& =\left(\mathbf{1}-A A^{*}-B B^{*}\right) B-q^{2} B A^{*} A \\
& =B-A A^{*} B-B B^{*} B-q^{2} B\left(\mathbf{1}-B B^{*}-A A^{*}\right) \\
& =B+q A B A^{*}-B\left(\left(1-q^{2}\right) \mathbf{1}+q^{2} B B^{*}\right)-q^{2} B+q^{2} B^{2} B^{*}+q^{2} B A A^{*} \\
& =B+q A B A^{*}-B+q^{2} B-q^{2} B^{2} B^{*}-q^{2} B+q^{2} B^{2} B^{*}+q^{2} B A A^{*} \\
& =q(A B+q B A) A^{*}=q Q A^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
B^{*} Q & =B^{*}(A B+q B A)=B^{*} A B+q B^{*} B A \\
& =-q A B^{*} B+q\left(\left(1-q^{2}\right) \mathbf{1}+q^{2} B B^{*}\right) A \\
& =-q A\left(\left(1-q^{2}\right) \mathbf{1}+q^{2} B B^{*}\right)+q\left(1-q^{2}\right) A+q^{3} B B^{*} A \\
& =-q\left(1-q^{2}\right) A-q^{3} A B B^{*}+q\left(1-q^{2}\right) A-q^{4} B A B^{*} \\
& =-q^{3}(A B+q B A) B^{*}=-q^{3} Q B^{*} .
\end{aligned}
$$

Since $A^{*} Q=q Q A^{*}, B^{*} Q=-q^{3} Q B^{*}$, one has

$$
\begin{equation*}
Q^{*} Q=\left(B^{*} A^{*}+q A^{*} B^{*}\right) Q=-q^{4} Q\left(B^{*} A^{*}+q A^{*} B^{*}\right)=-q^{4} Q Q^{*} \tag{10}
\end{equation*}
$$

implying $Q=0$.
Remark 1. In fact, we have shown above that the element $A B+q B A$ generates a quadratic Wick ideal in the Wick algebra generated by A, B, see $[3,9]$ for details.

Using the q-Wold decomposition, see Preliminaries, we decompose

$$
\mathcal{H}_{1}=\mathcal{H}_{1}^{F} \oplus \mathcal{H}_{1}^{u}
$$

so that each summand is invariant w.r.t. B and B^{*}, the restriction of B onto \mathcal{H}_{1}^{u} is unitary, and $\mathcal{H}_{1}^{F}=l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathcal{K}, B_{\mid \mathcal{H}_{1}^{F}}=T_{q} \otimes \mathbf{1}_{\mathcal{K}}$, where $T_{q}: l_{2}\left(\mathbb{Z}_{+}\right) \rightarrow l_{2}\left(\mathbb{Z}_{+}\right)$is defined by (5).

Proposition 3. The subspaces \mathcal{H}_{1}^{u} and \mathcal{H}_{1}^{F} are invariant with respect to the operators A and A^{*}.

Proof. Evidently, it is enough to show that A, A^{*} leave \mathcal{H}_{1}^{u} invariant. In fact we show that $A^{*} x=A x=0$ for any $x \in \mathcal{H}_{1}^{u}$.

Indeed let $x \in \mathcal{H}_{1}^{u},\|x\|=1$. For any $n \in \mathbb{N}$ there exists $y_{n} \in \mathcal{H}_{1}^{u},\left\|y_{n}\right\|=1$, such that $x=B^{n} y$. Then

$$
\left\|A^{*} x\right\|=\left\|A^{*} B^{n} y_{n}\right\|=q^{n}\left\|B^{n} A^{*} y_{n}\right\|
$$

Let us stress that relations (9), (7) imply that $\|A\| \leq 1$ and $\|B\| \leq 1$. Therefore, for any $n \in \mathbb{N}$, one has

$$
\left\|A^{*} x\right\| \leq q^{n} \text { and } A^{*} x=0
$$

Let us show that $A x=0$. Indeed, since for $x \in \mathcal{H}_{1}^{u}$, one has $B B^{*} x=x$ and $A^{*} x=0$, and we get

$$
A^{*} A x=\left(\mathbf{1}-B B^{*}-A A^{*}\right) x=0
$$

Corollary 1. Let $A, B: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ determine an irreducible representation of (9), (7), (8). Then either $\mathcal{H}_{1}=\mathcal{H}_{1}^{u}$ or $\mathcal{H}_{1}=\mathcal{H}_{1}^{F}$.

Proposition 4. Let $\left\{A, B, A^{*}, B^{*}\right\}$ be an irreducible family satisfying (9),(7), (8) on a Hilbert space \mathcal{H}_{1} and $\mathcal{H}_{1}=\mathcal{H}_{1}^{u}$. Then $\operatorname{dim} \mathcal{H}_{1}=1, A=0$, and $B=e^{i \phi}$ for some $\phi \in[0,2 \pi)$. The representations corresponding to different ϕ are non-equivalent.

Proof. Above we have shown that $A=0$ on \mathcal{H}_{1}^{u}. Since B is irreducible and unitary on \mathcal{H}_{1}, we get $\operatorname{dim} \mathcal{H}_{1}=1$.

It remains to consider the case $\mathcal{H}_{1}=\mathcal{H}_{1}^{F}$.
Proposition 5. Let, in an irreducible representation of (9), (7), (8), the representation space be $\mathcal{H}_{1}=\mathcal{H}_{1}^{F}$. Then, up to the unitary equivalence, one has $\mathcal{H}_{1}=l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathcal{K}$ and

$$
\begin{equation*}
B=T_{q} \otimes \mathbf{1}_{\mathcal{K}}, \quad A=d(-q) \otimes \widetilde{A} \tag{11}
\end{equation*}
$$

where $d(-q): l_{2}\left(\mathbb{Z}_{+}\right) \rightarrow l_{2}\left(\mathbb{Z}_{+}\right)$,

$$
d(-q) e_{n}=(-1)^{n} q^{n} e_{n}, \quad n \in \mathbb{Z}_{+}
$$

and $\widetilde{A}: \mathcal{K} \rightarrow \mathcal{K}$ determines an irreducible representation of (3). Representations corresponding to the families $\left\{\widetilde{A}_{i}, \widetilde{A}_{i}^{*}\right\}, i=1,2$, are equivalent iff these families are unitary equivalent.

