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REPRESENTATIONS OF RELATIONS WITH ORTHOGONALITY

CONDITION AND THEIR DEFORMATIONS

V. L. OSTROVSKYI, D. P. PROSKURIN, AND R. Y. YAKYMIV

Abstract. Irreducible representations of ∗-algebras Aq generated by relations of the
form a∗i ai + aia

∗

i = 1, i = 1, 2, a∗1a2 = qa2a
∗

1, where q ∈ (0, 1) is fixed, are classified

up to the unitary equivalence. The case q = 0 is considered separately. It is shown
that the C∗-algebras AF

q and AF
0 generated by operators of Fock representations of

Aq and A0 are isomorphic for any q ∈ (0, 1). A realisation of the universal C∗-algebra
A0 generated by A0 as an algebra of continuous operator-valued functions is given.

Introduction

In this note we study irreducible representations of a subclass of the so-called qij-CCR
introduced by M. Bozejko and R. Speicher, see [1]. Namely, qij-CCR with d degrees of
freedom is a ∗-algebra generated by ai, i = 1, . . . , d, satisfying commutation relations of
the following form:

(1) a∗i aj = 1 + qijaja
∗
i , qji = qij ∈ C, |qij | ≤ 1, i, j = 1, . . . , d.

If all of qij = 0, we get the Cuntz-Toeplitz algebra O(0)
d , see [2]. The case |qij | = 1 if

i 6= j corresponds to an algebra of generalized quons introduced by W. Marcinek and
M. Ralowski, see [5], [6]. If we put all of qij = 1 we get the Wick algebra associated with
canonical commutation relations and the case qij = −1, i, j = 1, . . . , d determines the
Wick version of canonical anti-commutation relations, see [3].

We study representations of ∗-algebras Aq generated by pairs of elements, a1, a2,
satisfying, for fixed q ∈ (0, 1), the following commutation relations:

(2) a∗1a1 + a1a
∗
1 = 1, a∗2a2 + a2a

∗
2 = 1, a∗1a2 = qa2a

∗
1.

Namely, in Section 2 we give a complete classification, up to the unitary equivalence, of
irreducible representations of (2). In Section 3, the case q = 0 is considered separately.
In particular it follows that in both cases the Fock representation is positive. In Section 4
we prove that the C∗-algebras AF

q and AF
0 generated by operators of Fock representation

of Aq and A0 are, respectively, isomorphic.

1. Preliminaries

In this section we collect some results on representation theory of canonical anti-
commutation and q-canonical commutation relations with one degree of freedom, which
will be useful for us below. For details see the book [8] and the references therein.
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First we recall the description of irreducible representations of the one-dimensional
Wick version of CAR, i.e., of the ∗-algebra, generated by a, a∗ subject to the relation

(3) a∗a = 1− aa∗.

Obviously, any Hilbert space representation of (3) is bounded, namely in any represen-
tation one has ||a|| ≤ 1. The C∗-algebra, generated by (3) is called the quantum analog
of the algebra of continuous functions on the unit circle, see for example [7].

The proof of the following statement can be found in [8].

Theorem 1. Any irreducible representation of (3) is unitary equivalent to some of the
presented below.

1. The Fock representation: πF acting on C
2,

πF (a) =

(
0 0
1 0

)
.

2. The regular representations: πx,φ acting on C
2,

πx,φ(a) =

(
0 eiφ1

√
1− x√

x 0

)
,

where φ ∈ [0, 2π) and 0 < x < 1
2 are fixed.

3. The one-dimensional representations: ρφ acting on C,

ρφ(a) =
eiφ√
2
, φ ∈ [0, 2π).

Representations corresponding to different types or to different values of the parameters
are non-equivalent.

Using the description of irreducible representations one can get an analog of the Wold
decomposition for the operator A : H → H satisfying (3). Namely, let A = UC, where

C = (A∗A)
1
2 , U is a partial isometry with kerU = kerC = kerA, be the polar decompo-

sition. Then one can decompose

H = HF ⊕Hu

such that HF and Hu are invariant with respect to A, A∗, and the restriction of A onto
HF is a multiple of the Fock representation and the phase operator of restriction of A
onto Hu is unitary.

Below we will also use a description of irreducible bounded representations of the
quantum disk Dq, 0 < q < 1, see [7, 8]. Recall that the ∗-algebra Dq of polynomials
on a non-commutative unit disk is generated by elements b, b∗ satisfying the following
relation:

(4) b∗b = (1− q2)1 + q2bb∗.

Theorem 2. Any bounded irreducible representation of (4) is unitary equivalent to one
of the described below

1. The Fock representation πF acting on l2(Z+)

(5) πF (b) = Tq, Tqen =
√

1− q2(n+1)en+1, n ∈ Z+,

where {en, n ∈ Z+} is the standard orthonormal basis of l2(Z).

2. The one-dimensional representations πφ, φ ∈ [0, 2π)

πφ(b) = eiφ.
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Representations corresponding to different values of φ are non-equivalent.

