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PARAMETER-ELLIPTIC OPERATORS
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ABSTRACT. Parameter—elliptic pseudodifferential operators given on a closed smooth
manifold are investigated on the extended Sobolev scale. This scale consists of all
Hilbert spaces that are interpolation spaces with respect to a Hilbert—Sobolev scale.
We prove that these operators set isomorphisms between appropriate spaces of the
scale provided the absolute value of the parameter is large enough. For solutions
to the corresponding parameter—elliptic equations, we establish two-sided a priori
estimates, in which the constants are independent of the parameter.

1. INTRODUCTION

Parameter—elliptic operators occupy a special position in the theory of elliptic differen-
tial equations. These operators are distinguished by the following fundamental property:
if the absolute value of the complex parameter is large enough, then the elliptic operator
defines an isomorphism between appropriate Sobolev spaces, and moreover the solution
of the elliptic equation admits an a priory estimate in which the constant does not depend
on the parameter. Elliptic operators with spectral parameter are simple and important
examples of the operators discussed. Various classes of parameter—elliptic equations and
boundary—value problems were introduced and investigated in the papers by S. Agmon
[1], S. Agmon and L. Nirenberg [2], M. S. Agranovich and M. I. Vishik [3], M. S. Agra-
novich [4, 5], G. Grubb [6, Ch. 2], A. N. Kozhevnikov [7-10], R. Denk, R. Mennicken,
and L. R. Volevich [11, 12], R. Denk and M. Fairman [13] and other papers (also see the
surveys [14, 15] and the references therein). Such classes have important applications to
the spectral theory of elliptic operators, to parabolic differential equations and others;
note that the most significant results are obtained in the case of Hilbert spaces.

In this connection, of interest is an investigation of parameter—elliptic operators in
classes of Hilbert spaces that are calibrated much finer than the Sobolev scale. For such
classes, a sufficiently general function, not a number parameter, serves as the smoothness
index. Among them, we consider the class of all Hilbert spaces that are interpolation
spaces for the Hilbert Sobolev scale. This class consists of the Hérmander spaces B i
[16, Sec. 2.2] for which the smoothness index k is an arbitrary radial function RO-varying
at +00. Such a class is naturally called an extended Sobolev scale (by means of interpo-
lation spaces); this scale is distinguished and investigated in [17] and [18, Sec. 2.4]. Since
the isomorphism and Fredholm properties of linear operators are preserved under the
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interpolation of spaces, the extended Sobolev scale proved to be convenient and efficient
in the theory of general elliptic operators (see [17, 19, 20] and [18, Sec. 2.4.3]).

In this paper we investigate parameter—elliptic pseudodifferential operators given on a
closed smooth manifold and acting on the extended Sobolev scale. Our purpose is to show
that these operators possess the above—mentioned property on this scale. Namely, we
will prove a theorem on isomorphisms realized by a parameter—elliptic pseudodifferential
operator and on a priory estimates of a solution to the corresponding elliptic equation.

Note that the theory of general elliptic equations and elliptic boundary—value problems
is built for a narrower class of Hérmander spaces (called the refined Sobolev scale) by
V. A. Mikhailets and the second author in a series of papers, among them we mention
the articles [21-28], survey [29], and monograph [18]. Specifically, parameter—elliptic
equations are investigated therein.

Nowadays Hormander spaces and their various analogs, called the spaces of generalized
smoothness, are of considerable interest both by themselves and in applications [30-33].

2. STATEMENT OF THE PROBLEM

Let I" be a closed (i.e. compact and without boundary) infinitely smooth manifold
of dimension n > 1. A certain C'°°-density dx is supposed to be given on I'. The
linear topological spaces C*°(T") of test functions and D’(T") of distributions defined on
T are considered as antidual spaces with respect to the inner product in Lo(T', dz). We
suppose that functions and distributions are complex-valued, and interpret distributions
as antilinear functionals.

Following [14, Sec. 4.1], we recall the definition of a parameter—elliptic pseudodiffer-
ential operator on I'.