Proof. The relations $B^{*} A=-q A B^{*}, A B=-q B A$ imply $B^{*} B A=A B^{*} B$. Since $\mathcal{H}_{1}=$ \mathcal{H}_{1}^{F}, we get $\mathcal{H}_{1}=l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathcal{K}$ and

$$
B=T_{q} \otimes \mathbf{1}_{\mathcal{K}}, \quad B^{*} B=\left(T_{q}^{*} T_{q}\right) \otimes \mathbf{1}_{\mathcal{K}},
$$

$T_{q}^{*} T_{q} e_{n}=\left(1-q^{2(n+1)}\right) e_{n}, n \in \mathbb{Z}_{+}$. Then $\mathcal{K}_{n}=e_{n} \otimes \mathcal{K}$ are eigenspaces for $T_{q}^{*} T_{q}$ corresponding to $\lambda_{n}=1-q^{2(n+1)}$ and A, A^{*} leave any of $\mathcal{K}_{n}, n \in \mathbb{Z}_{+}$, invariant.

Denote by A_{n} the restriction of A onto \mathcal{K}_{n}. Then $(A B)_{\mid \mathcal{K}_{n}}=-q(B A)_{\mid \mathcal{K}_{n}}$ implies

$$
A_{n+1}=-q A_{n}, \quad n \in \mathbb{Z}_{+} .
$$

Put $A_{0}=\widetilde{A}$. Then $A_{n}=(-1)^{n} q^{n} \widetilde{A}, n \in \mathbb{Z}_{+}$, and the relation

$$
A^{*} A=\mathbf{1}-B B^{*}-A A^{*}
$$

is equivalent to $\widetilde{A}^{*} \widetilde{A}=\mathbf{1}-\widetilde{A} \widetilde{A}^{*}$ on \mathcal{K}.
The proof of the statement on irreducibility and unitary equivalence is the same as in Proposition 2.

Now we can formulate the result of this section.
Theorem 3. Let π be an irreducible representation of (2) acting on a Hilbert space \mathcal{H}.
Then π is unitary equivalent to one of the representations listed below.

1. $\pi_{F}^{(q)}: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2}$,

$$
\begin{aligned}
& \pi_{F}^{(q)}\left(a_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2} \\
& \pi_{F}^{(q)}\left(a_{2}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & q
\end{array}\right) \otimes d(-q) \otimes\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes T_{q} \otimes \mathbf{1}_{2}
\end{aligned}
$$

2. $\pi_{\phi_{2}, x_{2}}^{(q)}: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2}$,

$$
\pi_{\phi_{2}, x_{2}}^{(q)}\left(a_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2}
$$

$$
\pi_{\phi_{2}, x_{2}}^{(q)}\left(a_{2}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & q
\end{array}\right) \otimes d(-q) \otimes\left(\begin{array}{cc}
0 & e^{i \phi_{2}} \sqrt{x_{2}} \\
\sqrt{1-x_{2}} & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes T_{q} \otimes \mathbf{1}_{2}
$$

where $\quad \phi_{2} \in[0,2 \pi), \quad x_{2} \in(0,1 / 2)$.
3. $\rho_{2, \phi_{2}}^{(q)}: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \rightarrow \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \quad$ and

$$
\begin{aligned}
& \rho_{2, \phi_{2}}^{(q)}\left(a_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)}, \\
& \rho_{2, \phi_{2}}^{(q)}\left(a_{2}\right)=\frac{e^{i \phi_{2}}}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & q
\end{array}\right) \otimes d(-q)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes T_{q}, \quad \phi_{2} \in[0,2 \pi) .
\end{aligned}
$$

4. $\theta_{\phi_{1}, x_{1}}^{(q)}: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2}$,

$$
\begin{aligned}
& \theta_{\phi_{1}, x_{1}}^{(q)}\left(a_{2}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2} \\
& \theta_{\phi_{1}, x_{1}}^{(q)}\left(a_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & q
\end{array}\right) \otimes d(-q) \otimes\left(\begin{array}{cc}
0 & e^{i \phi_{1}} \sqrt{x_{1}} \\
\sqrt{1-x_{1}} & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes T_{q} \otimes \mathbf{1}_{2},
\end{aligned}
$$

where $\quad \phi_{1} \in[0,2 \pi), \quad x_{1} \in(0,1 / 2)$.
5. $\nu_{2, \phi_{1}}^{(q)}: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \rightarrow \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right)$,

$$
\begin{aligned}
& \nu_{2, \phi_{1}}^{(q)}\left(a_{2}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)}, \\
& \nu_{2, \phi_{1}}^{(q)}\left(a_{1}\right)=\frac{e^{i \phi_{1}}}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & q
\end{array}\right) \otimes d(-q)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes T_{q}, \quad \phi_{1} \in[0,2 \pi) .
\end{aligned}
$$

6. $\rho_{\phi_{2}}^{(q)}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$,

$$
\rho_{\phi_{2}}^{(q)}\left(a_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad \rho_{\phi_{2}}^{(q)}\left(a_{2}\right)=\left(\begin{array}{cc}
0 & e^{i \phi_{2}} \\
0 & 0
\end{array}\right), \quad \phi_{2} \in[0,2 \pi)
$$

Proof. To get the proof one has to apply Theorem 1 and Propositions 4,5. In particular, these statements imply that representations from the family $\mathcal{R}_{1}=\left\{\pi_{F}, \pi_{\phi_{2}, x_{2}}, \rho_{2, \phi_{2}}\right\}$ with any admissible values of the parameters are pairwise non-equivalent as also the representations from $\mathcal{R}_{2}=\left\{\theta_{\phi_{1}, x_{1}}, \nu_{2, \phi_{1}}\right\}$ are non-equivalent. Evidently, representations from \mathcal{R}_{1} are not equivalent to representations containing in \mathcal{R}_{2}, since one has $a_{1}^{2}=0$ in any representation from the first family, while $a_{1}^{2} \neq 0$ in any representations from the second one. Finally, any of the representations from $\mathcal{R}_{1} \cup \mathcal{R}_{2}$ is infinite-dimensional, hence it is not equivalent to $\rho_{\phi_{2}}$. It is obvious that $\rho_{\phi_{2}}$ are non-euqivalent for different $\phi \in[0,2 \pi)$.

