REPRESENTATIONS OF RELATIONS WITH ORTHOGONALITY CONDITION AND THEIR DEFORMATIONS

V. L. OSTROVSKYI, D. P. PROSKURIN, AND R. Y. YAKYMIV

ABSTRACT. Irreducible representations of *-algebras A_q generated by relations of the form $a_i^*a_i + a_ia_i^* = 1$, i = 1, 2, $a_1^*a_2 = qa_2a_1^*$, where $q \in (0, 1)$ is fixed, are classified up to the unitary equivalence. The case q = 0 is considered separately. It is shown that the C^* -algebras \mathcal{A}_q^F and \mathcal{A}_0^F generated by operators of Fock representations of A_q and A_0 are isomorphic for any $q \in (0, 1)$. A realisation of the universal C^* -algebra \mathcal{A}_0 generated by A_0 as an algebra of continuous operator-valued functions is given.

INTRODUCTION

In this note we study irreducible representations of a subclass of the so-called q_{ij} -CCR introduced by M. Bozejko and R. Speicher, see [1]. Namely, q_{ij} -CCR with d degrees of freedom is a *-algebra generated by a_i , $i = 1, \ldots, d$, satisfying commutation relations of the following form:

(1)
$$a_i^* a_j = 1 + q_{ij} a_j a_i^*, \quad q_{ji} = \overline{q}_{ij} \in \mathbb{C}, \quad |q_{ij}| \le 1, \quad i, j = 1, \dots, d.$$

If all of $q_{ij} = 0$, we get the Cuntz-Toeplitz algebra $\mathcal{O}_d^{(0)}$, see [2]. The case $|q_{ij}| = 1$ if $i \neq j$ corresponds to an algebra of generalized quons introduced by W. Marcinek and M. Ralowski, see [5], [6]. If we put all of $q_{ij} = 1$ we get the Wick algebra associated with canonical commutation relations and the case $q_{ij} = -1$, $i, j = 1, \ldots, d$ determines the Wick version of canonical anti-commutation relations, see [3].

We study representations of *-algebras A_q generated by pairs of elements, a_1 , a_2 , satisfying, for fixed $q \in (0, 1)$, the following commutation relations:

(2)
$$a_1^*a_1 + a_1a_1^* = 1, \quad a_2^*a_2 + a_2a_2^* = 1, \quad a_1^*a_2 = qa_2a_1^*.$$

Namely, in Section 2 we give a complete classification, up to the unitary equivalence, of irreducible representations of (2). In Section 3, the case q = 0 is considered separately. In particular it follows that in both cases the Fock representation is positive. In Section 4 we prove that the C^* -algebras \mathcal{A}_q^F and \mathcal{A}_0^F generated by operators of Fock representation of A_q and A_0 are, respectively, isomorphic.

1. Preliminaries

In this section we collect some results on representation theory of canonical anticommutation and q-canonical commutation relations with one degree of freedom, which will be useful for us below. For details see the book [8] and the references therein.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L65; Secondary 81T05.

 $Key \ words \ and \ phrases.$ Deformed commutation relations, irreducible representation, Fock representation.

The first and the second authors were supported in part by Swedish Institute (Visby program) and DFG grant SCHM 1009/5-1.

First we recall the description of irreducible representations of the one-dimensional Wick version of CAR, i.e., of the *-algebra, generated by a, a^* subject to the relation

$$a^*a = 1 - aa^*$$

Obviously, any Hilbert space representation of (3) is bounded, namely in any representation one has $||a|| \leq 1$. The C^* -algebra, generated by (3) is called the quantum analog of the algebra of continuous functions on the unit circle, see for example [7].

The proof of the following statement can be found in [8].

Theorem 1. Any irreducible representation of (3) is unitary equivalent to some of the presented below.

1. The Fock representation: π_F acting on \mathbb{C}^2 ,

$$\pi_F(a) = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right).$$

2. The regular representations: $\pi_{x,\phi}$ acting on \mathbb{C}^2 ,

$$\pi_{x,\phi}(a) = \begin{pmatrix} 0 & e^{i\phi_1}\sqrt{1-x} \\ \sqrt{x} & 0 \end{pmatrix},$$

where $\phi \in [0, 2\pi)$ and $0 < x < \frac{1}{2}$ are fixed.

3. The one-dimensional representations: ρ_{ϕ} acting on \mathbb{C} ,

$$\rho_{\phi}(a) = \frac{e^{i\phi}}{\sqrt{2}}, \quad \phi \in [0, 2\pi).$$

Representations corresponding to different types or to different values of the parameters are non-equivalent.

Using the description of irreducible representations one can get an analog of the Wold decomposition for the operator $A: \mathcal{H} \to \mathcal{H}$ satisfying (3). Namely, let A = UC, where $C = (A^*A)^{\frac{1}{2}}$, U is a partial isometry with ker $U = \ker C = \ker A$, be the polar decomposition. Then one can decompose

$$\mathcal{H} = \mathcal{H}_F \oplus \mathcal{H}_u$$

such that \mathcal{H}_F and \mathcal{H}_u are invariant with respect to A, A^* , and the restriction of A onto \mathcal{H}_F is a multiple of the Fock representation and the phase operator of restriction of A onto \mathcal{H}_u is unitary.

Below we will also use a description of irreducible bounded representations of the quantum disk D_q , 0 < q < 1, see [7, 8]. Recall that the *-algebra D_q of polynomials on a non-commutative unit disk is generated by elements b, b^* satisfying the following relation:

(4)
$$b^*b = (1 - q^2)1 + q^2bb^*$$

Theorem 2. Any bounded irreducible representation of (4) is unitary equivalent to one of the described below

1. The Fock representation π_F acting on $l_2(\mathbb{Z}_+)$

(5)
$$\pi_F(b) = T_q, \quad T_q e_n = \sqrt{1 - q^{2(n+1)}} e_{n+1}, \quad n \in \mathbb{Z}_+,$$

where $\{e_n, n \in \mathbb{Z}_+\}$ is the standard orthonormal basis of $l_2(\mathbb{Z})$.

2. The one-dimensional representations $\pi_{\phi}, \phi \in [0, 2\pi)$

$$\pi_{\phi}(b) = e^{i\phi}.$$

Representations corresponding to different values of ϕ are non-equivalent.

As in the case of a non-commutative circle, one can formulate an analog of the Wold decomposition for an operator $B: \mathcal{H} \to \mathcal{H}$ satisfying (4). Namely, in this case we can decompose \mathcal{H} into an orthogonal sum of subspaces that are invariant with respect to B and B^* ,

$$\mathcal{H}=\mathcal{H}_F\oplus\mathcal{H}_u,$$

such that $\mathcal{H}_F \simeq l_2(\mathbb{Z}_+) \otimes \mathcal{K}$ for some Hilbert space \mathcal{K} and $B_{|\mathcal{H}_F}$ is unitary equivalent to $T_q \otimes \mathbf{1}_{\mathcal{K}}$ and $B_{|\mathcal{H}_u} = U$ for some unitary U.

Recall the definition of the universal C^* -algebra generated by a *-algebra.