Let W1, (I') denote the class of polyhomogeneous (i.e. classical) pseudodifferential
operators (PsDOs) of order r € R defined on the manifold I'. The principal symbol of a
PsDO belonging to W7, (T") is an infinitely smooth and complex-valued function defined on
the cotangent bundle 7*T'\0 (here 0 is the zero-section) and being positively homogeneous
of the degree r with respect to £ in every section T T\ {0}, where z € I'. We admit that
the principal symbol can be equal to zero identically, then W7, (I') C \I'I’ih(F) whenever
r < k. A linear differential operator of order » > 1 given on I' and having infinitely
smooth coefficients is an important special case of a PsDO belonging to \I/;h(f‘). Note
that the PsDOs under consideration are linear and continuous on both topological spaces
C>(T) and D'(T).

Let numbers m > 0 and ¢ € N be chosen arbitrarily. We consider a PsDO A(\) that
belongs to W1#(I") and depends on the complex-valued parameter A in the following way:

(1) AN = i NI A
j=0

Here A; € \Ilg}f (T") for each 5 € {0,...,q}, and moreover A, is the operator of multipli-
cation by a function ag € C*°(I"). Note that since m(q — j) + ord A; = ord A(N), the
weight m is ascribed to A in (1).

Let K be a fixed closed angle on the complex plain with the vertex at the origin (we
do not exclude the case where K degenerates into a ray).

The PsDO A()) is said to be parameter—elliptic in the angle K on the manifold I if

(2) > AT aj0(x, ) £0

j=0
for each point x € I', covector £ € T;T" and the parameter A € K such that (£, A) # 0.
Here a; o(z, &) is the principle symbol of A;, so ago(z, &) = ao(z). We also admit that the
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functions aj o(x, &), az,0(x,€), ... are equal to zero at & = 0 (this assumption is connected
with the fact that the principal symbols are not initially defined at £ = 0).

For instance, let a PsDO be of the form A—AI, where A € W[} (I') (as usual I denotes
the identity operator). Then, for A — AI, the parameter—ellipticity condition in K means
that ag(z,£) ¢ K whenever £ # 0; here ag(z,&) is the principal symbol of A. This
example is important in the spectral theory of elliptic operators.

We investigate properties of the parameter—elliptic PsDO A()) on an extended Sobolev
scale.

3. THE EXTENDED SOBOLEV SCALE

Following [18, Sec. 2.4], we will introduce the spaces that form an extended Sobolev
scale. They are parametrized with a function ¢ € RO that characterizes regularity
properties of the distributions belonging to the space. Here RO is the set of all Borel
measurable functions ¢ : [1,00) — (0, 00) for which there exist numbers @ > 1 and ¢ > 1
such that

(3) <

)

(generally, the constants a and ¢ depend on ¢ € RO). These functions are said to be RO-
varying at +o0o. The class of RO-varying functions was introduced by V. G. Avakumovié¢
[34] in 1936 and has been sufficiently investigated [35, 36].

The class RO admits the following description:

p€ERO — Lp(t)zexp(ﬁ(t)—i—/ltryt-)dT), t>1,

where the real-valued functions 8 and 7 are Borel measurable and bounded on [1, c0).
Note also that condition (3) is equivalent to the bilateral inequality

At
ﬁ(t)gc foreach t>1 and \€|[l,d]

At
(4) I < w((t)) <eA' foreach t>1 and X\>1,
¥
in which (another) constant ¢ > 1 is independent of ¢t and . Hence, for every function
» € RO, we can define the lower and the upper Matuszewska indices [37] as follows:

(5) oo(p) :=sup{sp € R : the left-hand inequality in (4) holds},
(6) 01(p) :=inf{s; € R : the right-hand inequality in (4) holds}

(see [36, Theorem 2.2.2]); here —oo < gg(p) < 71(p) < 0.
Now let ¢ € RO and introduce the necessary function spaces over R™ and then over I'.
The linear space H?(R™) is defined to consists of all distributions w € §'(R™) such
that their Fourier transforms @ := Fw is locally Lebesgue integrable over R™ and satisfy
the condition

| ey aor i< .

Here, as usual, S'(R™) is the linear topological space of tempered distributions given in
R, and (¢) := (1 + |£]?)'/2 is the smoothed modulus of ¢ € R™. The inner product in
H?(R") is defined by the formula

(w1, 02) proan) = / SUE) T () T () de.