Remark 2. The unique irreducible representation π_{F} of (2), where $a_{1}^{2}=0, a_{2}^{2}=0$ and $\operatorname{ker} a_{1}^{*} \cap \operatorname{ker} a_{2}^{*} \neq\{0\}$, is called the Fock representation, see [3].

3. Representations of A_{0}

The situation with $q=0$ requires a bit more different analysis. So consider operators satisfying, on a Hilbert space \mathcal{H}, commutation relations of the following form:

$$
\begin{align*}
a_{i}^{*} a_{i} & =1-a_{i} a_{i}^{*}, \quad i=1,2 \tag{12}\\
a_{1}^{*} a_{2} & =0
\end{align*}
$$

Lemma 2. Let $a_{i}=u_{i} c_{i}$, where u_{i} is a partial isometry, $c_{i}^{2}=a_{i}^{*} a_{i}$, and $\operatorname{ker} u_{i}=\operatorname{ker} c_{i}$, $i=1,2$, be polar decompositions. Then $u_{1}^{*} u_{2}=u_{2}^{*} u_{1}=0$.
Proof. Indeed $a_{1}^{*} a_{2}=0$ takes the form $c_{1} u_{1}^{*} u_{2} c_{2}=0$. Since c_{2} is self-adjoint,

$$
\mathcal{H}=\operatorname{ker} c_{2} \oplus \overline{\operatorname{range}\left(c_{2}\right)}
$$

For any $x \in \operatorname{ker} c_{2}=\operatorname{ker} u_{2}$, we have $c_{1} u_{1}^{*} u_{2} x=0$. For $y \in \operatorname{range}\left(c_{2}\right), y=c_{2} z$ and

$$
c_{1} u_{1}^{*} u_{2} y=c_{1} u_{1}^{*} u_{2} c_{2} z=0
$$

Therefore $c_{1} u_{1}^{*} u_{2}=0$. Taking the adjoint we get $u_{2}^{*} u_{1} c_{1}=0$. Then the arguments presented above imply $u_{2}^{*} u_{1}=0$.

Our next aim is to show that in an irreducible representation of (12) at least one of $a_{i}^{2}, i=1,2$, is equal to zero.
Proposition 6. Let $a_{i}, i=1,2$, determine an irreducible representation of (12). Suppose that the unitary part \mathcal{H}_{u} of the generalized Wold decomposition of a_{1} is non-zero. Then $a_{2}^{2}=0$.

Proof. So, let $\mathcal{H}=\mathcal{H}_{u} \oplus \mathcal{H}_{F}$ such that the restriction of u_{1} onto \mathcal{H}_{u} is unitary and the restriction of a_{1} onto \mathcal{H}_{F} is a multiple of the Fock representation of (3). In particular on \mathcal{H}_{F} one has $a_{1}^{2}=0$.

Let $x \in \mathcal{H}_{u}$. Since $u_{2}^{*} u_{1}=0$ and u_{1} is unitary on \mathcal{H}_{u}, one has $x=u_{1} u_{1}^{*} x$ and $u_{2}^{*} x=u_{2}^{*} u_{1} u_{1}^{*} x=0$. Thus $a_{2}^{*} x=c_{2} u_{2}^{*} x=0$ for any $x \in \mathcal{H}_{u}$.

Let us show that for any $x \in \mathcal{H}_{u}$, one has $a_{\alpha_{1}} \cdots a_{\alpha_{k}} x=0$, where $\alpha_{k} \neq 1, \alpha_{s} \in\{1,2\}$, if there exists s such that $\alpha_{s}=\alpha_{s+1}$. Recall that $a_{i}^{2}, i=1,2$, are normal. Then, for any $x \in \mathcal{H}_{u}$,

$$
\left\langle a_{2}^{2} x, a_{2}^{2} x\right\rangle=\left\langle\left(a_{2}^{2}\right)^{*} a_{2}^{2} x, x\right\rangle=\left\langle a_{2}^{2}\left(a_{2}^{2}\right)^{*} x, x\right\rangle=0 .
$$

Further we use induction on the length of $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. Namely, consider the product $a_{\alpha_{1}} \cdots a_{\alpha_{k}} x$, where $k \geq 1, \alpha_{s} \neq \alpha_{s+1}, s=1, \ldots, k-1, \alpha_{k} \neq 1$. Let for example $\alpha_{1}=1$, then $k \geq 2, \alpha_{2}=2$ and

$$
\begin{aligned}
& \left\langle a_{1}^{2} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x, a_{1}^{2} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x\right\rangle=\left\langle\left(a_{1}^{2}\right)^{*} a_{1}^{2} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x, a_{\alpha_{2}} \cdots a_{\alpha_{k}} x\right\rangle \\
& \quad=\left\langle a_{1}^{2}\left(a_{1}^{2}\right)^{*} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x, a_{\alpha_{2}} \cdots a_{\alpha_{k}} x\right\rangle=0, \\
& \quad\left\langle a_{2}^{2} a_{1} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x, a_{2}^{2} a_{1} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x\right\rangle=\left\langle\left(a_{2}^{2}\right)^{*} a_{2}^{2} a_{1} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x, a_{1} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x\right\rangle \\
& \quad=\left\langle a_{2}^{2}\left(a_{2}^{2}\right)^{*} a_{1} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x, a_{1} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x\right\rangle=0 .
\end{aligned}
$$

If $\alpha_{1}=2$, then $k \geq 1$ and the rest of the verification is the same.
Put $\Lambda_{1}=\left\{\emptyset,\left(\alpha_{1}, \ldots, \alpha_{k}\right), k \in \mathbb{N}, \alpha_{s}=1,2, \alpha_{k} \neq 1, \alpha_{s} \neq \alpha_{s+1}\right\}$. For any $\alpha \in \Lambda_{1}$ denote by a_{α} the product $a_{\alpha_{1}} a_{\alpha_{2}} \cdots a_{\alpha_{k}}, a_{\emptyset}=1$. Let us show that

$$
\mathcal{H}_{1}=\overline{\left\langle a_{\alpha} x, x \in \mathcal{H}_{u}, \alpha \in \Lambda_{1}\right\rangle}
$$

is invariant with respect to $a_{i}, a_{i}^{*}, i=1,2$.
The invariance w.r.t. the action of a_{i} is evident. Furthermore,

$$
\begin{aligned}
& a_{2}^{*} x=0, \quad a_{1}^{*} x \in \mathcal{H}_{u}, \quad x \in \mathcal{H}_{u} \\
& a_{i}^{*} a_{i} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x=\left(1-a_{i} a_{i}^{*}\right) a_{\alpha_{2}} \cdots a_{\alpha_{k}} x=a_{\alpha_{2}} \cdots a_{\alpha_{k}} x \quad\left(\text { since } \alpha_{2} \neq i\right), \quad i=1,2, \\
& a_{i}^{*} a_{j} a_{\alpha_{2}} \cdots a_{\alpha_{k}} x=0, \quad i \neq j, \quad i, j=1,2 .
\end{aligned}
$$

Since the representation is irreducible we get $\mathcal{H}=\mathcal{H}_{1}$. Above we have shown that $a_{2}^{2} z=0$ for any $z \in \mathcal{H}_{1}$. So $a_{2}^{2}=0$.