As in the case of a non-commutative circle, one can formulate an analog of the Wold
decomposition for an operator B : H → H satisfying (4). Namely, in this case we can
decompose H into an orthogonal sum of subspaces that are invariant with respect to B
and B∗,

H = HF ⊕Hu,

such that HF ≃ l2(Z+)⊗K for some Hilbert space K and B|HF
is unitary equivalent to

Tq ⊗ 1K and B|Hu
= U for some unitary U .

Recall the definition of the universal C∗-algebra generated by a ∗-algebra.
Definition 1. Let A be a ∗-algebra. The C∗-algebra A is called the universal C∗-
algebra generated by A or the universal bounded representation of A if there exists a
∗-homomorphism ψ : A → A such that for any representation π : A → B(H) one can
construct a unique π̃ : A → B(H) such that

π = π̃ ◦ ψ.
Recall also that A exists iff the set Rep(A) of bounded representations of A is non-

empty and, for any a ∈ A,

sup
π∈Rep(A)

||π(a)|| = Ca <∞.

In this case A is a completion of the quotient of A by Rad A, where

Rad A = {a ∈ A | π(a) = 0 for any π ∈ Rep(A)},
with respect to the norm defined as follows:

||a+Rad A|| = sup
π∈Rep(A)

||π(a)||.

Below we will sometimes use the same notations for the generators ai, i = 1, 2, of the
algebras under consideration and their images in the representations.

2. Representations of Aq

Let the operators a1, a2 acting on a Hilbert space H determine an irreducible repre-
sentation of Aq. Construct C1 = a21, C2 = a22.

Proposition 1. The operators C1, C2 are normal and C1C2 = C2C1 = 0. The kernel
of each of them is invariant with respect to the action of ai, a

∗
i , i = 1, 2.

Proof. Indeed,

C∗
i Ci = (a2i )

∗a2i = a∗i (1− aia
∗
i )ai = 1− aia

∗
i − (1− aia

∗
i )(1− aia

∗
i )

= 1− aia
∗
i − 1 + 2aia

∗
i − aia

∗
i aia

∗
i = aia

∗
i − ai(1− aia

∗
i )a

∗
i = a2i (a

2
i )

∗

= CiC
∗
i .

Further, a∗1a2 = qa2a
∗
1 implies C∗

1C2 = q4C2C
∗
1 . Put A = C1C2, then

A∗A = C∗
2C

∗
1C1C2 = C∗

2C1C
∗
1C2 = q8C1C

∗
2C2C

∗
1 = q8C1C2C

∗
2C

∗
1 = q8AA∗.

Since A is bounded, the relation above is satisfied if and only if A = C1C2 = 0.
Let us show that kerCi, i = 1, 2, are invariant with respect to aj , a

∗
j , j = 1, 2. Indeed,

C1a1 = a1C1, C1a
∗
1 = a∗1C1

imply invariance of kerC1 w.r.t. a1, a
∗
1. Since a∗2C1 = q2C1a

∗
2, applying the Fuglede-

Putnam theorem, see [11], we get a∗2C
∗
1 = q2C∗

1a
∗
2, and taking the adjoints we obtain

C1a2 = q2a2C1. Therefore, kerC1 is invariant w.r.t. a2, a
∗
2 too. �
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According to the proposition above, at least one of the operators C1, C2 has nonzero
kernel that is an invariant subspace.

Assume that kerC1 is nonzero. Then, for an irreducible representation, H = kerC1,
i.e. a21 = 0 and a1 is unitary equivalent to a multiple of the operator defining the Fock
representation of (3). Then H can be decomposed as H = C

2 ⊗H1, so that

a1 =

(
0 0
1 0

)
⊗ 1H1

.

Consider the corresponding block-matrix form of a2,

a2 =

(
a11 a12
a21 a22

)
.

Then a21 = 0 and, for A = a11 and B = a12, one has

B∗B + q2AA∗ = 1− q2AA∗,(6)

A∗A = 1−AA∗ −BB∗,(7)

B∗A = −qAB∗.(8)

Using (7) one can present (6) in the following form:

(9) B∗B = (1− q2)1+ q2BB∗.

Proposition 2. The representation of (2) given on H = C
2 ⊗H1 by

a1 =

(
0 0
1 0

)
, a2 =

(
A B
0 qA

)

is irreducible iff the family {A,A∗, B,B∗} is irreducible on H1. Representations of (2)
corresponding to the families {Ai, A∗

i , Bi, B
∗
i }, i = 1, 2, are unitary equivalent iff these

families are unitary equivalent.

Proof. To prove the statement on irreducibility we use the Schur lemma. Indeed, it is

easy to check that C =

(
C11 C12

C21 C22

)
commutes with ai, a

∗
i , i = 1, 2, iff C12 = C21 = 0,

C11 = C22 = C̃, and C̃ commutes with A, A∗, B, B∗. Therefore, C is scalar iff C̃ is
scalar.

The statement on unitary equivalence can be proved analogously. �

Let us classify the irreducible representations of (9), (7), (8).

Lemma 1. In any representation, we also have that AB = −qBA.