Rn

It endows H¥(R™) with the Hilbert space structure and induces the norm ||wl| e ®n) :=
1/2
(w, w)Hsa(]Rn)-

The space H¥(R™) is a Hilbert and isotropic case of the spaces B, ;, introduced and
systematically investigated by L. Hoérmander [16, Sec. 2.2] (also see [38, Sec. 10.1]).
Namely, H?(R™) = B, provided p = 2 and k(§) = ¢((§)) for all £ € R™. Not that, if
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p = 2, then the Hérmander spaces coincide with the spaces introduced and investigated
by L. R. Volevich and B. P. Paneah [39, Sec. 2].

To define an analog of H?(R™) for the manifold T', choose a finite atlas belonging to
the C'°°-structure on I'. Let this atlas consist of local charts o; : R™" <+ T';, j =1,...,p,
where the open sets I'; form a finite covering of I. Also choose functions x; € C>(T'),
j =1,...,p, that satisfy the condition supp x; C I'; and that form a partition of unity
onT.

The linear space H¥(T") is defined to consist of all distributions u € D'(T") such that
(xju) oa; € H?(R™) for every j € {1,...,p}. Here (x,u) o @; is the representation of
the distribution x;u in the local chart ¢;. The inner product in H¥(I') is defined by the
formula

P
(w1, u2)p = > ((xju1) @y, (Xsu2) © @) e (n),
j=1

where uj,us € H?(R™). This inner product endows H?(R™) with the Hilbert space
. 1/2
structure and induces the norm |[jul|, == (u,u)y .

The Hilbert space H?(T") does not depend (up to equivalence of norms) on our choice
of local charts and partition of unity on I' [18, Theorem 2.21]. This space is separable,
and the continuous and dense embeddings C*°(T") — H?(I") — D'(T") hold.

If o(t) = t* for each t > 1 with some s € R, then H?(R") =: H*)(R") and H#(I") =:
H)(T) are the inner product Sobolev spaces (of the differentiation order s) given over
R™ and I' respectively.

The class of Hilbert function spaces

{H?(R"orT) : ¢ € RO}

is naturally said to be the extended Sobolev scale over R™ or T.

We mention some properties of the extended Sobolev scale on I'" connected with em-
bedding of spaces. Let ¢, ¢1 € RO; the function ¢(t)/¢1(¢) is bounded on a neighborhood
of 400 if and only if H#*(T') — H¥(T'). This embedding is continuous and dense; more-
over, it is compact if and only if ¢(¢)/1(t) = 0 as t — +o00. Specifically, the following
compact and dense embeddings hold:

(7)  HE() < H?(T) < H®)() for each s; >01(p) and s < ao(¢p).
This properties result from the corresponding properties of the Hérmander spaces B i,
[16, Sec. 2.2].

4. THE MAIN RESULT

Put o(t) := t for t > 1. The PsDO A()), which order is mgq, defines the bounded
operator
(8) AN : H??" () — H¥(I') foreach AeC and ¢ € RO.

This fact will be proved in Section 6. Note here that pp™? € RO, and therefore operator
(8) acts on the extended Sobolev scale.
The main result of the paper is the following.

Theorem. Suppose that the PsDO A()\) is parameter—elliptic in the corner K C C on
the manifold T'. Then there exists a number Ao > 0 such that for every A € K and
@ € RO we have the isomorphism

(9) AN H¥? (T') «» H?(T') whenever |\ > Ao.
Moreover, for each fized p € RO there exists a number ¢ = c¢(¢) > 1 such that
(10) AW ully < (ullpgma + A ully) < c AN ull

mq
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for every X € K, with |\| > Ao, and all u € H¥*™4%(T"). Here the number ¢ does not
depend on \ and u.

This theorem is known in the Sobolev case, where p(t) = t* and s € R (see [14,
Theorem 4.1.2]). We will prove Theorem for arbitrary ¢ € RO in Section 7 by applying
interpolation with function parameter.

Note that the left-hand side of inequality in (10) remains true without the parameter—
ellipticity assumption (see Lemma 2 in Section 6).