Definition 1. Let A be a *-algebra. The C*-algebra \mathcal{A} is called the universal C*algebra generated by A or the universal bounded representation of A if there exists a *-homomorphism $\psi: A \to \mathcal{A}$ such that for any representation $\pi: A \to B(\mathcal{H})$ one can construct a unique $\tilde{\pi}: \mathcal{A} \to B(\mathcal{H})$ such that

$$\pi = \widetilde{\pi} \circ \psi.$$

Recall also that \mathcal{A} exists iff the set $\operatorname{\mathbf{Rep}}(A)$ of bounded representations of A is nonempty and, for any $a \in A$,

$$\sup_{\pi \in \mathbf{Rep}(A)} ||\pi(a)|| = C_a < \infty.$$

In this case \mathcal{A} is a completion of the quotient of A by Rad A, where

Rad
$$A = \{a \in A \mid \pi(a) = 0 \text{ for any } \pi \in \mathbf{Rep}(A)\},\$$

with respect to the norm defined as follows:

$$a + Rad || = \sup_{\pi \in \mathbf{Rep}(A)} ||\pi(a)||.$$

Below we will sometimes use the same notations for the generators a_i , i = 1, 2, of the algebras under consideration and their images in the representations.

2. Representations of A_q

Let the operators a_1 , a_2 acting on a Hilbert space \mathcal{H} determine an irreducible representation of A_q . Construct $C_1 = a_1^2$, $C_2 = a_2^2$.

Proposition 1. The operators C_1 , C_2 are normal and $C_1C_2 = C_2C_1 = 0$. The kernel of each of them is invariant with respect to the action of a_i , a_i^* , i = 1, 2.

Proof. Indeed,

$$C_i^* C_i = (a_i^2)^* a_i^2 = a_i^* (\mathbf{1} - a_i a_i^*) a_i = \mathbf{1} - a_i a_i^* - (\mathbf{1} - a_i a_i^*) (\mathbf{1} - a_i a_i^*)$$

= $\mathbf{1} - a_i a_i^* - \mathbf{1} + 2a_i a_i^* - a_i a_i^* a_i a_i^* = a_i a_i^* - a_i (\mathbf{1} - a_i a_i^*) a_i^* = a_i^2 (a_i^2)^*$
= $C_i C_i^*$.

Further, $a_1^* a_2 = q a_2 a_1^*$ implies $C_1^* C_2 = q^4 C_2 C_1^*$. Put $A = C_1 C_2$, then

$$A^*A = C_2^*C_1^*C_1C_2 = C_2^*C_1C_1^*C_2 = q^8C_1C_2^*C_2C_1^* = q^8C_1C_2C_2^*C_1^* = q^8AA^*.$$

Since A is bounded, the relation above is satisfied if and only if $A = C_1 C_2 = 0$.

Let us show that ker C_i , i = 1, 2, are invariant with respect to a_j , a_j^* , j = 1, 2. Indeed,

$$C_1 a_1 = a_1 C_1, \quad C_1 a_1^* = a_1^* C_1$$

imply invariance of ker C_1 w.r.t. a_1, a_1^* . Since $a_2^*C_1 = q^2C_1a_2^*$, applying the Fuglede-Putnam theorem, see [11], we get $a_2^*C_1^* = q^2C_1^*a_2^*$, and taking the adjoints we obtain $C_1a_2 = q^2a_2C_1$. Therefore, ker C_1 is invariant w.r.t. a_2, a_2^* too.

According to the proposition above, at least one of the operators C_1 , C_2 has nonzero kernel that is an invariant subspace.

Assume that ker C_1 is nonzero. Then, for an irreducible representation, $\mathcal{H} = \ker C_1$, i.e. $a_1^2 = 0$ and a_1 is unitary equivalent to a multiple of the operator defining the Fock representation of (3). Then \mathcal{H} can be decomposed as $\mathcal{H} = \mathbb{C}^2 \otimes \mathcal{H}_1$, so that

$$a_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_{\mathcal{H}_1}$$

Consider the corresponding block-matrix form of a_2 ,

$$a_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Then $a_{21} = 0$ and, for $A = a_{11}$ and $B = a_{12}$, one has

(6)
$$B^*B + q^2AA^* = \mathbf{1} - q^2AA^*,$$

- (7) $A^*A = \mathbf{1} AA^* BB^*,$
- (8) $B^*A = -qAB^*.$

Using (7) one can present (6) in the following form:

(9)
$$B^*B = (1 - q^2)\mathbf{1} + q^2BB^*$$

Proposition 2. The representation of (2) given on $\mathcal{H} = \mathbb{C}^2 \otimes \mathcal{H}_1$ by

$$a_1 = \begin{pmatrix} 0 & 0 \\ \mathbf{1} & 0 \end{pmatrix}, \quad a_2 = \begin{pmatrix} A & B \\ 0 & qA \end{pmatrix}$$

is irreducible iff the family $\{A, A^*, B, B^*\}$ is irreducible on \mathcal{H}_1 . Representations of (2) corresponding to the families $\{A_i, A_i^*, B_i, B_i^*\}$, i = 1, 2, are unitary equivalent iff these families are unitary equivalent.

Proof. To prove the statement on irreducibility we use the Schur lemma. Indeed, it is easy to check that $C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$ commutes with $a_i, a_i^*, i = 1, 2$, iff $C_{12} = C_{21} = 0$, $C_{11} = C_{22} = \widetilde{C}$, and \widetilde{C} commutes with A, A^*, B, B^* . Therefore, C is scalar iff \widetilde{C} is scalar.

The statement on unitary equivalence can be proved analogously.

Let us classify the irreducible representations of (9), (7), (8).

Lemma 1. In any representation, we also have that AB = -qBA.

Proof. Indeed, let Q = BA + qAB. Then

$$\begin{split} A^*Q &= A^*(AB + qBA) = A^*AB + qA^*BA \\ &= (\mathbf{1} - AA^* - BB^*)B - q^2BA^*A \\ &= B - AA^*B - BB^*B - q^2B(\mathbf{1} - BB^* - AA^*) \\ &= B + qABA^* - B((1 - q^2)\mathbf{1} + q^2BB^*) - q^2B + q^2B^2B^* + q^2BAA^* \\ &= B + qABA^* - B + q^2B - q^2B^2B^* - q^2B + q^2B^2B^* + q^2BAA^* \\ &= q(AB + qBA)A^* = qQA^* \end{split}$$

$$B^*Q = B^*(AB + qBA) = B^*AB + qB^*BA$$

= $-qAB^*B + q((1 - q^2)\mathbf{1} + q^2BB^*)A$
= $-qA((1 - q^2)\mathbf{1} + q^2BB^*) + q(1 - q^2)A + q^3BB^*A$
= $-q(1 - q^2)A - q^3ABB^* + q(1 - q^2)A - q^4BAB^*$
= $-q^3(AB + qBA)B^* = -q^3QB^*.$

Since $A^*Q = qQA^*$, $B^*Q = -q^3QB^*$, one has

(10)
$$Q^*Q = (B^*A^* + qA^*B^*)Q = -q^4Q(B^*A^* + qA^*B^*) = -q^4QQ^*$$
implying $Q = 0$.

Remark 1. In fact, we have shown above that the element AB + qBA generates a quadratic Wick ideal in the Wick algebra generated by A, B, see [3, 9] for details.