Proof. Indeed, let Q = BA+ qAB. Then

A∗Q = A∗(AB + qBA) = A∗AB + qA∗BA

= (1−AA∗ −BB∗)B − q2BA∗A

= B −AA∗B −BB∗B − q2B(1−BB∗ −AA∗)

= B + qABA∗ −B((1− q2)1+ q2BB∗)− q2B + q2B2B∗ + q2BAA∗

= B + qABA∗ −B + q2B − q2B2B∗ − q2B + q2B2B∗ + q2BAA∗

= q(AB + qBA)A∗ = qQA∗
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and

B∗Q = B∗(AB + qBA) = B∗AB + qB∗BA

= −qAB∗B + q((1− q2)1+ q2BB∗)A

= −qA((1− q2)1+ q2BB∗) + q(1− q2)A+ q3BB∗A

= −q(1− q2)A− q3ABB∗ + q(1− q2)A− q4BAB∗

= −q3(AB + qBA)B∗ = −q3QB∗.

Since A∗Q = qQA∗, B∗Q = −q3QB∗, one has

(10) Q∗Q = (B∗A∗ + qA∗B∗)Q = −q4Q(B∗A∗ + qA∗B∗) = −q4QQ∗

implying Q = 0. �

Remark 1. In fact, we have shown above that the element AB + qBA generates a
quadratic Wick ideal in the Wick algebra generated by A, B, see [3, 9] for details.

Using the q-Wold decomposition, see Preliminaries, we decompose

H1 = HF
1 ⊕Hu

1

so that each summand is invariant w.r.t. B and B∗, the restriction of B onto Hu
1 is

unitary, and HF
1 = l2(Z+) ⊗ K, B|HF

1
= Tq ⊗ 1K, where Tq : l2(Z+) → l2(Z+) is defined

by (5).

Proposition 3. The subspaces Hu
1 and HF

1 are invariant with respect to the operators
A and A∗.

Proof. Evidently, it is enough to show that A, A∗ leave Hu
1 invariant. In fact we show

that A∗x = Ax = 0 for any x ∈ Hu
1 .

Indeed let x ∈ Hu
1 , ||x|| = 1. For any n ∈ N there exists yn ∈ Hu

1 , ||yn|| = 1, such that
x = Bny. Then

||A∗x|| = ||A∗Bnyn|| = qn||BnA∗yn||.
Let us stress that relations (9), (7) imply that ||A|| ≤ 1 and ||B|| ≤ 1. Therefore, for any
n ∈ N, one has

||A∗x|| ≤ qn and A∗x = 0.

Let us show that Ax = 0. Indeed, since for x ∈ Hu
1 , one has BB∗x = x and A∗x = 0,

and we get
A∗Ax = (1−BB∗ −AA∗)x = 0.

�

Corollary 1. Let A,B : H1 → H1 determine an irreducible representation of (9), (7),
(8). Then either H1 = Hu

1 or H1 = HF
1 .

Proposition 4. Let {A,B,A∗, B∗} be an irreducible family satisfying (9),(7), (8) on
a Hilbert space H1 and H1 = Hu

1 . Then dimH1 = 1, A = 0, and B = eiφ for some
φ ∈ [0, 2π). The representations corresponding to different φ are non-equivalent.

Proof. Above we have shown that A = 0 on Hu
1 . Since B is irreducible and unitary on

H1, we get dimH1 = 1. �

It remains to consider the case H1 = HF
1 .

Proposition 5. Let, in an irreducible representation of (9), (7), (8), the representation
space be H1 = HF

1 . Then, up to the unitary equivalence, one has H1 = l2(Z+)⊗K and

(11) B = Tq ⊗ 1K, A = d(−q)⊗ Ã,

where d(−q) : l2(Z+) → l2(Z+),

d(−q)en = (−1)nqnen, n ∈ Z+,
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and Ã : K → K determines an irreducible representation of (3). Representations corres-

ponding to the families {Ãi, Ã∗
i }, i = 1, 2, are equivalent iff these families are unitary

equivalent.

Proof. The relations B∗A = −qAB∗, AB = −qBA imply B∗BA = AB∗B. Since H1 =
HF

1 , we get H1 = l2(Z+)⊗K and

B = Tq ⊗ 1K, B∗B = (T ∗
q Tq)⊗ 1K,

T ∗
q Tqen = (1 − q2(n+1))en, n ∈ Z+. Then Kn = en ⊗ K are eigenspaces for T ∗

q Tq
corresponding to λn = 1− q2(n+1) and A, A∗ leave any of Kn, n ∈ Z+, invariant.

Denote by An the restriction of A onto Kn. Then (AB)|Kn = −q(BA)|Kn implies

An+1 = −qAn, n ∈ Z+.

Put A0 = Ã. Then An = (−1)nqnÃ, n ∈ Z+, and the relation

A∗A = 1−BB∗ −AA∗

is equivalent to Ã∗Ã = 1− ÃÃ∗ on K.
The proof of the statement on irreducibility and unitary equivalence is the same as in

Proposition 2. �

Now we can formulate the result of this section.

Theorem 3. Let π be an irreducible representation of (2) acting on a Hilbert space H.
Then π is unitary equivalent to one of the representations listed below.