The rest of considerations are the same as in the case $q \in(0,1)$. Indeed, suppose that $a_{1}^{2}=0$ and write the representation space $\mathcal{H}=\mathbb{C}^{2} \otimes \mathcal{H}_{1}$. Then

$$
a_{1}=\left(\begin{array}{ll}
0 & 0 \\
\mathbf{1} & 0
\end{array}\right)
$$

here $\mathbf{1}=\mathbf{1}_{\mathcal{H}_{1}}$. Further, $a_{1}^{*} a_{2}=0$ is equivalent to $a_{2}=\left(\begin{array}{cc}A & B \\ 0 & 0\end{array}\right)$ and $a_{2}^{*} a_{2}=1-a_{2} a_{2}^{*}$ is equivalent to the following relations:

$$
\begin{align*}
& A^{*} A=\mathbf{1}-A A^{*}-B B^{*} \\
& A^{*} B=0 \tag{13}\\
& B^{*} B=\mathbf{1}
\end{align*}
$$

The representation determined by $a_{i}, i=1,2$, is irreducible iff the corresponding representation determined by A, B is irreducible on \mathcal{H}_{1}. The statement on unitary equivalence holds also.

Construct $Q=A B$, then it is easy to see that $Q^{*} Q=0$,

$$
Q^{*} Q=B^{*} A^{*} A B=B^{*}\left(\mathbf{1}-A A^{*}-B B^{*}\right) B=B^{*} B-B^{*} B B^{*} B=0
$$

Hence, we additionally have $A B=0$.
Proposition 7. Let A, B determine an irreducible representation of (13) on \mathcal{H}_{1}. Then either B is unitary, $\operatorname{dim} \mathcal{H}_{1}=1$ and $A=0$ or $\mathcal{H}_{1} \simeq l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathcal{K}$ for some Hilbert space \mathcal{K} and B is unitary equivalent to a multiple of a unilateral shift operator.

Proof. As in the q-deformed case, we consider the Wold decomposition of B,

$$
\mathcal{H}_{1}=\mathcal{H}_{1}^{F} \oplus \mathcal{H}_{1}^{u}
$$

where the restriction of B onto \mathcal{H}_{1}^{u} is unitary and the restriction on \mathcal{H}_{1}^{F} is a multiple of a unilateral shift.

We show that \mathcal{H}_{1}^{u} is invariant with respect to A, A^{*}. Indeed, for $x \in \mathcal{H}_{1}^{u}$ we get

$$
A^{*} x=A^{*} B B^{*} x=0, \quad A^{*} A x=x-A A^{*} x-B B^{*} x=0
$$

so $A^{*} x=0$ and $A x=0$. Hence if $\mathcal{H}_{1}^{u} \neq\{0\}$ in the irreducible case we get $\mathcal{H}_{1}=\mathcal{H}_{1}^{u}$, $\operatorname{dim} \mathcal{H}_{1}=1$ and $A=0, B=e^{i \phi}$.

To complete the proof it remains to point out that if $\mathcal{H}_{1}^{u}=\{0\}$, then $\mathcal{H}_{1}=\mathcal{H}_{1}^{F}$.
Below we denote by $S: l_{2}\left(\mathbb{Z}_{+}\right) \rightarrow l_{2}\left(\mathbb{Z}_{+}\right)$the operator of a unilateral shift.
Proposition 8. Let A, B determine an irreducible representation of (13) on \mathcal{H}_{1} and $\mathcal{H}_{1}=\mathcal{H}_{1}^{F}$. Then $\mathcal{H}_{1}=l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathcal{K}$ for some Hilbert space \mathcal{K} and

$$
B=S \otimes \mathbf{1}_{\mathcal{K}}, \quad A=\left(\mathbf{1}-S S^{*}\right) \otimes \widetilde{A}
$$

where \widetilde{A} determine an irreducible representation of (3) on \mathcal{K}. Representations corresponding to families $\left\{\widetilde{A}_{i}, \widetilde{A}_{i}^{*}\right\}, i=1,2$, are unitary equivalent iff these families are unitary equivalent.
Proof. If $\mathcal{H}_{1}=\mathcal{H}_{1}^{F}$ then, by the definition of \mathcal{H}_{1}^{F}, we have $\mathcal{H}_{1}=l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathcal{K}$ and $B=$ $S \otimes \mathbf{1}_{\mathcal{K}}$. Further, it is easy to verify that $A B=0, B^{*} A=0$ imply that $A=\left(1-S S^{*}\right) \otimes \mathcal{A}$ and the relation
$A^{*} A=\mathbf{1}-A A^{*}-B B^{*}$
is equivalent to $\widetilde{A}^{*} \widetilde{A}=\mathbf{1}_{\mathcal{K}}-\widetilde{A} \widetilde{A}^{*}$.
Application of the Schur lemma shows that the family $\left\{A, A^{*}, B, B^{*}\right\}$ is irreducible iff $\left\{\widetilde{A}, \widetilde{A}^{*}\right\}$ is irreducible. The statement about unitary equivalence is also obvious.

Combining the results of Propositions 7, 8 and Theorem 1 we immediately get the following result.

