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ONE REMARK CONCERNING DOUBLE-INFINITE TODA LATTICE

YURIJ M. BEREZANSKY

Abstract. We propose the power moment approach to investigation of double-

infinite Toda lattices, which was contained in author’s article [6]. As a result, we
give the main theorem from [6] in a more effective form.

1. Introduction

In the articles [3, 4], the author has proposed an approach for finding a solution of
the Cauchy problem for a semi-infinite Toda equation, which is a difference analog of
the classical approach to a similar problem for the KdV equation. Author’s articles
[5, 6] containing a similar approach to a double-infinite Toda lattice ([5] is a previous
version, on the ”physical level” of rigor, but it can be applied to more general objects
than the Toda lattice). In the exact version [6], we could not find a general solution
of a first order three-dimensional linear differential system for a spectral matrix of the
corresponding block Jacobi operator. Therefore, [6] can be regarded only as a direction
of investigation (in the semi-infinite case [3, 4], the corresponding differential equation
can be solved).

In this article, we show that, instead of a differential system for spectral the matrix
from [6], it is convenient to consider its power matrix moment [7, 2] interpretation,
which is equivalent to the initial system. The corresponding moments can be found
successively and, therefore, we get a more effective way of finding a solution of our
Cauchy problem for the double-infinite Toda lattice. More exactly, let αn(t), βn(t), where
n = . . . ,−1, 0, 1, . . . , t ∈ [0, T ), be our solution. Then we have a procedure of finding this
solution for every n and all t if we know the initial data and the solutions β0(t), β1(t) for
every t ∈ [0, T ) (it seems that it is impossible to give a general formula for αn(t), βn(t)
that would express this solution in terms of the initial conditions).

This article consists of two sections, — in Section 2 we repeat the main results from
[6] in a form convenient for the subsequent exposition; in the Section 3, we present the
moment approach.

2. The linearization of the Cauchy problem for a double-infinite Toda

lattice

Consider the double-infinite Toda lattice

α̇n(t) =
1

2
αn(t)(βn+1(t)− βn(t)),

β̇n(t) = α2
n(t)− α2

n−1(t), n ∈ Z = {. . . ,−1, 0, 1, . . .}, t ∈ [0, T ), T > 0,
(1)

where αn(t) > 0, βn(t) are real continuously differentiable functions uniformly bounded
w.r.t. n ∈ Z. For (1) we set the Cauchy problem: to find the solutions αn(t), βn(t) from
the initial data αn(0), βn(0), n ∈ Z.
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10. In [6], Sections 3,4, we have proposed the following procedure of linearization of
this problem using the spectral theory of Jacobi-type block matrices in the space

(2) l2 = C
1 ⊕ C

2 ⊕ C
2 ⊕ . . . ; l2 ∋ f = (f0, (f1,0, f1,1), (f2,0, f2,1), . . . ).

Use αn(t), βn(t) from (1) to construct the following block Jacobi matrix: ∀t ∈ [0, T )

J(t)=

β0(t) α0(t) α−1(t) 0 0 0 0 0 0 . . .
α0(t) β1(t) 0 α1(t) 0 0 0 0 0 . . .
α−1(t) 0 β−1(t) 0 α−2(t) 0 0 0 0 . . .

0 α1(t) 0 β2(t) 0 α2(t) 0 0 0 . . .
0 0 α−2(t) 0 β−2(t) 0 α−3(t) 0 0 . . .
0 0 0 α2(t) 0 β3(t) 0 α3(t) 0 . . .
0 0 0 0 α−3(t) 0 β−3(t) 0 α−4(t) . . .
...

...
...

...
...

...
...

...
...

. . .

=:

b0(t) a∗0(t) 0 0 0 . . .
a0(t) b1(t) a1(t) 0 0 . . .
0 a1(t) b2(t) a2(t) 0 . . .
0 0 a2(t) b3(t) a3(t) . . .
...

...
...

...
...

. . .

, i.e.

b0(t) =
[
β0(t)

]
: C1 → C

1,

a0(t) =

[
α0(t)
α−1(t)

]
: C1 → C

2,

a∗0(t) =
[
α0(t) α−1(t)

]
: C2 → C

1, an(t) = a∗n(t) : C
2 → C

2,

bn(t) = b∗n(t) : C
2 → C

2, n ∈ N = {1, 2, . . .}.

(3)

Every such a matrix generates, in the space l2, a Hermitian operator the domain
of which is the linear space lfin of all finite sequences from l2. The closure J(t) of this
operator is a bounded selfadjoint operator in l2; t ∈ [0, T ).