1. π
(q)
F : C2 ⊗ l2(Z+)⊗ C

2 → C
2 ⊗ l2(Z+)⊗ C

2,

π
(q)
F (a1) =

(
0 0
1 0

)
⊗ 1l2(Z+) ⊗ 12,

π
(q)
F (a2) =

(
1 0
0 q

)
⊗ d(−q)⊗

(
0 0
1 0

)
+

(
0 1
0 0

)
⊗ Tq ⊗ 12.

2. π
(q)
φ2,x2

: C2 ⊗ l2(Z+)⊗ C
2 → C

2 ⊗ l2(Z+)⊗ C
2,

π
(q)
φ2,x2

(a1) =

(
0 0
1 0

)
⊗ 1l2(Z+) ⊗ 12,

π
(q)
φ2,x2

(a2) =

(
1 0
0 q

)
⊗ d(−q)⊗

(
0 eiφ2

√
x2√

1− x2 0

)
+

(
0 1
0 0

)
⊗ Tq ⊗ 12,

where φ2 ∈ [0, 2π), x2 ∈ (0, 1/2).

3. ρ
(q)
2,φ2

: C2 ⊗ l2(Z+) → C
2 ⊗ l2(Z+) and

ρ
(q)
2,φ2

(a1) =

(
0 0
1 0

)
⊗ 1l2(Z+),

ρ
(q)
2,φ2

(a2) =
eiφ2

√
2

(
1 0
0 q

)
⊗ d(−q) +

(
0 1
0 0

)
⊗ Tq, φ2 ∈ [0, 2π).

4. θ
(q)
φ1,x1

: C2 ⊗ l2(Z+)⊗ C
2 → C

2 ⊗ l2(Z+)⊗ C
2,

θ
(q)
φ1,x1

(a2) =

(
0 0
1 0

)
⊗ 1l2(Z+) ⊗ 12,

θ
(q)
φ1,x1

(a1) =

(
1 0
0 q

)
⊗ d(−q)⊗

(
0 eiφ1

√
x1√

1− x1 0

)
+

(
0 1
0 0

)
⊗ Tq ⊗ 12,

where φ1 ∈ [0, 2π), x1 ∈ (0, 1/2).
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5. ν
(q)
2,φ1

: C2 ⊗ l2(Z+) → C
2 ⊗ l2(Z+),

ν
(q)
2,φ1

(a2) =

(
0 0
1 0

)
⊗ 1l2(Z+),

ν
(q)
2,φ1

(a1) =
eiφ1

√
2

(
1 0
0 q

)
⊗ d(−q) +

(
0 1
0 0

)
⊗ Tq, φ1 ∈ [0, 2π).

6. ρ
(q)
φ2

: C2 → C
2,

ρ
(q)
φ2

(a1) =

(
0 0
1 0

)
, ρ

(q)
φ2

(a2) =

(
0 eiφ2

0 0

)
, φ2 ∈ [0, 2π).

Proof. To get the proof one has to apply Theorem 1 and Propositions 4,5. In particular,
these statements imply that representations from the family R1 = {πF , πφ2,x2

, ρ2,φ2
}

with any admissible values of the parameters are pairwise non-equivalent as also the
representations from R2 = {θφ1,x1

, ν2,φ1
} are non-equivalent. Evidently, representations

from R1 are not equivalent to representations containing in R2, since one has a21 = 0 in
any representation from the first family, while a21 6= 0 in any representations from the
second one. Finally, any of the representations from R1 ∪ R2 is infinite-dimensional,
hence it is not equivalent to ρφ2

. It is obvious that ρφ2
are non-euqivalent for different

φ ∈ [0, 2π). �

Remark 2. The unique irreducible representation πF of (2), where a21 = 0, a22 = 0 and
ker a∗1 ∩ ker a∗2 6= {0}, is called the Fock representation, see [3].

3. Representations of A0

The situation with q = 0 requires a bit more different analysis. So consider operators
satisfying, on a Hilbert space H, commutation relations of the following form:

a∗i ai = 1− aia
∗
i , i = 1, 2,(12)

a∗1a2 = 0.

Lemma 2. Let ai = uici, where ui is a partial isometry, c2i = a∗i ai, and kerui = ker ci,
i = 1, 2, be polar decompositions. Then u∗1u2 = u∗2u1 = 0.

Proof. Indeed a∗1a2 = 0 takes the form c1u
∗
1u2c2 = 0. Since c2 is self-adjoint,

H = ker c2 ⊕ range(c2).

For any x ∈ ker c2 = keru2, we have c1u
∗
1u2x = 0. For y ∈ range(c2), y = c2z and

c1u
∗
1u2y = c1u

∗
1u2c2z = 0.

Therefore c1u
∗
1u2 = 0. Taking the adjoint we get u∗2u1c1 = 0. Then the arguments

presented above imply u∗2u1 = 0. �

Our next aim is to show that in an irreducible representation of (12) at least one of
a2i , i = 1, 2, is equal to zero.

Proposition 6. Let ai, i = 1, 2, determine an irreducible representation of (12). Suppose
that the unitary part Hu of the generalized Wold decomposition of a1 is non-zero. Then
a22 = 0.

Proof. So, let H = Hu ⊕HF such that the restriction of u1 onto Hu is unitary and the
restriction of a1 onto HF is a multiple of the Fock representation of (3). In particular on
HF one has a21 = 0.