Theorem 4. Let π be an irreducible representation of (12) on a Hilbert space \mathcal{H}. Then π is unitary equivalent to one of the constructed below:

1. π_{F} acting on $\mathcal{H}=\mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2}$:

$$
\begin{aligned}
& \pi_{F}\left(a_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2} \\
& \pi_{F}\left(a_{2}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\mathbf{1}-S S^{*}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes S \otimes \mathbf{1}_{2}
\end{aligned}
$$

2. $\pi_{\phi_{2}, x_{2}}: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2} \rightarrow: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2}$,

$$
\begin{aligned}
& \pi_{\phi_{2}, x_{2}}\left(a_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2} \\
& \pi_{\phi_{2}, x_{2}}\left(a_{2}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\mathbf{1}-S S^{*}\right) \otimes\left(\begin{array}{cc}
0 & e^{i \phi_{2}} \sqrt{x_{2}} \\
\sqrt{1-x_{2}} & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes S \otimes \mathbf{1}_{2}
\end{aligned}
$$

where $\quad \phi_{2} \in[0,2 \pi), \quad x_{2} \in(0,1 / 2)$.
3. $\rho_{2, \phi_{2}}: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \rightarrow \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right)$,

$$
\begin{aligned}
& \rho_{2, \phi_{2}}\left(a_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \\
& \rho_{2, \phi_{2}}\left(a_{2}\right)=\frac{e^{i \phi_{2}}}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\mathbf{1}-S S^{*}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes S, \quad \phi_{2} \in[0,2 \pi)
\end{aligned}
$$

4. $\theta_{\phi_{1}, x_{1}}: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2}$,

$$
\begin{aligned}
& \theta_{\phi_{1}, x_{1}}\left(a_{2}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2} \\
& \theta_{\phi_{1}, x_{1}}\left(a_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\mathbf{1}-S S^{*}\right) \otimes\left(\begin{array}{cc}
0 & e^{i \phi_{1}} \sqrt{x_{1}} \\
\sqrt{1-x_{1}} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \otimes S \otimes \mathbf{1}_{2},
\end{aligned}
$$

where $\quad \phi_{1} \in[0,2 \pi), \quad x_{1} \in(0,1 / 2)$.
5. $\nu_{2, \phi_{1}}: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \rightarrow \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \quad$ and

$$
\begin{aligned}
& \nu_{2, \phi_{1}}\left(a_{2}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)}, \\
& \nu_{2, \phi_{1}}\left(a_{1}\right)=\frac{e^{i \phi_{1}}}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\mathbf{1}-S S^{*}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes S, \quad \phi_{1} \in[0,2 \pi) .
\end{aligned}
$$

6. $\rho_{\phi_{2}}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$,

$$
\rho_{\phi_{2}}\left(a_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad \rho_{\phi_{2}}\left(a_{2}\right)=\left(\begin{array}{cc}
0 & e^{i \phi_{2}} \\
0 & 0
\end{array}\right), \quad \phi_{2} \in[0,2 \pi) .
$$

Representations from different classes as well as representations from the same class corresponding to different values of the parameters are non-equivalent.

4. C^{*}-algebras generated by A_{q} And A_{0}

In this section, we study the C^{*}-algebras generated by operators of Fock representations of A_{0} and A_{q} and give a description of the universal C^{*}-algebra \mathcal{A}_{0} generated by (12) as algebras of continuous operator-valued functions.
4.1. The C^{*}-algebras \mathcal{A}_{q}^{F} and \mathcal{A}_{0}^{F}. Let C^{*}-algebras \mathcal{A}_{q}^{F} and \mathcal{A}_{0}^{F} be generated by Fock representations of (2), (12) respectively.
Theorem 5. For any $q \in(0,1)$ one has $\mathcal{A}_{q}^{F} \simeq \mathcal{A}_{0}^{F}$.
Proof. Denote by $E_{i j}, i, j=1,2$, the matrix units of $M_{2}(\mathbb{C})$.
First we consider the C^{*}-algebra $\mathcal{A}_{0}^{F}=C^{*}\left(a_{1}, a_{2}\right)$, where

$$
a_{1}=E_{21} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2}
$$

and

$$
a_{2}=E_{11} \otimes\left(\mathbf{1}-S S^{*}\right) \otimes E_{21}+E_{12} \otimes S \otimes \mathbf{1}_{2}
$$

Since E_{21} generates $M_{2}(\mathbb{C})$ as a $*$-algebra, we conclude that

$$
M_{2}(\mathbb{C}) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2} \subset \mathcal{A}_{0}^{F}
$$

and

$$
\begin{align*}
& a_{2} \cdot\left(E_{12} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2}\right)=E_{12} \otimes\left(\mathbf{1}-S S^{*}\right) \otimes E_{21} \in \mathcal{A}_{0}^{F}, \tag{14}\\
& a_{2} \cdot\left(E_{22} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2}\right)=E_{12} \otimes S \otimes \mathbf{1}_{2} \in \mathcal{A}_{0}^{F} \tag{15}
\end{align*}
$$

Further, since $M_{2}(\mathbb{C})$ is simple it follows that

$$
\begin{equation*}
A_{2}=\mathbf{1}_{2} \otimes\left(\mathbf{1}-S S^{*}\right) \otimes E_{21} \in \mathcal{A}_{0}^{F}, \quad A_{3}=\mathbf{1}_{2} \otimes S \otimes \mathbf{1}_{2} \in \mathcal{A}_{0}^{F} \tag{16}
\end{equation*}
$$

Then it is evident now that \mathcal{A}_{0}^{F} is generated as a C^{*}-algebra by operators A_{1}, A_{2}, A_{3}, where

$$
A_{1}=E_{21} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2}
$$

Let us study the C^{*}-algebra \mathcal{A}_{q}^{F}. It is generated by

$$
a_{1}^{q}=E_{21} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2}
$$

and

$$
a_{2}^{q}=\left(E_{11}+q E_{12}\right) \otimes d(-q) \otimes E_{21}+E_{12} \otimes T_{q} \otimes \mathbf{1}_{2} .
$$

As above we conclude that $M_{2}(\mathbb{C}) \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2} \subset \mathcal{A}_{q}^{F}$ and

$$
A_{2}^{q}=\mathbf{1}_{2} \otimes d(-q) \otimes E_{21} \in \mathcal{A}_{q}^{F}, \quad A_{3}^{g}=\mathbf{1}_{2} \otimes T_{q} \otimes \mathbf{1}_{2} \in \mathcal{A}_{q}^{F}
$$