5. INTERPOLATION WITH FUNCTION PARAMETER

The extended Sobolev scale possesses an important interpolation property, which we
will use. Namely, every space H¥(I"), with ¢ € RO, is the result of the interpolation (with
an appropriate function parameter) between the Sobolev spaces H(*0)(T") and H(1)(T')
appearing in (7). (An analogous result holds for the spaces defined over R™.) In this
connection we recall the definition of interpolation with function parameter in the case
of general Hilbert spaces and then state some properties of the interpolation (see [18,
Sec. 1.1]). Tt is sufficient to restrict ourselves to separable complex Hilbert spaces.

Let X := [Xo,X1] be an ordered couple of separable complex Hilbert spaces such
that the continuous and dense embedding X; < X, holds. We say that this couple is
admissible. For X there exists an isometric isomorphism J : X; > X such that J is
a self-adjoint positive operator on Xy with the domain X;. The operator J is called a
generating operator for the couple X. This operator is uniquely determined by X.

Let ¢ € B, where B is the set of all Borel measurable functions ¢ : (0,00) — (0, c0)
such that v is bounded on each compact interval [a,b], with 0 < a < b < oo, and that
1/4 is bounded on every set [r, c0), with r > 0.

Consider the operator 1 (.J), which is defined (and positive) in X, as the Borel function
1 of J. Denote by [Xo, X1]y or simply by X, the domain of the operator ¢ (J) endowed
with the inner product (u1,uz)x, := (¥(J)u1,(J)uz)x, and the corresponding norm
lullx, = l¥(J)ullx,. The space Xy, is Hilbert and separable.

A function 9 € B is called an interpolation parameter if the following condition is
fulfilled for all admissible couples X = [Xo, X;1] and Y = [Yp, Y1] of Hilbert spaces and
for an arbitrary linear mapping 7" given on Xj: if the restriction of 1" to X; is a bounded
operator T' : X; — Y; for each j € {0,1}, then the restriction of T' to Xy, is also a
bounded operator T": X, — Y.

If ¢ is an interpolation parameter, then we say that the Hilbert space X, is obtained
by the interpolation of X with the function parameter ¢. In this case, the dense and
continuous embeddings X; — X < X hold.

Note that a function ¢ € B is an interpolation parameter if and only if v is pseudo-
concave on a neighborhood of +00 (see [18, Theorem 1.9]). The latter condition means
that there exists a concave function v : (b,00) — (0,00), with b > 1, such that both
functions ¥ /47 and 1 /1 are bounded on (b, c0).

The above-mentioned interpolation property of the extended Sobolev is stated in the
following way [18, Theorems 2.18 and 2.22].

Proposition 1. Let a function ¢ € RO and numbers sg, s1 € R be such that sg < oo(p)
and s1 > o1(p). Set

tms0/(s1750) o (¢1/(s1=%0)) - for ¢ >1,

(11) Vo) = { (1) for 0<t< 1
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Then 1 € B is an interpolation parameter, and
[HE)(R™), HED(R™)]y, = H?(R™)  with equality of norms,
[H)(T), H=)(D)], = H?(T)  with equivalence of norms.

We will also use two properties of interpolation between abstract Hilbert spaces. The
first of them is the following estimate of the operator norm in interpolation spaces [18,
Theorem 1.8].

Proposition 2. For every interpolation parameter 1 € B there exists a number ¢ =

c(vp) > 0 such that

||T||Xw4)yw S Emax{ ||T||X14,yj : j = 07 1 }
Here X = [Xo,X1] and Y = [Yo,Y1] are arbitrary normal admissible couples of Hilbert
spaces, and T is an arbitrary linear mapping given on Xy and defining the bounded

operators T' : X; — Y;, with 7 = 0, 1. The number cy, > 0 does not depend on X, Y,
and T.

Recall here that an admissible couple of Hilbert spaces X = [Xp, X7] is said to be
normal if ||ul|x, < |lul|x, for each u € X;. Note that each admissible couple [Xy, X7] can
be transformed into a normal couple by replacing the norm || u || x, with the proportional
norm k ||u|| x,, where k is the norm of the embedding operator X; < Xj.

The second property is useful when we interpolate between direct sums of Hilbert
spaces.

Proposition 3. Let [Xéj)7X1(j)], with j = 1,...,p, be a finite collection of admissible
couples of Hilbert spaces. Then for every function ¥ € B we have
P P P
[@Xéj), @Xﬁj)} = @[Xéj), ij)]w with equality of norms.
j=1 j=1 ¥

j=1
6. SOME AUXILIARY RESULTS

Here we will prove some auxiliary results regarding the boundedness of the PsDO
A(X) on the extended Sobolev scale.