First, we give a construction of a generalized eigenvector expansion for the operator
J(t) with fixed t. It has the following form. Every such generalized eigenvector, ϕ(λ) =
(ϕn(λ))

∞
n=0, with the eigenvalue λ ∈ R, is a solution, from the linear space l of all

sequences f = (fn)
∞
n=0 (f0 ∈ C

1, fn = (fn,0, fn,1) ∈ C
2, n ∈ N), of the difference equation

J(t)ϕ(λ) = λϕ(λ), i.e.,

b0(t)ϕ0(λ) + a∗0(t)ϕ1(t) = λϕ0(λ),

an−1(t)ϕn−1(λ) + bn(t)ϕn(λ) + an(t)ϕn+1(λ) = λϕn(λ), n ∈ N.

(4)

Note that, in fact, ϕ(λ) ∈ l2(p), where the latter space is the space l2 with some weight
p = (pn)

∞
n=0, pn ≥ 1, common for all λ ∈ R and t ∈ [0, T ).

Every solution ϕ(λ) = (ϕn(λ))
∞
n=0 of difference equation (4) is real valued and defined

by the two initial condition. It is convenient to take, for such solutions, the following
two type of conditions:

(5) ϕ0(λ) = 1, ϕ1,0(λ) = 0 and ϕ0(λ) = 0, ϕ1,0(λ) = 1.

A solution with the first pair of conditions in (5) is denoted by θ(0)(λ), with second pair
by θ(1)(λ). Linearity of system (4) gives that an arbitrary generalized eigenvector has the
form: ∀λ ∈ R

(6) ϕ(λ) = ϕ0(λ)θ
(0)(λ) + ϕ1,0(λ)θ

(1)(λ).
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It is convenient to introduce some matrix solutions of equation (4) using θ(0)(λ) and
θ(1)(λ). So, we put

P0(λ) =
[
θ
(0)
0 (λ) θ

(1)
0 (λ)

]
=

[
1 0

]
=:

[
P0;0,0(λ) P0;0,1(λ)

]
: C2 → C

1,

Pn(λ) =

[
θ
(0)
n,0(λ) θ

(1)
n,0(λ)

θ
(0)
n,1(λ) θ

(1)
n,1(λ)

]
=:

[
Pn;0,0(λ) Pn;0,1(λ)
Pn;1,0(λ) Pn;1,1(λ)

]
: C2 → C

2, n ∈ N.
(7)

Then the following equalities for these matrix solutions (”polynomials of the first kind”)
follow from (4): ∀λ ∈ R, t ∈ [0, T )

b0(t)P0(λ) + a∗0(t)P1(λ) = λP0(λ),

an−1(t)Pn−1(λ) + bn(t)Pn(λ) + an(t)Pn+1(λ) = λPn(λ), n ∈ N.
(8)

The generalized eigenvectors of operator J(t) introduced above, of course, depend on
t. Further, we will stress this dependence by writing Pn(λ; t), Pn;α,β(λ; t) etc.

Introduce now the Fourier transform ̂ generated by the operator J(t) with fixed
t ∈ [0, T ). Namely, we put for f ∈ lfin : ∀λ ∈ R

(9) f̂(λ; t) =

∞∑

n=0

P ∗
n(λ; t)fn = (f̂0(λ; t), f̂1(λ; t)) ∈ C

2.

This Fourier transform acts from the space l2 into an L2-Hilbert space that depends
on t, L2(C2,R, dρ(λ; t)), of functions R ∋ λ 7→ F (λ) ∈ C

2, and is constructed by using
the scalar product

(10) (F,G)L2(C2,R,dρ(λ;t)) =

∫

R

(dρ(λ; t)F (λ), G(λ))
C2 ,

where dρ(λ; t) is the spectral 2× 2-matrix measure of the operator J(t). Integral (10) is
defined in a standard way starting with simple functions. For the Fourier transform, the
Parseval equality takes place,

(11) (f, g)l2 =

∫

R

(
dρ(λ; t)f̂(λ; t), ĝ(λ; t)

)
C2

, f, g ∈ lfin.

Using definition (9) and this equality we can continuously extend the Fourier transform

from lfin to the whole l2. Then such an extended transform f 7→ f̂(λ; t) will make a unitary
operator between the spaces l2 and L2(C2,R, dρ(λ; t)). It follows from (9), (8), and (3)
that the image of J(t) is an operator of multiplication by λ in the space L2(C2,R, dρ(λ; t)).