Moreover $\mathcal{A}_{q}=C^{*}\left(A_{1}, A_{2}^{q}, A_{3}^{q}\right)$.
Since $T_{q}^{*} T_{q} e_{n}=\left(1-q^{2(n+1)}\right) e_{n}, n \in \mathbb{Z}_{+}$, one has

$$
S=T_{q}\left(T_{q}^{*} T_{q}\right)^{-\frac{1}{2}} \quad \text { and } \quad T_{q}^{*} T_{q}=\left(1-q^{2}\right) \sum_{n=0}^{\infty} q^{2 n} S^{n}\left(S^{*}\right)^{n}
$$

I.e., $C^{*}(S)=C^{*}\left(T_{q}\right)$, see for example [4]. So $A_{3} \in \mathcal{A}_{q}^{F}$ and $A_{3}^{q} \in C^{*}\left(A_{3}\right)$. Then since $\left(\mathbf{1}-S S^{*}\right) d(-q)=\left(\mathbf{1}-S S^{*}\right)$,

$$
\left(\mathbf{1}-A_{3} A_{3}^{*}\right) A_{2}^{q}=\mathbf{1}_{2} \otimes\left(\mathbf{1}-S S^{*}\right) d(-q) \otimes E_{21}=A_{2}
$$

and $A_{2} \in \mathcal{A}_{q}^{F}$. Finally

$$
d(-q)=\sum_{n=0}^{\infty}(-q)^{n}\left(S^{n}\left(S^{n}\right)^{*}-S^{n+1}\left(S^{n+1}\right)^{*}\right)=\sum_{n=0}^{\infty}(-q)^{n} S^{n}\left(\mathbf{1}-S S^{*}\right)\left(S^{n}\right)^{*}
$$

and

$$
A_{2}^{q}=\sum_{n=0}^{\infty}(-q)^{n} A_{3}^{n} A_{2}\left(A_{3}^{n}\right)^{*} \in C^{*}\left(A_{3}, A_{2}\right)
$$

Therefore $\mathcal{A}_{q}^{F}=C^{*}\left(A_{1}, A_{2}^{q}, A_{3}^{q}\right)=C^{*}\left(A_{1}, A_{2}, A_{3}\right)=\mathcal{A}_{0}^{F}$.
4.2. The C^{*}-algebra \mathcal{A}_{0}. Consider the C^{*}-algebra \mathcal{A}_{0}. First of all we present the operators of representations $\pi_{\phi_{2}, x_{2}}\left(a_{i}\right)$ and $\theta_{\phi_{1, x_{1}}}\left(a_{i}\right), i=1,2$, in the form different from that of presented in Theorem 4.

Namely using the isomorphism $l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2} \simeq l_{2}\left(\mathbb{Z}_{+}\right)$one can present

$$
\begin{align*}
& \pi_{\phi_{2}, x_{2}}\left(a_{1}\right)=E_{21} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes \mathbf{1}_{2}, \tag{17}\\
& \pi_{\phi_{2}, x_{2}}\left(a_{2}\right)=E_{11} \otimes\left(\mathbf{1}-S S^{*}\right) \otimes\left(\begin{array}{cc}
0 & e^{i \phi_{2}} \sqrt{x_{2}} \\
\sqrt{1-x_{2}} & 0
\end{array}\right)+E_{12} \otimes S \otimes \mathbf{1}_{2} \tag{18}
\end{align*}
$$

as

$$
\begin{gather*}
\pi_{\phi_{2}, x_{2}}\left(a_{1}\right)=\left(\begin{array}{cc}
0 & 0 \\
\mathbf{1} & 0
\end{array}\right) \tag{19}\\
\pi_{\phi_{2}, x_{2}}\left(a_{2}\right)=\left(\begin{array}{cc}
\sqrt{1-x_{2}} S\left(\mathbf{1}-S S^{*}\right)+e^{i \phi_{2}} \sqrt{x_{2}}\left(\mathbf{1}-S S^{*}\right) S^{*} & S^{2} \\
0 & 0
\end{array}\right), \tag{20}
\end{gather*}
$$

where $\mathbf{1}=\mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)}$. Similarly,

$$
\begin{gathered}
\theta_{\phi_{1}, x_{1}}\left(a_{2}\right)=\left(\begin{array}{ll}
0 & 0 \\
\mathbf{1} & 0
\end{array}\right), \\
\theta_{\phi_{1}, x_{1}}\left(a_{1}\right)=\left(\begin{array}{cc}
\sqrt{1-x_{1}} S\left(\mathbf{1}-S S^{*}\right)+e^{i \phi_{1}} \sqrt{x_{1}}\left(\mathbf{1}-S S^{*}\right) S^{*} & S^{2} \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

In particular,

$$
\pi_{\phi_{2}, 0}\left(a_{1}\right)=\theta_{\phi_{1}, 0}\left(a_{2}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and

$$
\pi_{\phi_{2}, 0}\left(a_{2}\right)=\theta_{\phi_{1}, 0}\left(a_{1}\right)=\left(\begin{array}{cc}
S\left(\mathbf{1}-S S^{*}\right) & S^{2} \\
0 & 0
\end{array}\right)
$$

for any $\phi_{1}, \phi_{2} \in[0,2 \pi)$. Note also that $\pi_{\phi_{2}, 0}\left(a_{i}\right)=\pi_{F}\left(a_{i}\right), i=1,2$.

Consider $T \in M_{2}\left(\mathcal{T}(C(\mathbf{T}))\right.$), where $\mathcal{T}(C(\mathbf{T}))=C^{*}(S)$ is the Toeplitz C^{*}-algebra generated by a single isometry,

$$
T=\left(\begin{array}{cc}
1-S S^{*} & S \\
S^{*} & 0
\end{array}\right)
$$

It is easy to verify that $T=T^{*}=T^{-1}$ and for any $p h i_{j} \in[0,2 \pi], j=1,2$, one has

$$
\begin{equation*}
T \theta_{\phi_{1}, 0}\left(a_{1}\right) T=\pi_{\phi_{2}, 0}\left(a_{1}\right), \quad T \theta_{\phi_{1}, 0}\left(a_{2}\right) T=\pi_{\phi_{2}, 0}\left(a_{2}\right) \tag{21}
\end{equation*}
$$