Using the q-Wold decomposition, see Preliminaries, we decompose

$$\mathcal{H}_1 = \mathcal{H}_1^F \oplus \mathcal{H}_1^u$$

so that each summand is invariant w.r.t. B and B^* , the restriction of B onto \mathcal{H}_1^u is unitary, and $\mathcal{H}_1^F = l_2(\mathbb{Z}_+) \otimes \mathcal{K}, B_{|\mathcal{H}_1^F} = T_q \otimes \mathbf{1}_{\mathcal{K}}$, where $T_q: l_2(\mathbb{Z}_+) \to l_2(\mathbb{Z}_+)$ is defined by (5).

Proposition 3. The subspaces \mathcal{H}_1^u and \mathcal{H}_1^F are invariant with respect to the operators A and A^* .

Proof. Evidently, it is enough to show that A, A^* leave \mathcal{H}_1^u invariant. In fact we show that $A^*x = Ax = 0$ for any $x \in \mathcal{H}_1^u$.

Indeed let $x \in \mathcal{H}_1^u$, ||x|| = 1. For any $n \in \mathbb{N}$ there exists $y_n \in \mathcal{H}_1^u$, $||y_n|| = 1$, such that $x = B^n y$. Then

$$||A^*x|| = ||A^*B^ny_n|| = q^n||B^nA^*y_n||.$$

Let us stress that relations (9), (7) imply that $||A|| \le 1$ and $||B|| \le 1$. Therefore, for any $n \in \mathbb{N}$, one has

$$||A^*x|| \le q^n \text{ and } A^*x = 0.$$

Let us show that Ax = 0. Indeed, since for $x \in \mathcal{H}_1^u$, one has $BB^*x = x$ and $A^*x = 0$, and we get

$$A^*Ax = (\mathbf{1} - BB^* - AA^*)x = 0.$$

Corollary 1. Let $A, B: \mathcal{H}_1 \to \mathcal{H}_1$ determine an irreducible representation of (9), (7), (8). Then either $\mathcal{H}_1 = \mathcal{H}_1^u$ or $\mathcal{H}_1 = \mathcal{H}_1^F$.

Proposition 4. Let $\{A, B, A^*, B^*\}$ be an irreducible family satisfying (9),(7), (8) on a Hilbert space \mathcal{H}_1 and $\mathcal{H}_1 = \mathcal{H}_1^u$. Then dim $\mathcal{H}_1 = 1$, A = 0, and $B = e^{i\phi}$ for some $\phi \in [0, 2\pi)$. The representations corresponding to different ϕ are non-equivalent.

Proof. Above we have shown that A = 0 on \mathcal{H}_1^u . Since B is irreducible and unitary on \mathcal{H}_1 , we get dim $\mathcal{H}_1 = 1$.

It remains to consider the case $\mathcal{H}_1 = \mathcal{H}_1^F$.

Proposition 5. Let, in an irreducible representation of (9), (7), (8), the representation space be $\mathcal{H}_1 = \mathcal{H}_1^F$. Then, up to the unitary equivalence, one has $\mathcal{H}_1 = l_2(\mathbb{Z}_+) \otimes \mathcal{K}$ and

(11)
$$B = T_q \otimes \mathbf{1}_{\mathcal{K}}, \quad A = d(-q) \otimes A,$$

where $d(-q): l_2(\mathbb{Z}_+) \to l_2(\mathbb{Z}_+),$

$$d(-q)e_n = (-1)^n q^n e_n, \quad n \in \mathbb{Z}_+,$$

377

and $\widetilde{A}: \mathcal{K} \to \mathcal{K}$ determines an irreducible representation of (3). Representations corresponding to the families $\{\widetilde{A}_i, \widetilde{A}_i^*\}$, i = 1, 2, are equivalent iff these families are unitary equivalent.

Proof. The relations $B^*A = -qAB^*$, AB = -qBA imply $B^*BA = AB^*B$. Since $\mathcal{H}_1 = \mathcal{H}_1^F$, we get $\mathcal{H}_1 = l_2(\mathbb{Z}_+) \otimes \mathcal{K}$ and

$$B = T_q \otimes \mathbf{1}_{\mathcal{K}}, \quad B^*B = (T_q^*T_q) \otimes \mathbf{1}_{\mathcal{K}},$$

 $T_q^*T_q e_n = (1 - q^{2(n+1)})e_n, n \in \mathbb{Z}_+$. Then $\mathcal{K}_n = e_n \otimes \mathcal{K}$ are eigenspaces for $T_q^*T_q$ corresponding to $\lambda_n = 1 - q^{2(n+1)}$ and A, A^* leave any of $\mathcal{K}_n, n \in \mathbb{Z}_+$, invariant.

Denote by A_n the restriction of A onto \mathcal{K}_n . Then $(AB)_{|\mathcal{K}_n} = -q(BA)_{|\mathcal{K}_n}$ implies

$$A_{n+1} = -qA_n, \quad n \in \mathbb{Z}_+.$$

Put $A_0 = \widetilde{A}$. Then $A_n = (-1)^n q^n \widetilde{A}$, $n \in \mathbb{Z}_+$, and the relation

$$A^*A = \mathbf{1} - BB^* - AA^*$$

is equivalent to $\widetilde{A}^*\widetilde{A} = \mathbf{1} - \widetilde{A}\widetilde{A}^*$ on \mathcal{K} .

The proof of the statement on irreducibility and unitary equivalence is the same as in Proposition 2. $\hfill \Box$

Now we can formulate the result of this section.

Theorem 3. Let π be an irreducible representation of (2) acting on a Hilbert space \mathcal{H} . Then π is unitary equivalent to one of the representations listed below.

$$\begin{split} & 1. \ \ \pi_{F}^{(q)} : \mathbb{C}^{2} \otimes l_{2}(\mathbb{Z}_{+}) \otimes \mathbb{C}^{2} \to \mathbb{C}^{2} \otimes l_{2}(\mathbb{Z}_{+}) \otimes \mathbb{C}^{2}, \\ & \pi_{F}^{(q)}(a_{1}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{l}_{l_{2}(\mathbb{Z}_{+})} \otimes \mathbf{1}_{2}, \\ & \pi_{F}^{(q)}(a_{2}) = \begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix} \otimes d(-q) \otimes \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes T_{q} \otimes \mathbf{1}_{2}. \\ & 2. \ \ \pi_{\phi_{2},x_{2}}^{(q)} : \mathbb{C}^{2} \otimes l_{2}(\mathbb{Z}_{+}) \otimes \mathbb{C}^{2} \to \mathbb{C}^{2} \otimes l_{2}(\mathbb{Z}_{+}) \otimes \mathbb{C}^{2}, \\ & \pi_{\phi_{2},x_{2}}^{(q)}(a_{1}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_{l_{2}(\mathbb{Z}_{+})} \otimes \mathbf{1}_{2}, \\ & \pi_{\phi_{2},x_{2}}^{(q)}(a_{2}) = \begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix} \otimes d(-q) \otimes \begin{pmatrix} 0 & e^{i\phi_{2}\sqrt{x_{2}}} & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes T_{q} \otimes \mathbf{1}_{2}, \\ & where \ \ \phi_{2} \in [0,2\pi), \ \ x_{2} \in (0,1/2). \\ & 3. \ \ \rho_{2,\phi_{2}}^{(q)}(a_{1}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_{l_{2}(\mathbb{Z}_{+})} & and \\ & \rho_{2,\phi_{2}}^{(q)}(a_{1}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_{l_{2}(\mathbb{Z}_{+})}, \\ & \rho_{2,\phi_{2}}^{(q)}(a_{2}) = \frac{e^{i\phi_{2}}}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix} \otimes d(-q) + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes T_{q}, \ \ \phi_{2} \in [0,2\pi). \\ & 4. \ \ \theta_{\phi_{1},x_{1}}^{(q)}(a_{2}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_{l_{2}(\mathbb{Z}_{+})} \otimes \mathbb{C}^{2}, \\ & \theta_{\phi_{1},x_{1}}^{(q)}(a_{2}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_{l_{2}(\mathbb{Z}_{+})} \otimes \mathbf{1}_{2}, \\ & \theta_{\phi_{1},x_{1}}^{(q)}(a_{1}) = \begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix} \otimes d(-q) \otimes \begin{pmatrix} 0 & e^{i\phi_{1}\sqrt{x_{1}}} & e^{i\phi_{1}\sqrt{x_{1}}} \\ & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes T_{q} \otimes \mathbf{1}_{q}, \\ & where \ \ \phi_{1} \in [0,2\pi), \ \ x_{1} \in (0,1/2). \\ \end{array} \right$$