Lemma 1. Let T € V[, (T') for some r € R. Then the PsDO T defines the bounded
operator ,
T:H? (T)— H?(T) for each ¢ € RO.

Proof. This lemma is known in the Sobolev case [14, Theorem 2.1.2]. We prove the
lemma for arbitrary ¢ € RO by applying Proposition 1. Choose numbers sy and s; so
that sg < oo(p) and s; > o1(p). Let ¥ be the interpolation parameter appearing in
Proposition 1. Consider the bounded operators

(12) T: H () —» HS(D), j=0,1,

which map between Sobolev spaces. Applying the interpolation with the function para-
meter 1 to (12), we obtain, by Proposition 1, the required bounded operator

T: H?¢ (D) = [H**(D), H ()], = [HE(D), HED)(D)], = HA(D).
Note that the first equality is true here because so + 1 < oo(pp”), s1 +1 > g1(ep”), and

1 satisfies formula (11), in which sg, s1, and ¢ should be replaced with sg + 7, s1 + 7,
and @p” respectively. O

According to Lemma 1, the operator (8) is well-defined and bounded for each A € C
and ¢ € RO. The next lemma refines this result.
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Lemma 2. For an arbitrary ¢ € RO there exists a number ¢’ = /() > 0 such that
(13) AN ullp < ¢ (lullpema + A [[ull)
for every A\ € C and each u € H?"" (T'). Here ¢’ does not depend on X\ and u.

Proof. We will use the following interpolation inequality:
s
(14) < ully < V2 ([lullyes + 74 [ullye-s),

where the number parameters r,¢,d > 0, the function parameter € RO and the distri-
bution u € H"" (T) are all arbitrary. (Similar inequalities are known for Sobolev spaces;
see, e.g., [3, § 1, Sec. 6].)

Formula (14) follows from the evident inequality 1 < (k/r)¢ + (r/k)°® for all positive
numbers 7 and k. Indeed, if we put k := (£) in this inequality and multiply both sides by
ren((€)) |@(€)], where ¢ € R™ and w € H"®" (R") are arbitrary, then we obtain an analog
of (14) for spaces over R™. Namely, we can write the following:

v [l ngeny = 1170 ((€)) [BE] | e
< UV TN iy + |7 0UENE) ™ [B(E) [l en e
= [l srmer @y + 74 o0l s o

Here, as usual, Ly (R™, d¢) denotes the Hilbert space of functions square integrable over
R™ with respect to the Lebesgue measure d§, where £ is their argument. Whence we
directly obtain (14) according to the definition of the spaces over I". Certainly, we should
use the same collection of local charts and partition of unity for these spaces.

Now let ¢ € RO be chosen arbitrarily. Then for each A € C and u € H*?"*(T), we
can write

q a
AN ulle <D N7 [ Azully < e N [l ggms
j=0 j=0
< e V2 (JJullggra + (A ull,)-
Here we apply (1), Lemma 1, and (14) in succession. According to Lemma 1, the number
¢1 > 0 is independent of both A and u in these inequalities. Note that we use (14) for
n:= o™, e:=m(q—j), 6 :=mj and r := |\|"/™, with j = 0,...,q. Thus, we have the
required inequality (13) with ¢ := ¢; V2. |

7. PROOF OF THE MAIN RESULT

Our proof of Theorem is based on an interpolation property of some parameter—
dependent spaces. Therefore we will first introduce these spaces, establish this property,
and then prove Theorem.

Let a function € RO and numbers 7,0 > 0 be given. We let H"(T',r,8) denote the
space H"(T") which is endowed with the norm depending on the parameters r and 6 in
the following way:

1/2
lully.ro == (lully + 7 lullf,-e) ", u e HY(T).
The space H"(T',r,6) is well-defined, and the norms in H"(T,r,6) and H"(T') are equi-
valent. This directly follows from the continuous embedding H"(I") — H 77976(F). Note
that the norm in the space H"(I',r, ) is induced by the inner product
(ur, u2)y,ro = (u1,u2)y + 1% (w1, us) -0, wr,us € H'(I);

therefore this space is Hilbert. If we consider the Sobolev case where 7(t) = t° for some
s € R, then the space H"(T,r, ) is denoted by H)(T,r,@).