Let x ∈ Hu. Since u∗2u1 = 0 and u1 is unitary on Hu, one has x = u1u
∗
1x and

u∗2x = u∗2u1u
∗
1x = 0. Thus a∗2x = c2u

∗
2x = 0 for any x ∈ Hu.
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Let us show that for any x ∈ Hu, one has aα1
· · · aαkx = 0, where αk 6= 1, αs ∈ {1, 2},

if there exists s such that αs = αs+1. Recall that a
2
i , i = 1, 2, are normal. Then, for any

x ∈ Hu, 〈
a22x, a

2
2x
〉
=
〈
(a22)

∗a22x, x
〉
=
〈
a22(a

2
2)

∗x, x
〉
= 0.

Further we use induction on the length of α = (α1, . . . , αk). Namely, consider the product
aα1

· · · aαkx, where k ≥ 1, αs 6= αs+1, s = 1, . . . , k − 1, αk 6= 1. Let for example α1 = 1,
then k ≥ 2, α2 = 2 and

〈
a21aα2

· · · aαkx, a21aα2
· · · aαkx

〉
=
〈
(a21)

∗a21aα2
· · · aαkx, aα2

· · · aαkx
〉

=
〈
a21(a

2
1)

∗aα2
· · · aαkx, aα2

· · · aαkx
〉
= 0,

〈
a22a1aα2

· · · aαkx, a22a1aα2
· · · aαkx

〉
=
〈
(a22)

∗a22a1aα2
· · · aαkx, a1aα2

· · · aαkx
〉

=
〈
a22(a

2
2)

∗a1aα2
· · · aαkx, a1aα2

· · · aαkx
〉
= 0.

If α1 = 2, then k ≥ 1 and the rest of the verification is the same.
Put Λ1 = {∅, (α1, . . . , αk), k ∈ N, αs = 1, 2, αk 6= 1, αs 6= αs+1}. For any α ∈ Λ1

denote by aα the product aα1
aα2

· · · aαk , a∅ = 1. Let us show that

H1 = 〈 aαx, x ∈ Hu, α ∈ Λ1 〉
is invariant with respect to ai, a

∗
i , i = 1, 2.

The invariance w.r.t. the action of ai is evident. Furthermore,

a∗2x = 0, a∗1x ∈ Hu, x ∈ Hu,

a∗i aiaα2
· · · aαkx = (1− aia

∗
i )aα2

· · · aαkx = aα2
· · · aαkx (since α2 6= i), i = 1, 2,

a∗i ajaα2
· · · aαkx = 0, i 6= j, i, j = 1, 2.

Since the representation is irreducible we getH = H1. Above we have shown that a22z = 0
for any z ∈ H1. So a

2
2 = 0. �

The rest of considerations are the same as in the case q ∈ (0, 1). Indeed, suppose that
a21 = 0 and write the representation space H = C

2 ⊗H1. Then

a1 =

(
0 0
1 0

)
,

here 1 = 1H1
. Further, a∗1a2 = 0 is equivalent to a2 =

(
A B
0 0

)
and a∗2a2 = 1− a2a

∗
2 is

equivalent to the following relations:

A∗A = 1−AA∗ −BB∗,

A∗B = 0,(13)

B∗B = 1.

The representation determined by ai, i = 1, 2, is irreducible iff the corresponding repre-
sentation determined by A, B is irreducible on H1. The statement on unitary equivalence
holds also.

Construct Q = AB, then it is easy to see that Q∗Q = 0,

Q∗Q = B∗A∗AB = B∗(1−AA∗ −BB∗)B = B∗B −B∗BB∗B = 0.

Hence, we additionally have AB = 0.

Proposition 7. Let A, B determine an irreducible representation of (13) on H1. Then
either B is unitary, dimH1 = 1 and A = 0 or H1 ≃ l2(Z+) ⊗ K for some Hilbert space
K and B is unitary equivalent to a multiple of a unilateral shift operator.
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Proof. As in the q-deformed case, we consider the Wold decomposition of B,

H1 = HF
1 ⊕Hu

1 ,

where the restriction of B onto Hu
1 is unitary and the restriction on HF

1 is a multiple of
a unilateral shift.

We show that Hu
1 is invariant with respect to A, A∗. Indeed, for x ∈ Hu

1 we get

A∗x = A∗BB∗x = 0, A∗Ax = x−AA∗x−BB∗x = 0,

so A∗x = 0 and Ax = 0. Hence if Hu
1 6= {0} in the irreducible case we get H1 = Hu

1 ,
dimH1 = 1 and A = 0, B = eiφ.

To complete the proof it remains to point out that if Hu
1 = {0}, then H1 = HF

1 . �

Below we denote by S : l2(Z+) → l2(Z+) the operator of a unilateral shift.

Proposition 8. Let A, B determine an irreducible representation of (13) on H1 and
H1 = HF

1 . Then H1 = l2(Z+)⊗K for some Hilbert space K and

B = S ⊗ 1K, A = (1− SS∗)⊗ Ã,

where Ã determine an irreducible representation of (3) on K. Representations corres-

ponding to families {Ãi, Ã∗
i }, i = 1, 2, are unitary equivalent iff these families are unitary

equivalent.