5.
$$\nu_{2,\phi_1}^{(q)} : \mathbb{C}^2 \otimes l_2(\mathbb{Z}_+) \to \mathbb{C}^2 \otimes l_2(\mathbb{Z}_+),$$

 $\nu_{2,\phi_1}^{(q)}(a_2) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)},$
 $\nu_{2,\phi_1}^{(q)}(a_1) = \frac{e^{i\phi_1}}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix} \otimes d(-q) + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes T_q, \quad \phi_1 \in [0, 2\pi).$
6. $\rho_{\phi_2}^{(q)} : \mathbb{C}^2 \to \mathbb{C}^2,$
 $\rho_{\phi_2}^{(q)}(a_1) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \rho_{\phi_2}^{(q)}(a_2) = \begin{pmatrix} 0 & e^{i\phi_2} \\ 0 & 0 \end{pmatrix}, \quad \phi_2 \in [0, 2\pi).$

Proof. To get the proof one has to apply Theorem 1 and Propositions 4,5. In particular, these statements imply that representations from the family $\mathcal{R}_1 = \{\pi_F, \pi_{\phi_2, x_2}, \rho_{2, \phi_2}\}$ with any admissible values of the parameters are pairwise non-equivalent as also the representations from $\mathcal{R}_2 = \{\theta_{\phi_1, x_1}, \nu_{2, \phi_1}\}$ are non-equivalent. Evidently, representations from \mathcal{R}_1 are not equivalent to representations containing in \mathcal{R}_2 , since one has $a_1^2 = 0$ in any representation from the first family, while $a_1^2 \neq 0$ in any representations from the second one. Finally, any of the representations from $\mathcal{R}_1 \cup \mathcal{R}_2$ is infinite-dimensional, hence it is not equivalent to ρ_{ϕ_2} . It is obvious that ρ_{ϕ_2} are non-equivalent for different $\phi \in [0, 2\pi)$.

Remark 2. The unique irreducible representation π_F of (2), where $a_1^2 = 0$, $a_2^2 = 0$ and $\ker a_1^* \cap \ker a_2^* \neq \{0\}$, is called the Fock representation, see [3].

3. Representations of A_0

The situation with q = 0 requires a bit more different analysis. So consider operators satisfying, on a Hilbert space \mathcal{H} , commutation relations of the following form:

(12) $a_i^* a_i = 1 - a_i a_i^*, \quad i = 1, 2,$ $a_i^* a_2 = 0.$

Lemma 2. Let $a_i = u_i c_i$, where u_i is a partial isometry, $c_i^2 = a_i^* a_i$, and ker $u_i = \ker c_i$, i = 1, 2, be polar decompositions. Then $u_1^* u_2 = u_2^* u_1 = 0$.

Proof. Indeed $a_1^*a_2 = 0$ takes the form $c_1u_1^*u_2c_2 = 0$. Since c_2 is self-adjoint,

$$\mathcal{H} = \ker c_2 \oplus \mathbf{range}(c_2).$$

For any $x \in \ker c_2 = \ker u_2$, we have $c_1 u_1^* u_2 x = 0$. For $y \in \operatorname{range}(c_2)$, $y = c_2 z$ and

$$c_1 u_1^* u_2 y = c_1 u_1^* u_2 c_2 z = 0.$$

Therefore $c_1u_1^*u_2 = 0$. Taking the adjoint we get $u_2^*u_1c_1 = 0$. Then the arguments presented above imply $u_2^*u_1 = 0$.

Our next aim is to show that in an irreducible representation of (12) at least one of a_i^2 , i = 1, 2, is equal to zero.

Proposition 6. Let a_i , i = 1, 2, determine an irreducible representation of (12). Suppose that the unitary part \mathcal{H}_u of the generalized Wold decomposition of a_1 is non-zero. Then $a_2^2 = 0$.

Proof. So, let $\mathcal{H} = \mathcal{H}_u \oplus \mathcal{H}_F$ such that the restriction of u_1 onto \mathcal{H}_u is unitary and the restriction of a_1 onto \mathcal{H}_F is a multiple of the Fock representation of (3). In particular on \mathcal{H}_F one has $a_1^2 = 0$.

Let $x \in \mathcal{H}_u$. Since $u_2^* u_1 = 0$ and u_1 is unitary on \mathcal{H}_u , one has $x = u_1 u_1^* x$ and $u_2^* x = u_2^* u_1 u_1^* x = 0$. Thus $a_2^* x = c_2 u_2^* x = 0$ for any $x \in \mathcal{H}_u$.

Let us show that for any $x \in \mathcal{H}_u$, one has $a_{\alpha_1} \cdots a_{\alpha_k} x = 0$, where $\alpha_k \neq 1$, $\alpha_s \in \{1, 2\}$, if there exists s such that $\alpha_s = \alpha_{s+1}$. Recall that a_i^2 , i = 1, 2, are normal. Then, for any $x \in \mathcal{H}_u$,

$$\left\langle a_{2}^{2}x, a_{2}^{2}x \right\rangle = \left\langle (a_{2}^{2})^{*}a_{2}^{2}x, x \right\rangle = \left\langle a_{2}^{2}(a_{2}^{2})^{*}x, x \right\rangle = 0$$

Further we use induction on the length of $\alpha = (\alpha_1, \ldots, \alpha_k)$. Namely, consider the product $a_{\alpha_1} \cdots a_{\alpha_k} x$, where $k \ge 1$, $\alpha_s \ne \alpha_{s+1}$, $s = 1, \ldots, k-1$, $\alpha_k \ne 1$. Let for example $\alpha_1 = 1$, then $k \ge 2$, $\alpha_2 = 2$ and

$$\begin{aligned} \left\langle a_1^2 a_{\alpha_2} \cdots a_{\alpha_k} x, a_1^2 a_{\alpha_2} \cdots a_{\alpha_k} x \right\rangle &= \left\langle (a_1^2)^* a_1^2 a_{\alpha_2} \cdots a_{\alpha_k} x, a_{\alpha_2} \cdots a_{\alpha_k} x \right\rangle \\ &= \left\langle a_1^2 (a_1^2)^* a_{\alpha_2} \cdots a_{\alpha_k} x, a_{\alpha_2} \cdots a_{\alpha_k} x \right\rangle = 0, \\ \left\langle a_2^2 a_1 a_{\alpha_2} \cdots a_{\alpha_k} x, a_2^2 a_1 a_{\alpha_2} \cdots a_{\alpha_k} x \right\rangle &= \left\langle (a_2^2)^* a_2^2 a_1 a_{\alpha_2} \cdots a_{\alpha_k} x, a_1 a_{\alpha_2} \cdots a_{\alpha_k} x \right\rangle \\ &= \left\langle a_2^2 (a_2^2)^* a_1 a_{\alpha_2} \cdots a_{\alpha_k} x, a_1 a_{\alpha_2} \cdots a_{\alpha_k} x \right\rangle = 0. \end{aligned}$$

If $\alpha_1 = 2$, then $k \ge 1$ and the rest of the verification is the same.

Put $\Lambda_1 = \{\emptyset, (\alpha_1, \ldots, \alpha_k), k \in \mathbb{N}, \alpha_s = 1, 2, \alpha_k \neq 1, \alpha_s \neq \alpha_{s+1}\}$. For any $\alpha \in \Lambda_1$ denote by a_{α} the product $a_{\alpha_1}a_{\alpha_2}\cdots a_{\alpha_k}, a_{\emptyset} = 1$. Let us show that

$$\mathcal{H}_1 = \overline{\langle a_\alpha x, x \in \mathcal{H}_u, \alpha \in \Lambda_1 \rangle}$$

is invariant with respect to $a_i, a_i^*, i = 1, 2$.

The invariance w.r.t. the action of a_i is evident. Furthermore,

$$\begin{aligned} a_2^* x &= 0, \quad a_1^* x \in \mathcal{H}_u, \quad x \in \mathcal{H}_u, \\ a_i^* a_i a_{\alpha_2} \cdots a_{\alpha_k} x &= (1 - a_i a_i^*) a_{\alpha_2} \cdots a_{\alpha_k} x = a_{\alpha_2} \cdots a_{\alpha_k} x \quad (\text{since } \alpha_2 \neq i), \quad i = 1, 2, \\ a_i^* a_j a_{\alpha_2} \cdots a_{\alpha_k} x &= 0, \quad i \neq j, \quad i, j = 1, 2. \end{aligned}$$

Since the representation is irreducible we get $\mathcal{H} = \mathcal{H}_1$. Above we have shown that $a_2^2 z = 0$ for any $z \in \mathcal{H}_1$. So $a_2^2 = 0$.

The rest of considerations are the same as in the case $q \in (0, 1)$. Indeed, suppose that $a_1^2 = 0$ and write the representation space $\mathcal{H} = \mathbb{C}^2 \otimes \mathcal{H}_1$. Then

$$a_1 = \begin{pmatrix} 0 & 0 \\ \mathbf{1} & 0 \end{pmatrix},$$

here $\mathbf{1} = \mathbf{1}_{\mathcal{H}_1}$. Further, $a_1^* a_2 = 0$ is equivalent to $a_2 = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}$ and $a_2^* a_2 = 1 - a_2 a_2^*$ is equivalent to the following relations:

(13)
$$A^*A = \mathbf{1} - AA^* - BB^*$$
$$A^*B = 0,$$
$$B^*B = \mathbf{1}.$$

The representation determined by a_i , i = 1, 2, is irreducible iff the corresponding representation determined by A, B is irreducible on \mathcal{H}_1 . The statement on unitary equivalence holds also.

Construct Q = AB, then it is easy to see that $Q^*Q = 0$,

$$Q^*Q = B^*A^*AB = B^*(1 - AA^* - BB^*)B = B^*B - B^*BB^*B = 0$$

Hence, we additionally have AB = 0.

Proposition 7. Let A, B determine an irreducible representation of (13) on \mathcal{H}_1 . Then either B is unitary, dim $\mathcal{H}_1 = 1$ and A = 0 or $\mathcal{H}_1 \simeq l_2(\mathbb{Z}_+) \otimes \mathcal{K}$ for some Hilbert space \mathcal{K} and B is unitary equivalent to a multiple of a unilateral shift operator.

381

Proof. As in the q-deformed case, we consider the Wold decomposition of B,

$$\mathcal{H}_1 = \mathcal{H}_1^F \oplus \mathcal{H}_1^u,$$

where the restriction of B onto \mathcal{H}_1^u is unitary and the restriction on \mathcal{H}_1^F is a multiple of a unilateral shift.

We show that \mathcal{H}_1^u is invariant with respect to A, A^{*}. Indeed, for $x \in \mathcal{H}_1^u$ we get

$$A^*x = A^*BB^*x = 0, \quad A^*Ax = x - AA^*x - BB^*x = 0,$$

so $A^*x = 0$ and Ax = 0. Hence if $\mathcal{H}_1^u \neq \{0\}$ in the irreducible case we get $\mathcal{H}_1 = \mathcal{H}_1^u$, dim $\mathcal{H}_1 = 1$ and $A = 0, B = e^{i\phi}$.

To complete the proof it remains to point out that if $\mathcal{H}_1^u = \{0\}$, then $\mathcal{H}_1 = \mathcal{H}_1^F$. \Box

Below we denote by $S: l_2(\mathbb{Z}_+) \to l_2(\mathbb{Z}_+)$ the operator of a unilateral shift.

Proposition 8. Let A, B determine an irreducible representation of (13) on \mathcal{H}_1 and $\mathcal{H}_1 = \mathcal{H}_1^F$. Then $\mathcal{H}_1 = l_2(\mathbb{Z}_+) \otimes \mathcal{K}$ for some Hilbert space \mathcal{K} and

$$B = S \otimes \mathbf{1}_{\mathcal{K}}, \quad A = (\mathbf{1} - SS^*) \otimes \widetilde{A},$$

where \tilde{A} determine an irreducible representation of (3) on K. Representations corresponding to families $\{\tilde{A}_i, \tilde{A}_i^*\}, i = 1, 2$, are unitary equivalent iff these families are unitary equivalent.

Proof. If $\mathcal{H}_1 = \mathcal{H}_1^F$ then, by the definition of \mathcal{H}_1^F , we have $\mathcal{H}_1 = l_2(\mathbb{Z}_+) \otimes \mathcal{K}$ and $B = S \otimes \mathbf{1}_{\mathcal{K}}$. Further, it is easy to verify that AB = 0, $B^*A = 0$ imply that $A = (1 - SS^*) \otimes \mathcal{A}$ and the relation

$$A^*A = \mathbf{1} - AA^* - BB^*$$

is equivalent to $\widetilde{A}^*\widetilde{A} = \mathbf{1}_{\mathcal{K}} - \widetilde{A}\widetilde{A}^*$.

. .

Application of the Schur lemma shows that the family $\{A, A^*, B, B^*\}$ is irreducible iff $\{A, A^*\}$ is irreducible. The statement about unitary equivalence is also obvious.

