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THE NEVANLINNA-TYPE FORMULA FOR THE MATRIX

HAMBURGER MOMENT PROBLEM

S. M. ZAGORODNYUK

Abstract. In this paper we obtain a Nevanlinna-type formula for the matrix Ham-
burger moment problem. We only assume that the problem is solvable and has more

than one solution. We express the matrix coefficients of the corresponding linear
fractional transformation in terms of the prescribed moments. Necessary and suffi-
cient conditions for the determinacy of the moment problem in terms of the given

moments are obtained.

1. Introduction

Recall that the matrix Hamburger moment problem consists of finding a left-continuous
non-decreasing matrix function M(x) = (mk,l(x))

N−1
k,l=0 on R, M(−∞) = 0, such that

(1)

∫

R

xndM(x) = Sn, n ∈ Z+,

where {Sn}
∞
n=0 is a prescribed sequence of Hermitian (N × N) complex matrices (mo-

ments), N ∈ N. The moment problem (1) is said to be determinate if it has a unique
solution and indeterminate in the opposite case.

Set

(2) Γn =




S0 S1 . . . Sn

S1 S2 . . . Sn+1

...
...

. . .
...

Sn Sn+1 . . . S2n


 , n ∈ Z+.

It is well known that the following condition

(3) Γn ≥ 0, n ∈ Z+,

is necessary and sufficient for the solvability of the moment problem (1).
In the scalar case, a description of all solutions of the moment problem (1) can be

found, e.g., in [1], [2] for the nondegenerate case, and in [3] for the degenerate case.
The matrix moment problem (1) was introduced in 1949 by Krein [4], and he described

all solutions in the case when the corresponding J-matrix defines a symmetric operator
with maximal defect numbers. This result appeared without proof in [5]. Berezansky in
1965 proved the main fact in this theory of Krein: the convergence of the series from the
polynomials of the first kind, even for the operator moment problem [2, Ch. 7, Section 2].
Under similar conditions, some descriptions of solutions were obtained by Kovalishina [6],
by Lopez-Rodriguez [7], and by Dyukarev [8]. The above-mentioned descriptions were
stated in terms of matrix linear fractional transformations of parameters from some sets
of analytic functions (Nevanlinna-type formulas).
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Under a condition of strict positivity Γn ≥ δnI(n+1)N , δn > 0, ∀n ∈ Z+, the matrix
Hamburger moment problem (1) was studied by Ilmushkin and Aleksandrov [9], [10] (even
for the operator Hamburger moment problem). A Nevanlinna-type formula was stated
there. However the proof was not complete, since the formula connecting symmetric
functions of the corresponding symmetric operator and solutions of the moment problem
was stated without proof in [10, formula (2.3)] and referred papers [9, Theorem 2], [11,
Theorem 1]. Moreover, it was stated without proof that the latter formula holds true for
the general case [9, pp. 77–78].

Probably a first description of all solutions of the operator Hamburger moment prob-
lem was given by Kheifets [12]. No additional assumptions were assumed. The well-
known abstract interpolation problem (AIP), introduced by Katsnelson, Kheifets and
Yuditskii, was used. This description was not given by a Nevanlinna-type formula and
it had a more complicated structure

(4)

∫ ∞

−∞

σ(dx)

x− z
= i

1 + w(ζ)

1− w(ζ)
, z = i

1 + ζ

1− ζ
,

(5) w = s0 + s2(1N2
− ωs)−1ωs1,

where σ(dx) is a solution of the moment problem, S =

(
s s1
s2 s0

)
is the scattering

function of the AIP, and ω(ζ) is an arbitrary analytic operator-valued contractive function
on D, ω(ζ) : N1 → N2 (N1,N2 be some Hilbert spaces). For details we refer to the
paper [12]. We do not see an easy way to simplify the description (4)–(5) to get a
Nevanlinna-type formula.

The operator Hamburger moment problem was studied by Derkach [13]. He con-
sidered another version of the abstract interpolation problem, different from the AIP
of Katsnelson, Kheifets and Yuditskii, and used generalized resolvents to obtain the
Nevanlinna-type formula in the completely indeterminate case.

In [14] we presented an analytic description of all solutions of the matrix Hamburger
moment problem (1) (under condition (3)) in terms of the generalized resolvents.

For a recent discussion on the truncated matrix Hamburger moment problems we refer
to the paper [15] and references therein. It is worth mentioning that for the truncated
moment problems much is done for the degenerate case, as well.

The main aim of our present investigation is to obtain a Nevanlinna-type formula for
the moment problem (1). We only assume that condition (3) holds and the moment
problem (1) is indeterminate. We express the matrix coefficients of the corresponding
linear fractional transformation in terms of the given moments.

