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ON STABLE C-SYMMETRIES

FOR A CLASS OF PT -SYMMETRIC OPERATORS

O. M. PATSYUCK

Abstract. Recently, much attention is paid to the consideration of physical mod-
els described by PT -symmetric Hamiltonians. In this paper, we establish a nec-

essary and sufficient condition for existence of a stable C-symmetry for a class of
PT -symmetric extensions of a symmetric operator S with deficiency indices 〈2, 2〉.

1. Introduction

Recently, the models using PT -symmetric Hamiltonians instead of self-adjoint ones
became very popular in physics. Such models are studied by so-called PT -symmetric
quantum mechanics [1].

In order that a PT -symmetric operator A can be used to construct such model, it
is necessary that A belongs to the domain of an exact PT -symmetry, i.e., it must have
the property of C-symmetry (see Definition 4.1). If a PT -symmetric operator A is a
proper extension of a symmetric operator S, the concept of stable C-symmetry looks
more natural (instead of more general concept of C-symmetry) [2]. In the paper, we
establish a necessary and sufficient condition of existence of a stable C-symmetry for
a class of PT -symmetric extensions of a symmetric operator S with deficiency indices
〈2, 2〉.

2. Preliminaries

Let H be the Hilbert space with scalar product (·, ·).

Definition 2.1. A unitary involution is an operator P, D(P) = H, which satisfies the
conditions

P2 = I, (Pf,Pg) = (f, g), ∀f, g ∈ H.

Definition 2.2. A conjugation operator is an operator T , D(T ) = H, which satisfies the
conditions

T 2 = I, (T f, T g) = (g, f), ∀f, g ∈ H.

In what follows, we assume that the operators P and T commute, that is PT = T P.

Definition 2.3. A closed linear operator A densely defined in the space H is called
PT -symmetric if the equality

PT Af = APT f

holds for all elements f from the domain of definition D(A) of the operator A.
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Suppose there exists a unitary involution R satisfying the following conditions:

(2.1) PR = −RP, RT = T R.
It follows form the first relation in (2.1) that the unitary involutions P and R can be

considered as generating elements of the complex Clifford algebra [3],

Cl2(P,R) := span {I,P,R, iRP}.
Let S be a densely defined symmetric operator in H. We assume that S satisfies the

conditions

(2.2) SPf = PSf, SRf = RSf, ST f = T Sf, ∀f ∈ D(S).

The operator S is PT -symmetric due to the first and the third relations in (2.2).
The subject of our studies is a special class of proper PT -symmetric extensions of S

S ⊂ A ⊂ S∗, PT A = APT .
To describe these extensions we will use the technique of boundary triplets [4, 5]. In our
case, it is convenient to use boundary triplets (H,Γ0,Γ1) of the operator S∗ satisfying
the following condition (such boundary triplets are called admissible).

Condition I. The relations

(2.3) PHΓj = ΓjP, RHΓj = ΓjR, THΓj = ΓjT , j = 0, 1

correctly determine the unitary involutions PH and RH, and a conjugation operator TH
in H with the following properties:

PHRH = −RHPH, PHTH = THPH, RHTH = THRH.
Roughly speaking, the admissible boundary triplets should provide the images PH,

RH, and TH of operators P, R, and T in the auxiliary space H with the preservation of
properties of the original operators.

Remark 2.1. Admissible boundary triplets exist if the operator S has a real point of
regular type1 [6, Lemma 3.1].

Our main attention is concentrated on the class {AT } of proper extensions, which are
defined as the restrictions of S∗ onto the domains

(2.4) D(AT ) = {f ∈ D(S∗) | TΓ0f = Γ1f},
where T is a bounded operator in H and (H,Γ0,Γ1) is an admissible boundary triplet
of S∗.

Lemma 2.1. ([6, Proposition 3.1]). Let AT be determined by (2.4). Then AT is PT -
symmetric if and only if the corresponding operator T is a PHTH-symmetric in H.