Combining the results of Propositions 7, 8 and Theorem 1 we immediately get the following result.

Theorem 4. Let π be an irreducible representation of (12) on a Hilbert space \mathcal{H} . Then π is unitary equivalent to one of the constructed below:

$$\begin{aligned} 4. \quad \theta_{\phi_1,x_1} \colon \mathbb{C}^2 \otimes l_2(\mathbb{Z}_+) \otimes \mathbb{C}^2 \to \mathbb{C}^2 \otimes l_2(\mathbb{Z}_+) \otimes \mathbb{C}^2, \\ \theta_{\phi_1,x_1}(a_2) &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes \mathbf{1}_2, \\ \theta_{\phi_1,x_1}(a_1) &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes (\mathbf{1} - SS^*) \otimes \begin{pmatrix} 0 & e^{i\phi_1}\sqrt{x_1} \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes S \otimes \mathbf{1}_2 \\ where \quad \phi_1 \in [0, 2\pi), \quad x_1 \in (0, 1/2). \end{aligned}$$

$$5. \quad \nu_{2,\phi_1} \colon \mathbb{C}^2 \otimes l_2(\mathbb{Z}_+) \to \mathbb{C}^2 \otimes l_2(\mathbb{Z}_+) \quad and \\ \nu_{2,\phi_1}(a_2) &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)}, \\ \nu_{2,\phi_1}(a_1) &= \frac{e^{i\phi_1}}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes (\mathbf{1} - SS^*) + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes S, \quad \phi_1 \in [0, 2\pi). \end{aligned}$$

$$6. \quad \rho_{\phi_2} \colon \mathbb{C}^2 \to \mathbb{C}^2, \\ \rho_{\phi_2}(a_1) &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \rho_{\phi_2}(a_2) &= \begin{pmatrix} 0 & e^{i\phi_2} \\ 0 & 0 \end{pmatrix}, \quad \phi_2 \in [0, 2\pi). \end{aligned}$$

Representations from different classes as well as representations from the same class corresponding to different values of the parameters are non-equivalent.

4. C^* -Algebras generated by A_q and A_0

In this section, we study the C^* -algebras generated by operators of Fock representations of A_0 and A_q and give a description of the universal C^* -algebra \mathcal{A}_0 generated by $\left(12\right)$ as algebras of continuous operator-valued functions.

4.1. The C^* -algebras \mathcal{A}_q^F and \mathcal{A}_0^F . Let C^* -algebras \mathcal{A}_q^F and \mathcal{A}_0^F be generated by Fock representations of (2), (12) respectively.

Theorem 5. For any $q \in (0,1)$ one has $\mathcal{A}_q^F \simeq \mathcal{A}_0^F$.

Proof. Denote by E_{ij} , i, j = 1, 2, the matrix units of $M_2(\mathbb{C})$. First we consider the C^* -algebra $\mathcal{A}_0^F = C^*(a_1, a_2)$, where

$$a_1 = E_{21} \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes \mathbf{1}_2,$$

and

$$_{2} = E_{11} \otimes (\mathbf{1} - SS^{*}) \otimes E_{21} + E_{12} \otimes S \otimes \mathbf{1}_{2}.$$

Since E_{21} generates $M_2(\mathbb{C})$ as a *-algebra, we conclude that

$$M_2(\mathbb{C}) \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes \mathbf{1}_2 \subset \mathcal{A}_0^F$$

and

(14)
$$a_2 \cdot \left(E_{12} \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes \mathbf{1}_2 \right) = E_{12} \otimes (\mathbf{1} - SS^*) \otimes E_{21} \in \mathcal{A}_0^F,$$

(15)
$$a_2 \cdot \left(E_{22} \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes \mathbf{1}_2 \right) = E_{12} \otimes S \otimes \mathbf{1}_2 \in \mathcal{A}_0^F.$$

Further, since $M_2(\mathbb{C})$ is simple it follows that

(16)
$$A_2 = \mathbf{1}_2 \otimes (\mathbf{1} - SS^*) \otimes E_{21} \in \mathcal{A}_0^F, \quad A_3 = \mathbf{1}_2 \otimes S \otimes \mathbf{1}_2 \in \mathcal{A}_0^F.$$

Then it is evident now that \mathcal{A}_0^F is generated as a C^* -algebra by operators A_1, A_2, A_3 , where

$$A_1 = E_{21} \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes \mathbf{1}_2.$$

Let us study the C^* -algebra \mathcal{A}_q^F . It is generated by

$$a_1^q = E_{21} \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes \mathbf{1}_2$$

and

$$a_2^q = \left(E_{11} + qE_{12}\right) \otimes d(-q) \otimes E_{21} + E_{12} \otimes T_q \otimes \mathbf{1}_2$$

As above we conclude that $M_2(\mathbb{C}) \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes \mathbf{1}_2 \subset \mathcal{A}_q^F$ and

$$A_2^q = \mathbf{1}_2 \otimes d(-q) \otimes E_{21} \in \mathcal{A}_q^F, \quad A_3^g = \mathbf{1}_2 \otimes T_q \otimes \mathbf{1}_2 \in \mathcal{A}_q^F$$

Moreover $\mathcal{A}_q = C^*(A_1, A_2^q, A_3^q)$. Since $T_q^*T_q e_n = (1 - q^{2(n+1)})e_n, n \in \mathbb{Z}_+$, one has

$$S = T_q (T_q^* T_q)^{-\frac{1}{2}}$$
 and $T_q^* T_q = (1 - q^2) \sum_{n=0}^{\infty} q^{2n} S^n (S^*)^n$.

I.e., $C^*(S) = C^*(T_q)$, see for example [4]. So $A_3 \in \mathcal{A}_q^F$ and $A_3^q \in C^*(A_3)$. Then since $(1 - SS^*)d(-q) = (1 - SS^*)$,

$$(\mathbf{1} - A_3 A_3^*) A_2^q = \mathbf{1}_2 \otimes (\mathbf{1} - SS^*) d(-q) \otimes E_{21} = A_2$$

and $A_2 \in \mathcal{A}_q^F$. Finally

$$d(-q) = \sum_{n=0}^{\infty} (-q)^n \left(S^n (S^n)^* - S^{n+1} (S^{n+1})^* \right) = \sum_{n=0}^{\infty} (-q)^n S^n \left(\mathbf{1} - SS^* \right) (S^n)^*$$

and

$$A_2^q = \sum_{n=0}^{\infty} (-q)^n A_3^n A_2 (A_3^n)^* \in C^*(A_3, A_2).$$

Therefore $\mathcal{A}_q^F = C^*(A_1, A_2^q, A_3^q) = C^*(A_1, A_2, A_3) = \mathcal{A}_0^F.$

4.2. The C*-algebra \mathcal{A}_0 . Consider the C*-algebra \mathcal{A}_0 . First of all we present the operators of representations $\pi_{\phi_2,x_2}(a_i)$ and $\theta_{\phi_{1,x_1}}(a_i)$, i = 1, 2, in the form different from that of presented in Theorem 4.