Returning to Theorem note that

(15) lullggmaajamg < Clullpgma + A ully ) < V2 |lullggmaae,mg



36 A. MURACH AND T. ZINCHENKO

for each u € H¥?"*(T).
According to Proposition 1, the spaces

[H(ZO)(F,Tﬂ),H(ll)(r,rve)]w and  H'(T,r,0)

are equal up to equivalence of norms. Here both the numbers Iy < o¢(n) and I; > o1(n)
are arbitrary, whereas the interpolation parameter 1 is defined by the formula

t—lo/i=lo) py($1/(l1—=l0)) t>1
(16) 9(t) = AERTE) iz
n(1) for 0<t<1.

We now refine this result in the following way.

Lemma 3. Let a function n € RO and numbers ly < oo(n), 1 > o1(n), 6 > 0 be all
chosen arbitrarily. Then there exists a number co > 1 such that

(17) co ' Jlu

nr0 < ”u”[H(’O)(F,rﬁ),H(ll)(F,r,@)]w < co ||ully,re
for every number r > 0 and each distribution v € H"(T"). Here 1 is the interpolation
parameter defined by (16), and the number co does not depend on r and u.

Proof. Let a number r > 0 be arbitrary. We will first prove the following: if we replace
I’ with R™ in formula (17), then it holds for ¢y = 1.
Let H"(R™,r,60) denote the space H7(R™) endowed with the Hilbert norm

/
ol iy i=( 10y + 72 101200 gy )

:( /n (1+72 ()7 n*((©) (&) df)l/z;

here w € H"(R™). This norm is equivalent to the norm in H7(R™) for every fixed r > 0.
Hence, the space H"(R™,r,0) is Hilbert. If n(t) = t° for some s € R (the Sobolev case),
then the space H"(R",r,0) is denoted by H()(R",r,8).

Calculate the norm in the interpolation space

(19) [H" (R, r,6), HW(R",r,6)] .

(18)

Let J denote the PsDO in R™ with the symbol (£)1 0 where £ € R" is an argument. We
may verify directly that J is the generating operator for the couple of spaces appearing
in (19). Applying the isometric isomorphism

F: HO(R",r,0) & Ly(R", (L +17 (€)% (¢)* de),
we reduce the operator J to the form of multiplication by the function (¢)"1~!o; here
F is the Fourier transform. Therefore the operator ¥ (J) is reduced to the form of

multiplication by the function v ((¢)11=l0) = (&)~lon((¢)) in view of (16). Hence, given
any w € H"(R™), we have

||wH[2H(lU)(R”’r’e)’H(ll)(]R"r’r)e)]w = [l(J) wH?{Uo)(RW)T’Q)
_ 2 _
= / ()T n((€) W[ (1472 (€)7) (€)% d& = |[wllFn(gn o) < 0
here (18) is used. Thus
(20) [H(ZU)(]R", r,0), HWO(R" r, 9)]w = H"(R",r,0) with equality of norms.

We will now prove (17) by applying property (20) and the definition of spaces over T
Fix a finite atlas {a;} and partition of unity {);} on I' used in this definition (see
Section 3); here j =1,...,p.

Consider the linear mapping of the “rectification” of I', namely,

T:ur (xiw)oo,...,(xpu)oap), ueD(D).
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We may directly verify that this mapping defines the isometric operators

(21) T: H"T,r,0) — (H"(R",r,0))",

(22) T: HY(,r,0) — (HY (R, r,0))", je{o,1}.

Applying the interpolation with the parameter ¢ to (22), we obtain the bounded operator
(23) T: [HX(T,r,0), HW(T,r, 9)% — [(HW (R, r,0))", (H"(R",r, g))?}w.

Here the couples of spaces are normal. Therefore, according to Proposition 2, the norm
of the operator (23) does not exceed a certain number ¢ = ¢(1)) > 0, which is independent
of the parameter r, specifically. Whence, by Proposition 3 and property (20), we obtain
the bounded operator

24 T: [HY)N(T, r 0), HY)(T,r,0 — (H"(R™,r,6))", whose norm < ¢.
( v

Along with T, consider the linear mapping of “sewing”

P
K: (w,...,wp) ZGj((njwj) o a;l),
j=1
where wy,...,w, are distributions defined in R™. Here the function n; € C*°(R") is
equal to 1 on the set aj_l(supp X;) and is compactly supported, whereas O; denotes the
operator of extension by zero from I'; onto I'. We have the bounded operators

(25) K: (H®®R")” - H®(T) foreach seR,
(26) K: (H?(R")” — H#(') for each ¢ € RO.