Let $X=\{0\} \times[0,1 / 2] \cup[0,1 / 2] \times\{0\}$ and \mathbf{T}^{2} be the two-dimensional torus. Consider the C^{*}-algebra

$$
\mathcal{A} \subset M_{2}\left(C\left(X \times \mathbf{T}^{2} \rightarrow \mathcal{T}(C(\mathbf{T}))\right)\right) \simeq M_{2}(\mathbb{C}) \otimes C(X) \otimes \mathcal{T}(C(\mathbf{T}))
$$

generated by the pair of functions defined as follows:

$$
\begin{aligned}
f_{1}\left(0, x_{2}, \phi_{1}, \phi_{2}\right) & =\pi_{\phi_{2}, x_{2}}\left(a_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
\mathbf{1} & 0
\end{array}\right) \\
f_{1}\left(x_{1}, 0, \phi_{1}, \phi_{2}\right) & =T \theta_{\phi_{1}, x_{1}}\left(a_{1}\right) T \\
& =T\left(\begin{array}{cc}
\sqrt{1-x_{1}} S\left(\mathbf{1}-S S^{*}\right)+e^{i \phi_{1}} \sqrt{x_{1}}\left(\mathbf{1}-S S^{*}\right) S^{*} & S^{2} \\
0 & 0
\end{array}\right) T \\
f_{2}\left(0, x_{2}, \phi_{1}, \phi_{2}\right) & =\pi_{\phi_{2}, x_{2}}\left(a_{2}\right) \\
& =\left(\begin{array}{cc}
\sqrt{1-x_{2}} S\left(\mathbf{1}-S S^{*}\right)+e^{i \phi_{2}} \sqrt{x_{2}}\left(\mathbf{1}-S S^{*}\right) S^{*} & S^{2} \\
0
\end{array}\right) \\
f_{2}\left(x_{1}, 0, \phi_{1}, \phi_{2}\right) & =T \theta_{\phi_{1}, x_{1}}\left(a_{2}\right) T=T\left(\begin{array}{cc}
0 & 0 \\
\mathbf{1} & 0
\end{array}\right) T
\end{aligned}
$$

Note that continuity of f_{1}, f_{2} at $\left(0,0, \phi_{1}, \phi_{2}\right)$ follows from (21).
We show that $\mathcal{A}_{0} \simeq \mathcal{A}$. Since the functions f_{1}, f_{2} satisfy relations (12), by the universal property of \mathcal{A}_{0} there exists a homomorphism $\psi: \mathcal{A}_{0} \rightarrow \mathcal{A}$ taking a_{i} to $f_{i}, i=1,2$.

Theorem 6. The homomorphism $\psi: \mathcal{A}_{0} \rightarrow \mathcal{A}$ is an isomorphism.
Proof. To prove the statement it is enough to show that for any irreducible representation $\pi: \mathcal{A}_{0} \rightarrow B(\mathcal{H})$ there exists a representation $\widetilde{\pi}: \mathcal{A} \rightarrow B(\mathcal{H})$ such that $\pi=\widetilde{\pi} \circ \psi$. Indeed in this case $\psi(x)=0$ implies $\pi(x)=\widetilde{\pi}(\psi(x))=0$ for any irreducible representation π of \mathcal{A}. Then $x=0$ and ψ is injective. Since surjectivity of ψ is obvious we conclude that it is an isomorphism.

So, let us construct, for any irreducible representation π of \mathcal{A}_{0}, a corresponding representation $\widetilde{\pi}$ of \mathcal{A}.

1. Evidently $\widetilde{\pi}_{F}\left(f_{i}\right)=f_{i}\left(0,0, \phi_{1}, \phi_{2}\right), i=1,2$, for arbitrary fixed $\phi_{j} \in[0,2 \pi], j=1,2$.
2. For any $x_{2} \in(0,1 / 2)$ and $\phi_{2} \in[0,2 \pi)$ one has

$$
\tilde{\pi}_{\phi_{2}, x_{2}}\left(f_{i}\right)=f_{i}\left(0, x_{2}, \phi_{1}, \phi_{2}\right), \quad i=1,2
$$

where ϕ_{1} is arbitrary fixed in $[0,2 \pi]$.
3. Analogously, for any $x_{1} \in(0,1 / 2), \phi_{1} \in[0,2 \pi)$ one has

$$
\widetilde{\theta}_{\phi_{1}, x_{1}}\left(f_{i}\right)=T f_{i}\left(x_{1}, 0, \phi_{1}, \phi_{2}\right) T, \quad i=1,2
$$

for arbitrary fixed $\phi_{2} \in[0,2 \pi]$. Here we use the property $T=T^{*}=T^{-1}$.
4. Let us construct $\widetilde{\rho}_{2, \phi_{2}}$. In this case, it will be more convenient for us to consider $f_{i}\left(0, x_{2}, \phi_{1}, \phi_{2}\right), i=1,2$, as tensor products of the form (17),(18). Indeed there exists unitary $U: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \rightarrow \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2}$ such that for any $x_{2} \in[0,1 / 2]$ and $\phi_{2} \in[0,2 \pi]$ one has

$$
U f_{i}\left(0, x_{2}, \phi_{1}, \phi_{2}\right) U^{*}=\pi_{\phi_{2}, x_{2}}\left(a_{i}\right)
$$

where $\pi_{\phi_{2}, x_{2}}\left(a_{i}\right), i=1,2$, are presented as in (17),(18).

Denote by $a(x, \phi):[0,1 / 2] \times[0,2 \pi] \rightarrow M_{2}(\mathbb{C})$ a continuous function of the form

$$
a(x, \phi)=\left(\begin{array}{cc}
0 & e^{i \phi} \sqrt{1-x} \tag{22}\\
\sqrt{x} & 0
\end{array}\right)
$$

It is easy to verify, see [10], that

$$
V^{*}(\phi) a(1 / 2, \phi) V(\phi)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
e^{\frac{i \phi}{2}} & 0 \\
0 & e^{\pi+\frac{i \phi}{2}}
\end{array}\right)
$$

for unitary

$$
V(\phi)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
e^{\frac{i \phi}{2}} & -e^{\frac{i \phi}{2}} \\
1 & 1
\end{array}\right) \in M_{2}(\mathbb{C})
$$

Put $W_{i}: \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathbb{C}^{2}, i=1,2$,

$$
W_{i}(\phi)=\left(\mathbf{1}_{2} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes E_{i i} V(\phi)\right)
$$