Namely using the isomorphism $l_2(\mathbb{Z}_+) \otimes \mathbb{C}^2 \simeq l_2(\mathbb{Z}_+)$ one can present

(17)
$$\pi_{\phi_2,x_2}(a_1) = E_{21} \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes \mathbf{1}_2,$$

(18)
$$\pi_{\phi_2, x_2}(a_2) = E_{11} \otimes (\mathbf{1} - SS^*) \otimes \begin{pmatrix} 0 & e^{i\phi_2}\sqrt{x_2} \\ \sqrt{1 - x_2} & 0 \end{pmatrix} + E_{12} \otimes S \otimes \mathbf{1}_2$$

 \mathbf{as}

(19)
$$\pi_{\phi_2, x_2}(a_1) = \begin{pmatrix} 0 & 0 \\ \mathbf{1} & 0 \end{pmatrix},$$

(20)
$$\pi_{\phi_2, x_2}(a_2) = \begin{pmatrix} \sqrt{1 - x_2} S(\mathbf{1} - SS^*) + e^{i\phi_2} \sqrt{x_2}(\mathbf{1} - SS^*)S^* & S^2 \\ 0 & 0 \end{pmatrix},$$

where $\mathbf{1} = \mathbf{1}_{l_2(\mathbb{Z}_+)}$. Similarly,

$$\theta_{\phi_1, x_1}(a_2) = \begin{pmatrix} 0 & 0 \\ \mathbf{1} & 0 \end{pmatrix},$$

$$\theta_{\phi_1, x_1}(a_1) = \begin{pmatrix} \sqrt{1 - x_1} S(\mathbf{1} - SS^*) + e^{i\phi_1} \sqrt{x_1}(\mathbf{1} - SS^*) S^* & S^2 \\ 0 & 0 \end{pmatrix}.$$

In particular,

$$\pi_{\phi_2,0}(a_1) = \theta_{\phi_1,0}(a_2) = \begin{pmatrix} 0 & 0 \\ \mathbf{1} & 0 \end{pmatrix}$$

and

$$\pi_{\phi_2,0}(a_2) = \theta_{\phi_1,0}(a_1) = \begin{pmatrix} S(\mathbf{1} - SS^*) & S^2\\ 0 & 0 \end{pmatrix}$$

for any $\phi_1, \phi_2 \in [0, 2\pi)$. Note also that $\pi_{\phi_2,0}(a_i) = \pi_F(a_i), i = 1, 2$.

Consider $T \in M_2(\mathcal{T}(C(\mathbf{T})))$, where $\mathcal{T}(C(\mathbf{T})) = C^*(S)$ is the Toeplitz C^{*}-algebra generated by a single isometry,

$$T = \begin{pmatrix} \mathbf{1} - SS^* & S \\ S^* & 0 \end{pmatrix}.$$

It is easy to verify that $T = T^* = T^{-1}$ and for any $phi_j \in [0, 2\pi], j = 1, 2$, one has

(21)
$$T\theta_{\phi_1,0}(a_1)T = \pi_{\phi_2,0}(a_1), \quad T\theta_{\phi_1,0}(a_2)T = \pi_{\phi_2,0}(a_2).$$

Let $X = \{0\} \times [0, 1/2] \cup [0, 1/2] \times \{0\}$ and \mathbf{T}^2 be the two-dimensional torus. Consider the C^* -algebra

$$\mathcal{A} \subset M_2\big(C(X \times \mathbf{T}^2 \to \mathcal{T}(C(\mathbf{T})))\big) \simeq M_2(\mathbb{C}) \otimes C(X) \otimes \mathcal{T}(C(\mathbf{T}))$$

generated by the pair of functions defined as follows:

$$\begin{aligned} f_1(0, x_2, \phi_1, \phi_2) &= \pi_{\phi_2, x_2}(a_1) = \begin{pmatrix} 0 & 0 \\ \mathbf{1} & 0 \end{pmatrix}, \\ f_1(x_1, 0, \phi_1, \phi_2) &= T\theta_{\phi_1, x_1}(a_1)T \\ &= T \begin{pmatrix} \sqrt{1 - x_1}S(\mathbf{1} - SS^*) + e^{i\phi_1}\sqrt{x_1}(\mathbf{1} - SS^*)S^* & S^2 \\ 0 & 0 \end{pmatrix} T, \\ f_2(0, x_2, \phi_1, \phi_2) &= \pi_{\phi_2, x_2}(a_2) \\ &= \begin{pmatrix} \sqrt{1 - x_2}S(\mathbf{1} - SS^*) + e^{i\phi_2}\sqrt{x_2}(\mathbf{1} - SS^*)S^* & S^2 \\ 0 & 0 \end{pmatrix}, \\ f_2(x_1, 0, \phi_1, \phi_2) &= T\theta_{\phi_1, x_1}(a_2)T = T \begin{pmatrix} 0 & 0 \\ \mathbf{1} & 0 \end{pmatrix} T. \end{aligned}$$

Note that continuity of f_1 , f_2 at $(0, 0, \phi_1, \phi_2)$ follows from (21).

We show that $\mathcal{A}_0 \simeq \mathcal{A}$. Since the functions f_1, f_2 satisfy relations (12), by the universal property of \mathcal{A}_0 there exists a homomorphism $\psi \colon \mathcal{A}_0 \to \mathcal{A}$ taking a_i to $f_i, i = 1, 2$.

Theorem 6. The homomorphism $\psi : \mathcal{A}_0 \to \mathcal{A}$ is an isomorphism.

Proof. To prove the statement it is enough to show that for any irreducible representation $\pi: \mathcal{A}_0 \to B(\mathcal{H})$ there exists a representation $\tilde{\pi}: \mathcal{A} \to B(\mathcal{H})$ such that $\pi = \tilde{\pi} \circ \psi$. Indeed in this case $\psi(x) = 0$ implies $\pi(x) = \tilde{\pi}(\psi(x)) = 0$ for any irreducible representation π of \mathcal{A} . Then x = 0 and ψ is injective. Since surjectivity of ψ is obvious we conclude that it is an isomorphism.

So, let us construct, for any irreducible representation π of \mathcal{A}_0 , a corresponding representation $\tilde{\pi}$ of \mathcal{A} .

1. Evidently $\tilde{\pi}_F(f_i) = f_i(0, 0, \phi_1, \phi_2), i = 1, 2$, for arbitrary fixed $\phi_j \in [0, 2\pi], j = 1, 2$. 2. For any $x_2 \in (0, 1/2)$ and $\phi_2 \in [0, 2\pi)$ one has

$$\widetilde{\pi}_{\phi_2, x_2}(f_i) = f_i(0, x_2, \phi_1, \phi_2), \quad i = 1, 2,$$

where ϕ_1 is arbitrary fixed in $[0, 2\pi]$.

3. Analogously, for any $x_1 \in (0, 1/2), \phi_1 \in [0, 2\pi)$ one has

$$\theta_{\phi_1,x_1}(f_i) = Tf_i(x_1,0,\phi_1,\phi_2)T, \quad i=1,2,$$

for arbitrary fixed $\phi_2 \in [0, 2\pi]$. Here we use the property $T = T^* = T^{-1}$.