Note that the boundedness of the operator (25) is a known property of Sobolev spaces
(see, e.g., [16, Sec. 2.6] or [18, p. 86]). The boundedness of the operator (26) follows from
this property with the help of interpolation. Namely, let ¢, sg, s1, and ¥ be the same
as that in Proposition 1. Then applying the interpolation with the function parameter
¥ to (25) with s € {so,s1}, we get the boundedness of the operator (26) by virtue of
Propositions 1 and 3.

Let ¢; be the maximum of the norms of the operators (25) and (26), where s €
{lo,lo — 0,11,1; — 0} and ¢ € {n,m07%}. The number ¢; > 0 does not depend on the
parameter 7. We may directly verify that the norms of the operators
(27) K: (H"R",r0))" — H"(T,r0),

(28) K: (HY (@R r,0)" - HE(T,r,0), j=0,1,
does not exceed the number ¢;. Applying the interpolation with the parameter ) to (28),
we obtain the bounded operator

(29) K: [(H©(R"r,0)", (H"W®R",r0)"], = [H®(T,r,0), HD(T,r,0)] .

Its norm does not exceed ¢c¢; in view of Proposition 2 (note that both couples of spaces
are normal in (29)). Whence, by (20) and Proposition 3, we obtain the bounded operator

(30) K : (H"(R",7,0))" — [H(ZO)(F,T, 0), HW(T, r, 9)]111’ whose norm < ¢e¢;.
By the choice of the functions x; and n;, we may write

KTu=>0;((n; (xju)oa;)oa;") = 0;((xju)oajoa;") = Z i =,

Jj=1 Jj=1

that is, KTu = u for each u € D'(I"). Therefore, multiplying (30) by the isometric
operator (21), we obtain the bounded identity operator

[=KT: H'(U,r,0) = [H/(L,r,0), H(T,r,0)]
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whose norm < ¢¢;. Besides, taking the product of the operators (27) and (24) (the norm
of (27) does not exceed c;), we get another bounded identity operator

I=KT: [H"(T,r6), HW(T,r, 9)]w — H"(T,r,0),

whose norm < ¢¢;. These identity operators yield the required estimate (17), where the
number ¢y :=¢c¢; > 1 does not depend on r > 0 and u € H"(T). O

Now, applying Lemma 3, we can give a proof of the theorem.

Proof of Theorem. As has been mentioned in Section 4, Theorem is known in the case of
Sobolev inner-product spaces. By using parameter-depended spaces introduced above,
we can reformulate Theorem for the Sobolev scale in the following way. There exists a
number Ag > 0 such that the isomorphism

(31) A(N) : H¥T™(T, |\, mq) + H*(T)

holds for each s € R and A € K with |A| > Ag. Moreover, the norms of the operator (31)
and its inverse are uniformly bounded with respect to A.

Let ¢ € RO, choose numbers sy < og(p) and s1 > 01(¢), and define the interpolation
parameter ¢ by (11). Applying the interpolation with this parameter to (31) for s €
{50, 1}, we obtain the isomorphism

(32)  A(X): [H*T™(D, A%, mq), H** (T, N9, mq) ], < [H*(), H*(D)]

P Y’
According to Proposition 2, the norms of the operator (32) and its inverse are uniformly
bounded with respect to A. Now, by Lemma 3 and Proposition 1, we draw a conclusion
that (32) yields the isomorphism

(33) A(N) - H?"(T,|A|9, mgq) < H?(T)

such that the norms of the operator (33) and its inverse are uniformly bounded with
respect to A\. Here we apply Lemma 3 for n := ™9, ly := so + mq < oo(n), 1 =
s1+mgq > o1(n), 6 := mq, and r := |A|9, and we also note that 1 satisfies (16). The
isomorphism (33) and the norms property just proved mean in view of (15) that Theorem
is true. ([l
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