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ON THE RANGE AND KERNEL OF TOEPLITZ AND LITTLE
HANKEL OPERATORS

NAMITA DAS AND PABITRA KUMAR JENA

ABSTRACT. In this paper we study the interplay between the range and kernel of
Toeplitz and little Hankel operators on the Bergman space. Let Ty denote the
Toeplitz operator on L2 (D) with symbol ¢ € L>°(D) and S, denote the little Hankel
operator with symbol ¢ € L (D). We have shown that if Ran (Ty) C Ran (Sy)
then ¢ = 0 and find necessary and sufficient conditions for the existence of a posi-
tive bounded linear operator X defined on the Bergman space such that Ty X = Sy,
and Ran (Sy) C Ran (Ty). We also obtain necessary and sufficient conditions on
9 € L>(D) such that Ran (Ty) is closed.

1. INTRODUCTION

Let dA(z) be the Lebesgue area measure on the open unit disk D normalized so
that the measure of the disk D equals 1. The Bergman space L2(D) is the Hilbert
space consisting of analytic functions on D that are also in L?(ID,dA). For z € D, the
Bergman reproducing kernel is the function K, € L2(D) such that f(z) = (f, K,) for
every f € L2(D). The normalized reproducing kernel k, is the function HII((ﬁ Here
the norm || - |2 and the inner product (,) are taken in the space L?(ID,dA). For any
n>0,n €Z, let e,(z) = v/n+ 12" The sequence {e,, }°>2, forms an orthonormal basis
for L2(D). Let

1 oo

K(z,w) = K,(w) = e = T;)en(z)en(w).
For ¢ € L>°(D), the Toeplitz operator T with symbol ¢ is the operator on L2(ID) defined
by Tsf = P(¢f); here P is the orthogonal projection from L?(D,dA) onto LZ(D). For
¢ € L>°(D), the big Hankel operator Hys is a mapping from L2Z(D) into (Li(ﬂ))))l
defined by Hyf = (I — P)(¢f) for f € L2(D). Let L2(D) be the space of conjugate
analytic functions in L2(ID, dA). Clearly, L2(D) = {f : f € L2(D)} is closed in L*(D, dA).
For ¢ € L>(D), the little Hankel operator hy is a mapping from L2 (D) into L2 (D) defined
by hef = P(¢f), f € LZ(D) where P is the orthogonal projection from L?*(D,dA) onto
L2(D).

There are also many equivalent ways of defining little Hankel operators. For example,
define the map Sy from L2(D) into L2(D) by Ssf = PJ(¢f), where J is the self-
adjoint, unitary mapping from L?(D, dA) into itself given by Jh(z) = h(Z). Notice that
JS¢ = hg. Thus Sy is unitarily equivalent to hg.

Let H>°(D) be the space of bounded analytic functions on D. Let Aut(D) be the
Lie group of all automorphisms (biholomorphic mappings) of D. We can define for each
a € D, an automorphism ¢, in Aut(D) such that

(i) (¢a 0 ¢a)(2) = 2;
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(ii) ¢a(0) = a, ¢a(a) = 0;

(iil) ¢4 has a unique fixed point in D.
In fact, ¢4(2) = == for all a and z in D. An easy calculation shows that the derivative
of ¢, at z is equal to —k,(2). It follows that the real Jacobian determinant of ¢, at z

_lal? 2
is Jy,(2) = lka(2)]? = (‘11_‘7;'2 Let h>°(ID) be the space of bounded harmonic functions

on D. Then A% (D) C L*>(D). For H a nonzero complex Hilbert space, let £L(H) denote
the algebra of all bounded linear operators from the Hilbert space H into itself. Hence
L(L2(D)) is the space of all bounded linear operators from L2 (D) into itself. Let C(D) be
the algebra of complex-valued, continuous functions on D, the Euclidean closure of D and
Co(D) be the subalgebra of C(D) consisting of functions f with f(z) — 0 as |z| — 1.
In this paper we study the interplay between the range and kernel of little Hankel and
Toeplitz operators defined on the Bergman space. In Section 2, we show that Ran (Sy) =
L2(D) if and only if S, is bounded below and ker(Sg) = {0} if and only if ker(Sf)): {0}.
Further if Sy is normal then ker(Sy) = ker(Sy+) = ker(SgSy+) where ¢t (z) = ¢(z). We
then establish that if TySy, TyS7, T3S, are positive then ker(Sy,) = {0} implies Ty > 0
and ker(Ty) = {0} implies Sy, > 0 and if further T,S, is invertible then Ty > 0 and
Sy > 0. Thus if we know a priori that the products Ty Sy, TSy, TSy are positive and if
the kernel of the operators 7§, Sy are trivial then the operators Ty, Sy are positive. This
gives us the motivation to investigate when the products T3Sy and Sy Ty are positive.
We then proceed to show that there is no nonzero Toeplitz and Hankel operators T
such that T* is compact for some k € Z, and ker(T') = ker(7?) and Ran (T') = Ran (T?).
On the other hand, if there is a little Hankel operator Sy such that sz is compact for
some k € Z and ker(Sy) = ker(S7) and Ran (Sy) = Ran (S}) then the symbol ¢ admits

a particular form. More precisely, in this case 1) = ¢ + X where x € (L2)+ N L>*(D) and
¢ is a linear combination of the Bergman kernels and some of their derivatives.

We further establish that there is no nonzero little Hankel operator whose range con-
tains the range of a Toeplitz operator and we obtain sufficient conditions on ¢ and ¥ such
that ker(Ty) C ker(Sy). We obtain conditions on ¢,y € L>(D) such that T, commutes
with Sy and showed that if Sy intertwines Tj and T and ker(Sy) is trivial then Ty and
T are unitarily equivalent.

In Section 3, we show that if ¢ € L*(D) and [[¢[lcc < 1 then ker(T;_gz) = {0} if
and only if T7,, converges to 0 weakly. We further prove that if ||¢||cc < 1 then T7,,

2

2

converges to 0 in norm if and only if ker(T;_3z) = {0} and Ran (1) is closed. We find
necessary and sufficient conditions for the existence of a positive bounded linear operator
X defined on the Bergman space such that Ty X = Sy and Ran (Sy) C Ran (T};). We
also obtain necessary and sufficient conditions on ¢ € L°(D) such that Ran (T}) is
closed.

2. KERNEL OF LITTLE HANKEL OPERATORS

Let T denote the unit circle in the complex plane C. It is well known in case of Hardy
space [20] that the Hankel operator S has a nontrivial kernel if and only if the range of S is
not dense and in this case the symbol of the Hankel operator S is of the form zuh where
u is an inner function in H*°(T) and h € H°(T). These results play important roles
in deriving the algebraic and asymptotic properties of Toeplitz and Hankel operators.
In this paper we investigate whether similar results are possible for operators on the
Bergman space.

In the following lemma, we show that Ran (Sg) = L2(D) if and only if S, is bounded
below and ker(Sy) is trivial if and only if ker(Si) is trivial.
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Lemma 2.1. Let Sy be a little Hankel operator on L2 (D) with symbol ¢ € L>°(D). Then
the following holds:
(a): ker(Sy) = {0} if and only if ker(S3) = {0}.
(b): Ran (Sy) = L2(D) if and only if Sy is bounded below (i.e., there exists an
€ > 0 such that ||Syf|| > €|l f| for all f € LZ(D)).

Proof. (a) To prove (a) the points to note are the following:
(i) S5 = Sy+ where ¢7 (2) = ¢(2).
(ii) ker(Sy) = {0} if and only if ker(Sy+) = {0}.
(iii) ker(S(%) = {0} if and only if ker(SiJr) = {0}.
These can be verified as follows :
(i) For f,g € L{(D),

(S5f.9) = (f,Seg) = (f,PJ(dg)) = (f,(J)Jg) = (Jof, Jg) = (¢" f, Tg)
= <J(¢+f),g> = <PJ(¢+f),g> = <S¢+f,g>.

Thus S = Sy+ where ¢t (2) = ¢(2).

(ii) Let f € ker Sg. Then Syf = PJ(¢f) = 0. This implies ¢f € (L2(D))+. That is,
Jo ¢(2)f(2)g(2)dA(z) = 0 for all g € L2(D). Thus [, ¢T(2)fT(2)g7(2)dA(z) = 0 for
all g™ € LZ(D) and therefore [ ¢ (2)f*(2)g(2)dA(z) = 0 for all g € LZ(D). Hence
(¢TfT,g) =0 for all g € LZ(D). That is, f* € ker(Sy+). Similarly one can verify that
if fT € ker(Sg+) then f € ker(Sg). Thus f € ker(Sy) if and only if f* € ker(Sy+). It
hence follows that ker(S4) = {0} if and only if ker(S,+) = {0}. This proves (ii).

(iii) Now let f € ker(Sq%). Then either f € ker(Sg) or f ¢ ker(Sy).

Case 1: If f € ker(S,) then f+ € ker(Sy+).

Case 2: If f ¢ ker(Sy) then since S’;f = 0 hence (S4f)" € ker(Sy+). Thus ker(Sy+) =
{0} implies ker(S3) = {0}.

Conversely, if g € ker(Sy+), then g* € ker(Sy). Hence S3g™ = 0. Thus ker(S3) = {0}
implies ker(Sy+) = {0}.

To prove (iii) suppose ker(S3) = {0}. This happens if and only if ker(S,+) = {0}. But
from (ii) this is true if and only if ker(Sy) = {0}. Proceeding similarly one can show that
ker(Sy) = {0} if and only if ker(SZ,) = {0}.

Thus (a) follows.

(b) Suppose Ran (S) = LZ(D). Then ker(S;) = {0} and hence from (a) it follows
that ker(S4) = {0}. Thus from bounded inverse theorem [21] and [5], it follows that Sy
is bounded below. Conversely, if Sy is bounded below then ker(S,;) = {0} and hence
from (a) it follows that ker(S7) = {0}. This implies Ran (S3) = L2(D). Since Sy is
bounded below and it has dense range, hence from [5], it follows that Sy is invertible and
Ran (Sy) = L2(D).

This proves (b). O

In Lemma 2.2 we establish that if Sy is normal then ker(Sy) coincides with ker(Sj) =
ker(5¢+) = ker(5¢5’¢+).
Lemma 2.2. If S, is normal then ker(Sy) = ker(Sy+) = ker(SySy+) where ¢7(2) =
¢(2).
Proof. Suppose Sy is normal. Let f € ker(Sg). Then SySu+ f = S4+S¢f = 0. Thus

Sy+ f € ker(Sy) = (Ran (Sy+))*. But Sg+ f € Ran (Sg+) C Ran (Sg+). Hence Sg+ f = 0.
That is, f € ker(Sy+). Therefore

(2.1) ker(Sy) C ker(Sy+).
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Conversely, let f € ker(Sy,+). This implies, f* € ker(Sg). From (2.1) it follows that,
JT € ker(S4+). Therefore f € ker(S,). Hence

(22) ker(S¢+) C ker(S¢).
From (2.1) and (2.2), we obtain ker(Sg) = ker(S4+).
We shall now show that ker(Sy,+) = ker(SgS4+). Let f € ker(Sy+). This implies,
Sg+f =0. That is, SpSg+ [ = 0. So f € ker(SyS4+). Therefore, ker(Sy+) C ker(SySp+).
Now let f € ker(SySy+). This implies, S3Sy+f = 0. Then Sy+f € ker(Sy) =
(Ran (Sy+))*. But Sy+f € Ran (Sg+) C Ran (S4+). Hence Sy+ f = 0. That is, f €
ker(Sy+ ). Therefore, ker(SySy4+) C ker(Sy+). Hence ker(Sy+) = ker(SgSy+). O

Using Lemma 2.1 and Lemma 2.2, we now prove the following proposition which gives
us sufficient conditions for T, and Sy, to be positive.
Proposition 2.3. Let ¢,¢ € L>(D). Suppose TySy > 0,T3Sy, > 0,T4S7 > 0.

(i) If ker(Sy) = {0} then Ty > 0. Similarly if ker(Ty) = {0} then Sy > 0.

(ii) If TySy is invertible then Sy is similar to Sy+, Ty > 0 and Sy > 0. Here
P (2) = ¢(2).
Proof. (i) From Lemma 2.1 it follows that ker(Sy) = {0} if and only if ker(S}) = {0}.
Since TySy > 0, hence TSy, = (T,S7,)* = S5 (TySy)* = S;TySy. Thus we have, for all
J e L3(D),

(TySyf, Sy f) = (STpSyf, f) = (TeSif, ) > 0.

Now since ker(Sy) = {0}, we obtain ker(S}) = {0}. Hence Ran (Sy) = (kelr(S:;)))L =
{0}+ = L2(D). It therefore follows that T,, > 0.
Further T¢2>S¢ = (T£S¢)* = (T¢T¢Sw)* = (Tq;Sw)*T; = T(waT;. Hence

(SyTyf, Ty f) = (TpSyTif, f) = (T3 Sy f, f) > 0.

Now if ker(T) = {0} then Ran (T}) = L2(D). Thus it follows that, Sy > 0.

To prove (ii) assume TSy, is invertible. This implies ker(7,Sy) = {0}. Notice that
ker(Sy) C ker(TySy). Hence ker(Sy) = {0}. Therefore ker(Sy) = {0}. This implies
Ran (S¢) = LZ(D) Now S¢ = (T¢S¢)_1T¢S2 = (T¢,S¢)_1STZT¢S¢. Thus Sd, is similar
to S, = Sy+ and Ran (Sy) = (ker(S}))*" = (ker(Sy))* = L2(D). From (i) it follows
that T, > 0. Since ker(Ty) C ker(S;T;) = {0}, we obtained that 77 is injective. Now
T = (TsSy) " (ToSp) Ty = (ToSp) ' TSy Ty = (ToSy) T T3Sy = (TpSy) ™' Ts(T5Sy).
Hence T7; is similar to Ty. Since ker(Tj;) = {0}, hence ker(7,) = {0}. This implies
Ran (T};) = L2(D). From (i) it follows that Sy > 0. O

In the following theorem we show that there is no nonzero Toeplitz and Hankel
operators T such that T* is compact for some k € Z, and ker(T) = ker(T?) and
Ran (T) = Ran (7?). On the other hand, if there is a little Hankel operator Sy such that
S’fz is compact for some k € Z4 and ker(Sy) = ker(Si) and Ran (Sy) = Ran (S?p) then
the symbol ¢ admits a particular form. More precisely, in this case ¥ = ¢ + X where
X € (L2)t N L>®(D) and ¢ is a linear combination of the Bergman kernels and some of
their derivatives.

Theorem 2.4. If T € L(L2(D)) is such that ker(T) = ker(T?), Ran (T') = Ran (T?)
and T* is compact for some k € Z, then the following holds:
(1): If T =Ty for some ¢ € L=(D) then ¢ = 0.
(ii): If T = Hy for some ¢ € L (D) then ¢ € H>(D).
(iii): If T = Sy for somep € L=(D) then 1 = ¢p+x where x € (L2)*NL®(D) and
¢ is a linear combination of the Bergman kernels and some of their derivatives.
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Proof. (i) Suppose T' = Ty for some ¢ € L>°(D). By our hypothesis it follows from [21]
that LZ(D) = ker(T},) @ Ran (T}). Since ker(T}) is always a closed subspace of L2 (D),
we obtain from [9] that Ran (Ty) is closed. But Ran (1) = Ran (7j") for all integers
m > 1. This can be verified by Mathematical induction.

We shall only verify for m = 3. Let g € Ran (T7}). That implies, g = T3 f = T4(T} f)
for some f € LZ(D). That is, g € Ran (T;;) = Ran (qu) Therefore, Ran (Tg’) C Ran (qu)
Conversely, let g € Ran (7). That implies, g = Tjh = Ty(Tyh). Since Tyh € Ran (T,) =
Ran (T73). This implies, Tyh = Tjk for some k € L2(D). That is, g = Ty(Tyh) =
T¢(T£k) = Tf;’k. So g € Ran (Tg) Therefore, Ran (TQ%) C Ran (Tg) Hence Ran (Tg) =
Ran (T7).

Using induction one can show that Ran (T}") = Ran (Ty) for all m > 1. But T(f
is compact for some k € Z,. Hence [5] Ran (T(f) shall not contain any closed infinite
dimensional subspace of L2 (D). Thus Ran (T}) is a finite dimensional subspace of L2(D)
and Ty is a finite rank operator. It then follows from [17] that ¢ = 0.

(ii) Let T = Hy, the big Hankel operator with symbol ¢ € L% (D). Proceeding
similarly as in (i), one can show that H, is a finite rank operator. Thus ker(Hy) # {0}
and hence it is clear from [7] that ker(H,) = L2(D) and ¢ € H>*(D).

(iif) Let T = Sy, the little Hankel operator with symbol ¢ € L*°(D). Proceeding
similarly as in (i), one can show that Sy, is a finite rank operator. Therefore [7] 1 = ¢+ x

where x € (L2)* N L>(D) and & is a linear combination of the Bergman kernels and
some of their derivatives. ]

In Theorem 2.5, we show that the range of a nonzero little Hankel operator can
never contain the range of a Toeplitz operator and if Ran (Sy) C Ran (Ty) then
|P(oJf)||? < c|P(¢f)||? for some constant ¢ > 0 and for all f € L2(D).

Theorem 2.5. Let ¢, 1) € L>°(D). Then the following holds:
(i): Ran (Ty) € Ran (Sy) if and only if ¢ = 0.
(ii): If Ran (Sg) € Ran (Ty) then ||P(¢Jf)||? < c||P(of)||? for all f € LZ(D) and
for some constant ¢ > 0.

Proof. (i) If ¢ =0, then T;, = 0. Hence Ran (T;) = {0} C Ran (Sy).
Suppose Ran (T) C Ran (Sy). By [6] there is a constant ¢ > 0 such that TyT; <
Sy Sy, Hence (TyT} f, f) < c(SySy £, f) for all f € L2(D). That is,
IT5f1? < cll S5 £l = el Sy FIIP = cll Thy+ fII* = cllhy+ £II?
< c||Hyt f||* forall fe L2(D).
Thus
cHIP@HI* < [ Hys fII? = (= PY(w* )]
= (WTf = P@T N0 f = PWHH) = vt FIP = IPQT I
Hence ¢ [ P(¢f)[* + [P H)I? < 9+ fII < [l * 2] £]1?. This implies
~UP@HIE 1P
I1F112 I1F11?
Thus ¢! ||9%, + [[9* 12 < [[¢*[|2. Hence ||g]|3, = 0 and ¢ =0.
(if) If Ran (Sy) C Ran (Ty) then by [6] we have S¢S} < cTT} for some constant
¢ > 0. That is,
ISs+ FII* = (Ss S5 1. f) < (T3 f, f) = | T5f||* forall fe LE(D).

Hence |PJ(¢" f)|I* < c|P(¢f)|? for all f € L3 (D). Thus [[P(¢Jf)|1* < cl|[P(6f)|? for
all f € L2(D). O

< 2 forall fe L2(D).
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Definition 1. A function G € L2(D) is called an inner function in L2(D) if |G|? — 1 is
orthogonal to H> (D).

For more details about Bergman space inner divisors, see [14]. In the following theo-
rem, we find conditions on ¢, € L (D) such that ker(T};) C ker(Sy).

Theorem 2.6. Suppose ¢ € L>(D) is such that ker(Ty) = {0}. Let

N mj—

=2 Z o K (2).

7j=1 v=0 b’L ’
where b = {bj}j»v:l is a finite set of points in D, cj, # 0 for all j,v and m; is the
number of times b; appears in b. Let SyTy = TySy. Then there exists an inner function
G € H*(D) such that ker(T}) C ker(S;) = GL2 (D).

Proof. Since 1(z) = ZJ 1 ijo_l Cjv o= abv Kb.( ) where b = {b;}/_, is a finite set of points
inID, ¢j, # 0 for all j,v and m; is the number of times b; appears in b, hence the operator
Sy is a [7] finite rank operator on LZ(ID) and there exists an inner function G € H*(D)
such that ker(S},) = GL;(ID). Thus there exists a system of linearly independent vectors

Gi,i=1,2,...,n and a system of nonzero bounded linear functionals ¢; fori =1,2,....,n
on L2?(D) such that

Spf =Y 6i(£)G, f € L2(D).
=1

Moreover,

n n
D bilNTsGi =TsSyf = SyTof =Y 6i(Tsf)G f € Lo(D).
i=1 i=1
On the other hand, since T is injective, it is clear that the vectors Ty(;,¢ = 1,2,...,n
are linearly independent. Hence Sy f € span{¢i,(2,...,(n} = span{TyC1,. .., Ty} for
all f € L2(D). Thus Ran (Sy) = Ran (S,) C Ran (T,;) C Ran (T,) and therefore
ker(T;) = (Ran (Ty))* C (Ran (Sy))* = ker(Sy,) = GL2(D) for some inner [7] function
G € H>*(D). O

Definition 2. An operator A defined on a Hilbert space H is said to be hyponormal if
and only if A*A — AA* > 0.

In the following theorem we find conditions on ¢ € L*>°(ID) such that Ty commutes
with Sy, where S, is a positive little Hankel operator on LZ(DD) with trivial kernel.

Theorem 2.7. Let ¢ € Co(D),||d|lcc < 1. Suppose i € L>®(D) and Sy is a positive
little Hankel operator on L2(D) such that ker(Sy) = {0} and Sy < T3Sy Ty. Then Ty is
unitary and Ty Sy = SyTy.
Proof. The operator 55T¢ is compact [23] since ¢ € Cp(D). By Lemma 2.1, ker(S},) =
{0}. Let SET¢ = A. Then

Now
1 1
0 <T5SyTy — Sy < TgSyTy — S;TpT5S; = A*A— AA™
Thus the operator A is hyponormal and as A is compact, the [10] operator A is normal.
Therefore,
1 1
Sy =T5SypTy = Sy TeT5S;
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and Tz is an isometry in Ran (Sy) = (ker(S}))*= = {0}+ = L2(D). Further, Sy, commutes
with Ty and Tj. It follows therefore that
Hence T} is unitary. O

In Theorem 2.8, we show that if Sy is a little Hankel operator on L2(D) with trivial
kernel and Sy, intertwines Ty and 15 then Ty and T are unitarily equivalent.

Theorem 2.8. Suppose TySy, = SyT; and T3Sy = SyTy and ker(Sy) = {0},6,¢ €
L>(D). Then Ty and Ty are unitarily equivalent. Further, T;T, and TyT7 are unitarily
equivalent.

Proof. TySyS;, = SyT;S), = SypS;,Ty. Thus Ty commutes with Sy,S7,. Proceeding simi-
larly as in Lemma 2.2, one can verify that
Ran (Sy) = (ker(S:Z))J‘ = (ker(SwS:jj))J‘ = Ran (5457).

This can also be verified as follows: Let g € ker(Sy+). Then SySy+g = 0 and g €
ker(SySy+ ). Further, let h € ker(SySy+ ). Then Sy+h € ker(Sy). But Sy+h € Ran (Sy+)
= Ran (Sj) C Ran (S)) = (ker(Sy))*. Hence Sy+h = 0 and h € ker(Sy+). Thus we
verify that ker(Sy+) = ker(SySy+).

We now show that Ty (Ran (Sy.57)) C Ran (5457). Let g € Ran (Sy5y). Then g =
SySy, [ for some f € L?(D). Hence

Tyg = T¢S¢S;Zf = S¢S,7)T¢f € Ran (SwS;Z)

Thus T (Ran (Sy.57)) C Ran (Sy.S5;,). Now let g € Ran (Sy.S}) and g = limy, o0 gn, gn €
Ran (S¢Sf;). Then Tyg = limp 00 Tygn and Tyg, € Ran (SyS)). Therefore, Tyg €
Ran (SySy). Thus Ty(Ran (Sy5})) C Ran (Sy57).

We now proceed to verify that Td,(ker(SwS:;)) - ker(SwS;Z). Let g € ker(S¢S;). Then
Sy5y,9 = 0. Hence TSy Sy, g = 0. This implies, Sy 57, Tpg = 0. That is, Ty,g € ker(SyS5y).
Thus Ran (Sy) is a reducing subspace of Ty. Proceeding similarly one can show that Ty
commutes Sy Sy and ker(Sy) = ker(S},Sy) reduces Tj.

Further, let Sy, = V@ be the polar decomposition of Sy such that ker(V') = ker(Q).
Here V is the partial isometry and @ is the positive operator. Let f € ker(Q). Then
Qf = 0 and therefore Sy f = VQf = 0. Hence f € ker(Sy) = {0}. Thus f = 0 and
ker(V) = ker(Q) = {0}. Since V*V f = f, f € (ker(V))* = {0} = L2(D), hence V is an
isometry.

Since TS3,Sy = S35y Ts, we obtain T,QV*VQ = QV*VQT,. Thus TQ? = QT
and therefore [5], we have T,Q = QT and QT; = T;Q. Now Ty,Sy = SyT}; implies
T,VQ = VQT; = VT;Q. Thus

(2.3) (T,V —VT;)Qf =0 forall feL2(D).

Notice that (Ran (Sy))* = ker(S;) = {0}, hence Ran (Sy) = LZ(D) and Ran (Q) =
(ker(Q))* = (ker(Sy))*+ = {0} = L2(D). From equation (2.3) it follows that Ran (Q) C
ker(T,V — VT3).

Let h € Ran (Q) and h = lim,,_, o, hy, where h,, € Ran (Q). Then
(TyV = VT5)h = (T,V = VIE)( lim hy) = lim (T,V = VT})hy = 0.

n—

Thus L3(D) = Ran (Q) C ker(TyV — VT}) and TyV = VT}. Similarly, since T}, =
SyTy we obtain TV = VT, Thus VT,V = Tj.

Since Sy = V@Q, we have S), = Sy+ = QV*. Let f € kerV*. Then V*f = 0 and
hence S f = QV*f = 0. Thus by Lemma 2.1, f € ker(Sy) = {0} and f = 0. Thus
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ker(V*) = {0}. Therefore {0} = ker(V*) = (Ran (V))* and Ran (V) = L2(DD). Since

V£l = IIfll, hence V is bounded below with dense range. By [5], V is invertible.
Therefore T, and T are unitarily equivalent. Further, T;T, = V*T,T7V and T;Ty and
TyTj are unitarily equivalent. O

3. RANGE AND KERNEL OF TOEPLITZ OPERATORS

A well known lemma attributed to Coburn [5] states that a bounded Toeplitz operator
with nontrivial kernel acting on the Hardy space must have dense range. That is, if
¢ is a function in L°°(T) not almost everywhere zero, then either ker(Ty) = {0} or
ker(T7) = {0}. Vukotic [22] showed that the range of a nonzero Toeplitz operator with
ker(Ty) # {0} must contain all polynomials. Further, if ker(T};) # {0} then [11] ker(T}) =
g(H?(T) © 20 H*(T)) where g is an outer function and @ is an inner function in H°(T).

In this section we show that if ¢ € L*(D) and [|¢[|c < 1 then ker(T;_gz) = {0} if
and only if T7,, converges to 0 weakly. We further prove that if ||¢||cc < 1 then T7,,

2

converges to 0 in norm if and only if ker(T;_3z) = {0} and Ran (71_) is closed. We find
necessary and sufficient conditions for the existence of a positive bounded linear operator
X defined on the Bergman space such that Ty X = Sy and Ran (Sy) C Ran (T},). We
also obtain necessary and sufficient conditions on ¢ € L°°(D) such that Ran (T}) is
closed.

Theorem 3.1. Let ¢ € L=(D) and ||p||oc <1 and Ran (Th_4) be closed. If ker(Ti_4) @
Ran (Th_g) is closed then there exists a closed complementary subspace M of ker(Th_)
containing Ran (Th—4).

Proof. First we shall show that ker(T1_,) N Ran (T1_4) = {0}. Let V = T%. Then
the range and the kernel of the operator I — V' coincide with those of I — Ty. Let
g €ker(I —V) N Ran (I — V). Since (I — V)g = 0, that is, Vg = g, we have Vg = g¢
for every n. Further (I — V)f = g for some f € L2(D), that is, g = f — V f. Hence
g=V"f—Vnrtif By [12], |[V"f — V"L f|| — 0 as n — oo, which implies that g = 0.
So ker(I —V)NRan (I — V) = {0}. Thus ker({ —T;) NRan (I —Ty) = {0}.

Let L = (ker(T1_4) ® Ran (T1_4))" be the orthogonal complement of the closed
subspace ker(Ti_4) @ Ran (T1—4). Then LZ(D) = (ker(T1—4) @ Ran (Th1—4)) & L. Hence
Ran (T1_4)@ L is closed and M = Ran (Th_4)®L is the desired complementary subspace
of ker(T1_g). O

Let L?(R) be the usual Lebesgue space considered with the Lebesgue measure. Since
both the infinite dimensional Hilbert spaces L2(D) and L?(R) are separable, they are
isomorphic. Therefore, there exists a unitary map U from LZ(D) onto L?(R).

For each n € N, define the operator L,, on L%(R) by (L, f)(s) := et f(s),seR, fe
L?(R) where q : R — [0, 1] is strictly monotone. It is not difficult to see that

igq(s)

|Ln — Ircrzmyll = suple = — 1
sER

§|e%—1\—>0 as n — oo.
Let L, = U*L,U. Then L,, € £(L2(D)) and ||L,, — T2yl — 0 as n — oo. That is,
Ly, — Ir(r2(p)) in norm operator topology.
In Theorem 3.2, we show that if ¢ € L>(D) and |¢||oc < 1 then T, - 0 if and
2

only if T} -3 has trivial kernel. We also present necessary and sufficient conditions such
that 77, s — 0 in norm.
2

Theorem 3.2. Let ¢ € L>°(D) be such that ||¢||cc < 1. Then the following holds:
(1): ker(T,_g) = {0} if and only if TT,, converges to zero weakly as n — oo.
2
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(ii): If ker(T,_g) = {0} then Ttyy Ly — 0.
2
(iii): ker(T}_3) = {0} and Ran (T1—y) is closed if and only if T1,, converges to
2

ZEro in norm as n — oQ.

Proof. Since ||¢||cc <1 we have ||[T1+4 | < 1. Hence the sequence {T57, }52, is bounded.
2 =

So by [1] the sequence {T%,,}5%, has a subsequence which converges to an operator

2

K € L(L?(D)) in the weak operator topology. Without loss of generality, we shall

assume the original sequence {T i‘% o, converges to an operator K € £(LZ(D)) in the

weak operator topology. Hence <(T;‘f;"lf T, f) ,g> — 0 for every f,g € L?(D)
= =

and {(Tffjlf, g>} converges to (K f,g) as n tends to oo for all f,g € L?(D). This
2 n=0

implies
(Tiie f.Tiseg) — (Kf,g) forall fge Ly(D).
2

Thus (K f, T#g> = (Kf,g) for all f,g € L2(D) and therefore T}, , K = K. Further
2

n oo
since {(T;‘ﬂ T f, g)} converges to (K f, g) for all f, g € L?(D), hence
2 2

n=0

(KTif.g) = (Kf.g) forall f.geLX(D).

Thus KT}, = K and T%,, K = K for all n € Z,. That is,
2 2

(THoKf,g) = (Kf,g) forall f,ge L2(D).

Taking limit both the sides, we obtain K? = K. This proves that the operator K is
an idempotent. Moreover, T5,, K = K implies T;‘K = K and KT7,, = K implies
- =

KTj; = K. So Ran (K) C ker(T;_3).

On the other hand, for f € ker(Tl_g)7 we have T7f = f, so TﬁT(bf = f. Hence
Tif = f for all n € Z, and this implies K f = f. Hence Ran (K) = ker(Tlfa).

El“o prove the inclusion Ran (7} _7) C ker(K), let f € L?(D) be an arbitrary element
and g = f — T f. Then we have Kg = Kf — KT;f = Kf — Kf =0. Hence g € ker(K).

Thus we have shown that, if ||| < 1 then there exists an idempotent K € £(L2 (D))
whose range is ker(7_7) and kernel contains Ran (7, _7) and there exists a subsequence
of {T%,,} which converges to K weakly.

2

To prove (i), assume that (T7,, f, g) — 0 for every f,g € L2(D). Then
2
(3.1) (f.Trisg) —+ 0 forall f.ge L2(D).
2

That is, the sequence {{f, T& 9)}22, is a Cauchy sequence. Thus if any subsequence
2

of {(f, Tty g)}5%, converges to some r € C, then the sequence {(f,Tr.,g)}5, itself
2 2

n=0
converges to r. We have already seen in the first part that there exists a subsequence of
{{f, Tt 9)}5% ¢ which converges to (f, Kg) for all f,g € L2(D). Thus

*T

w
1o — K
2
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Conversely, assume ker(Tl_g) = {0}. Then since T@ - K and the operator
K € L£(L3(D)) is an idempotent and Ran K = ker T, 3 = {0} we obtain K = 0 and
T, — 0.

To prove (ii) suppose ker(7} z) = {0}. Then by (i), TﬁT(b converges to zero weakly
as n — oo. Since L,, — I (z2(p)) in norm operator topology, hence it follows from [8]
that 77, L, — 0.

To pr20ve (iii), suppose ker(77_,) = {0} and Ran (T7_¢) is closed. Then Ran (T1—4) =
L2(D) and from Theorem 3.1, it follows that, ker(Ti_4) = {0}. Thus T} _4 is invertible
and 1 ¢ o(T,). But

[—Tow—1-L_To _T=To
2 2 2 2
Hence 1 ¢ 0(T1se). It therefore follows from [13] that if Ran(Ti_y) = L?(D) then
0(Tize) N{z € C: 2| =1} =0.
Notice that U(T# ) is a compact subset [5] of C and since T' 1s Is a contraction, the
spectral radius r(T%) < HT%H < 1. Further, as O’(T%) N{zeC:lz| =1} =0,
hence U(T#) is a compact subset of D and therefore r(T%) < 1. By [15],

[Ttys || — 0.

2

Conversely, assume that |77, || — 0. Then by [15], (T1+¢) < 1. This implies that
2 2
O'(T145¢) N{z € C:|z| =1} = 0. Therefore 1 ¢ O'(T145¢). Since

I-T,
So 1 ¢ o(T,). Hence T}, is invertible. Hence Ran(Ti_,4) = L2(D). O

It is not difficult to find examples of operators T' € L(H) such that Ran (T") is closed
but Ran (7?) is not closed.

Let {uj, fj,hj,j =1,2,...} be an orthonormal basis for H. Let {a,}32, be a sequence
of nonnegative numbers converging to zero such that a,, < 1 for all n. For each n, let
by = (1 —a2)z and set vy, = aptiy + bphn, Wy = an frn + bl

Let M+ be the closed span of {v;} and define N to be the closed span of {w;}. Then
M+ NN = {0} and the angle between M+ and N is zero since

oy} = 82 =1 - a2,
Let T be a partially isometry with initial space M and the final space N. Then Ran (T')
is closed but Ran (72) is not closed. For more details see [4].

In the following lemma we shall show that if ||¢||cc < 1 and Ran (T}, _=) is closed then

1-¢
2 .
Ran (Tl_a) is closed.

Lemma 3.3. Let ¢ € L>(D) be such that ||¢]|oc < 1 and ker(T}_5) = {0}. Then the
following conditions are equivalent:

(i): Ran (T)_3) is closed.

(ii): Ran (T} _3T1—¢) is closed.

(iii): Ran (lefg) is closed.

Proof. To show (i) <= (ii), suppose T} 3 has closed range. From [18], it follows that
Ran (T1_$T1,¢) is closed and Ran (T1—$) = Ran (T1_$T1,¢,). Conversely, if T, 5T-¢
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has closed range then
F =Ran (T}, _5T1-¢) ©ker(T}_3T1—) = Ran (T} _3T1—4) & ker(T1—y)
C Ran (T} _3) @ ker(T1—¢) C F,

which implies T 7 has closed range.

To prove (i) = (iii) suppose Ran (7 _7) is closed. It is enough [16] to prove that the
space Ran (T _3)+ker(T,_g) is closed. Let {T|_3fn+gn} be a sequence in Ran (T} _z)+
ker(T,_3) that converges to f € L2(D). Since ||¢]ls < 1, from the first part of the proof
of Theorem 3.2, it follows that there exists an idempotent operator K € £(L2(D)) such
that

TyK = K = KTg, Ran (T} _3) C ker(K)
and
ker(T; ) = Ran (K).
Thus we obtain
K(Tl_afn + gn) = Kgn — Kf
As gn € ker(T}_3) = Ran (K), we obtain g, = Kx,, for some z,, € L2(D) and Kg,, =
KKz, = Kz, = g,. Since Kg, — Kf, we obtain g, — K f. Thus the sequence
{T,_3/fn} converges to f — K f which must be in Ran (T}_3), as the space Ran (T} )
is closed.

To prove (iii) = (i) suppose Ran (Tf_g) is closed. We have to show Ran (T} _3) is
closed. Let {h,} € Ran (T}_3), suppose h,, = h and hy, =T, 5fn, fn € L2(D).

Now Tl_gfn — h implies Tf_gfn — Tl_gh. That is, Tl_gh € Ran (T12_$>'
Thus T zh = le—Ek for some k € L2(D). Therefore, le_gk — T, _gh = 0. That is,
T, 3(T, gk —h) = 0. So h = T, gk as ker(T}_z) = {0}. Hence h € Ran (T} ).
Therefore Ran (T, ) is closed. O

Remark 1. 1t follows from Lemma 3.3 that if ¢ € L>°(D) and [[¢|ls < 1 then Ran (T} _z)
is closed implies Ran (T 1275) is closed. We do not need the condition ker(7} 7) = {0} in
this case.

Theorem 3.4. Let ) = 1—¢ where ¢ € L>(D) and ||¢||o < 1. Then Ran (Ty) is closed

if and only if there exists an invertible operator S € L(L2(D)) which commutes with Ty,
and STy, is a projection operator.

Proof. 1f Ran (T) is closed, then from [4] it follows that Ran (1) is closed and hence by
Lemma 3.3 and Remark 1, the space Ran (T%) is also closed. Again from [4], it follows

that the space Ran (Ti) is closed. Since ||¢||cc < 1, we obtain (see the proof of Theorem
3.1) that ker(T}) N Ran (T}) = {0}.

Let f € ker(T%). Then the element g = T f € ker(T3;) N Ran (T) = {0}. Hence
f € ker(T3;). Thus ker(T%) C ker(T;). The inclusion relation ker(7) C ker(T%) is always
true. Hence ker(T%) = ker(T2).

¥ P
Now,

(Ran (Tyy))* = ker(Ty) = ker(T%) = (Ran (Tf,))J‘

and Ran (T) is closed. Thus we obtain

Ran (T;}) = Ran (T?) = Ran (T).

So for every f € L%(DD), there exists g € L2(D) such that Ty f = T;g. Thus f —Tyg is in
ker(Ty) and from Theorem 3.1, we obtain

Ran (Ty) @ ker(Ty,) = L2(D).
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Now, define R : LZ(D) — L2(D) such that R(h + g) = Tyh + g where h € Ran (T)
and g € ker(T). The mapping R is well-defined, linear. Now suppose h, + g, — h + g
and R(h,, + gn) — . Then | = R(h + g). This can be verified as follows:

= li_)m R(hy + gn) = ILm (Typhn + gn)
=Ty( lim hy) + (lim gn) = Typh+g = R(h +g).

Thus R is a closed operator. By the closed graph theorem, R is bounded. We claim that
R is invertible. That is, R is onto and one-one.

Let f = h+ g € L2(D) where h € Ran (T) = Ran (Td%) and g € ker(Ty). Thus
h = Typ for some p € Ran (Ty) and R(p+ g) = Typ+ g =h+ g = f. Hence R is onto.

Againlet f = h+g € ker(R) where h € Ran (Ty;) and g € ker(Ty). Then R(h+g) = 0.
That is, Tyh = —g. From Theorem 3.1, it follows that Ti;yh = g = 0. This implies h is
in the intersection of the spaces ker(Ty) and Ran (7)) and so it is 0 as well. Hence
f=h+g=0and R is one-one.

Let © be the projection with range Ran(T;,) and kernel ker(T;,). Now let f = h+g,h €
Ran (Ty), g € ker(Ty). Then

ROf = Rh=Tyh =Ty(h+g) = Tyf
and
@Rf = @(Twh +g) = Twh = T,/,(h + g) = T¢f

Thus T, = RO = OR. Hence R'T, = © = Ty,R™'. Let S = R™. Then ST, = TS
and ST, = © is a projection operator.

To prove the converse, suppose there exists an invertible operator S € L(L2(D))
such that ST, = T,S and STy, = O, a projection operator. Let S~! = R. Then
Ty = RO = OR, O is a projection and R is invertible. We shall show that Ran (7)) is
closed. Let M = Ran(©). Then M is a closed subspace of L2(D). The map R is linear,
one-one, onto, bounded and R~! is also bounded. Hence R is a homeomorphism. Thus
Ran (Ty) = R(M) is a closed subspace of L2(D) as R is a closed map. O

Recall that, if H, K are two Hilbert spaces and C' € L(H, K) has closed range, then
there exists a unique CT € £L(K, H) such that CCTC = C,CTCCT = Ct and CCT,CTC
are Hermitian, CT is called the Moore-Penrose inverse of C' (For more details see [3]). If
C is positive then CT > 0.

Theorem 3.5. Let ¢ € L>®(D) and Ran (Ty) is closed. Suppose ¢ € L*(D) and
Ran (Sy) is a closed subspace of L2(D) of finite codimension. Then Ran (Sy) C Ran (T})
and there exists a positive operator X € L(L2(D)) such that TyX = Sy if and only if
SyTy > 0 and Sy = SyT5C for some C € L(LZ(D)). The operator X is unique if
ker(X) = ker(Ty) = ker(Sy). If X is invertible then ¢ = 0.

Proof. Suppose 1 € L*°(D) and Ran (Sy) is a closed subspace of L2(D) of finite
codimension. Then ker(S}) is finite dimensional. Hence by Lemma 2.1, ker(Sy) is
of finite dimension. Since Ran (T}) is closed and ker(S,) is finite dimensional hence
from [4] it follows that Ran (T7) is closed and Ran (SyTj) is closed. Now suppose

SyTy >0 and Sy = SyT5C for some C € L(L%(D)). Then Ran (S,) C Ran (SyT5) and
(S¢T$)(S¢T$)TS¢ = Sw. Set X = Sw+ (Sng)TSQI,. Then X > 0 and

TpX = (TpSy+)(SyT5) 'Sy = (SyT5)(SyT5) 'Sy = Sy.

From [5] and [2], it follows that Ran (Sy) C Ran (T}).
We now prove the converse. Since T X = Sy and X > 0, hence Sng = T¢XT$ > 0.
We shall show that ker(SyT5) C ker(Sy+). Suppose f € L2(D) be such that SyTzf =
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Ty XT5f = 0. Then by Reid’s inequality [19], we have
1S+ fII* = | XT5f11?
< IXIKXT5f, T5f) = I XI(Te XT5f, f) = 0.

Hence ker(SyT5) C ker(Sy+) and therefore Ran (Sy) = Ran Sy C Ran (SyT5). Thus by
[6], we have Sy = SyT5C for some C € L(L2(D)).

From [6] it follows that the operator X is unique if ker(X) = ker(Ty) = ker(Sy).
Further if the operator X is invertible and T, X = Sy then it follows from [6], [2] that
Ran (T) = Ran (Sy). From Theorem 2.5, it follows that ¢ = 0. O
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