Proof. If H1 = HF
1 then, by the definition of HF

1 , we have H1 = l2(Z+) ⊗ K and B =
S⊗1K. Further, it is easy to verify that AB = 0, B∗A = 0 imply that A = (1−SS∗)⊗A
and the relation

A∗A = 1−AA∗ −BB∗

is equivalent to Ã∗Ã = 1K − ÃÃ∗.
Application of the Schur lemma shows that the family {A,A∗, B,B∗} is irreducible iff

{Ã, Ã∗} is irreducible. The statement about unitary equivalence is also obvious. �

Combining the results of Propositions 7, 8 and Theorem 1 we immediately get the
following result.

Theorem 4. Let π be an irreducible representation of (12) on a Hilbert space H. Then
π is unitary equivalent to one of the constructed below:

1. πF acting on H = C
2 ⊗ l2(Z+)⊗ C

2 :

πF (a1) =

(
0 0
1 0

)
⊗ 1l2(Z+) ⊗ 12,

πF (a2) =

(
1 0
0 0

)
⊗ (1− SS∗)⊗

(
0 0
1 0

)
+

(
0 1
0 0

)
⊗ S ⊗ 12.

2. πφ2,x2
: C2 ⊗ l2(Z+)⊗ C

2 → : C2 ⊗ l2(Z+)⊗ C
2,

πφ2,x2
(a1) =

(
0 0
1 0

)
⊗ 1l2(Z+) ⊗ 12,

πφ2,x2
(a2) =

(
1 0
0 0

)
⊗ (1− SS∗)⊗

(
0 eiφ2

√
x2√

1− x2 0

)
+

(
0 1
0 0

)
⊗ S ⊗ 12,

where φ2 ∈ [0, 2π), x2 ∈ (0, 1/2).

3. ρ2,φ2
: C2 ⊗ l2(Z+) → C

2 ⊗ l2(Z+),

ρ2,φ2
(a1) =

(
0 0
1 0

)
⊗ 1l2(Z+),

ρ2,φ2
(a2) =

eiφ2

√
2

(
1 0
0 0

)
⊗ (1− SS∗) +

(
0 1
0 0

)
⊗ S, φ2 ∈ [0, 2π).
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4. θφ1,x1
: C2 ⊗ l2(Z+)⊗ C

2 → C
2 ⊗ l2(Z+)⊗ C

2,

θφ1,x1
(a2) =

(
0 0
1 0

)
⊗ 1l2(Z+) ⊗ 12,

θφ1,x1
(a1) =

(
1 0
0 0

)
⊗ (1− SS∗)⊗

(
0 eiφ1

√
x1√

1− x1 0

)
+

(
0 1
0 0

)
⊗ S ⊗ 12,

where φ1 ∈ [0, 2π), x1 ∈ (0, 1/2).

5. ν2,φ1
: C2 ⊗ l2(Z+) → C

2 ⊗ l2(Z+) and

ν2,φ1
(a2) =

(
0 0
1 0

)
⊗ 1l2(Z+),

ν2,φ1
(a1) =

eiφ1

√
2

(
1 0
0 0

)
⊗ (1− SS∗) +

(
0 1
0 0

)
⊗ S, φ1 ∈ [0, 2π).

6. ρφ2
: C2 → C

2,

ρφ2
(a1) =

(
0 0
1 0

)
, ρφ2

(a2) =

(
0 eiφ2

0 0

)
, φ2 ∈ [0, 2π).

Representations from different classes as well as representations from the same class
corresponding to different values of the parameters are non-equivalent.

4. C∗-algebras generated by Aq and A0

In this section, we study the C∗-algebras generated by operators of Fock representa-
tions of A0 and Aq and give a description of the universal C∗-algebra A0 generated by
(12) as algebras of continuous operator-valued functions.

4.1. The C∗-algebras AF
q and AF

0 . Let C∗-algebras AF
q and AF

0 be generated by Fock
representations of (2), (12) respectively.

Theorem 5. For any q ∈ (0, 1) one has AF
q ≃ AF

0 .

Proof. Denote by Eij , i, j = 1, 2, the matrix units of M2(C).
First we consider the C∗-algebra AF

0 = C∗(a1, a2), where

a1 = E21 ⊗ 1l2(Z+) ⊗ 12,

and

a2 = E11 ⊗ (1− SS∗)⊗ E21 + E12 ⊗ S ⊗ 12.

Since E21 generates M2(C) as a ∗-algebra, we conclude that

M2(C)⊗ 1l2(Z+) ⊗ 12 ⊂ AF
0

and

a2 ·
(
E12 ⊗ 1l2(Z+) ⊗ 12

)
= E12 ⊗ (1− SS∗)⊗ E21 ∈ AF

0 ,(14)

a2 ·
(
E22 ⊗ 1l2(Z+) ⊗ 12

)
= E12 ⊗ S ⊗ 12 ∈ AF

0 .(15)

Further, since M2(C) is simple it follows that

(16) A2 = 12 ⊗ (1− SS∗)⊗ E21 ∈ AF
0 , A3 = 12 ⊗ S ⊗ 12 ∈ AF

0 .