4. Let us construct $\tilde{\rho}_{2,\phi_2}$. In this case, it will be more convenient for us to consider $f_i(0, x_2, \phi_1, \phi_2), i = 1, 2$, as tensor products of the form (17),(18). Indeed there exists unitary $U: \mathbb{C}^2 \otimes l_2(\mathbb{Z}_+) \to \mathbb{C}^2 \otimes l_2(\mathbb{Z}_+) \otimes \mathbb{C}^2$ such that for any $x_2 \in [0, 1/2]$ and $\phi_2 \in [0, 2\pi]$ one has

$$Uf_i(0, x_2, \phi_1, \phi_2)U^* = \pi_{\phi_2, x_2}(a_i),$$

where $\pi_{\phi_2, x_2}(a_i)$, i = 1, 2, are presented as in (17),(18).

Denote by $a(x,\phi): [0,1/2] \times [0,2\pi] \to M_2(\mathbb{C})$ a continuous function of the form

(22)
$$a(x,\phi) = \begin{pmatrix} 0 & e^{i\phi}\sqrt{1-x} \\ \sqrt{x} & 0 \end{pmatrix}.$$

It is easy to verify, see [10], that

$$V^*(\phi)a(1/2,\phi)V(\phi) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{\frac{i\phi}{2}} & 0\\ 0 & e^{\pi + \frac{i\phi}{2}} \end{pmatrix}$$

for unitary

$$V(\phi) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{\frac{i\phi}{2}} & -e^{\frac{i\phi}{2}} \\ 1 & 1 \end{pmatrix} \in M_2(\mathbb{C}).$$

Put $W_i: \mathbb{C}^2 \otimes l_2(\mathbb{Z}_+) \otimes \mathbb{C}^2 \to \mathbb{C}^2 \otimes l_2(\mathbb{Z}_+) \otimes \mathbb{C}^2, \ i = 1, 2,$ $W_i(\phi) = (\mathbf{1}_2 \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes E_{ii}V(\phi)).$

Then, if $\phi_2 \in [0, \pi)$, one has

$$\widetilde{\rho}_{2,\phi_2}(f_i) = (\mathbf{1}_2 \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes p_1) \circ (W_1^*(2\phi_2) U f_i(0, 1/2, \phi_1, \phi_2)) U^* W_1(2\phi_2))$$

and, for $\phi_2 \in [\pi, 2\pi)$,

 $\widetilde{\rho}_{2,\phi_2}(f_i) = (\mathbf{1}_2 \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes p_2) \circ (W_2^*(2\phi_2 - 2\pi)Uf_i(0, 1/2, \phi_1, \phi_2))U^*W_2(2\phi_2 - 2\pi)),$ where $p_i \colon M_2(\mathbb{C}) \to \mathbb{C}, \ i = 1, 2$, are defined by

$$p_i(\sum_{r,s=1}^{\tilde{}} \alpha_{rs} E_{rs}) = \alpha_{ii}$$

and ϕ_1 is arbitrary fixed in $[0, 2\pi]$.

5. Applying the considerations above to $\tilde{\nu}_{2,\phi_1}$ we get, for $\phi_1 \in [0,\pi)$,

$$\widetilde{\nu}_{2,\phi_1}(f_i) = (\mathbf{1}_2 \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes p_1) \circ \left(W_1^*(2\phi_1) UT f_i(1/2, 0, \phi_1, \phi_2) \right) TU^* W_1(2\phi_1) \right)$$

and, for $\phi_1 \in [\pi, 2\pi)$,

$$\widetilde{\nu}_{2,\phi_1}(f_i) = (\mathbf{1}_2 \otimes \mathbf{1}_{l_2(\mathbb{Z}_+)} \otimes p_2) \circ (W_2^*(2\phi_2 - 2\pi)UTf_i(1/2, 0, \phi_1, \phi_2))TU^*W_2(2\phi_2 - 2\pi))$$

for arbitrary fixed $\phi_2 \in [0, 2\pi].$

6. Finally, to construct $\tilde{\rho}_{\psi_2}$, we consider $\tau_{\psi_2} \colon \mathcal{T}(C(\mathbf{T})) \to \mathbb{C}, \ \tau_{\psi_2}(S) = e^{\frac{i\psi_2}{2}}$ and identify $M_2(\mathcal{T}(C(\mathbf{T})))$ with $M_2(\mathbb{C}) \otimes \mathcal{T}(C(\mathbf{T}))$. Then

$$\widetilde{\rho}_{\psi_2}(a_i) = (id_{M_2(\mathbb{C})} \otimes \tau_{\psi_2})(f_i(0, x_2, \phi_1, \phi_2))$$

for arbitrary fixed $x_2 \in [0, 1/2]$ and $\phi_j \in [0, 2\pi], j = 1, 2$.

Note that representations equivalent to $\tilde{\rho}_{\psi_2}$ can be also obtained as

$$(id_{M_2(\mathbb{C})} \otimes \tau_{\psi})(Tf_i(x_1, 0, \phi_1, \phi_2)T)$$

for certain ψ and arbitrary fixed $x_1 \in [0, 1/2]$ and $\phi_j \in [0, 2\pi], j = 1, 2$.

References

- 1. M. Bożejko, R. Speicher, Completely positive maps on Coxeter groups, deformed commutation relations and operator spaces, Math. Ann. **300** (1994), 97–120.
- J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185.
- 3. P. E. T. Jørgensen, L. M. Schmitt, R. F. Werner, Positive representations of general commutation relations allowing Wick ordering, J. Funct. Anal. 134 (1995), 33–99.
- P. E. T. Jørgensen, L. M. Schmitt, R. F. Werner, q-Canonical commutation relations and stability of the Cuntz algebra, Pacific J. Math. 165 (1994), no. 1, 131–151.
- W. Marcinek, On commutation relations for quons, Rep. Math. Phys. 41 (1998), no. 2, 155–172.
 W. Marcinek and R. Ralowski, On Wick algebras with braid relations, J. Math. Phys. 36 (1995),
- W. Marcinek and R. Ralowski, On Wick algebras with braid relations, J. Math. Phys. 36 (1995), no. 6, 2803–2812.

385

V. L. OSTROVSKYI, D. P. PROSKURIN, AND R. Y. YAKYMIV

- G. Nagy and A. Nica, On the quantum disk and non-commutative circle, Algebraic Methods in Operator Theory, P. E. T. Jørgensen and R. Curto eds., Birkhäuser, Boston, 1994, pp. 276–290.
- V. L. Ostrovskyi and Yu. S. Samoilenko, Introduction to the Theory of Representations of Finitely Presented *-Algebras. I. Representations by Bounded Operators, Rev. Math. & Math. Phys., vol. 11, Gordon & Breach, London, 1999.
- D. Proskurin, Homogeneous ideals in Wick *-algebras, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3371–3376.
- D. Proskurin, Yu. Savchuk, L. Turowska, On C*-algebras generated by some deformations of CAR relations, Contemp. Math. 391 (2005), 297–312.
- 11. W. Rudin, Functional Analysis, McGraw-Hill, Inc., New York, 1991.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

E-mail address: vo@imath.kiev.ua

DEPARTMENT OF CYBERNETICS, KYIV NATIONAL TARAS SHEVCHENKO UNIVERSITY, 64 VOLODYMYRS'KA, KYIV, 01033, UKRAINE

E-mail address: prosk@univ.kiev.ua

National University of Life and Environmental Sciences, 15 Heroyiv Oborony, Kyiv, 03041, Ukraine

E-mail address: yakymiv@ukr.net

Received 11/04/2012