The spectral matrix measure dρ(λ; t) is an analog of the spectral measure for classical
Jacobi matrices. It is a Borel and probability real 2×2-matrix valued measure: ∀t ∈ [0, T )
B(R) ∋△7→ ρ(△; t) = (ρα,β(△; t))

1
α,β=0, ρ(R, t) = 1. It corresponds in a one-to-one way

to a Weyl matrix-valued function m(z; t) via the classical equality: ∀t ∈ [0, T )

(12) m(z; t) =

∫

R

1

λ− z
dρ(λ; t), z ∈ C \ R.

Here

m(z; t) =

[
m0,0(z; t) m0,1(z; t)
m1,0(z; t) m1,1(z; t)

]

=

[
(Rz(t)ε0,0, ε0,0)l2 (Rz(t)ε1,0, ε0,0)l2
(Rz(t)ε0,0, ε1,0)l2 (Rz(t)ε1,0, ε1,0)l2

]
,

Rz(t) = (J(t)− z1)−1, z ∈ C \ R, t ∈ [0, T ),

ε0,0 = (1, (0, 0), (0, 0), . . .), ε1,0 = (0, (1, 0), (0, 0), . . .) ∈ l2.

(13)

Since the matrix J(t) is real, it follows that m1,0(z; t) = m0,1(z; t) and ρ1,0(△; t) = ρ0,1(△
; t), △∈ B(R), t ∈ [0, T ).
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As in the case of the classical Jacobi matrices, elements of the matrix J(t) (3) can be
reconstructed from its matrix spectral measure dρ(λ; t) and its polynomials of the first
kind. Namely, from (9) and (11) it is easy to get: ∀t ∈ [0, T )

a∗n(t) =

∫

R

λPn(λ; t)dρ(λ; t)P
∗
n+1(λ; t),

bn(t) =

∫

R

λPn(λ; t)dρ(λ; t)P
∗
n(λ; t), n ∈ N0 := {0, 1, 2, . . .},

a∗n(t) = an(t), n ∈ N

(14)

(the integrals (14) of 2× 2-matrix valued functions are defined similar to (10)).
We stress that the system of all polynomials of the first kind is orthonormal (and

complete) in the space L2(C2,R, dρ(λ; t)) : using (9), (11) we find ∀t ∈ [0, T ) and j, k ∈ N0

(15)

∫

R

Pj(λ; t)dρ(λ; t)P
∗
k (λ; t) = δj,k1

(if j = k = 0 this integral is equal to number 1).
The orthogonality condition (15) gives a possibility to construct the polynomials of

the first kind Pn(λ; t) directly using only the given measure dρ(λ; t). At first we note that
the support of dρ(λ; t) (t ∈ [0, T ) fixed) is bounded. Therefore, the functions R ∋ λ 7→
(p(λ), q(λ)) ∈ R

2, where p(λ), q(λ) are arbitrary polynomials with real coefficients, are
dense in the real part L2(R2,R, dρ(λ; t)) of the space L2(C2,R, dρ(λ; t)).

From those facts and formulas (7), (15), it follows that the sequence of rows of the
polynomials of the first kind,

(P0;0,0(λ; t), P0;0,1(λ; t)), (P1;0,0(λ; t), P1;0,1(λ; t)), (P1;1,0(λ; t), P1;1,1(λ; t)),

(P2;0,0(λ; t), P2;0,1(λ; t)), (P2;1,0(λ; t), P2;1,1(λ; t)),

(P3;0,0(λ; t), P3;0,1(λ; t)), (P3;1,0(λ; t), P3;1,1(λ; t)), . . .

(16)

can be found by applying the classical Gramm-Schmidt orthogonalization procedure to
the following sequence of R2-valued functions of the variable λ ∈ R :

(17) (1, 0), (0, 1), (λ, 0), (0, λ), (λ2, 0), (0, λ2), (λ3, 0), . . . .

The knowledge of (16) is equivalent, according to (7), to the knowledge of

Pn;α,β(λ; t), α, β = 0, 1, λ ∈ R, t ∈ [0, T ).

20. In this Subsection we explain the connection between the above stated spectral
theory of block Jacobi-type matrices (3) and ordinary double-infinite Jacobi matrices.

So, instead of the space l2 (2), we will use the usual space

(18) ℓ2(Z) = . . .⊕ C
1 ⊕ C

1 ⊕ C
1 ⊕ . . . , ℓ2(Z) ∋ u = (un)

∞
n=−∞.

Consider the double-infinite Jacobi matrix L(t) (t ∈ [0, T ) is fixed) with elements αn(t),
βn(t) from (3); it acts on a sequence u = (un)

∞
n=−∞;un ∈ C, as follows:

(19) (L(t)u)n = αn−1(t)un−1 + βn(t)un + αn(t)un+1, n ∈ Z.