Then, if $\phi_{2} \in[0, \pi)$, one has

$$
\left.\widetilde{\rho}_{2, \phi_{2}}\left(f_{i}\right)=\left(\mathbf{1}_{2} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes p_{1}\right) \circ\left(W_{1}^{*}\left(2 \phi_{2}\right) U f_{i}\left(0,1 / 2, \phi_{1}, \phi_{2}\right)\right) U^{*} W_{1}\left(2 \phi_{2}\right)\right)
$$

and, for $\phi_{2} \in[\pi, 2 \pi)$,

$$
\left.\widetilde{\rho}_{2, \phi_{2}}\left(f_{i}\right)=\left(\mathbf{1}_{2} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes p_{2}\right) \circ\left(W_{2}^{*}\left(2 \phi_{2}-2 \pi\right) U f_{i}\left(0,1 / 2, \phi_{1}, \phi_{2}\right)\right) U^{*} W_{2}\left(2 \phi_{2}-2 \pi\right)\right)
$$

where $p_{i}: M_{2}(\mathbb{C}) \rightarrow \mathbb{C}, i=1,2$, are defined by

$$
p_{i}\left(\sum_{r, s=1}^{2} \alpha_{r s} E_{r s}\right)=\alpha_{i i}
$$

and ϕ_{1} is arbitrary fixed in $[0,2 \pi]$.
5. Applying the considerations above to $\widetilde{\nu}_{2, \phi_{1}}$ we get, for $\phi_{1} \in[0, \pi)$,

$$
\left.\widetilde{\nu}_{2, \phi_{1}}\left(f_{i}\right)=\left(\mathbf{1}_{2} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes p_{1}\right) \circ\left(W_{1}^{*}\left(2 \phi_{1}\right) U T f_{i}\left(1 / 2,0, \phi_{1}, \phi_{2}\right)\right) T U^{*} W_{1}\left(2 \phi_{1}\right)\right)
$$

and, for $\phi_{1} \in[\pi, 2 \pi)$,
$\left.\widetilde{\nu}_{2, \phi_{1}}\left(f_{i}\right)=\left(\mathbf{1}_{2} \otimes \mathbf{1}_{l_{2}\left(\mathbb{Z}_{+}\right)} \otimes p_{2}\right) \circ\left(W_{2}^{*}\left(2 \phi_{2}-2 \pi\right) U T f_{i}\left(1 / 2,0, \phi_{1}, \phi_{2}\right)\right) T U^{*} W_{2}\left(2 \phi_{2}-2 \pi\right)\right)$
for arbitrary fixed $\phi_{2} \in[0,2 \pi]$.
6. Finally, to construct $\tilde{\rho}_{\psi_{2}}$, we consider $\tau_{\psi_{2}}: \mathcal{T}(C(\mathbf{T})) \rightarrow \mathbb{C}, \tau_{\psi_{2}}(S)=e^{\frac{i \psi_{2}}{2}}$ and identify $M_{2}(\mathcal{T}(C(\mathbf{T})))$ with $M_{2}(\mathbb{C}) \otimes \mathcal{T}(C(\mathbf{T}))$. Then

$$
\tilde{\rho}_{\psi_{2}}\left(a_{i}\right)=\left(i d_{M_{2}(\mathbb{C})} \otimes \tau_{\psi_{2}}\right)\left(f_{i}\left(0, x_{2}, \phi_{1}, \phi_{2}\right)\right)
$$

for arbitrary fixed $x_{2} \in[0,1 / 2]$ and $\phi_{j} \in[0,2 \pi], j=1,2$.
Note that representations equivalent to $\widetilde{\rho}_{\psi_{2}}$ can be also obtained as

$$
\left(i d_{M_{2}(\mathbb{C})} \otimes \tau_{\psi}\right)\left(T f_{i}\left(x_{1}, 0, \phi_{1}, \phi_{2}\right) T\right)
$$

for certain ψ and arbitrary fixed $x_{1} \in[0,1 / 2]$ and $\phi_{j} \in[0,2 \pi], j=1,2$.

References

1. M. Bożejko, R. Speicher, Completely positive maps on Coxeter groups, deformed commutation relations and operator spaces, Math. Ann. 300 (1994), 97-120.
2. J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173-185.
3. P. E. T. Jørgensen, L. M. Schmitt, R. F. Werner, Positive representations of general commutation relations allowing Wick ordering, J. Funct. Anal. 134 (1995), 33-99.
4. P. E. T. Jørgensen, L. M. Schmitt, R. F. Werner, q-Canonical commutation relations and stability of the Cuntz algebra, Pacific J. Math. 165 (1994), no. 1, 131-151.
5. W. Marcinek, On commutation relations for quons, Rep. Math. Phys. 41 (1998), no. 2, 155-172.
6. W. Marcinek and R. Ralowski, On Wick algebras with braid relations, J. Math. Phys. 36 (1995), no. 6, 2803-2812.
7. G. Nagy and A. Nica, On the quantum disk and non-commutative circle, Algebraic Methods in Operator Theory, P. E. T. Jørgensen and R. Curto eds., Birkhäuser, Boston, 1994, pp. 276-290.
8. V. L. Ostrovskyi and Yu. S. Samoilenko, Introduction to the Theory of Representations of Finitely Presented *-Algebras. I. Representations by Bounded Operators, Rev. Math. \& Math. Phys., vol. 11, Gordon \& Breach, London, 1999.
9. D. Proskurin, Homogeneous ideals in Wick *-algebras, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3371-3376.
10. D. Proskurin, Yu. Savchuk, L. Turowska, On C^{*}-algebras generated by some deformations of CAR relations, Contemp. Math. 391 (2005), 297-312.
11. W. Rudin, Functional Analysis, McGraw-Hill, Inc., New York, 1991.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

E-mail address: vo@imath.kiev.ua
Department of Cybernetics, Kyiv National Taras Shevchenko University, 64 Volodymyrs'ka, Kyiv, 01033, Ukraine

E-mail address: prosk@univ.kiev.ua
National University of Life and Environmental Sciences, 15 Heroyiv Oborony, Kyiv, 03041, Ukraine

E-mail address: yakymiv@ukr.net

[^0]: 2000 Mathematics Subject Classification. Primary 46L65; Secondary 81T05.
 Key words and phrases. Deformed commutation relations, irreducible representation, Fock representation.

 The first and the second authors were supported in part by Swedish Institute (Visby program) and DFG grant SCHM 1009/5-1.

