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BEREZIN NUMBER OF OPERATORS AND RELATED QUESTIONS

MUBARIZ T. KARAEV AND NIZAMEDDIN SH. ISKENDEROV

Abstract. We prove some estimates for the Berezin number of operators on the
reproducing kernel Hilbert spaces. We also give in terms of Berezin number necessary

and sufficient conditions providing unitarity of invertible operator on the reproducing

kernel Hilbert space. Moreover, we give a lower estimate for any operator on the
Hardy space H2 (D) over the unit disc D.

1. Introduction and Notations

A Hilbert space H = H(Ω) consisting of functions defined on some set Ω in any
topological space is called reproducing kernel Hilbert space if all point evaluations f →
f (λ) (λ ∈ Ω) are continuous. Equivalently, there exists a function k : Ω × Ω → C such
that all functions of the form k (., λ) : Ω → C belong to H and, moreover, satisfy the
equality

〈f, k (., λ)〉 = f (λ) (f ∈ H, λ ∈ Ω) .

The function k is easily seen to be unique with these properties and is usually called the
reproducing kernel of H.

Let A : H → H be a linear bounded operator (i.e., A ∈ B (H)). Its Berezin symbol is
defined by

Ã(λ) :=

〈
A

k (., λ)

‖k (., λ)‖
,
k (., λ)

‖k (., λ)‖

〉
(λ ∈ Ω).

The function k̂λ(z) := k(z,λ)
‖k(z,λ)‖ is called the normalized reproducing kernel of H. A

detailed presentation of the theory of functional Hilbert spaces, reproducing kernels and
Berezin symbols is given, for instance, in Aronzajn [1], Saitoh [6, 7] and Zhu [10].

Let us denote

Ber(A) =
{
Ã (λ) : λ ∈ Ω

}
and ber (A) := sup

λ∈Ω

∣∣∣Ã (λ)
∣∣∣ ,

which is called Berezin set and Berezin number of the operator A, respectively. We recall
that

W (A) := {〈Af, f〉 : ‖f‖H = 1}
is the numerical range and

w (A) := sup {|〈Af, f〉| : ‖f‖H = 1}

is the numerical radius of A. It is obvious that ber (A) ≤ w (A) and Ber(A) ⊂ W (A).
The investigation of these new numerical characteristics of the linear bounded operators
apparently has a great interest in the spectral theory of operators. For more informations
about Berezin set and Berezin number, see Karaev [3].

It is well known that unitary operators can be characterized as invertible contractions
with contractive inverses, i.e., as operators A with ‖A‖ ≤ 1 and

∥∥A−1
∥∥ ≤ 1.
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Recently Sano and Uchiyama [8] proved that if A is an invertible operator on the
abstract Hilbert space H such that w (A) ≤ 1 and w

(
A−1

)
≤ 1, then A is unitary (see

also Stampfli [9, Corollary 1]).
Here we obtain in terms of Berezin number necessary and sufficient conditions which

guarantee unitarity of an invertible operator on the reproducing kernel Hilbert space.We
also estimate the Berezin number of an arbitrary operator on the Hardy space H2 (D) .

2. A characterization of unitary operators

In this section we characterize unitary operators in terms of Berezin number.

Definition 1. Let H = H(Ω) be a reproducing kernel Hilbert space of complex-valued
functions defined on some set Ω. We say that H possesses ”(Ber) property”, if for any

two operators A1, A2 ∈ B (H) Ã1 (λ) = Ã2 (λ) for all λ ∈ Ω implies A1 = A2.

It is well known, for example, that any reproducing kernel Hilbert space of analytic
functions in the unit disc D (including Hardy and Bergman spaces) has the (Ber) property
(see Zhu [10], Proposition 6.2 and Karaev [3], Lemma 2).

Note that A is said to be unitary, if A∗A = AA∗ = I, that is, A∗ = A−1.
The main result of this note is the following.

Theorem 1. Let H = H(Ω) be a reproducing kernel Hilbert space with (Ber) property and
A ∈ B (H) be an invertible operator. Then A is unitary if and only if ber

(
A−1∗A−1

)
≤ 1,

ber
(
A−1A−1∗) ≤ 1, ber (AA∗) ≤ 1 and ber (A∗A) ≤ 1.

Proof. First note the following:

1) ber
(
A−1∗A−1

)
≤ 1 if and only if

∥∥∥A−1∗k̂λ

∥∥∥ ≤ 1 (∀λ ∈ Ω) ;

2) ber
(
A−1A−1∗) ≤ 1 if and only if

∥∥∥A−1∗k̂λ

∥∥∥ ≤ 1 (∀λ ∈ Ω) ;

3) ber (AA∗) ≤ 1 if and only if
∥∥∥A∗k̂λ∥∥∥ ≤ 1 (∀λ ∈ Ω) ;

4) ber (A∗A) ≤ 1 if and only if
∥∥∥Ak̂λ∥∥∥ ≤ 1 (∀λ ∈ Ω) .