Then it is evident now that AF
0 is generated as a C∗-algebra by operators A1, A2, A3,

where

A1 = E21 ⊗ 1l2(Z+) ⊗ 12.

Let us study the C∗-algebra AF
q . It is generated by

aq1 = E21 ⊗ 1l2(Z+) ⊗ 12
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and
aq2 =

(
E11 + qE12

)
⊗ d(−q)⊗ E21 + E12 ⊗ Tq ⊗ 12.

As above we conclude that M2(C)⊗ 1l2(Z+) ⊗ 12 ⊂ AF
q and

Aq2 = 12 ⊗ d(−q)⊗ E21 ∈ AF
q , Ag3 = 12 ⊗ Tq ⊗ 12 ∈ AF

q .

Moreover Aq = C∗(A1, A
q
2, A

q
3).

Since T ∗
q Tqen = (1− q2(n+1))en, n ∈ Z+, one has

S = Tq(T
∗
q Tq)

− 1
2 and T ∗

q Tq = (1− q2)
∞∑

n=0

q2nSn(S∗)n.

I.e., C∗(S) = C∗(Tq), see for example [4]. So A3 ∈ AF
q and Aq3 ∈ C∗(A3). Then since

(1− SS∗)d(−q) = (1− SS∗),

(1−A3A
∗
3)A

q
2 = 12 ⊗ (1− SS∗)d(−q)⊗ E21 = A2

and A2 ∈ AF
q . Finally

d(−q) =
∞∑

n=0

(−q)n
(
Sn(Sn)∗ − Sn+1(Sn+1)∗

)
=

∞∑

n=0

(−q)nSn
(
1− SS∗

)
(Sn)∗

and

Aq2 =

∞∑

n=0

(−q)nAn3A2(A
n
3 )

∗ ∈ C∗(A3, A2).

Therefore AF
q = C∗(A1, A

q
2, A

q
3) = C∗(A1, A2, A3) = AF

0 . �

4.2. The C∗-algebra A0. Consider the C∗-algebra A0. First of all we present the
operators of representations πφ2,x2

(ai) and θφ1,x1
(ai), i = 1, 2, in the form different from

that of presented in Theorem 4.
Namely using the isomorphism l2(Z+)⊗ C

2 ≃ l2(Z+) one can present

πφ2,x2
(a1) = E21 ⊗ 1l2(Z+) ⊗ 12,(17)

πφ2,x2
(a2) = E11 ⊗ (1− SS∗)⊗

(
0 eiφ2

√
x2√

1− x2 0

)
+ E12 ⊗ S ⊗ 12(18)

as

(19) πφ2,x2
(a1) =

(
0 0
1 0

)
,

(20) πφ2,x2
(a2) =

(√
1− x2S(1− SS∗) + eiφ2

√
x2(1− SS∗)S∗ S2

0 0

)
,

where 1 = 1l2(Z+). Similarly,

θφ1,x1
(a2) =

(
0 0
1 0

)
,

θφ1,x1
(a1) =

(√
1− x1S(1− SS∗) + eiφ1

√
x1(1− SS∗)S∗ S2

0 0

)
.

In particular,

πφ2,0(a1) = θφ1,0(a2) =

(
0 0
1 0

)

and

πφ2,0(a2) = θφ1,0(a1) =

(
S(1− SS∗) S2

0 0

)

for any φ1, φ2 ∈ [0, 2π). Note also that πφ2,0(ai) = πF (ai), i = 1, 2.
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Consider T ∈ M2(T (C(T))), where T (C(T)) = C∗(S) is the Toeplitz C∗-algebra
generated by a single isometry,

T =

(
1− SS∗ S
S∗ 0

)
.

It is easy to verify that T = T ∗ = T−1 and for any phij ∈ [0, 2π], j = 1, 2, one has

(21) Tθφ1,0(a1)T = πφ2,0(a1), T θφ1,0(a2)T = πφ2,0(a2).

Let X = {0} × [0, 1/2] ∪ [0, 1/2] × {0} and T2 be the two-dimensional torus. Consider
the C∗-algebra

A ⊂M2

(
C(X ×T2 → T (C(T)))

)
≃M2(C)⊗ C(X)⊗ T (C(T))

generated by the pair of functions defined as follows:

f1(0, x2, φ1, φ2) = πφ2,x2
(a1) =

(
0 0
1 0

)
,

f1(x1, 0, φ1, φ2) = Tθφ1,x1
(a1)T

= T

(√
1− x1S(1− SS∗) + eiφ1

√
x1(1− SS∗)S∗ S2

0 0

)
T,

f2(0, x2, φ1, φ2) = πφ2,x2
(a2)

=

(√
1− x2S(1− SS∗) + eiφ2

√
x2(1− SS∗)S∗ S2

0 0

)
,

f2(x1, 0, φ1, φ2) = Tθφ1,x1
(a2)T = T

(
0 0
1 0

)
T.