The method of proof is a continuation of our ideas in [14]. Our constructions are
performed in an abstract Hilbert space, close to the ideas in [16], [17]. It turned out that
it is more convenient to use the Cayley transformation V of the corresponding symmetric
operator A, rather than the operator A itself. We used important results of Chumakin
on the generalized resolvents of isometric operators [18]. Also we used the Gram-Schmidt
orthogonalization procedure several times to obtain some orthonormal bases. Observe
that the orthogonalization procedures do not correspond to the usual orthogonalization
of powers 1, x, x2, . . . , even in the scalar case (N = 1). The Frobenius formula allowed
us to obtain the desired Nevanlinna-type formula.

Some necessary and sufficient conditions for the determinacy of the moment prob-
lem (1) in terms of the prescribed moments are given, as well (Theorem 1). The equiva-
lence (A)⇔(B) in Theorem 1, was obtained by Krein in [4, p. 58], see also [5, Theorem 3].
A method for calculation of the defect numbers and the corresponding necessary and suf-
ficient conditions for the determinacy of the moment problem (1) were also given by Krein
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in [4, p. 58]. Some sufficient conditions for the determinacy of the matrix Hamburger
moment problem were given by Berg in [19, Theorem 3.6, Corollary 3.7].
Notations. As usual, we denote by R,C,N,Z,Z+ the sets of real numbers, complex
numbers, positive integers, integers, non-negative integers, respectively; C+ = {z ∈ C :
Im z > 0}, D = {z ∈ C : |z| < 1}, T = {z ∈ C : |z| = 1}. The notation k ∈ 0, ρ means
that k ∈ Z+, k ≤ ρ, if ρ < ∞; or k ∈ Z+, if ρ = ∞. The set of all complex matrices
of size (m × n) we denote by Cm×n, m,n ∈ N. If M ∈ Cm×n then MT denotes the
transpose of M , and M∗ denotes the complex conjugate of M . The identity matrix from
Cn×n we denote by In, n ∈ N; I∞ = (δk,l)

∞
k,l=0, δk,l is Kronecker’s delta. If a set S has

a finite number of elements, then its number of elements we denote by card(S). If a set
S has an infinite number of elements, then card(S) := ∞.

For a separable Hilbert space H we denote by (·, ·)H and ‖ · ‖H the scalar product and
the norm in H, respectively. The indices may be omitted in obvious cases.

For a linear operator A in H we denote by D(A) its domain, by R(A) its range, and
by A∗ we denote its adjoint if it exists. If A is invertible, then A−1 means its inverse. If
A is closable, then A means its closure. If A is bounded, then ‖A‖ stands for its operator
norm. For a set M ⊆ H, we denote by M the closure of M in the norm of H. By LinM
and spanM we denote the linear span of M and the closed linear span of M in the norm
of H, respectively.

By EH we denote the identity operator in H, i.e. EHx = x, x ∈ H. Let H1 be a
subspace of H. By PH1

= PH
H1

we denote the operator of the orthogonal projection on
H1 in H.

If A is symmetric, we set Rz = Rz(A) = (A− zEH)−1, z ∈ C\R. If V is isometric, we
set Rζ = Rζ(V ) = (EH − ζV )−1, ζ ∈ C\T.

2. The matrix Hamburger moment problem: the determinacy and a

Nevanlinna-type formula

Let the matrix Hamburger moment problem (1) be given and condition (3) hold. Set

(6) Γ = (Sk+l)
∞
k,l=0 =




S0 S1 . . . Sn . . .

S1 S2 . . . Sn+1 . . .
...

...
. . .

... . . .

Sn Sn+1 . . . S2n . . .
...

...
...

...
. . .



.

The matrix Γ is a semi-infinite block matrix. It may be viewed as a usual semi-infinite
matrix, as well. Let

(7) Γ = (Γn,m)∞n,m=0, Γn,m ∈ C,

and
Sn = (sk,ln )N−1

k,l=0, sk,ln ∈ C, n ∈ Z+.

Notice that

(8) ΓrN+j,tN+n = s
j,n
r+t, 0 ≤ j, n ≤ N − 1; r, t ∈ Z+.

We need here some constructions from [14]. By Theorem 1 in [14] (and this construction
is well known), there exist a Hilbert space H, and a sequence {xn}

∞
n=0 in H, such that

span{xn}
∞
n=0 = H, and

(9) (xn, xm)H = Γn,m, n,m ∈ Z+.

We emphasize that such a space H and a sequence {xn}
∞
n=0 in H are not unique. We

choose an arbitrary such a space H and a sequence {xn}
∞
n=0 in H, and fix them in the

rest of the paper.
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Set L := Lin{xn}
∞
n=0, and consider the following operator with the domain L:

(10) Ax =

∞∑

k=0

αkxk+N , x ∈ L, x =

∞∑

k=0

αkxk, αk ∈ C.

This operator is correctly defined and symmetric.

Let Â be an arbitrary self-adjoint extension of A in a Hilbert space Ĥ ⊇ H. Let

Rz(Â) = (Â − zE
Ĥ
)−1 be the resolvent of Â and {Êλ}λ∈R be the orthogonal left-

continuous resolution of the identity of Â. Recall that the operator-valued function

Rz = P Ĥ
H Rz(Â) is called a generalized resolvent of A, z ∈ C\R. The function Eλ =

P Ĥ
H Êλ, λ ∈ R, is a spectral function of a symmetric operator A. The following relation

holds [20, p. 377–378]:

(11) (Rzf, g)H =

∫

R

1

λ− z
d(Eλf, g)H , f, g ∈ H, z ∈ C\R.

By the Stieltjes-Perron inversion formula there exists a one-to-one correspondence be-
tween the set of (left-continuous) spectral functions of A and the set of its generalized
resolvents. The generalized resolvent and the spectral function related by (11) are said
to belong to each other [20, p. 378].

By Theorem 2 in [14], all solutions of the moment problem (1) have the following
form:

(12) M(λ) = (mk,j(λ))
N−1
k,j=0, mk,j(λ) = (Eλxk, xj)H ,

where Eλ is a spectral function of the operator A. Moreover, the correspondence between
all spectral functions of A and all solutions of the moment problem is bijective.

By (11) and (12) we conclude that the formula

(13)

∫

R

1

λ− z
dmk,j(λ) = (Rzxk, xj)H , 0 ≤ k, j ≤ N − 1, z ∈ C\R,

establishes a one-to-one correspondence between all generalized resolvents of A and all
solutions of the moment problem (1).

Let B be a closed symmetric operator in the Hilbert space H, with the domain D(B),

D(B) = H. Set ∆B(λ) = (B − λEH)D(B), and Nλ = Nλ(B) = H ⊖∆B(λ), λ ∈ C\R.
Consider an arbitrary bounded linear operator C, which maps Ni into N−i. For

(14) g = f + Cψ − ψ, f ∈ D(B), ψ ∈ Ni,

we set

(15) BCg = Bf + iCψ + iψ.

The operator BC is said to be a quasiself-adjoint extension of the operator B, defined by
the operator C. By Theorem 4 in [14], the following relation:

(16)

∫

R

1

x− λ
dmk,j(x) = ((AF (λ) − λEH)−1xk, xj)H , λ ∈ C+,

establishes a bijective correspondence between all solutions of the moment problem (1)
and all analytic in C+ operator-valued functions F (λ), which values are contractions
which map Ni(A) into N−i(A). Here AF (λ) is the quasiself-adjoint extension of A defined
by F (λ).
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Set

(17)

y−k := (A− iEH)xk = xk+N − ixk,

y+k := (A+ iEH)xk = xk+N + ixk, k ∈ Z+,

L− := Lin{y−k }
∞
k=0 = (A− iEH)D(A), L+ := Lin{y+k }

∞
k=0 = (A+ iEH)D(A),

H− := L− = (A− iEH)D(A), H+ := L+ = (A+ iEH)D(A).

Let us apply the Gram-Schmidt orthogonalization procedure to the sequence {y−k }
∞
k=0,

removing the linear dependent elements if they appear. We shall get a sequence A
− =

{u−k }
τ−−1
k=0 , 0 ≤ τ− ≤ +∞. The case τ− = 0 means that y−k = 0, ∀k ∈ Z+, and A

− is an
empty set.

In a similar manner, we apply the Gram-Schmidt orthogonalization procedure to the

sequence {y+k }
∞
k=0, and obtain a sequence A

+ = {u+k }
τ+−1
k=0 , 0 ≤ τ+ ≤ +∞. The case

τ+ = 0 means that y+k = 0, ∀k ∈ Z+, and A
− = ∅.

If not empty, the set A± forms an orthonormal basis in H±, respectively. Denote by
ν±(k) the index of the last used y±j for the construction of u±k . In other words, ν±(k) is
the number of a step in the Gram-Schmidt orthogonalization procedure, counting from
zero and including steps which produced linearly dependent elements, in which u±k was

built. Notice that, by the construction, each element u±k , k ∈ 0, τ± − 1, is a linear

combination of y±j , 0 ≤ j ≤ ν±(k), respectively. Let

(18) u±k =

ν±(k)∑

j=0

ξ±k;jy
±
j , ξ±k;j ∈ C, k ∈ 0, τ± − 1.

Observe that by (9) we may write

(19)

(xn, u
±
k )H =

ν±(k)∑

j=0

ξ±k;j(xn, y
±
j )H =

ν±(k)∑

j=0

ξ±k;j(xn, xj+N ± ixj)H

=

ν±(k)∑

j=0

ξ±k;j(Γn,j+N ± iΓn,j), n ∈ Z+, k ∈ 0, τ± − 1.

By representation (17), the condition τ− = 0 (τ+ = 0) is equivalent to the condition
D(A) = {0}, and therefore to the condition H = {0}. By (8), (9), the condition H = {0}
is equivalent to the condition Sn = 0, ∀n ∈ Z+.

We emphasize that the numbers ξk;j in (18) can be computed explicitly by using
relations (8), (9). Moreover, the processes of orthogonalization which appear in this
paper are based on the use of relations (8), (9). In fact, any norm or any scalar product
which appear during orthogonalization is expressed in terms of the prescribed moments.

Theorem 1. Let the matrix Hamburger moment problem (1) be given and condition (3),
with Γn from (2), be satisfied. Let the operator A in the Hilbert space H be constructed
as in (10). The following conditions are equivalent:

(A) The moment problem (1) is determinate;
(B) One of the defect numbers of A is equal to zero (or the both of them are zero);
(C) Sr = 0, ∀r ∈ Z+, or, ∃Sl 6= 0, l ∈ Z+, and one of the following conditions holds

(or the both of them hold):
(a) For each n, 0 ≤ n ≤ N − 1, the following equality holds:

(20) Γn,n =
τ−−1∑

k=0

∣∣∣∣∣

ν−(k)∑

j=0

ξ−k;j(Γn,j+N − iΓn,j)

∣∣∣∣∣

2

;
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(b) For each n, 0 ≤ n ≤ N − 1, the following equality holds:

(21) Γn,n =

τ+−1∑

k=0

∣∣∣∣∣

ν+(k)∑

j=0

ξ+k;j(Γn,j+N + iΓn,j)

∣∣∣∣∣

2

.

Here Γ·,· are from (7), and ξ±·,· are from (18).

If the above conditions are satisfied then the unique solution of the moment problem (1)
is given by the following relation:

(22) M(t) = (mk,j(t))
N−1
k,j=0, mk,j(t) = (Etxk, xj)H ,

where Et is the unique left-continuous spectral function of the operator A.

Proof. (A)⇒(B). If the both defect numbers are greater then zero, then we can choose
unit vectors u1 ∈ Ni(A) and u2 ∈ N−i(A). We set

F (λ)(cu1 + u) = cu2, c ∈ C, u ∈ Ni(A)⊖ Lin{u1}.

On the other hand, we set F̃ (λ) ≡ 0. Functions F (λ) and F̃ (λ) produce different solutions
of the moment problem (1) by relation (16).

(B)⇒(A). If one of the defect numbers is zero, then the only admissible function F (λ)
in relation (16) is F (λ) ≡ 0.

(B)⇒(C). If H = {0} then condition (C) holds. Let H 6= {0}.
Notice that by (9) and (19), condition (C),(a) may be written as

‖xn‖
2 =

τ−−1∑

k=0

∣∣(xn, u−k )H
∣∣2 , n = 0, 1, . . . , N − 1,

while condition (C),(b) is equivalent to

‖xn‖
2 =

τ+−1∑

k=0

∣∣(xn, u+k )H
∣∣2 , n = 0, 1, . . . , N − 1.

Therefore condition (C),(a) is equivalent to relations

(23) xn ∈ H−, n = 0, 1, . . . , N − 1,

and condition (C),(b) is equivalent to condition

(24) xn ∈ H+, n = 0, 1, . . . , N − 1.

By the formula (37) in [14, p. 278], each element of L belongs to the linear span of

elements {xn}
N−1
n=0 , {y

−
k }

∞
k=0, as well as to the linear span of elements {xn}

N−1
n=0 , {y

+
k }

∞
k=0.

Consequently, condition (23) is equivalent to the condition

(25) H = H−,

and condition (24) is equivalent to the condition

(26) H = H+.

Since one of the defect numbers is equal to zero then either (25), or (26) holds.
(C)⇒(B). If H = {0} then condition (B) holds. Let H 6= {0}. If condition (C),(a)

(condition (C),(b)) holds, then by the above considerations before (25) we obtain H =
H− (respectively H = H+). Therefore one of the defect numbers of A is equal to zero.

The last assertion of the theorem follows from formula (12). �
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We shall continue our considerations started before the statement of Theorem 1. In
what follows we assume that the moment problem (1) is indeterminate. Let the defect
numbers of A are equal to δ = δ(A) = dimH ⊖ H−, and ω = ω(A) = dimH ⊖ H+,
δ, ω ≥ 1.

For simplicity of notations we set τ := τ−, and

uk := u−k , k ∈ 0, τ − 1.

Let us apply the Gram-Schmidt orthogonalization procedure to the vectors

{uk}
τ−1
k=0, {xn}

N−1
n=0 .

Notice that the elements {uk}
τ−1
k=0 are already orthonormal. Then we get an orthonormal

set in H

Au := {uk}
τ−1
k=0 ∪ {u′l}

δ−1
l=0 .

Notice that A′ := {u′l}
δ−1
l=0 is an orthonormal basis in H ⊖H−.

Set

(27) V = VA = (A+ iEH)(A− iEH)−1 = EH + 2i(A− iEH)−1.

The operator V is a closed isometric operator with the domain H− and the range H+.
Set

vk := V uk, k ∈ 0, τ − 1.

Observe that by (18) we may write

vk =

k∑

j=0

ξ−k;jV y
−
j =

k∑

j=0

ξ−k;jy
+
j , k ∈ 0, τ − 1.

Notice that

A
−
v := {vk}

τ−1
k=0

is an orthonormal basis in H+.
Let us apply the Gram-Schmidt orthogonalization procedure to the vectors

{vk}
τ−1
k=0, {xn}

N−1
n=0 .

The elements {vk}
τ−1
k=0 are already orthonormal. Then we get another orthonormal basis

in H

Av := {vk}
τ−1
k=0 ∪ {v′l}

ω−1
l=0 .

Observe that A′
v := {v′l}

ω−1
l=0 is an orthonormal basis in H ⊖H+.

Let Rλ be an arbitrary generalized resolvent of the operator A. Let us check that

(28)
(Rzxk, xj)H =

1

z2 + 1
(Rzy

−
k , y

−
j )H −

1

z2 + 1
(xk+N , xj)H −

z

z2 + 1
(xk, xj)H ,

z ∈ C+\{i}, 0 ≤ k, j ≤ N − 1.

In fact, let Ã ⊇ A be a self-adjoint operator in a Hilbert space H̃ ⊇ H, such that

P H̃
H Rz(Ã) = Rz, z ∈ C\R. Then

(29)

(Rzxk, xj)H = (Rz(Ã)(A− iEH)−1(A− iEH)xk, xj)H̃

= (Rz(Ã)Ri(Ã)y
−
k , xj)H̃ =

1

z − i
((Rz(Ã)−Ri(Ã))y

−
k , xj)H̃

=
1

z − i
(Rz(Ã)y

−
k , xj)H̃ −

1

z − i
(xk, xj)H̃ ;
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(30)

(Rz(Ã)y
−
k , xj)H̃ = (Rz(Ã)y

−
k , Ri(Ã)y

−
j )H̃

= (R−i(Ã)Rz(Ã)y
−
k , y

−
j )H̃ = −

1

i+ z
((R−i(Ã)−Rz(Ã))y

−
k , y

−
j )H̃

= −
1

i+ z
(y−k , xj)H̃ +

1

i+ z
(Rzy

−
k , y

−
j )H̃ .

By substitution of the last expression for (Rz(Ã)y
−
k , xj)H̃ into the right-hand side of (29),

we get relation (28).

Let Û ⊇ V be an arbitrary unitary extension of V in a Hilbert space Ĥ ⊇ H. Re-
call [18] that the following function:

(31) Rζ(V ) = P Ĥ
H (E

Ĥ
− ζÛ)−1, ζ ∈ C\T,

is said to be a generalized resolvent of V .
Observe that the generalized resolvents of V and A are connected by the following

relation [21, pp. 370–371]:

(32) (1− ζ)Rζ(V ) = EH + (z − i)Rz(A), z ∈ C+, ζ =
z − i

z + i
∈ D.

(The latter relation follows from the fact that the usual resolvents of V and A are related

by a similar relation, and then one applies the projection operator P Ĥ
H to the both sides

of that relation.) Correspondence (32) between all generalized resolvents of V and all
generalized resolvents of A is bijective. Then

(33) Rz(A) =
2i

z2 + 1
R z−i

z+i
(V )−

1

z − i
EH , z ∈ C+\{i}.

By (33),(28) and (9) we get

(34)
(Rzxk, xj)H =

2i

(z2 + 1)2
(R z−i

z+i
(VA)y

−
k , y

−
j )H −

1

(z2 + 1)(z − i)
ϕj,k(z),

z ∈ C+\{i}, 0 ≤ k, j ≤ N − 1,

where

(35)
ϕj,k(z) :=Γk+N,j+N − iΓk+N,j − iΓk,j+N + Γk,j + (z − i)Γk+N,j + z(z − i)Γk,j

=Γk+N,j+N − iΓk,j+N + (z − 2i)Γk+N,j + (z2 − iz + 1)Γk,j , z ∈ C+.

Observe that an arbitrary generalized resolvent Rζ of the closed isometric operator VA
has the following representation [18, Theorem 3]:

(36) Rζ = [E − ζ(V ⊕ Φζ)]
−1
, ζ ∈ D.

Here Φζ is an analytic in D operator-valued function which values are linear contractions
from H ⊖H− into H ⊖H+. The correspondence between all such functions Φζ and all
generalized resolvents of V is bijective.

By (34), (36) we get

(37)

(Rzxk, xj)H =
2i

(z2 + 1)2

([
E −

z − i

z + i
(V ⊕ Φ z−i

z+i
)

]−1

y−k , y
−
j

)

H

−
1

(z2 + 1)(z − i)
ϕj,k(z), z ∈ C+\{i}, 0 ≤ k, j ≤ N − 1,

where Φ· is an analytic in D operator-valued function which values are linear contractions
from H ⊖H− into H ⊖H+.
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By (13) and (37) we conclude that the formula

(38)

∫

R

1

λ− z
dmk,j(λ) =

2i

(z2 + 1)2

([
E −

z − i

z + i
(V ⊕ Φ z−i

z+i
)

]−1

y−k , y
−
j

)

H

−
1

(z2 + 1)(z − i)
ϕj,k(z), 0 ≤ k, j ≤ N − 1, z ∈ C+\{i},

establishes a one-to-one correspondence between all analytic in D operator-valued func-
tions Φ·, which values are linear contractions from H⊖H− into H⊖H+, and all solutions
M(λ) = (mk,j(λ))

N−1
k,j=0 of the moment problem (1).

It turns out that formula (38) is more convenient then formula (16), in order to obtain
a Nevanlinna-type formula for the moment problem (1).

Denote by M1,ζ(Φ) the matrix of the operator EH −ζ(V ⊕Φζ) in the basis Au, ζ ∈ D.
Here Φζ is an analytic in D operator-valued function, which values are linear contractions
from H ⊖H− into H ⊖H+. Then

M1,ζ(Φ) =

(
A0,ζ B0,ζ(Φ)
C0,ζ D0,ζ(Φ)

)
,

where

(39)

A0,ζ =
(
([EH − ζ(V ⊕ Φζ)]uk, uj)H

)τ−1

j,k=0

=
(
(uk − ζV uk, uj)H

)τ−1

j,k=0
= Iτ − ζ

(
(vk, uj)H

)τ−1

j,k=0
,

B0,ζ(Φ) =
(
([EH − ζ(V ⊕ Φζ)]u

′
k, uj)H

)
0≤j≤τ−1, 0≤k≤δ−1

=
(
(u′k − ζΦζu

′
k, uj)H

)
0≤j≤τ−1, 0≤k≤δ−1

= −ζ
(
(Φζu

′
k, uj)H

)
0≤j≤τ−1, 0≤k≤δ−1

,

(40)

C0,ζ =
((

[EH − ζ(V ⊕ Φζ)]uk, u
′
j

)
H

)
0≤j≤δ−1, 0≤k≤τ−1

=
((
uk − ζV uk, u

′
j

)
H

)
0≤j≤δ−1, 0≤k≤τ−1

= −ζ
((
vk, u

′
j

)
H

)
0≤j≤δ−1, 0≤k≤τ−1

,

D0,ζ(Φ) =
((

[EH − ζ(V ⊕ Φζ)]u
′
k, u

′
j

)
H

)
0≤j≤δ−1, 0≤k≤δ−1

=
((
u′k − ζΦζu

′
k, u

′
j

)
H

)
0≤j≤δ−1, 0≤k≤δ−1

= Iδ − ζ
((

Φζu
′
k, u

′
j

)
H

)
0≤j≤δ−1, 0≤k≤δ−1

, ζ ∈ D.

Notice that matrices A0,ζ , C0,ζ , ζ ∈ D, can be calculated explicitly using relations (9)
and (8).

Denote by Fζ , ζ ∈ D, the matrix of the operator Φζ , acting from H⊖H− into H⊖H+,
with respect to the bases A′ and A

′
v

Fζ = (fζ(j, k))0≤j≤ω−1, 0≤k≤δ−1,

fζ(j, k) := (Φζu
′
k, v

′
j)H .

Then

Φζu
′
k =

ω−1∑

l=0

fζ(l, k)v
′
l, 0 ≤ k ≤ δ − 1,
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and

B0,ζ(Φ) = −ζ

(( ω−1∑

l=0

fζ(l, k)v
′
l, uj

)

H

)

0≤j≤τ−1, 0≤k≤δ−1

]

= −ζ

( ω−1∑

l=0

(
v′l, uj

)

H

fζ(l, k)

)

0≤j≤τ−1, 0≤k≤δ−1

, ζ ∈ D.

Set

(41) W :=
(
(v′l, uj)H

)
0≤j≤τ−1, 0≤l≤ω−1

.

Then

B0,ζ(Φ) = −ζWFζ , ζ ∈ D.

We may write

D0,ζ(Φ) = Iδ − ζ

(( ω−1∑

l=0

fζ(l, k)v
′
l, u

′
j

)

H

)

0≤j≤δ−1, 0≤k≤δ−1

= Iδ − ζ

( ω−1∑

l=0

(
v′l, u

′
j

)

H

fζ(l, k)

)

0≤j≤δ−1, 0≤k≤δ−1

, ζ ∈ D.

Set

(42) T :=
((
v′l, u

′
j

)
H

)
0≤j≤δ−1, 0≤l≤ω−1

.

Then

D0,ζ(Φ) = Iδ − ζTFζ , ζ ∈ D.

Thus, we may write

M1,ζ(Φ) =

(
A0,ζ −ζWFζ

C0,ζ Iδ − ζTFζ

)
, ζ ∈ D,

where A0,ζ , C0,ζ are given by (39), (40), and W,T are given by (41), (42).
Consider the block representation of the operator EH − ζ(V ⊕Φζ) with respect to the

decomposition H− ⊕ (H ⊖H−)

(43) EH − ζ(V ⊕ Φζ) =

(
A0,ζ B0,ζ(Φ)
C0,ζ D0,ζ(Φ)

)
, ζ ∈ D.

Of course, the matrices of operators A0,ζ , B0,ζ , C0,ζ , D0,ζ are matrices A0,ζ , B0,ζ , C0,ζ ,
D0,ζ , respectively. Observe that the matrix A0,ζ is invertible, since A0,ζ = PH−(EH −
ζV )PH− = EH− − ζPH−V PH− , is invertible, ζ ∈ D. Set

(44) V0 := PH−V PH− .

The matrix of V0 in the basis A− we denote by V

(45) V =
(
(vk, uj)H

)τ−1

j,k=0
.

Observe that using definitions of vk,uj , the elements of the matrix V can be calculated
explicitly by the prescribed moments.

We may write for the resolvent function of V0

(46) Rζ(V0) = A−1
0,ζ = EH− +

∞∑

k=1

V kζk, ζ ∈ D.

Then for the corresponding matrices we may write

(47) A−1
0,ζ = I∞ +

∞∑

k=1

Vkζ
k, ζ ∈ D,
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where

(48) Vk := V
k, k ∈ Z

+.

By the convergence in (47) we mean the convergence of the corresponding entries of
matrices.

Observe that the Frobenius formula for the inverse of the block matrix ([22, p. 59]) is
still valid for the block representations of bounded operators as in (43), if the following
operator

Hζ := D0,ζ − C0,ζA
−1
0,ζB0,ζ

has a bounded inverse. This can be verified by the direct multiplication of the corres-
ponding block representations. Notice that in our case Hζ has a bounded inverse. In
fact, we may write

(
EH− 0

−C0,ζA
−1
0,ζ EH⊖H−

)(
A0,ζ B0,ζ(Φ)
C0,ζ D0,ζ(Φ)

)
=

(
A0,ζ B0,ζ(Φ)
0 Hζ

)
.

Observe that
(

EH− 0
−C0,ζA

−1
0,ζ EH⊖H−

)−1

=

(
EH− 0

C0,ζA
−1
0,ζ EH⊖H−

)
.

Therefore the operator Q :=

(
A0,ζ B0,ζ(Φ)
0 Hζ

)
is invertible.

Suppose that there exists y ∈ H⊖H−, y 6= 0, such thatHζy = 0. Set u := −A−1
0,ζB0,ζy.

Then (
A0,ζ B0,ζ(Φ)
0 Hζ

)(
u

y

)
= 0.

This contradicts to the invertibility of Q. Since H−1
ζ acts in the finite-dimensional space

H ⊖H−, it is bounded.
Applying the Frobenius formula we get

(49) (EH − ζ(V ⊕ Φζ))
−1 =

(
A−1

0,ζ +A−1
0,ζB0,ζH

−1
ζ C0,ζA

−1
0,ζ ∗

∗ ∗

)
, ζ ∈ D,

where by stars ∗ we denote the blocks which are not of interest for us.
Denote by M2,ζ(Φ) the matrix of the operator (EH − ζ(V ⊕ Φζ))

−1 in the basis Au,
ζ ∈ D. Then
(50)

M2,ζ(Φ) =

(
A−1

0,ζ +A−1
0,ζB0,ζ(D0,ζ − C0,ζA

−1
0,ζB0,ζ)

−1C0,ζA
−1
0,ζ ∗

∗ ∗

)

=

(
A−1

0,ζ − ζA−1
0,ζWFζ(Iδ − ζTFζ + ζC0,ζA

−1
0,ζWFζ)

−1C0,ζA
−1
0,ζ ∗

∗ ∗

)
, ζ ∈ D.

Let {uj}
ρ−1
j=0 be a set of elements which were obtained by the Gram-Schmidt orthogo-

nalization of {y−k }
N−1
k=0 . Observe that ρ ≥ 1. In the opposite case we have y−k = 0,

0 ≤ k ≤ N − 1. By (38) we obtain that the moment problem (1) is determinate, what
contradicts to our assumptions. Set

H−
ρ := Lin{y−k }

N−1
k=0 = Lin{uj}

ρ−1
j=0 .

Consider the following operator:

Jζ := PH

H−
ρ
(EH − ζ(V ⊕ Φζ))

−1PH

H−
ρ
, ζ ∈ D,
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as an operator in the (finite-dimensional) Hilbert space H−
ρ . Its matrix in the basis

{uj}
ρ−1
j=0 we denote by Jζ . It is given by

Jζ = A1,ζ − ζA2,ζWFζ(Iδ − ζTFζ + ζC0,ζA
−1
0,ζWFζ)

−1C0,ζA3,ζ , ζ ∈ D.

Here A1,ζ is a matrix standing in the first ρ rows and the first ρ columns of the matrix

A−1
0,ζ ; A2,ζ is a matrix standing in the first ρ rows of the matrix A−1

0,ζ ; A3,ζ is a matrix

standing in the first ρ columns of the matrix A−1
0,ζ .

Consider the following operator from C
N to H−

ρ :

K
N−1∑

n=0

cn~en =

N−1∑

n=0

cny
−
n , cn ∈ C,

where ~en = (δn,0, δn,1, . . . , δn,N−1) ∈ C
N . Let K be the matrix of K with respect to the

orthonormal bases {~en}
N−1
n=0 and {uj}

ρ−1
j=0

(51) K =
(
(K~ek, uj)H

)
0≤j≤ρ−1, 0≤k≤N−1

=
((
y−k , uj

)
H

)
0≤j≤ρ−1, 0≤k≤N−1

.

By (38) we may write that

(52)

∫

R

1

λ− z
dmk,j(λ)

=
2i

(z2 + 1)2

(
PH

H−
ρ
[E − ζ(V ⊕ Φζ)]

−1
PH

H−
ρ
K~ek,K~ej

)
H
−

1

(z2 + 1)(z − i)
ϕj,k(z)

=
2i

(z2 + 1)2
(K∗JζK~ek, ~ej)CN −

1

(z2 + 1)(z − i)
ϕj,k(z),

0 ≤ k, j ≤ N − 1, z ∈ C+\{i}, ζ =
z − i

z + i
,

establishes a one-to-one correspondence between all analytic in D operator-valued func-
tions Φ·, which values are linear contractions from H⊖H− into H⊖H+, and all solutions
M(λ) = (mk,j(λ))

N−1
k,j=0 of the moment problem (1).

Observe that (K∗JζK~ek, ~ej)CN is the element in the j-th row and k-th column of the

matrix M3,ζ of the operator J1,ζ := K∗JζK in the basis {en}
N−1
n=0 . We may write

M3,ζ = K∗JζK

= K∗A1,ζK − ζK∗A2,ζWFζ(Iδ + ζ(C0,ζA
−1
0,ζW − T )Fζ)

−1C0,ζA3,ζK, ζ ∈ D.

Set
∆(z) := (ϕj,k(z))

N−1
j,k=0, z ∈ C+.

Then the following relation

(53)

∫

R

1

λ− z
dMT (λ)=

2i

(z2 + 1)2
K∗A1,ζK−

1

(z2 + 1)(z − i)
∆(z)

−
2i

(z2 + 1)2
ζK∗A2,ζWFζ(Iδ+ζ(C0,ζA

−1
0,ζW−T )Fζ)

−1C0,ζA3,ζK,

z ∈ C+\{i}, ζ =
z − i

z + i
,

establishes a one-to-one correspondence between all analytic in D, Cω×δ-valued func-
tions Fζ , which values are such that F ∗

ζ Fζ ≤ Iδ, and all solutions M(λ) of the moment

problem (1). Set

(54) A(z) = 2iK∗A1,ζK − (z + i)∆(z), B(z) = −2iζK∗A2,ζW,

(55) C(z) = ζ(C0,ζA
−1
0,ζW − T ), D(z) = C0,ζA3,ζK, z ∈ C+\{i}, ζ =

z − i

z + i
.
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Then the right-hand side of (53) becomes

1

(z2 + 1)2
A(z) +

1

(z2 + 1)2
B(z)Fζ(Iδ +C(z)Fζ)

−1
D(z).

Theorem 2. Let the matrix Hamburger moment problem (1) be given and condition (3),
with Γn from (2), be satisfied. Suppose that the moment problem is indeterminate. All
solutions of the moment problem (1) can be obtained from the following relation:

(56)

∫

R

1

λ− z
dMT (λ)

=
1

(z2 + 1)2
A(z) +

1

(z2 + 1)2
B(z)F(z)(Iδ +C(z)F(z))−1

D(z), z ∈ C+\{i},

where A(z), B(z), C(z), D(z) are analytic in C+, matrix-valued functions defined
by (54),(55), with values in CN×N , CN×ω, Cδ×ω, Cδ×N , respectively. Here F(z) is an
analytic in C+, Cω×δ-valued function which values are such that F(z)∗F(z) ≤ Iδ, ∀z ∈
C+. Conversely, each analytic in C+, Cω×δ-valued function such that F(z)∗F(z) ≤ Iδ,
∀z ∈ C+, generates by relation (56) a solution of the moment problem (1). The corres-
pondence between all analytic in C+, Cω×δ-valued functions such that F(z)∗F(z) ≤ Iδ,
∀z ∈ C+, and all solutions of the moment problem (1) is bijective.

Proof. The proof follows from the preceding considerations. �
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