Indeed, for all λ ∈ Ω we have∥∥∥A−1k̂λ

∥∥∥2

=
〈
A−1k̂λ, A

−1k̂λ

〉
=
〈
A−1∗A−1k̂λ, k̂λ

〉
= ˜A−1∗A−1 (λ)

and ∥∥∥A−1∗k̂λ

∥∥∥2

=
〈
A−1∗k̂λ, A

−1∗k̂λ

〉
=
〈
A−1A−1∗k̂λ, k̂λ

〉
= ˜A−1A−1∗ (λ) .

Thus

(1) sup
λ∈Ω

∥∥∥A−1k̂λ

∥∥∥ ≤ 1 ⇐⇒ ber
(
A−1∗A−1

)
≤ 1

and

(2) sup
λ∈Ω

∥∥∥A−1∗k̂λ

∥∥∥ ≤ 1 ⇐⇒ ber
(
A−1A−1∗) ≤ 1.

Analogously, it can be proved that

(3) sup
λ∈Ω

∥∥∥A∗k̂λ∥∥∥ ≤ 1 ⇐⇒ ber (AA∗) ≤ 1,

and

(4) sup
λ∈Ω

∥∥∥Ak̂λ∥∥∥ ≤ 1 ⇐⇒ ber (A∗A) ≤ 1,

which prove statements 1)–4), respectively.
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It is easy to show that A is unitary if and only if

(5)
∥∥∥Ak̂λ∥∥∥ =

∥∥∥A∗k̂λ∥∥∥ = 1 (∀λ ∈ Ω) .

Indeed, by using (Ber) property of the space H we assert that

A is unitary ⇐⇒ AA∗ = A∗A = I ⇐⇒ ÃA∗ (λ) = Ã∗A (λ) = 1 (∀λ ∈ Ω) .

Since ÃA∗ (λ) =
∥∥∥A∗k̂λ∥∥∥2

and Ã∗A (λ) =
∥∥∥Ak̂λ∥∥∥2

for all λ ∈ Ω, we assert that A is

unitary if and only if
∥∥∥Ak̂λ∥∥∥ =

∥∥∥A∗k̂λ∥∥∥ = 1 for all λ ∈ Ω.

Now by using these and the equalities

AA−1 = A−1A = I,

we have 〈
AA−1k̂λ, k̂λ

〉
=
〈
A−1Ak̂λ, k̂λ

〉
= 1

for all λ ∈ Ω. Then by considering (1)–(4) we obtain that

1 ≤
∥∥∥A−1k̂λ

∥∥∥∥∥∥A∗k̂λ∥∥∥ ≤ ∥∥∥A∗k̂λ∥∥∥ ≤ 1 (∀λ ∈ Ω) ,

and hence

(6)
∥∥∥A∗k̂λ∥∥∥ = 1 (∀λ ∈ Ω) .

Also

1 ≤
∥∥∥Ak̂λ∥∥∥∥∥∥A−1∗k̂λ

∥∥∥ ≤ ∥∥∥Ak̂λ∥∥∥ ≤ 1 (∀λ ∈ Ω) ,

and hence

(7)
∥∥∥Ak̂λ∥∥∥ = 1 (∀λ ∈ Ω) .

Now by considering (5) we deduce from (6) and (7) that an operator A is unitary, as
desired.

It is obvious that if A is unitary, then ber
(
A−1∗A−1

)
= ber

(
A−1A−1∗) = ber (AA∗) =

ber (A∗A) = 1. The theorem is proved. �

3. An inequality for the Berezin number of operators

Note that always ber (A) ≤ w (A) and ‖A‖2 ≤ w (A) ≤ ‖A‖ . However, it is known (see,
for example, Englis [2]) that

ber (Tf ) ≥ C ‖Tf‖ ∀f ∈ L∞ (D, dm2)

can not hold for any constant C > 0; here Tf is the Toeplitz operator on the Bergman
space L2

a := L2
a (D, dm2) (which is the Hilbert space consisting of the analytic functions

on D that are also in L2 (D, dm2)) defined by

Tfg (z) := P (fg) (z) =

∫
D

f (w) g (w)

(1− zw)
2 dm2 (w) ,

where dm2 denotes the Lebesgue measure on the unit disk D = {z ∈ C : |z| < 1}, nor-
malized so that the measure of D equals 1, and P : L2 (D, dm2) → L2

a is the orthogonal
projection defined by

P (h) (z) :=

∫
D

h (w)

(1− zw)
2 dm2 (w)

for each z ∈ D and h ∈ L2 (D, dm2) . Thus, it is interesting and natural to find a lower
estimate for ber (A) in terms of the operator A.

In this connection we will prove the following theorem, which estimates ber (A) in
terms of some quantity associated with the operator A.
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Before giving our result, let us introduce some necessary notations. The Hardy space
H2 = H2 (D) of the disk is defined as the set of all functions analytic in the unit disk
D = {z ∈ C : |z| < 1} and

‖f‖H2 = sup
0≤r<1

(
1

2π

∫ 2π

0

∣∣f (reit)∣∣2 dt)1/2

<∞.

H2 has a reproducing kernel kλ (z) := 1
1−λz (λ, z ∈ D) . Let T = ∂D denote the unit

circle. For any ϕ ∈ L∞ (T), the corresponding Toeplitz operator on H2 is defined by

Tϕf = P+ϕf, f ∈ H2,

where P+ : L2 (T)→ H2 is the orthogonal projector (the Riesz projector). The Banach
algebra of bounded analytic functions on D is denoted by H∞ = H∞ (D) . Every ψ ∈ H∞
acts as a multiplication operator on H2, Tψf = ψf, f ∈ H2. It is easy to see that

Tψkλ = ψ (λ)kλ for each λ ∈ D. Also it is well known that the Berezin symbol T̃ϕ is an
“asymptotic eigenvalue” of the Teoplitz operator Tϕ, i.e.,

(8) lim
r→1−

∥∥∥(Tϕ − T̃ϕ (reit) I) k̂reit∥∥∥
H2

= 0

for almost all t ∈ [0, 2π). Moreover,

(9) T̃ϕ (λ) = ϕ̃ (λ) (λ ∈ D) ,

where ϕ̃ denotes the harmonic extension of the function ϕ ∈ L∞ (T) into the unit disk
D. For more details, see Englis [2] and Karaev [4, 5].

Theorem 2. Let ϕ ∈ L∞ (∂D) and ψ ∈ H∞ (D) be any two nonzero functions such
that ‖ϕ‖L∞ ≤ 1 and ‖ψ‖H∞ ≤ 1. For any operator A : H2 → H2, we define Nϕ,ψ,A :=

Tϕ

(
I − TψATψ

)
, where Tϕ, Tψ and Tψ are Toeplitz operators on the Hardy space H2 =

H2 (D) . Then Ñ rad
ϕ,ψ,A(eit) := limr→1− Ñϕ,ψ,A

(
reit
)

exists for almost all t ∈ [0, 2π) and

ber (A) ≥
∥∥∥ϕ− Ñ rad

ϕ,ψ,A

∥∥∥
L∞

.

Proof. By considering (9) , let us calculate the Berezin symbol of the operator Nϕ,ψ,A,

Ñϕ,ψ,A (λ) =
〈
Nϕ,ψ,Ak̂λ, k̂λ

〉
=

〈(
I − TψATψ

)
k̂λ, Tϕk̂λ − T̃ϕ (λ) k̂λ

〉
+
〈
k̂λ − ψ (λ)TψAk̂λ, T̃ϕ (λ) k̂λ

〉
=

〈(
I − TψATψ

)
k̂λ,
(
Tϕ − T̃ϕ (λ) I

)
k̂λ

〉
+ϕ̃ (λ)− ϕ̃ (λ)ψ (λ)

〈
TψAk̂λ, k̂λ

〉
=

〈(
I − TψATψ

)
k̂λ,
(
Tϕ − T̃ϕ (λ) I

)
k̂λ

〉
+ϕ̃ (λ)− ϕ̃ (λ) |ψ (λ)|2 Ã (λ)

for all λ ∈ D. Then, by considering that supλ∈D |ϕ̃ (λ)| ≤ ‖ϕ‖L∞ ≤ 1 and ‖ψ‖H∞ ≤ 1,
we have ∣∣∣ϕ̃ (λ)− Ñϕ,ψ,A (λ)

∣∣∣ ≤ ber (A) +
∥∥∥I − TψATψ∥∥∥∥∥∥(Tϕ − T̃ϕ (λ) I

)
k̂λ

∥∥∥
≤ ber (A) + (1 + ‖A‖)

∥∥∥(Tϕ − T̃ϕ (λ) I
)
k̂λ

∥∥∥
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for all λ ∈ D. Thus, by using (8), it follows from the latter that

lim
r→1−

∣∣∣ϕ̃ (reit)− Ñϕ,ψ,A (reit)∣∣∣ ≤ ber (A)

for almost all t ∈ [0, 2π). Since limr→1− ϕ̃
(
reit
)

= ϕ
(
eit
)
, the last inequality implies

that

ess sup
t∈[0,2π)

∣∣∣∣ϕ (eit)− lim
r→1−

Ñϕ,ψ,A
(
reit
)∣∣∣∣ ≤ ber (A) ,

that is, Ñ rad
ϕ,ψ,A

(
eit
)

:= limr→1− Ñϕ,ψ,A
(
reit
)

exists almost everywhere on the unit circle
T and

ess sup
t∈[0,2π)

∣∣∣ϕ (eit)− Ñ rad
ϕ,ψ,A

(
eit
)∣∣∣ ≤ ber (A) ,

or ∥∥∥ϕ− Ñ rad
ϕ,ψ,A

∥∥∥
L∞
≤ ber (A) ,

as desired. The proof is completed. �
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