Note that continuity of f1, f2 at (0, 0, φ1, φ2) follows from (21).
We show thatA0 ≃ A. Since the functions f1, f2 satisfy relations (12), by the universal

property of A0 there exists a homomorphism ψ : A0 → A taking ai to fi, i = 1, 2.

Theorem 6. The homomorphism ψ : A0 → A is an isomorphism.

Proof. To prove the statement it is enough to show that for any irreducible representation
π : A0 → B(H) there exists a representation π̃ : A → B(H) such that π = π̃ ◦ ψ. Indeed
in this case ψ(x) = 0 implies π(x) = π̃(ψ(x)) = 0 for any irreducible representation π of
A. Then x = 0 and ψ is injective. Since surjectivity of ψ is obvious we conclude that it
is an isomorphism.

So, let us construct, for any irreducible representation π of A0, a corresponding rep-
resentation π̃ of A.

1. Evidently π̃F (fi) = fi(0, 0, φ1, φ2), i = 1, 2, for arbitrary fixed φj ∈ [0, 2π], j = 1, 2.
2. For any x2 ∈ (0, 1/2) and φ2 ∈ [0, 2π) one has

π̃φ2,x2
(fi) = fi(0, x2, φ1, φ2), i = 1, 2,

where φ1 is arbitrary fixed in [0, 2π].
3. Analogously, for any x1 ∈ (0, 1/2), φ1 ∈ [0, 2π) one has

θ̃φ1,x1
(fi) = Tfi(x1, 0, φ1, φ2)T, i = 1, 2,

for arbitrary fixed φ2 ∈ [0, 2π]. Here we use the property T = T ∗ = T−1.
4. Let us construct ρ̃2,φ2

. In this case, it will be more convenient for us to consider
fi(0, x2, φ1, φ2), i = 1, 2, as tensor products of the form (17),(18). Indeed there exists
unitary U : C2⊗l2(Z+) → C

2⊗l2(Z+)⊗C
2 such that for any x2 ∈ [0, 1/2] and φ2 ∈ [0, 2π]

one has
Ufi(0, x2, φ1, φ2)U

∗ = πφ2,x2
(ai),

where πφ2,x2
(ai), i = 1, 2, are presented as in (17),(18).
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Denote by a(x, φ) : [0, 1/2]× [0, 2π] →M2(C) a continuous function of the form

(22) a(x, φ) =

(
0 eiφ

√
1− x√

x 0

)
.

It is easy to verify, see [10], that

V ∗(φ)a(1/2, φ)V (φ) =
1√
2

(
e
iφ

2 0

0 eπ+
iφ

2

)

for unitary

V (φ) =
1√
2

(
e
iφ

2 −e iφ2
1 1

)
∈M2(C).

Put Wi : C
2 ⊗ l2(Z+)⊗ C

2 → C
2 ⊗ l2(Z+)⊗ C

2, i = 1, 2,

Wi(φ) = (12 ⊗ 1l2(Z+) ⊗ EiiV (φ)).

Then, if φ2 ∈ [0, π), one has

ρ̃2,φ2
(fi) = (12 ⊗ 1l2(Z+) ⊗ p1) ◦

(
W ∗

1 (2φ2)Ufi(0, 1/2, φ1, φ2))U
∗W1(2φ2)

)

and, for φ2 ∈ [π, 2π),

ρ̃2,φ2
(fi) = (12 ⊗ 1l2(Z+) ⊗ p2) ◦

(
W ∗

2 (2φ2 − 2π)Ufi(0, 1/2, φ1, φ2))U
∗W2(2φ2 − 2π)

)
,

where pi : M2(C) → C, i = 1, 2, are defined by

pi(

2∑

r,s=1

αrsErs) = αii

and φ1 is arbitrary fixed in [0, 2π].
5. Applying the considerations above to ν̃2,φ1

we get, for φ1 ∈ [0, π),

ν̃2,φ1
(fi) = (12 ⊗ 1l2(Z+) ⊗ p1) ◦

(
W ∗

1 (2φ1)UTfi(1/2, 0, φ1, φ2))TU
∗W1(2φ1)

)

and, for φ1 ∈ [π, 2π),

ν̃2,φ1
(fi) = (12 ⊗ 1l2(Z+) ⊗ p2) ◦

(
W ∗

2 (2φ2 − 2π)UTfi(1/2, 0, φ1, φ2))TU
∗W2(2φ2 − 2π)

)

for arbitrary fixed φ2 ∈ [0, 2π].

6. Finally, to construct ρ̃ψ2
, we consider τψ2

: T (C(T)) → C, τψ2
(S) = e

iψ2
2 and

identify M2(T (C(T))) with M2(C)⊗ T (C(T)). Then

ρ̃ψ2
(ai) = (idM2(C) ⊗ τψ2

)(fi(0, x2, φ1, φ2))

for arbitrary fixed x2 ∈ [0, 1/2] and φj ∈ [0, 2π], j = 1, 2.
Note that representations equivalent to ρ̃ψ2

can be also obtained as

(idM2(C) ⊗ τψ)(Tfi(x1, 0, φ1, φ2)T )

for certain ψ and arbitrary fixed x1 ∈ [0, 1/2] and φj ∈ [0, 2π], j = 1, 2. �
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