This expression generates, in the space ℓ2(Z), a bounded selfadjoint operators L(t) : it is
necessary to consider (19) on finite sequences u ∈ ℓfin(Z) and then to take its closure in
ℓ2(Z).

I do not know a systematic account of spectral theory of such operators L(t), some
corresponding facts are contained e.g. in [2, 8]. But it is possible to say that its construc-
tion is similar to the spectral theory of the Sturm-Liouville operator L on the whole axis
R ∋ x : instead of the spectral measure dρ(λ; t) of the corresponding operator L, we have
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a spectral 2×2-matrix measure dρ(λ) the construction of which is connected with two so-
lutions of the equation Lϕ(x;λ) = λϕ(x;λ) with the initial data ϕ(0;λ) = 1, ϕ′(0;λ) = 0
and ϕ(0;λ) = 0, ϕ′(0;λ) = 1, λ ∈ R.

In our case (19), it is also necessary to take two solutions of the equation (L(t)ϕ)n =
λϕn(λ; t), n ∈ Z, with the initial data in the points n = 0 and n = 1 : ϕ0(λ; t) =
1, ϕ1(λ; t) = 0 and ϕ0(λ; t) = 0, ϕ1(λ; t) = 1, construct the corresponding Fourier trans-
form, values of which are two-dimensional etc.

The spaces ℓ2(Z) (18) and l2 (2) are isometric. For us, it is convenient to use the
following isometry U. Namely, in l2 we have a natural orthonormal basis,

(20) ε0,0 = (1, (0, 0), (0, 0), . . .), ∀n ∈ N εn,α = (0, (0, 0), . . . , (0, 0), (1, 0)︸ ︷︷ ︸
nth place

, (0, 0), . . .)

if α = 0, and (0, 1) at the place with index n if α = 1 (notations of f and J(t) in (2), (3)
are given with respect to this basis). In ℓ2(Z), we have the standard basis

(21) δn = (. . . , 0, 1︸︷︷︸
n place

, 0, . . .), n ∈ Z.

We put

(22) U : ℓ2(Z) → l2, Uδ0 = ε0,0, ∀n ∈ N Uδn = εn,0, Uδ−n = εn,1.

It is easy to understand that in terms of such isometry operators, J(t) and L(t)
(t ∈ [0, T ) is fixed) are unitary equivalent, L(t) = U

−1
J(t)U. So, we can formulate the

following

Remark 1. The corresponding parts of articles [5, 6] (Sections 7 and 4, respectively)
and Subsection 1 above, according to (20)–(22), give in fact an account of the spectral
theory of double-infinite Jacobi matrices of type (19).

30. Let us consider the Cauchy problem for the double-infinite Toda lattice (1). In
[6], Section 5, Theorem 1, it was proved that the elements mα,β(z; t) of Weyl matrix
function m(z; t) (12) are solutions of the following system of three linear differential
equations w.r.t. m0,0(z; t),m0,1(z; t) and m1,1(z; t) :

ṁ0,0(z; t) = (β0(t)− z)m0,0(z; t) + 2α0(t)m0,1(z; t)− 1,

ṁ0,1(z; t) = −α0(t)m0,0(z; t) +
1

2
(β0(t)− β1(t))m0,1(z; t) + α0(t)m1,1(z; t),

ṁ1,1(z; t) = −2α0(t)m0,1(z; t)− (β1(t)− z)m1,1(z; t) + 1,

m1,0(z; t) = m0,1(z; t), z ∈ C \ R, t ∈ [0, T ).

(23)

Here α0(t), β0(t), β1(t) are real smooth coefficients connected by the equality (see (1))

(24)
α̇0(t)

α0(t)
=

1

2
(β1(t)− β0(t)), t ∈ [0, T ).

It is necessary to find a solution of system (23) with initial Cauchy data m0,0(z; 0),
m0,1(z; 0), m1,1(z; 0) for arbitrary z ∈ C \R. The coefficients α0(t), β0(t) and β1(t) must
be defined from the conditions:

(25) lim
|z|→∞

zm(z; t) = −1

(which is equivalent to the condition ρ(R; t) = 1, t ∈ [0, T )).
System (23) with conditions (25) can be rewritten as a system for elements of the

derivatives of the corresponding spectral matrix measure dρ(λ; t) ([6], Theorem 10). More
exactly, introduce the following finite Borel measure (a joint spectral scalar measure):

(26) B(R) ∋△7→

∫ T

0

Tr ρ(△; t)dt =: σ(△) ≥ 0.
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For arbitrary t ∈ [0, T ), the spectral matrix measure dρ(λ; t) is absolutely continuous
w.r.t. dσ(λ), therefore we can introduce ∀t ∈ [0, T ) the matrix derivative dρ(λ; t)/dσ(λ) =:
r(λ; t) = (rα,β(λ; t))

1
α,β=0. The later functions are defined for dσ(λ)-almost all λ ∈ R and

we have the equalities

ρ(△; t) =

∫

△

r(λ; t)dσ(λ), ρα,β(△; t) =

∫

△

rα,β(λ; t)dσ(λ),

△∈ B(R), t ∈ [0, T ), α, β = 0, 1.

(27)

System (23), in terms of rα,β(λ; t), has the following form:

ṙ0,0(λ; t) = (β0(t)− λ)r0,0(λ; t) + 2α0(t)r0,1(λ; t),

ṙ0,1(λ; t) = −α0(t)r0,0(λ; t) +
1

2
(β0(t)− β1(t))r0,1(λ; t) + α0(t)r1,1(λ; t),

ṙ1,1(λ; t) = −2α0(t)r0,1(λ; t)− (β1(t)− λ)r1,1(λ; t),

r1,0(λ; t) = r0,1(λ; t), t ∈ [0, T ).

(28)

Functions rα,β(λ; t) from (28) are one time continuously differentiable on [0, T ) for dσ(λ)-
almost all λ ∈ R, the equalities (28) are fulfilled also for such λ. For this system (28),
it is also necessary to find a solution of the Cauchy problem if r0,0(λ; 0), r0,1(λ; 0), and
r1,1(λ; 0) are given. From (27), it follows that this measure, for every △∈ B(R), have the
same smoothness.

Such problems for (23) and (28) are equivalent, — the connection is given by formulas
(12) and (27), (26).

Unfortunately, we cannot find, in the general case, solutions of these Cauchy problems
for (23) or (28) (it is possible to do [3, 4, 6] in the case where the double-infinite Toda
lattice is replaced with a semi-infinite one, i.e. if Z is replaced with N0). In the next
Section we will explain in what way it is possible to overcome this difficulty. But now we
can only formulate the assertion about the following linearization of the Cauchy problem
for (1) [6], Theorem 11.

Theorem 1. Consider the Cauchy problem for lattice (1) with given initial data: αn(0),
βn(0), n ∈ Z. It is possible to find its solution by applying the following linearization
procedure.

1) Using the initial data consider the matrix J(0) (3) and find its matrix spectral
measure dρ(λ; 0) and Weyl function m(z; 0), λ ∈ R, z ∈ C \ R.

2) Consider the linear system (23) w.r.t. the unknowns m0,0(z; t),m0,1(z; t),m1,1(z; t),
and find its solution using the initial data mα,β(z; 0); α, β = 0, 1, z ∈ C \ R.

3) In 2) the coefficients α0(t) > 0, β0(t) β1(t), t ∈ [0, T ), are real smooth arbitrary
functions. We find these functions using the conditions (24), (25) and the found above
solutions of (23).

4) Using m(z; t), z ∈ C\R, t ∈ [0, T ) we find the corresponding matrix spectral measure
dρ(λ; t), λ ∈ R, t ∈ [0, T ) (see (12)).

5) For fixed t ∈ [0, T ), consider the space L2(C2,R, dρ(λ; t)) and apply the Gramm-
Schmidt orthogonalization to sequence (17) in this space. As a result, we get the sequence
(16) of the polynomials of the first kind.

6) The solution of our Cauchy problem for (1) is obtained by using formulas (14), (3).

Note that, in this approach, a realization of items 2), 3) are problematical but, in
some cases, a similar realization is possible. For example, if we assumed that all αn(t) =
0, n = . . . ,−2,−1; t ∈ [0, T ) are arbitrary (in this case we have, actually, the semi-infinite
Toda lattice (1) with N0 instead Z).
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In the above scheme, we can use system (28) instead of system (23) in items 2), 3), but
in doing so it is necessary to know (from some additional data) the joint scalar spectral
measure (26). Now for the knowledge of dρ(λ; t) we use (27).

3. An approach based on the theory of moments

It is not always possible to succeed in finding a solution of the Cauchy problem for a
general system of three linear equations (23) (or (28)). Therefore, the results of Section
2 can be considered only as a direction for searching a solution of the Cauchy problem
for the Toda lattice (1). In this Section we show that it is possible to pass from system
(23) to corresponding moments and, in this way, to get more effective results.

Consider the classical power moments connected with the Weyl functions mα,β(z; t)
from (12), (13), and the corresponding spectral measure dρα,β(λ; t) : ∀t ∈ [0, T )

sn(α, β; t) =

∫

R

λndρα,β(λ; t), α, β = 0, 1,

i.e. sn(t) =

∫

R

λndρ(λ; t) : C2 → C
2, n ∈ N0.

(29)

These matrix moments appear also in the following expressions that follow from (12):
∀t ∈ [0, T )

mα,β(z; t) =

∫

R

1

λ− z
dρα,β(λ; t) = −

1

z

∫

R

(1− λ/z)−1dρα,β(λ; t)

= −
1

z

∫

R

∞∑

n=0

(
λ

z

)n

dρα,β(λ; t) = −

∞∑

n=0

1

zn+1
sn(α, β; t), |z| > R, α, β = 0, 1.

(30)

Here R > 0 is so large that the spectrums of all the operators J(t), t ∈ [0, T ), are located
in the ball {z ∈ C||z| ≤ R}. The convergence of the series in (30) is uniform for |z| ≥ R+ε,
where ε > 0 is arbitrary fixed.

According to (29), (30) we have the following for the first identity in (23) (note that
∀t ∈ [0, T ) ρ0,0(R; t) = 1): ∀|z| > R, t ∈ [0, T )

−

∞∑

n=0

1

zn+1
ṡn(0, 0; t) = ṁ0,0(z; t) = (β0(t)− z)m0,0(z; t) + 2α0(t)m0,1(z; t)− 1

=

∫

R

β0(t)− λ

λ− z
dρ0,0(λ; t) +

∫

R

2α0(t)

λ− z
dρ0,1(λ; t)

= −

∞∑

n=0

1

zn+1
(β0(t)sn(0, 0; t)− sn+1(0, 0; t) + 2α0(t)sn(0, 1; t)).

(31)

Identity (31) means that

(32) ṡn(0, 0; t) = β0(t)sn(0, 0; t)− sn+1(0, 0; t)+2α0(t)sn(0, 1; t), n ∈ N0, t ∈ [0, T ).

Similarly to (31), (32) we conclude from the second and the third identities in (23)
that ∀n ∈ N0, t ∈ [0, T )

ṡn(0, 1; t) = −α0(t)sn(0, 0; t) +
1

2
(β0(t)− β1(t))sn(0, 1; t) + α0(t)sn(1, 1; t),

ṡn(1, 1; t) = −2α0(t)sn(0, 1; t)− β1(t)sn(1, 1; t) + sn+1(1, 1; t).

As a result, we have proved the following.
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Lemma 1. The system (23) for mα,β(z; t) is equivalent to the following system for
moments (29):

ṡn(0, 0; t) = β0(t)sn(0, 0; t)− sn+1(0, 0; t) + 2α0(t)sn(0, 1; t),

ṡn(0, 1; t) =
1

2
(β0(t)− β1(t))sn(0, 1; t) + α0(t)(sn(1, 1; t)− sn(0, 0; t)),

ṡn(1, 1; t) = −β1(t)sn(1, 1; t) + sn+1(1, 1; t)− 2α0(t)sn(0, 1; t),

sn(1, 0; t) = sn(0, 1; t), n ∈ N0, t ∈ [0, T ).

(33)

For the proof it is necessary to note that the moments (29) for n ∈ N0 uniquely
defined dρα,β(λ; t) and therefore mα,β(z; t), since these measures have bounded support
(α, β = 0, 1, t ∈ [0, T )). Note also that the identities (33), of course, follow from (28),
too.

Consider the second identity in (33) as a differential equation in t with respect to
sn(0, 1; t) and using (24) we can find its solution and rewrite this identity in the form:
∀n ∈ N0, t ∈ [0, T )

(34) sn(0, 1; t) = α−1
0 (t)

(
α0(0)sn(0, 1; 0) +

∫ t

0

α2
0(τ)

(
sn(1, 1; τ)− sn(0, 0; τ)

)
dτ

)
.

So, we have from (33), (34) that

sn+1(0, 0; t) = β0(t)sn(0, 0; t)− ṡn(0, 0; t) + 2α0(t)sn(0, 1; t),

sn+1(1, 1; t) = β1(t)sn(1, 1; t) + ṡn(1, 1; t) + 2α0(t)sn(0, 1; t),

sn(0, 1; t) = α−1
0 (t)

(
α0(0)sn(0, 1; 0) +

∫ t

0

α2
0(τ)

(
sn(1, 1; τ)− sn(0, 0; τ)

)
dτ

)
,

sn(1, 0; t) = sn(0, 1; t), n ∈ N0, t ∈ [0, T ).

(35)

These identities make it possible by using the functions β0(t), β1(t), t ∈ [0, T ) to
recursively find sn(α, β; t) ∀α, β = 0, 1, t ∈ [0, T ), and n ∈ N0. So, using the solution

(36) α0(t) = α0(0)e
1

2

∫
t

0
(β1(τ)−β0(τ)) dτ , t ∈ [0, T ),

of equation (24) w.r.t. the unknown α0(t) and the identities ρα,β(R; t) = 1 for α = β =
0, 1, or ρα,β(R; t) = 0 for α = 0, β = 1 (for every t ∈ [0, T )) we get: ∀t ∈ [0, T )

s0(0, 0; t) = 1, s0(1, 1; t) = 1, s0(0, 1; t) = 0,

s1(0, 0; t) = β0(t), s1(1, 1; t) = β1(t),

s1(0, 1; t) = α−1
0 (t)

(
α0(0)s1(0, 1; 0) + α2

0(t)− α2
0(0)

)
,

. . . ;

sn(1, 0; t) = sn(0, 1; t), n ∈ N0.

(37)

The identities (35), (36), (37) permit to find recursively all the moments sn(α, β; t),
(29), n ∈ N0, and therefore the matrix spectral measure dρ(λ; t), t ∈ [0, T ). To carrying
out this procedure, it is necessary only to assume that the functions β0(t) and β1(t) are
smooth. We will assume that these functions are infinitely differentiable on [0, T ).

Thus, we recursively find the functions sn(α, β; t), α, β = 0, 1, t ∈ [0, T ) from (35), (37)
using β0(t), β1(t), t ∈ [0, T ), (36) and the following initial conditions:

sn(0, 0; 0) =

∫

R

λndρ0,0(λ; 0), sn(1, 1; 0) =

∫

R

λndρ1,1(λ; 0),

sn(0, 1; 0) =

∫

R

λndρ0,1(λ; 0), n ∈ N0.

(38)
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Note that we know the initial data of our Cauchy problem and, therefore, we know
the matrix J(0) from (3). Then we can calculate its spectral measure dρ(λ; 0) and the
moments of this measure, i.e., the integrals in (38).

It is also necessary to note that there also exists the classical formulas for moments
which are calculated directly from elements of the Jacobi matrix (see [9]).

As a result, we know all the matrix moments sn(t), n ∈ N0, of our spectral measure
dρ(λ; t), t ∈ [0, T ). It is easy to understand that the knowledge of all the moments gives
the possibility to find the solution αn(t), βn(t) of our Cauchy problem for (1).

Namely, first we note that the knowledge of sn(t), i.e., sn(α, β; t) (29), permits to find
the scalar products in the space L2(C2,R, dρ(λ; t)) of R2-values functions of λ ∈ R, which
are some linear combinations of the functions

(39) R ∋ λ 7→ (λj , λk) ∈ R
2 ⊂ C

2, j, k ∈ N0.

So, we have

((λj , λk), (λm, λn))L2(C2,R,dρ(λ;t)) =

∫

R

(dρ(λ; t)(λj , λk), (λm, λn))C2

= sj+m(0, 0; t) + sk+m(0, 1; t) + sj+n(0, 1; t) + sk+n(1, 1; t), j, k,m, n ∈ N0.

(40)

From identity (40) and the Gramm-Schmidt orthogonalization procedure applied to
the sequence of C

2−values functions (17) we easily conclude that if we know the all
the matrix moments sn(t) for n = 1, . . . , 2r, r ∈ N, then we can find the orthonormal
functions (16) up to (Pr;1,0(λ; t), Pr;1,1(λ; t)), i.e., we can find all polynomials of the first
kind, P0(λ; t), . . . , Pr(λ; t).

Using formulas (14) (given in terms of the scalar product in the space
L2(C2,R, dρ(λ; t))), the identity (40) and latter calculations we conclude that the knowl-
edge of the matrix moments allows to find bq(t) (or aq(t)) if we know the moments sn(t)
for n = 1, . . . , 4q + 1 (or for n = 1, . . . , 4q + 3); t ∈ [0, T ).

As a result of the above considerations, we can formulate the following main theorem.

Theorem 2. Consider the Cauchy problem for Toda lattice (1) with the initial data
αn(0), βn(0), n ∈ Z. Assume that we also know the solutions β0(t), β1(t) for all t ∈ [0, T )
of this problem; we assume that these two functions are infinitely differentiable. To find
its complete solution, one can apply the following procedure.

1) Using the initial data, consider the matrix J(0) (3) and find its matrix spectral
measure dρ(λ; 0) and the corresponding initial moments

(41) sn(α, β; 0) =

∫

R

λndρα,β(λ; 0), α, β = 0, 1; sn(0) =

∫

R

λndρ(λ; 0), n ∈ N0.

2) Using formulas (35), (36), (37) we recursively find the moments sn(α, β; t) for
t > 0 using the initial identities (41).

3) For fixed t ∈ (0, T ), consider the space L2(C2,R, dρ(λ; t)) and apply the Gramm-
Schmidt orthogonalization procedure to sequence (17) in this space. We calculate
the scalar product by means of identity (40) with the constructed above moments
sn(α, β; t). As a results, we get for n ∈ N0 the polynomials of the first kind,
Pn(λ; t), t ∈ [0, T ).

4) Using the obtained polynomials of the first kind, Pn(λ; t), and expressions (40)
for the scalar product in L2(C2,R, dρ(λ; t)) by means of formulas (14) we get the
a∗n(t), bn(t), i.e., the sought solution αn(t), βn(t), n ∈ Z, t ∈ [0, T ) (formulas (14)
should be rewritten with the use of the scalar products in L2(C2,R, dρ(λ; t))).

If we want to find a∗n(t) (i.e., αn(t), α−n−1(t)) or bn(t) (i.e., βn(t), β−n(t),) n ∈ N0,
it is necessary to know the first 4n+ 3 (or 4n+ 1) matrix moments.
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Remark 2. Of course, it is possible to give some formulas for the expression of αn(t), βn(t)
in terms of the matrix moments (similar to the classical determinant formulas for ele-
ments of the Jacobi matrix in terms of the ordinary power moments, see e.g. [1], [9],
Supplements).

It is useful to illustrate this moment approach to Cauchy problem for semi-infinite
Toda lattice when the equations of type (23), (28) are solvable (see [6], Section 2).

So, we have the Toda lattice (1), but now n ∈ N0 and we assume that α−1(t) = 0,
t ∈ [0, T ); the Cauchy problem is standard: the initial data αn(0), βn(0), n ∈ N0, is given.
It is necessary to find the solution αn(t), βn(t), n ∈ N0 for t ∈ [0, T ).

For such a problem, the role of the block Jacobi matrix J(t) (3) plays the classi-
cal Jacobi matrix J(t) with (βn(t))

∞
n=0 on the main diagonal and (αn(t))

∞
n=0 on two

neighboring diagonals. Instead of the space l2, we have the usual space ℓ2 of sequences
f = (fn)

∞
n=0, fn ∈ C; instead of the matrix spectral measure there appears the scalar

spectral measure dρ(λ; t).
Instead of the matrix Weyl function, we have ordinary Weyl function m(z; t) which is

a solution of the following differential equation (see [6], (15)):

ṁ(z; t) = (z − β0(t))m(z; t) + 1, z ∈ C \ R, t ∈ [0, T ),

m(z; t) =

∫

R

1

λ− z
dρ(λ; t) (see also [6], Section 6).

(42)

It is easy to calculate that the equation (42), in terms of the moments of the measure
dρ(λ; t), is equivalent to the following recurrence equalities of type (35):

(43) sn+1(t) = ṡn(t) + β0(t)sn(t), n ∈ N0, t ∈ [0, T ); sn(t) =

∫

R

λndρ(λ; t).

We get from (43): ∀t ∈ [0, T ) that

(44) s0(t) = 1, s1(t) = β0(t), s2(t) = β̇0(t) + β2
0(t), s3(t) = β̈0(t) + . . . , . . .

We can apply, in this case, the approach of Theorem 2: it is necessary to find sn(t)
recursively from (43), (44) with the “initial conditions”

(45) sn(0) =

∫

R

λndρ(λ; 0), n ∈ N0,

where dρ(λ; 0) is the initial spectral measure of the Jacobi matrix J(0) constructed from
the initial data αn(0), βn(0), n ∈ N0. To satisfy conditions (45), it is necessary to take the
corresponding function β0(t) with proper values of the derivatives ( dm

dtm
β0)(0),m ∈ N0).

On the other hand, in our case the spectral measure dρ(λ; t) and the function β0(t)
can be calculated as follows: according to [6], Section 2, formulas (35), (36), we have

dρ(λ; t) = e−
∫

t

0
β0(s) dseλtdρ(λ; 0),

β0(t) =
(∫

R

eλtdρ(λ; 0)
)−1

∫

R

λeλtdρ(λ; 0), λ ∈ R, t ∈ [0, T ).

One can check that this spectral measure is defined uniquely by the recurrence proce-
dure described above and the initial conditions (45).
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