As a rule, we will consider symmetric operators S with deficiency indices 〈2, 2〉. In
that case dimH = 2, and hence, the action of the operator T can be specified by the

matrix T =

(
t11 t12
t21 t22

)
, tij ∈ C. The matrix T depends on the choice of an orthonormal

basis in H, but such quantities as the determinant and the trace

det T = t11t22 − t12t21, Tr T = t11 + t22

are constants (invariants) of the operator T .
It follows from Lemma 2.1 and the results of [8] that if AT is PT -symmetric, then the

determinant det T and the trace Tr T of the corresponding operator T in (2.4) are real
numbers.

1A number r is called a point of regular type of an operator A, if there exists c = c(r) > 0 such that
||(A− rI) f || ≥ c ||f || for all f ∈ D(A) [7].
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3. Condition of the reality of the spectrum

Let S satisfy (2.2) and let S have deficiency indices 〈2, 2〉. Then the Weyl function
M(µ) of S associated with an admissible boundary triplet has the form M(·) = m(·) I,
where m(·) is a scalar-valued function [2].

In [6], a criterion for the existence of non-real eigenvalues of a PT -symmetric extension
AT was obtained (see Theorem 3.3 in [6]). Rewriting it in terms of det T and Tr T we
obtain the following theorem.

Theorem 3.1. Let a symmetric operator S with deficiency indices 〈2, 2〉 have a real
point of regular type and satisfy (2.2), let (H,Γ0,Γ1) be an admissible boundary triplet of
S∗, and let M(µ) = m(µ) I be the Weyl function of S associated with (H,Γ0,Γ1). Then
the PT -symmetric extension AT determined by (2.4) has an eigenvalue µ ∈ C\R if and
only if

(3.1)

{
Re m(µ) = 1

2 Tr T,

(Im m(µ))2 = det T −
(
1
2 Tr T

)2
.

Theorem 3.1 implies the following sufficient condition of the reality of the spectrum.

Corollary 3.1. If the inequality

(3.2) 4 det T < (Tr T )2

is satisfied then the PT -symmetric extension AT has real spectrum.

4. A necessary and sufficient condition for existence of a stable
C-symmetry

Definition 4.1. A PT -symmetric operator A has the property of C-symmetry (or,
briefly, has the C-symmetry) if there exists a bounded linear operator C (C 6= ±I) in
H such that

(4.1) C2 = I, CPT = PT C, CA = AC.

Lemma 4.1. ([9, Lemma 2.7]). The operator C ∈ Cl2(P,R) (C 6= ±I) satisfies the first
two equalities in (4.1) if and only if there exist χ ∈ R and ξ ∈ [0, 2π) such that

(4.2) C = eχiRPξPξ = (chχ · I + shχ · iRPξ)Pξ,

where the unitary involution Pξ is defined as follows:

(4.3) Pξ = eiξRP = (cos ξ · I + i sin ξ · R)P.

C-symmetries are not always uniquely defined for PT -symmetric operators. In parti-
cular, if we consider a symmetric operator S that satisfies (2.2), then every operator C
of the form (4.2) turns out to be the C-symmetry for S. In the case of deficiency indices
〈2, 2〉 of S, this assertion can be strengthened. Namely, some additional analysis shows
that the set of all C-symmetries for S is exhausted by the operators of the form (4.2), i.e.
C is the C-symmetry for S if and only if C = eχiRPξPξ for some χ ∈ R and ξ ∈ [0, 2π).

Definition 4.2. Let a symmetric operator S have deficiency indices 〈2, 2〉 and let S
satisfy (2.2). A PT -symmetric extension A of S has the property of stable C-symmetry
if A has the C-symmetry realized by an operator C = eχiRPξPξ for some choice of χ ∈ R
and ξ ∈ [0, 2π).

Theorem 4.1. Let a symmetric operator S satisfy the conditions of Theorem 3.1 and
let AT be a PT -symmetric non-self-adjoint extension of S. Then AT has the stable
C-symmetry if and only if the inequality (3.2) is satisfied.
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Proof. First, we prove the necessary condition. Let AT have the stable C-symmetry.
Then ATC = CAT , where C = eχiRPξPξ.

Let (H,Γ0,Γ1) be an admissible boundary triplet. In that case, relations (2.3) hold
for the boundary operators Γj and, hence,

(4.4) CHΓ0 = Γ0C, CHΓ1 = Γ1C,

where the operator CH = eχiRHPξHPξH acts in H.
Using (4.4) and reasoning by analogy with the proof of part 1 of Proposition 3.1 in

[6], we conclude that the equality ATC = CAT is equivalent to the relation

(4.5) TCH = CHT.

It follows from [6, Theorem 3.1] that the PT -symmetric operator AT can be in-
terpreted as a self-adjoint operator in the Krein space (H, [·, ·]Pξ

) for some choice of
ξ ∈ [0, 2π). Then, according to [6, Lemma 3.3],

(4.6) T = β0I + β1PξH + β2RH, β0, β1 ∈ R, β2 ∈ iR.

Note that β2 6= 0 in (4.6). Indeed, if β2 = 0, then T ∗ = T and hence, A∗T = AT that
contradicts to the assumption about nonself-adjointness of AT .

Substituting (4.6) in (4.5) and taking into account that

(4.7) CH = eχiRHPξHPξH = (chχ · I + shχ · iRHPξH)PξH,

we conclude that the commutation relation (4.5) holds if and only if

(4.8) chχ · β2 = i shχ · β1.

Using (4.6) we can express the quantities det T and Tr T in terms of βj . To this end
we choose an orthonormal basis ofH in such a way that the action of PH andRH is deter-

mined, respectively, by the Pauli matrices σ1 =

(
0 1
1 0

)
and σ3 =

(
1 0
0 −1

)
. Then

−iRHPH corresponds to σ2 =

(
0 −i
i 0

)
and hence, the operator PξH is determined

by cos ξ · σ1 − sin ξ · σ2.
Summing up the obtained relations and using (4.6), we arrive at the conclusion that

the operator T corresponds to the matrix

T =

(
β0 + β2 β1e

iξ

β1e
−iξ β0 − β2

)
.

Therefore,

(4.9) det T = β2
0 − β2

1 + |β2|2, Tr T = 2β0.

It follows from (4.8) that |β2|2 < β2
1 . Then, 4 det T < 4β2

0 = (Tr T )2 that completes
the proof of the necessary condition.

Now we turn to the proof of the sufficient condition. Suppose that inequality (3.2) is
satisfied. Taking (4.9) into account we deduce that |β2|2 < β2

1 . Hence, we can choose
χ ∈ R such that (4.8) takes place. Then the operator CH defined by (4.7) satisfies
(4.5) and the operator C = eχiRPξPξ. commutes with AT . Thus, AT has the stable
C-symmetry. The theorem is proved. �

5. Example

To illustrate the theorems, which were formulated in the previous sections, we consider
the Schrödinger operator

(5.1) H = − d2

dx2
+ V (x)
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with singular potential

(5.2) V (x) = a〈δ, ·〉δ(x) + b〈δ′, ·〉δ(x) + c〈δ, ·〉δ′(x) + d〈δ′, ·〉δ′(x),

where δ and δ′ are the delta-function and its derivative, respectively, and a, b, c, d ∈ C.
The differential expression (5.1) with the potential (5.2) is formal in the Hilbert space

L2(R), but it can be regarded as a mapping of the Sobolev space W 2
2 (R) in the negative

Sobolev space W−22 (R). In order to determine the operator realization of (5.1) in the
space L2(R), we use the well-known regularization method [10].

First of all, note that the minimal operator [11, c. 173] generated by (5.1) is defined
as

(5.3) S = − d2

dx2
, D(S) = {f(x) ∈W 2

2 (R) | f(0) = f ′(0) = 0}.

In the Hilbert space L2(R), the operator being adjoint to S is

(5.4) S∗ = − d2

dx2
, D(S∗) = W 2

2 (R\{0}) := W 2
2 (R−)⊕W 2

2 (R+).

Next, let us expand the action of δ-function and its derivative on the domain of the
adjoint operator D(S∗) as follows:

〈δex, f〉 =
f(+0) + f(−0)

2
, 〈δ′ex, f〉 = −f

′(+0) + f ′(−0)

2
, ∀f ∈ D(S∗).

Then the regularization Areg : D(S∗)→W−22 (R) of (5.1) has the form

Areg = − d2

dx2
+ a〈δex, ·〉δ(x) + b〈δ′ex, ·〉δ(x) + c〈δex, ·〉δ′(x) + d〈δ′ex, ·〉δ′(x),

where the action of − d2

dx2 on the function of D(S∗) = W 2
2 (R\{0}) must be understood

in the distribution sense [12].

Definition 5.1. The operator realization of expression (5.1) in the space L2(R) is given
by the formula

(5.5) A = Areg �D(A), D(A) = {f ∈ D(S∗) | Aregf ∈ L2(R)}.

Definition 5.1 establishes a direct connection between the operator realization A and
the coefficients a, b, c, d of the potential V . Repeating the arguments of Theorem 1 in
[13], we conclude that the operator A given by (5.5) is the extension of the symmetric
operator S and the restriction of the operator S∗, i.e., A is a proper extension of S.

We define the unitary involutions P and R, and the conjugation operator T as

(5.6) Pf(x) = f(−x), Rf(x) = sign(x)f(x), T f(x) = f(x), ∀f ∈ L2(R).

It is easy to see that the operators P, R, and T satisfy conditions (2.1). Furthermore,
the operator S defined by formula (5.3) satisfies conditions (2.2). Therefore, the operator
S is PT -symmetric and it commutes with all elements of the Clifford algebra Cl2(P,R).

Let us now describe the extensions of the operator S in terms of boundary triplets.
To that end, we will present the operator S in the form S = S+ + S−, where S+ acts in
the space L2(R+), and S− acts in the space L2(R−). Since the operator S has deficiency
indices 〈2, 2〉, then the operators S+ and S− have deficiency indices 〈1, 1〉, and hence,
one can construct the boundary triplets of S∗+ and S∗−. Then the proof of Lemma 2.11
in [14] implies that the admissible boundary triplet of S∗ can be defined as

(5.7) H = C2, Γ0f =

(
Γ+
0 f+

Γ+
0 Pf−

)
, Γ1f =

(
Γ+
1 f+

Γ+
1 Pf−

)
,

where (C,Γ+
0 ,Γ

+
1 ) is an arbitrary boundary triplet of S∗+,

f(x) = f+(x) + f−(x), f+(x) ∈ L2(R+), f−(x) ∈ L2(R−).
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Define the boundary triplet of S∗+ as follows:

(5.8) H = C, Γ+
0 f = f(+0), Γ+

1 f = f ′(+0).

Then the admissible boundary triplet of S∗ constructed by (5.7) takes the form

(5.9) H = C2, Γ0f =

(
f(+0)
f(−0)

)
, Γ1f =

(
f ′(+0)
−f ′(−0)

)
.

The corresponding images PH and RH of operators P and R (see (2.3)) coincide with
the Pauli matrices σ1 and σ3, respectively. Furthermore, the operator TH acts as the
componentwise complex conjugation operator τ

(5.10) τ

(
x
y

)
=

(
x
y

)
, x, y ∈ C.

Repeating the arguments of Theorem 1 in [13], we can prove the following proposition.

Proposition 5.1. Assume that d 6= 0 in (5.2). Then the operator realization A defined

by (5.5) coincides with the restriction of S∗ = − d2

dx2 onto the set

(5.11) D(AT ) = {f ∈ D(S∗) | TΓ0f = Γ1f},
where the operators Γ0 and Γ1 are defined by (5.9), and the matrix T has the form

(5.12) T =
1

4d

(
∆− 4 + 2(b+ c) ∆ + 4− 2(b− c)
∆ + 4 + 2(b− c) ∆− 4− 2(b+ c)

)
, ∆ = ad− bc.

Remark 5.1. The condition d 6= 0 in Proposition 5.1 has a technical character and it
deals with the choice of admissible boundary triplet.

Now we can give description of the PT -symmetric extensions in term of coefficients
a, b, c, d.

Theorem 5.1. ([15, