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ON THE RANGE AND KERNEL OF TOEPLITZ AND LITTLE

HANKEL OPERATORS

NAMITA DAS AND PABITRA KUMAR JENA

Abstract. In this paper we study the interplay between the range and kernel of
Toeplitz and little Hankel operators on the Bergman space. Let Tφ denote the

Toeplitz operator on L2
a(D) with symbol φ ∈ L∞(D) and Sψ denote the little Hankel

operator with symbol ψ ∈ L∞(D). We have shown that if Ran (Tφ) ⊆ Ran (Sψ)

then φ ≡ 0 and find necessary and sufficient conditions for the existence of a posi-
tive bounded linear operator X defined on the Bergman space such that TφX = Sψ
and Ran (Sψ) ⊆ Ran (Tφ). We also obtain necessary and sufficient conditions on

ψ ∈ L∞(D) such that Ran (Tψ) is closed.

1. Introduction

Let dA(z) be the Lebesgue area measure on the open unit disk D normalized so
that the measure of the disk D equals 1. The Bergman space L2

a(D) is the Hilbert
space consisting of analytic functions on D that are also in L2(D, dA). For z ∈ D, the
Bergman reproducing kernel is the function Kz ∈ L2

a(D) such that f(z) = 〈f,Kz〉 for
every f ∈ L2

a(D). The normalized reproducing kernel kz is the function Kz
‖Kz‖2 . Here

the norm ‖ · ‖2 and the inner product 〈, 〉 are taken in the space L2(D, dA). For any
n ≥ 0, n ∈ Z, let en(z) =

√
n+ 1zn. The sequence {en}∞n=0 forms an orthonormal basis

for L2
a(D). Let

K(z, w̄) = Kz(w) =
1

(1− zw)2
=

∞∑
n=0

en(z)en(w).

For φ ∈ L∞(D), the Toeplitz operator Tφ with symbol φ is the operator on L2
a(D) defined

by Tφf = P (φf); here P is the orthogonal projection from L2(D, dA) onto L2
a(D). For

φ ∈ L∞(D), the big Hankel operator Hφ is a mapping from L2
a(D) into

(
L2
a(D)

)⊥
defined by Hφf = (I − P )(φf) for f ∈ L2

a(D). Let L2
a(D) be the space of conjugate

analytic functions in L2(D, dA). Clearly, L2
a(D) = {f : f ∈ L2

a(D)} is closed in L2(D, dA).

For φ ∈ L∞(D), the little Hankel operator hφ is a mapping from L2
a(D) into L2

a(D) defined

by hφf = P (φf), f ∈ L2
a(D) where P is the orthogonal projection from L2(D, dA) onto

L2
a(D).
There are also many equivalent ways of defining little Hankel operators. For example,

define the map Sφ from L2
a(D) into L2

a(D) by Sφf = PJ(φf), where J is the self-
adjoint, unitary mapping from L2(D, dA) into itself given by Jh(z) = h(z). Notice that
JSφ = hφ. Thus Sφ is unitarily equivalent to hφ.

Let H∞(D) be the space of bounded analytic functions on D. Let Aut(D) be the
Lie group of all automorphisms (biholomorphic mappings) of D. We can define for each
a ∈ D, an automorphism φa in Aut(D) such that

(i) (φa o φa)(z) ≡ z;
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(ii) φa(0) = a, φa(a) = 0;
(iii) φa has a unique fixed point in D.

In fact, φa(z) = a−z
1−az for all a and z in D. An easy calculation shows that the derivative

of φa at z is equal to −ka(z). It follows that the real Jacobian determinant of φa at z

is Jφa(z) = |ka(z)|2 =
(1−|a|2)

2

|1−az|4 . Let h∞(D) be the space of bounded harmonic functions

on D. Then h∞(D) ⊂ L∞(D). For H a nonzero complex Hilbert space, let L(H) denote
the algebra of all bounded linear operators from the Hilbert space H into itself. Hence
L(L2

a(D)) is the space of all bounded linear operators from L2
a(D) into itself. Let C(D) be

the algebra of complex-valued, continuous functions on D, the Euclidean closure of D and
C0(D) be the subalgebra of C(D) consisting of functions f with f(z)→ 0 as |z| → 1−.

In this paper we study the interplay between the range and kernel of little Hankel and
Toeplitz operators defined on the Bergman space. In Section 2, we show that Ran (Sφ) =
L2
a(D) if and only if Sφ is bounded below and ker(Sφ) = {0} if and only if ker(S2

φ) = {0}.
Further if Sφ is normal then ker(Sφ) = ker(Sφ+) = ker(SφSφ+) where φ+(z) = φ(z). We
then establish that if TφSψ, TφS

2
ψ, T

2
φSψ are positive then ker(Sψ) = {0} implies Tφ ≥ 0

and ker(Tφ) = {0} implies Sψ ≥ 0 and if further TφSψ is invertible then Tφ ≥ 0 and
Sψ ≥ 0. Thus if we know a priori that the products TφSψ, TφS

2
ψ, T

2
φSψ are positive and if

the kernel of the operators Tφ, Sψ are trivial then the operators Tφ, Sψ are positive. This
gives us the motivation to investigate when the products TφSψ and SψTφ are positive.

We then proceed to show that there is no nonzero Toeplitz and Hankel operators T
such that T k is compact for some k ∈ Z+ and ker(T ) = ker(T 2) and Ran (T ) = Ran (T 2).
On the other hand, if there is a little Hankel operator Sψ such that Skψ is compact for

some k ∈ Z+ and ker(Sψ) = ker(S2
ψ) and Ran (Sψ) = Ran (S2

ψ) then the symbol ψ admits

a particular form. More precisely, in this case ψ = φ+ χ where χ ∈ (L2
a)⊥ ∩ L∞(D) and

φ is a linear combination of the Bergman kernels and some of their derivatives.
We further establish that there is no nonzero little Hankel operator whose range con-

tains the range of a Toeplitz operator and we obtain sufficient conditions on φ and ψ such
that ker(Tφ) ⊂ ker(Sψ). We obtain conditions on φ, ψ ∈ L∞(D) such that Tφ commutes
with Sψ and showed that if Sψ intertwines Tφ and Tφ and ker(Sψ) is trivial then Tφ and
Tφ are unitarily equivalent.

In Section 3, we show that if φ ∈ L∞(D) and ‖φ‖∞ ≤ 1 then ker(T1−φ) = {0} if

and only if Tn1+φ
2

converges to 0 weakly. We further prove that if ‖φ‖∞ ≤ 1 then Tn1+φ
2

converges to 0 in norm if and only if ker(T1−φ) = {0} and Ran (T1−φ) is closed. We find
necessary and sufficient conditions for the existence of a positive bounded linear operator
X defined on the Bergman space such that TφX = Sψ and Ran (Sψ) ⊆ Ran (Tφ). We
also obtain necessary and sufficient conditions on ψ ∈ L∞(D) such that Ran (Tψ) is
closed.

2. Kernel of little Hankel operators

Let T denote the unit circle in the complex plane C. It is well known in case of Hardy
space [20] that the Hankel operator S has a nontrivial kernel if and only if the range of S is
not dense and in this case the symbol of the Hankel operator S is of the form zuh where
u is an inner function in H∞(T) and h ∈ H∞(T). These results play important roles
in deriving the algebraic and asymptotic properties of Toeplitz and Hankel operators.
In this paper we investigate whether similar results are possible for operators on the
Bergman space.

In the following lemma, we show that Ran (Sφ) = L2
a(D) if and only if Sφ is bounded

below and ker(Sφ) is trivial if and only if ker(S2
φ) is trivial.
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Lemma 2.1. Let Sφ be a little Hankel operator on L2
a(D) with symbol φ ∈ L∞(D). Then

the following holds:

(a): ker(Sφ) = {0} if and only if ker(S2
φ) = {0}.

(b): Ran (Sφ) = L2
a(D) if and only if Sφ is bounded below (i.e., there exists an

ε > 0 such that ‖Sφf‖ ≥ ε‖f‖ for all f ∈ L2
a(D)).

Proof. (a) To prove (a) the points to note are the following:

(i) S∗φ = Sφ+ where φ+(z) = φ(z̄).

(ii) ker(Sφ) = {0} if and only if ker(Sφ+) = {0}.
(iii) ker(S2

φ) = {0} if and only if ker(S2
φ+) = {0}.

These can be verified as follows :
(i) For f, g ∈ L2

a(D),

〈S∗φf, g〉 = 〈f, Sφg〉 = 〈f, PJ(φg)〉 = 〈f, (Jφ)Jg〉 = 〈Jφf, Jg〉 = 〈φ+f, Jg〉
= 〈J(φ+f), g〉 = 〈PJ(φ+f), g〉 = 〈Sφ+f, g〉.

Thus S∗φ = Sφ+ where φ+(z) = φ(z̄).

(ii) Let f ∈ kerSφ. Then Sφf = PJ(φf) = 0. This implies φf ∈ (L2
a(D))⊥. That is,∫

D φ(z)f(z)g(z)dA(z) = 0 for all g ∈ L2
a(D). Thus

∫
D φ

+(z)f+(z)g+(z)dA(z) = 0 for

all g+ ∈ L2
a(D) and therefore

∫
D φ

+(z)f+(z)g(z)dA(z) = 0 for all g ∈ L2
a(D). Hence

〈φ+f+, ḡ〉 = 0 for all g ∈ L2
a(D). That is, f+ ∈ ker(Sφ+). Similarly one can verify that

if f+ ∈ ker(Sφ+) then f ∈ ker(Sφ). Thus f ∈ ker(Sφ) if and only if f+ ∈ ker(Sφ+). It
hence follows that ker(Sφ) = {0} if and only if ker(Sφ+) = {0}. This proves (ii).
(iii) Now let f ∈ ker(S2

φ). Then either f ∈ ker(Sφ) or f /∈ ker(Sφ).

Case 1: If f ∈ ker(Sφ) then f+ ∈ ker(Sφ+).
Case 2: If f /∈ ker(Sφ) then since S2

φf = 0 hence (Sφf)+ ∈ ker(Sφ+). Thus ker(Sφ+) =

{0} implies ker(S2
φ) = {0}.

Conversely, if g ∈ ker(Sφ+), then g+ ∈ ker(Sφ). Hence S2
φg

+ = 0. Thus ker(S2
φ) = {0}

implies ker(Sφ+) = {0}.
To prove (iii) suppose ker(S2

φ) = {0}. This happens if and only if ker(Sφ+) = {0}. But

from (ii) this is true if and only if ker(Sφ) = {0}. Proceeding similarly one can show that
ker(Sφ) = {0} if and only if ker(S2

φ+) = {0}.
Thus (a) follows.

(b) Suppose Ran (Sφ) = L2
a(D). Then ker(S∗φ) = {0} and hence from (a) it follows

that ker(Sφ) = {0}. Thus from bounded inverse theorem [21] and [5], it follows that Sφ
is bounded below. Conversely, if Sφ is bounded below then ker(Sφ) = {0} and hence

from (a) it follows that ker(S∗φ) = {0}. This implies Ran (Sφ) = L2
a(D). Since Sφ is

bounded below and it has dense range, hence from [5], it follows that Sφ is invertible and
Ran (Sφ) = L2

a(D).
This proves (b). �

In Lemma 2.2 we establish that if Sφ is normal then ker(Sφ) coincides with ker(S∗φ) =

ker(Sφ+) = ker(SφSφ+).

Lemma 2.2. If Sφ is normal then ker(Sφ) = ker(Sφ+) = ker(SφSφ+) where φ+(z) =

φ(z).

Proof. Suppose Sφ is normal. Let f ∈ ker(Sφ). Then SφSφ+f = Sφ+Sφf = 0. Thus

Sφ+f ∈ ker(Sφ) = (Ran (Sφ+))⊥. But Sφ+f ∈ Ran (Sφ+) ⊆ Ran (Sφ+). Hence Sφ+f = 0.
That is, f ∈ ker(Sφ+). Therefore

(2.1) ker(Sφ) ⊂ ker(Sφ+).
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Conversely, let f ∈ ker(Sφ+). This implies, f+ ∈ ker(Sφ). From (2.1) it follows that,
f+ ∈ ker(Sφ+). Therefore f ∈ ker(Sφ). Hence

(2.2) ker(Sφ+) ⊂ ker(Sφ).

From (2.1) and (2.2), we obtain ker(Sφ) = ker(Sφ+).
We shall now show that ker(Sφ+) = ker(SφSφ+). Let f ∈ ker(Sφ+). This implies,

Sφ+f = 0. That is, SφSφ+f = 0. So f ∈ ker(SφSφ+). Therefore, ker(Sφ+) ⊆ ker(SφSφ+).
Now let f ∈ ker(SφSφ+). This implies, SφSφ+f = 0. Then Sφ+f ∈ ker(Sφ) =

(Ran (Sφ+))⊥. But Sφ+f ∈ Ran (Sφ+) ⊆ Ran (Sφ+). Hence Sφ+f = 0. That is, f ∈
ker(Sφ+). Therefore, ker(SφSφ+) ⊆ ker(Sφ+). Hence ker(Sφ+) = ker(SφSφ+). �

Using Lemma 2.1 and Lemma 2.2, we now prove the following proposition which gives
us sufficient conditions for Tφ and Sψ to be positive.

Proposition 2.3. Let φ, ψ ∈ L∞(D). Suppose TφSψ ≥ 0, T 2
φSψ ≥ 0, TφS

2
ψ ≥ 0.

(i) If ker(Sψ) = {0} then Tφ ≥ 0. Similarly if ker(Tφ) = {0} then Sψ ≥ 0.
(ii) If TφSψ is invertible then Sψ is similar to Sψ+ , Tφ ≥ 0 and Sψ ≥ 0. Here

ψ+(z) = ψ(z).

Proof. (i) From Lemma 2.1 it follows that ker(Sψ) = {0} if and only if ker(S∗ψ) = {0}.
Since TφSψ ≥ 0, hence TφS

2
ψ = (TφS

2
ψ)∗ = S∗ψ(TφSψ)∗ = S∗ψTφSψ. Thus we have, for all

f ∈ L2
a(D),

〈TφSψf, Sψf〉 = 〈S∗ψTφSψf, f〉 = 〈TφS2
ψf, f〉 ≥ 0.

Now since ker(Sψ) = {0}, we obtain ker(S∗ψ) = {0}. Hence Ran (Sψ) = (ker(S∗ψ))⊥ =

{0}⊥ = L2
a(D). It therefore follows that Tφ ≥ 0.

Further T 2
φSψ = (T 2

φSψ)∗ = (TφTφSψ)∗ = (TφSψ)∗T ∗φ = TφSψT
∗
φ . Hence

〈SψT ∗φf, T ∗φf〉 = 〈TφSψT ∗φf, f〉 = 〈T 2
φSψf, f〉 ≥ 0.

Now if ker(Tφ) = {0} then Ran (T ∗φ ) = L2
a(D). Thus it follows that, Sψ ≥ 0.

To prove (ii) assume TφSψ is invertible. This implies ker(TφSψ) = {0}. Notice that
ker(Sψ) ⊂ ker(TφSψ). Hence ker(Sψ) = {0}. Therefore ker(S∗ψ) = {0}. This implies

Ran (Sψ) = L2
a(D). Now Sψ = (TφSψ)−1TφS

2
ψ = (TφSψ)−1S∗ψTφSψ. Thus Sψ is similar

to S∗ψ = Sψ+ and Ran (Sψ) = (ker(S∗ψ))⊥ = (ker(Sψ))⊥ = L2
a(D). From (i) it follows

that Tφ ≥ 0. Since ker(T ∗φ ) ⊂ ker(S∗ψT
∗
φ ) = {0}, we obtained that T ∗φ is injective. Now

T ∗φ = (TφSψ)−1(TφSψ)T ∗φ = (TφSψ)−1TφSψT
∗
φ = (TφSψ)−1T 2

φSψ = (TφSψ)−1Tφ(TφSψ).

Hence T ∗φ is similar to Tφ. Since ker(T ∗φ ) = {0}, hence ker(Tφ) = {0}. This implies

Ran (T ∗φ ) = L2
a(D). From (i) it follows that Sψ ≥ 0. �

In the following theorem we show that there is no nonzero Toeplitz and Hankel
operators T such that T k is compact for some k ∈ Z+ and ker(T ) = ker(T 2) and
Ran (T ) = Ran (T 2). On the other hand, if there is a little Hankel operator Sψ such that
Skψ is compact for some k ∈ Z+ and ker(Sψ) = ker(S2

ψ) and Ran (Sψ) = Ran (S2
ψ) then

the symbol ψ admits a particular form. More precisely, in this case ψ = φ + χ where
χ ∈ (L2

a)⊥ ∩ L∞(D) and φ is a linear combination of the Bergman kernels and some of
their derivatives.

Theorem 2.4. If T ∈ L(L2
a(D)) is such that ker(T ) = ker(T 2), Ran (T ) = Ran (T 2)

and T k is compact for some k ∈ Z+, then the following holds:

(i): If T = Tφ for some φ ∈ L∞(D) then φ ≡ 0.
(ii): If T = Hφ for some φ ∈ L∞(D) then φ ∈ H∞(D).

(iii): If T = Sψ for some ψ ∈ L∞(D) then ψ = φ+χ where χ ∈ (L2
a)⊥∩L∞(D) and

φ is a linear combination of the Bergman kernels and some of their derivatives.
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Proof. (i) Suppose T = Tφ for some φ ∈ L∞(D). By our hypothesis it follows from [21]
that L2

a(D) = ker(Tφ) ⊕ Ran (Tφ). Since ker(Tφ) is always a closed subspace of L2
a(D),

we obtain from [9] that Ran (Tφ) is closed. But Ran (Tφ) = Ran (Tmφ ) for all integers
m ≥ 1. This can be verified by Mathematical induction.

We shall only verify for m = 3. Let g ∈ Ran (T 3
φ). That implies, g = T 3

φf = Tφ(T 2
φf)

for some f ∈ L2
a(D). That is, g ∈ Ran (Tφ) = Ran (T 2

φ). Therefore, Ran (T 3
φ) ⊂ Ran (T 2

φ).

Conversely, let g ∈ Ran (T 2
φ). That implies, g = T 2

φh = Tφ(Tφh). Since Tφh ∈ Ran (Tφ) =

Ran (T 2
φ). This implies, Tφh = T 2

φk for some k ∈ L2
a(D). That is, g = Tφ(Tφh) =

Tφ(T 2
φk) = T 3

φk. So g ∈ Ran (T 3
φ). Therefore, Ran (T 2

φ) ⊂ Ran (T 3
φ). Hence Ran (T 3

φ) =

Ran (T 2
φ).

Using induction one can show that Ran (Tmφ ) = Ran (Tφ) for all m ≥ 1. But T kφ
is compact for some k ∈ Z+. Hence [5] Ran (T kφ ) shall not contain any closed infinite

dimensional subspace of L2
a(D). Thus Ran (Tφ) is a finite dimensional subspace of L2

a(D)
and Tφ is a finite rank operator. It then follows from [17] that φ ≡ 0.

(ii) Let T = Hφ, the big Hankel operator with symbol φ ∈ L∞(D). Proceeding
similarly as in (i), one can show that Hφ is a finite rank operator. Thus ker(Hφ) 6= {0}
and hence it is clear from [7] that ker(Hφ) = L2

a(D) and φ ∈ H∞(D).
(iii) Let T = Sψ, the little Hankel operator with symbol ψ ∈ L∞(D). Proceeding

similarly as in (i), one can show that Sψ is a finite rank operator. Therefore [7] ψ = φ+χ

where χ ∈ (L2
a)⊥ ∩ L∞(D) and φ is a linear combination of the Bergman kernels and

some of their derivatives. �

In Theorem 2.5, we show that the range of a nonzero little Hankel operator can
never contain the range of a Toeplitz operator and if Ran (Sφ) ⊆ Ran (Tφ) then

‖P (φJf)‖2 ≤ c‖P (φf)‖2 for some constant c > 0 and for all f ∈ L2
a(D).

Theorem 2.5. Let φ, ψ ∈ L∞(D). Then the following holds:

(i): Ran (Tφ) ⊆ Ran (Sψ) if and only if φ ≡ 0.

(ii): If Ran (Sφ) ⊆ Ran (Tφ) then ‖P (φJf)‖2 ≤ c‖P (φf)‖2 for all f ∈ L2
a(D) and

for some constant c > 0.

Proof. (i) If φ = 0, then Tφ = 0. Hence Ran (Tφ) = {0} ⊆ Ran (Sψ).
Suppose Ran (Tφ) ⊆ Ran (Sψ). By [6] there is a constant c > 0 such that TφT

∗
φ ≤

cSψS
∗
ψ. Hence 〈TφT ∗φf, f〉 ≤ c〈SψS∗ψf, f〉 for all f ∈ L2

a(D). That is,

‖Tφf‖
2 ≤ c‖S∗ψf‖ = c‖Sψ+f‖2 = c‖Jhψ+f‖2 = c‖hψ+f‖2

≤ c‖Hψ+f‖2 for all f ∈ L2
a(D).

Thus

c−1‖P (φf)‖2 ≤ ‖Hψ+f‖2 = ‖(I − P )(ψ+f)‖2

=
〈
ψ+f − P (ψ+f), ψ+f − P (ψ+f)

〉
= ‖ψ+f‖2 − ‖P (ψ+f)‖2.

Hence c−1‖P (φf)‖2 + ‖P (ψ+f)‖2 ≤ ‖ψ+f‖2 ≤ ‖ψ+‖2∞‖f‖2. This implies

c−1
‖P (φf)‖2

‖f‖2
+
‖P (ψ+f)‖2

‖f‖2
≤ ‖ψ+‖2∞ for all f ∈ L2

a(D).

Thus c−1‖φ‖2∞ + ‖ψ+‖2∞ ≤ ‖ψ+‖2∞. Hence ‖φ‖2∞ = 0 and φ ≡ 0.
(ii) If Ran (Sφ) ⊆ Ran (Tφ) then by [6] we have SφS

∗
φ ≤ cTφT

∗
φ for some constant

c > 0. That is,

‖Sφ+f‖2 = 〈SφS∗φf, f〉 ≤ c〈TφT ∗φf, f〉 = c‖Tφf‖
2 for all f ∈ L2

a(D).

Hence ‖PJ(φ+f)‖2 ≤ c‖P (φf)‖2 for all f ∈ L2
a(D). Thus ‖P (φJf)‖2 ≤ c‖P (φf)‖2 for

all f ∈ L2
a(D). �
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Definition 1. A function G ∈ L2
a(D) is called an inner function in L2

a(D) if |G|2 − 1 is
orthogonal to H∞(D).

For more details about Bergman space inner divisors, see [14]. In the following theo-
rem, we find conditions on φ, ψ ∈ L∞(D) such that ker(Tφ) ⊆ ker(Sψ).

Theorem 2.6. Suppose φ ∈ L∞(D) is such that ker(Tφ) = {0}. Let

ψ(z) =

N∑
j=1

mj−1∑
v=0

cjv
∂v

∂bvj
Kbj (z),

where b = {bj}Nj=1 is a finite set of points in D, cjv 6= 0 for all j, v and mj is the
number of times bj appears in b. Let SψTφ = TφSψ. Then there exists an inner function
G ∈ H∞(D) such that ker(T ∗φ ) ⊆ ker(S∗ψ) = GL2

a(D).

Proof. Since ψ(z) =
∑N
j=1

∑mj−1
v=0 cjv

∂v

∂bvj
Kbj (z) where b = {bj}Nj=1 is a finite set of points

in D, cjv 6= 0 for all j, v and mj is the number of times bj appears in b, hence the operator
Sψ is a [7] finite rank operator on L2

a(D) and there exists an inner function G ∈ H∞(D)
such that ker(S∗ψ) = GL2

a(D). Thus there exists a system of linearly independent vectors
ζi, i = 1, 2, . . . , n and a system of nonzero bounded linear functionals φi for i = 1, 2, . . . , n
on L2

a(D) such that

Sψf =

n∑
i=1

φi(f)ζi, f ∈ L2
a(D).

Moreover,
n∑
i=1

φi(f)Tφζi = TφSψf = SψTφf =

n∑
i=1

φi(Tφf)ζi, f ∈ L2
a(D).

On the other hand, since Tφ is injective, it is clear that the vectors Tφζi, i = 1, 2, . . . , n
are linearly independent. Hence Sψf ∈ span{ζ1, ζ2, . . . , ζn} = span{Tφζ1, . . . , Tφζn} for

all f ∈ L2
a(D). Thus Ran (Sψ) = Ran (Sψ) ⊆ Ran (Tφ) ⊆ Ran (Tφ) and therefore

ker(T ∗φ ) = (Ran (Tφ))⊥ ⊆ (Ran (Sψ))⊥ = ker(S∗ψ) = GL2
a(D) for some inner [7] function

G ∈ H∞(D). �

Definition 2. An operator A defined on a Hilbert space H is said to be hyponormal if
and only if A∗A−AA∗ ≥ 0.

In the following theorem we find conditions on φ ∈ L∞(D) such that Tφ commutes
with Sψ where Sψ is a positive little Hankel operator on L2

a(D) with trivial kernel.

Theorem 2.7. Let φ ∈ C0(D), ‖φ‖∞ ≤ 1. Suppose ψ ∈ L∞(D) and Sψ is a positive
little Hankel operator on L2

a(D) such that ker(Sψ) = {0} and Sψ ≤ TφSψTφ. Then Tφ is
unitary and TφSψ = SψTφ.

Proof. The operator S
1
2

ψTφ is compact [23] since φ ∈ C0(D). By Lemma 2.1, ker(S∗ψ) =

{0}. Let S
1
2

ψTφ = A. Then

AA∗ = S
1
2

ψTφTφS
1
2

ψ ≤ Sψ.
Now

0 ≤ TφSψTφ − Sψ ≤ TφSψTφ − S
1
2

ψTφTφS
1
2

ψ = A∗A−AA∗.

Thus the operator A is hyponormal and as A is compact, the [10] operator A is normal.
Therefore,

Sψ = TφSψTφ = S
1
2

ψTφTφS
1
2

ψ
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and Tφ is an isometry in Ran (Sψ) = (ker(S∗ψ))⊥ = {0}⊥ = L2
a(D). Further, Sψ commutes

with Tφ and Tφ. It follows therefore that

TφTφSψ = TφSψTφ = Sψ = SψTφTφ.

Hence Tφ is unitary. �

In Theorem 2.8, we show that if Sψ is a little Hankel operator on L2
a(D) with trivial

kernel and Sψ intertwines Tφ and Tφ then Tφ and Tφ are unitarily equivalent.

Theorem 2.8. Suppose TφSψ = SψT
∗
φ and T ∗φSψ = SψTφ and ker(Sψ) = {0}, φ, ψ ∈

L∞(D). Then Tφ and Tφ are unitarily equivalent. Further, T ∗φTφ and TφT
∗
φ are unitarily

equivalent.

Proof. TφSψS
∗
ψ = SψT

∗
φS
∗
ψ = SψS

∗
ψTφ. Thus Tφ commutes with SψS

∗
ψ. Proceeding simi-

larly as in Lemma 2.2, one can verify that

Ran (Sψ) = (ker(S∗ψ))⊥ = (ker(SψS
∗
ψ))⊥ = Ran (SψS∗ψ).

This can also be verified as follows: Let g ∈ ker(Sψ+). Then SψSψ+g = 0 and g ∈
ker(SψSψ+). Further, let h ∈ ker(SψSψ+). Then Sψ+h ∈ ker(Sψ). But Sψ+h ∈ Ran (Sψ+)

= Ran (S∗ψ) ⊂ Ran (S∗ψ) = (ker(Sψ))⊥. Hence Sψ+h = 0 and h ∈ ker(Sψ+). Thus we

verify that ker(Sψ+) = ker(SψSψ+).

We now show that Tφ(Ran (SψS∗ψ)) ⊂ Ran (SψS∗ψ). Let g ∈ Ran (SψS
∗
ψ). Then g =

SψS
∗
ψf for some f ∈ L2

a(D). Hence

Tφg = TφSψS
∗
ψf = SψS

∗
ψTφf ∈ Ran (SψS

∗
ψ).

Thus Tφ(Ran (SψS
∗
ψ)) ⊂ Ran (SψS

∗
ψ). Now let g ∈ Ran (SψS∗ψ) and g = limn→∞ gn, gn ∈

Ran (SψS
∗
ψ). Then Tφg = limn→∞ Tφgn and Tφgn ∈ Ran (SψS

∗
ψ). Therefore, Tφg ∈

Ran (SψS∗ψ). Thus Tφ(Ran (SψS∗ψ)) ⊂ Ran (SψS∗ψ).

We now proceed to verify that Tφ(ker(SψS
∗
ψ)) ⊂ ker(SψS

∗
ψ). Let g ∈ ker(SψS

∗
ψ). Then

SψS
∗
ψg = 0. Hence TφSψS

∗
ψg = 0. This implies, SψS

∗
ψTφg = 0. That is, Tφg ∈ ker(SψS

∗
ψ).

Thus Ran (Sψ) is a reducing subspace of Tφ. Proceeding similarly one can show that Tφ
commutes S∗ψSψ and ker(Sψ) = ker(S∗ψSψ) reduces Tφ.

Further, let Sψ = V Q be the polar decomposition of Sψ such that ker(V ) = ker(Q).
Here V is the partial isometry and Q is the positive operator. Let f ∈ ker(Q). Then
Qf = 0 and therefore Sψf = V Qf = 0. Hence f ∈ ker(Sψ) = {0}. Thus f = 0 and
ker(V ) = ker(Q) = {0}. Since V ∗V f = f, f ∈ (ker(V ))⊥ = {0}⊥ = L2

a(D), hence V is an
isometry.

Since TφS
∗
ψSψ = S∗ψSψTφ, we obtain TφQV

∗V Q = QV ∗V QTφ. Thus TφQ
2 = Q2Tφ

and therefore [5], we have TφQ = QTφ and QT ∗φ = T ∗φQ. Now TφSψ = SψT
∗
φ implies

TφV Q = V QT ∗φ = V T ∗φQ. Thus

(2.3) (TφV − V T ∗φ )Qf = 0 for all f ∈ L2
a(D).

Notice that (Ran (Sψ))⊥ = ker(S∗ψ) = {0}, hence Ran (Sψ) = L2
a(D) and Ran (Q) =

(ker(Q))⊥ = (ker(Sψ))⊥ = {0}⊥ = L2
a(D). From equation (2.3) it follows that Ran (Q) ⊂

ker(TφV − V T ∗φ ).

Let h ∈ Ran (Q) and h = limn→∞ hn where hn ∈ Ran (Q). Then

(TφV − V T ∗φ )h = (TφV − V T ∗φ )( lim
n→∞

hn) = lim
n→∞

(TφV − V T ∗φ )hn = 0.

Thus L2
a(D) = Ran (Q) ⊂ ker(TφV − V T ∗φ ) and TφV = V T ∗φ . Similarly, since T ∗φSψ =

SψTφ we obtain T ∗φV = V Tφ. Thus V ∗TφV = Tφ.
Since Sψ = V Q, we have S∗ψ = Sψ+ = QV ∗. Let f ∈ kerV ∗. Then V ∗f = 0 and

hence S∗ψf = QV ∗f = 0. Thus by Lemma 2.1, f ∈ ker(S∗ψ) = {0} and f = 0. Thus
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ker(V ∗) = {0}. Therefore {0} = ker(V ∗) = (Ran (V ))⊥ and Ran (V ) = L2
a(D). Since

‖V f‖ = ‖f‖, hence V is bounded below with dense range. By [5], V is invertible.
Therefore Tφ and T ∗φ are unitarily equivalent. Further, T ∗φTφ = V ∗TφT

∗
φV and T ∗φTφ and

TφT
∗
φ are unitarily equivalent. �

3. Range and kernel of Toeplitz operators

A well known lemma attributed to Coburn [5] states that a bounded Toeplitz operator
with nontrivial kernel acting on the Hardy space must have dense range. That is, if
φ is a function in L∞(T) not almost everywhere zero, then either ker(Tφ) = {0} or
ker(T ∗φ ) = {0}. Vukotic [22] showed that the range of a nonzero Toeplitz operator with

ker(Tφ) 6= {0}must contain all polynomials. Further, if ker(Tφ) 6= {0} then [11] ker(Tφ) =
g(H2(T)	 zθH2(T)) where g is an outer function and θ is an inner function in H∞(T).

In this section we show that if φ ∈ L∞(D) and ‖φ‖∞ ≤ 1 then ker(T1−φ) = {0} if

and only if Tn1+φ
2

converges to 0 weakly. We further prove that if ‖φ‖∞ ≤ 1 then Tn1+φ
2

converges to 0 in norm if and only if ker(T1−φ) = {0} and Ran (T1−φ) is closed. We find
necessary and sufficient conditions for the existence of a positive bounded linear operator
X defined on the Bergman space such that TφX = Sψ and Ran (Sψ) ⊆ Ran (Tφ). We
also obtain necessary and sufficient conditions on ψ ∈ L∞(D) such that Ran (Tψ) is
closed.

Theorem 3.1. Let φ ∈ L∞(D) and ‖φ‖∞ ≤ 1 and Ran (T1−φ) be closed. If ker(T1−φ)⊕
Ran (T1−φ) is closed then there exists a closed complementary subspace M of ker(T1−φ)
containing Ran (T1−φ).

Proof. First we shall show that ker(T1−φ) ∩ Ran (T1−φ) = {0}. Let V = T 1+φ
2

. Then

the range and the kernel of the operator I − V coincide with those of I − Tφ. Let
g ∈ ker(I − V ) ∩ Ran (I − V ). Since (I − V )g = 0, that is, V g = g, we have V ng = g
for every n. Further (I − V )f = g for some f ∈ L2

a(D), that is, g = f − V f. Hence
g = V nf − V n+1f . By [12], ‖V nf − V n+1f‖ −→ 0 as n→∞, which implies that g = 0.
So ker(I − V ) ∩ Ran (I − V ) = {0}. Thus ker(I − Tφ) ∩ Ran (I − Tφ) = {0}.

Let L = (ker(T1−φ) ⊕ Ran (T1−φ))⊥ be the orthogonal complement of the closed
subspace ker(T1−φ)⊕ Ran (T1−φ). Then L2

a(D) = (ker(T1−φ)⊕ Ran (T1−φ))⊕ L. Hence
Ran (T1−φ)⊕L is closed and M = Ran (T1−φ)⊕L is the desired complementary subspace
of ker(T1−φ). �

Let L2(R) be the usual Lebesgue space considered with the Lebesgue measure. Since
both the infinite dimensional Hilbert spaces L2

a(D) and L2(R) are separable, they are
isomorphic. Therefore, there exists a unitary map U from L2

a(D) onto L2(R).

For each n ∈ N, define the operator L̆n on L2(R) by (L̆nf)(s) := e
iq(s)
n f(s), s ∈ R, f ∈

L2(R) where q : R −→ [0, 1] is strictly monotone. It is not difficult to see that

‖L̆n − IL(L2(R))‖ = sup
s∈R
|e
iq(s)
n − 1|

≤ |e in − 1| −→ 0 as n→∞.

Let Ln = U∗L̆nU. Then Ln ∈ L(L2
a(D)) and ‖Ln − IL(L2

a(D))‖ −→ 0 as n→∞. That is,
Ln −→ IL(L2

a(D)) in norm operator topology.

In Theorem 3.2, we show that if φ ∈ L∞(D) and ‖φ‖∞ ≤ 1 then Tn1+φ
2

w−→ 0 if and

only if T1−φ has trivial kernel. We also present necessary and sufficient conditions such
that Tn1+φ

2

−→ 0 in norm.

Theorem 3.2. Let φ ∈ L∞(D) be such that ‖φ‖∞ ≤ 1. Then the following holds:

(i): ker(T1−φ) = {0} if and only if Tn1+φ
2

converges to zero weakly as n→∞.
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(ii): If ker(T1−φ) = {0} then Tn1+φ
2

Ln
w−→ 0.

(iii): ker(T1−φ) = {0} and Ran (T1−φ) is closed if and only if Tn1+φ
2

converges to

zero in norm as n→∞.

Proof. Since ‖φ‖∞ ≤ 1 we have ‖T 1+φ
2
‖ ≤ 1. Hence the sequence {T ∗n1+φ

2

}∞n=0 is bounded.

So by [1] the sequence {T ∗n1+φ
2

}∞n=0 has a subsequence which converges to an operator

K ∈ L(L2
a(D)) in the weak operator topology. Without loss of generality, we shall

assume the original sequence {T ∗n1+φ
2

}∞n=0 converges to an operator K ∈ L(L2
a(D)) in the

weak operator topology. Hence
〈(
T ∗n+1

1+φ
2

f − T ∗n1+φ
2

f
)
, g
〉
−→ 0 for every f, g ∈ L2

a(D)

and
{
〈T ∗n+1

1+φ
2

f, g〉
}∞
n=0

converges to 〈Kf, g〉 as n tends to ∞ for all f, g ∈ L2
a(D). This

implies

〈T ∗
n

1+φ
2

f, T 1+φ
2
g〉 −→ 〈Kf, g〉 for all f, g ∈ L2

a(D).

Thus 〈Kf, T 1+φ
2
g〉 = 〈Kf, g〉 for all f, g ∈ L2

a(D) and therefore T ∗1+φ
2

K = K. Further

since
{
〈T ∗n1+φ

2

T ∗1+φ
2

f, g〉
}∞
n=0

converges to 〈Kf, g〉 for all f, g ∈ L2
a(D), hence〈

KT ∗1+φ
2

f, g
〉

= 〈Kf, g〉 for all f, g ∈ L2
a(D).

Thus KT ∗1+φ
2

= K and T ∗
n

1+φ
2

K = K for all n ∈ Z+. That is,

〈T ∗
n

1+φ
2

Kf, g〉 = 〈Kf, g〉 for all f, g ∈ L2
a(D).

Taking limit both the sides, we obtain K2 = K. This proves that the operator K is
an idempotent. Moreover, T ∗1+φ

2

K = K implies T ∗φK = K and KT ∗1+φ
2

= K implies

KT ∗φ = K. So Ran (K) ⊆ ker(T1−φ).

On the other hand, for f ∈ ker(T1−φ), we have T ∗φf = f, so T ∗1+φ
2

f = f. Hence

T ∗
n

1+φ
2

f = f for all n ∈ Z+ and this implies Kf = f. Hence Ran (K) = ker(T1−φ).

To prove the inclusion Ran (T1−φ) ⊆ ker(K), let f ∈ L2
a(D) be an arbitrary element

and g = f − T ∗φf. Then we have Kg = Kf −KT ∗φf = Kf −Kf = 0. Hence g ∈ ker(K).

Thus we have shown that, if ‖φ‖∞ ≤ 1 then there exists an idempotent K ∈ L(L2
a(D))

whose range is ker(T1−φ) and kernel contains Ran (T1−φ) and there exists a subsequence

of {T ∗n1+φ
2

} which converges to K weakly.

To prove (i), assume that 〈Tn1+φ
2

f, g〉 −→ 0 for every f, g ∈ L2
a(D). Then

(3.1) 〈f, T ∗
n

1+φ
2

g〉 −→ 0 for all f, g ∈ L2
a(D).

That is, the sequence {〈f, T ∗n1+φ
2

g〉}∞n=0 is a Cauchy sequence. Thus if any subsequence

of {〈f, T ∗n1+φ
2

g〉}∞n=0 converges to some r ∈ C, then the sequence {〈f, T ∗n1+φ
2

g〉}∞n=0 itself

converges to r. We have already seen in the first part that there exists a subsequence of
{〈f, T ∗n1+φ

2

g〉}∞n=0 which converges to 〈f,Kg〉 for all f, g ∈ L2
a(D). Thus

T ∗
n

1+φ
2

w−→ K

in L(L2
a(D)) and the operator K is an idempotent. Thus it follows from (3.1) that K = 0,

T ∗
n

1+φ
2

w−→ 0 and ker(T1−φ) = Ran (K) = {0}.
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Conversely, assume ker(T1−φ) = {0}. Then since T ∗
n

1+φ
2

w−→ K and the operator

K ∈ L(L2
a(D)) is an idempotent and Ran K = kerT1−φ = {0} we obtain K = 0 and

T ∗
n

1+φ
2

w−→ 0.

To prove (ii) suppose ker(T1−φ) = {0}. Then by (i), Tn1+φ
2

converges to zero weakly

as n → ∞. Since Ln −→ IL(L2
a(D)) in norm operator topology, hence it follows from [8]

that Tn1+φ
2

Ln
w−→ 0.

To prove (iii), suppose ker(T ∗1−φ) = {0} and Ran (T1−φ) is closed. Then Ran (T1−φ) =

L2
a(D) and from Theorem 3.1, it follows that, ker(T1−φ) = {0}. Thus T1−φ is invertible

and 1 /∈ σ(Tφ). But

I − T 1+φ
2

= I − I

2
− Tφ

2
=
I − Tφ

2
.

Hence 1 /∈ σ(T 1+φ
2

). It therefore follows from [13] that if Ran(T1−φ) = L2
a(D) then

σ(T 1+φ
2

) ∩ {z ∈ C : |z| = 1} = ∅.
Notice that σ(T 1+φ

2
) is a compact subset [5] of C and since T 1+φ

2
is a contraction, the

spectral radius r(T 1+φ
2

) ≤ ‖T 1+φ
2
‖ ≤ 1. Further, as σ(T 1+φ

2
) ∩ {z ∈ C : |z| = 1} = ∅,

hence σ(T 1+φ
2

) is a compact subset of D and therefore r(T 1+φ
2

) < 1. By [15],

‖Tn1+φ
2

‖ −→ 0.

Conversely, assume that ‖Tn1+φ
2

‖ −→ 0. Then by [15], r(T 1+φ
2

) < 1. This implies that

σ(T 1+φ
2

) ∩ {z ∈ C : |z| = 1} = ∅. Therefore 1 /∈ σ(T 1+φ
2

). Since

I − T 1+φ
2

=
I − Tφ

2
.

So 1 /∈ σ(Tφ). Hence T1−φ is invertible. Hence Ran(T1−φ) = L2
a(D). �

It is not difficult to find examples of operators T ∈ L(H) such that Ran (T ) is closed
but Ran (T 2) is not closed.

Let {uj , fj , hj , j = 1, 2, . . .} be an orthonormal basis for H. Let {an}∞n=0 be a sequence
of nonnegative numbers converging to zero such that an ≤ 1 for all n. For each n, let
bn = (1− a2n)

1
2 and set vn = anun + bnhn, wn = anfn + bnhn.

Let M⊥ be the closed span of {vj} and define N to be the closed span of {wj}. Then
M⊥ ∩N = {0} and the angle between M⊥ and N is zero since

〈vj , wj〉 = b2n = 1− a2n.

Let T be a partially isometry with initial space M and the final space N. Then Ran (T )
is closed but Ran (T 2) is not closed. For more details see [4].

In the following lemma we shall show that if ‖φ‖∞ ≤ 1 and Ran (T1−φ) is closed then

Ran (T 2
1−φ) is closed.

Lemma 3.3. Let φ ∈ L∞(D) be such that ‖φ‖∞ ≤ 1 and ker(T1−φ) = {0}. Then the
following conditions are equivalent:

(i): Ran (T1−φ) is closed.

(ii): Ran (T1−φT1−φ) is closed.

(iii): Ran (T 2
1−φ) is closed.

Proof. To show (i) ⇐⇒ (ii), suppose T1−φ has closed range. From [18], it follows that

Ran (T1−φT1−φ) is closed and Ran (T1−φ) = Ran (T1−φT1−φ). Conversely, if T1−φT1−φ
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has closed range then

F = Ran (T1−φT1−φ)⊕ ker(T1−φT1−φ) = Ran (T1−φT1−φ)⊕ ker(T1−φ)

⊂ Ran (T1−φ)⊕ ker(T1−φ) ⊂ F,

which implies T1−φ has closed range.

To prove (i) =⇒ (iii) suppose Ran (T1−φ) is closed. It is enough [16] to prove that the

space Ran (T1−φ)+ker(T1−φ) is closed. Let {T1−φfn+gn} be a sequence in Ran (T1−φ)+

ker(T1−φ) that converges to f ∈ L2
a(D). Since ‖φ‖∞ ≤ 1, from the first part of the proof

of Theorem 3.2, it follows that there exists an idempotent operator K ∈ L(L2
a(D)) such

that

T ∗φK = K = KT ∗φ ,Ran (T1−φ) ⊂ ker(K)

and

ker(T1−φ) = Ran (K).

Thus we obtain

K(T1−φfn + gn) = Kgn −→ Kf.

As gn ∈ ker(T1−φ) = Ran (K), we obtain gn = Kxn for some xn ∈ L2
a(D) and Kgn =

KKxn = Kxn = gn. Since Kgn −→ Kf, we obtain gn −→ Kf. Thus the sequence
{T1−φfn} converges to f −Kf which must be in Ran (T1−φ), as the space Ran (T1−φ)
is closed.

To prove (iii) =⇒ (i) suppose Ran (T 2
1−φ) is closed. We have to show Ran (T1−φ) is

closed. Let {hn} ∈ Ran (T1−φ), suppose hn → h and hn = T1−φfn, fn ∈ L2
a(D).

Now T1−φfn −→ h implies T 2
1−φfn −→ T1−φh. That is, T1−φh ∈ Ran (T 2

1−φ).

Thus T1−φh = T 2
1−φk for some k ∈ L2

a(D). Therefore, T 2
1−φk − T1−φh = 0. That is,

T1−φ(T1−φk − h) = 0. So h = T1−φk as ker(T1−φ) = {0}. Hence h ∈ Ran (T1−φ).

Therefore Ran (T1−φ) is closed. �

Remark 1. It follows from Lemma 3.3 that if φ ∈ L∞(D) and ‖φ‖∞ ≤ 1 then Ran (T1−φ)

is closed implies Ran (T 2
1−φ) is closed. We do not need the condition ker(T1−φ) = {0} in

this case.

Theorem 3.4. Let ψ = 1−φ where φ ∈ L∞(D) and ‖φ‖∞ ≤ 1. Then Ran (Tψ) is closed
if and only if there exists an invertible operator S ∈ L(L2

a(D)) which commutes with Tψ
and STψ is a projection operator.

Proof. If Ran (Tψ) is closed, then from [4] it follows that Ran (Tψ) is closed and hence by

Lemma 3.3 and Remark 1, the space Ran (T 2
ψ

) is also closed. Again from [4], it follows

that the space Ran (T 2
ψ) is closed. Since ‖φ‖∞ ≤ 1, we obtain (see the proof of Theorem

3.1) that ker(Tψ) ∩ Ran (Tψ) = {0}.
Let f ∈ ker(T 2

ψ
). Then the element g = Tψf ∈ ker(Tψ) ∩ Ran (Tψ) = {0}. Hence

f ∈ ker(Tψ). Thus ker(T 2
ψ

) ⊆ ker(Tψ). The inclusion relation ker(Tψ) ⊆ ker(T 2
ψ

) is always

true. Hence ker(Tψ) = ker(T 2
ψ

).

Now,

(Ran (Tψ))⊥ = ker(Tψ) = ker(T 2
ψ

) = (Ran (T 2
ψ))⊥

and Ran (Tψ) is closed. Thus we obtain

Ran (T 2
ψ) = Ran (T 2

ψ) = Ran (Tψ).

So for every f ∈ L2
a(D), there exists g ∈ L2

a(D) such that Tψf = T 2
ψg. Thus f − Tψg is in

ker(Tψ) and from Theorem 3.1, we obtain

Ran (Tψ)⊕ ker(Tψ) = L2
a(D).
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Now, define R : L2
a(D) −→ L2

a(D) such that R(h + g) = Tψh + g where h ∈ Ran (Tψ)
and g ∈ ker(Tψ). The mapping R is well-defined, linear. Now suppose hn + gn → h + g
and R(hn + gn)→ l. Then l = R(h+ g). This can be verified as follows:

l = lim
n→∞

R(hn + gn) = lim
n→∞

(Tψhn + gn)

= Tψ( lim
n→∞

hn) + ( lim
n→∞

gn) = Tψh+ g = R(h+ g).

Thus R is a closed operator. By the closed graph theorem, R is bounded. We claim that
R is invertible. That is, R is onto and one-one.

Let f = h + g ∈ L2
a(D) where h ∈ Ran (Tψ) = Ran (T 2

ψ) and g ∈ ker(Tψ). Thus

h = Tψp for some p ∈ Ran (Tψ) and R(p+ g) = Tψp+ g = h+ g = f. Hence R is onto.
Again let f = h+g ∈ ker(R) where h ∈ Ran (Tψ) and g ∈ ker(Tψ). Then R(h+g) = 0.

That is, Tψh = −g. From Theorem 3.1, it follows that Tψh = g = 0. This implies h is
in the intersection of the spaces ker(Tψ) and Ran (Tψ) and so it is 0 as well. Hence
f = h+ g = 0 and R is one-one.

Let Θ be the projection with range Ran(Tψ) and kernel ker(Tψ). Now let f = h+g, h ∈
Ran (Tψ), g ∈ ker(Tψ). Then

RΘf = Rh = Tψh = Tψ(h+ g) = Tψf

and

ΘRf = Θ(Tψh+ g) = Tψh = Tψ(h+ g) = Tψf.

Thus Tψ = RΘ = ΘR. Hence R−1Tψ = Θ = TψR
−1. Let S = R−1. Then STψ = TψS

and STψ = Θ is a projection operator.
To prove the converse, suppose there exists an invertible operator S ∈ L(L2

a(D))
such that STψ = TψS and STψ = Θ, a projection operator. Let S−1 = R. Then
Tψ = RΘ = ΘR,Θ is a projection and R is invertible. We shall show that Ran (Tψ) is
closed. Let M = Ran(Θ). Then M is a closed subspace of L2

a(D). The map R is linear,
one-one, onto, bounded and R−1 is also bounded. Hence R is a homeomorphism. Thus
Ran (Tψ) = R(M) is a closed subspace of L2

a(D) as R is a closed map. �

Recall that, if H,K are two Hilbert spaces and C ∈ L(H,K) has closed range, then
there exists a unique C† ∈ L(K,H) such that CC†C = C,C†CC† = C† and CC†, C†C
are Hermitian, C† is called the Moore-Penrose inverse of C (For more details see [3]). If
C is positive then C† ≥ 0.

Theorem 3.5. Let φ ∈ L∞(D) and Ran (Tφ) is closed. Suppose ψ ∈ L∞(D) and
Ran (Sψ) is a closed subspace of L2

a(D) of finite codimension. Then Ran (Sψ) ⊂ Ran (Tφ)
and there exists a positive operator X ∈ L(L2

a(D)) such that TφX = Sψ if and only if
SψTφ ≥ 0 and Sψ = SψTφC for some C ∈ L(L2

a(D)). The operator X is unique if

ker(X) = ker(Tφ) = ker(Sψ). If X is invertible then φ ≡ 0.

Proof. Suppose ψ ∈ L∞(D) and Ran (Sψ) is a closed subspace of L2
a(D) of finite

codimension. Then ker(S∗ψ) is finite dimensional. Hence by Lemma 2.1, ker(Sψ) is

of finite dimension. Since Ran (Tφ) is closed and ker(Sψ) is finite dimensional hence
from [4] it follows that Ran (T ∗φ ) is closed and Ran (SψTφ) is closed. Now suppose

SψTφ ≥ 0 and Sψ = SψTφC for some C ∈ L(L2
a(D)). Then Ran (Sψ) ⊂ Ran (SψTφ) and

(SψTφ)(SψTφ)†Sψ = Sψ. Set X = Sψ+(SψTφ)†Sψ. Then X ≥ 0 and

TφX = (TφSψ+)(SψTφ)†Sψ = (SψTφ)(SψTφ)†Sψ = Sψ.

From [5] and [2], it follows that Ran (Sψ) ⊆ Ran (Tφ).
We now prove the converse. Since TφX = Sψ and X ≥ 0, hence SψTφ = TφXTφ ≥ 0.

We shall show that ker(SψTφ) ⊂ ker(Sψ+). Suppose f ∈ L2
a(D) be such that SψTφf =
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TφXTφf = 0. Then by Reid’s inequality [19], we have

‖Sψ+f‖2 = ‖XTφf‖
2

≤ ‖X‖〈XTφf, Tφf〉 = ‖X‖〈TφXTφf, f〉 = 0.

Hence ker(SψTφ) ⊂ ker(Sψ+) and therefore Ran (Sψ) = Ran Sψ ⊂ Ran (SψTφ). Thus by

[6], we have Sψ = SψTφC for some C ∈ L(L2
a(D)).

From [6] it follows that the operator X is unique if ker(X) = ker(Tφ) = ker(Sψ).
Further if the operator X is invertible and TφX = Sψ then it follows from [6], [2] that
Ran (Tφ) = Ran (Sψ). From Theorem 2.5, it follows that φ ≡ 0. �
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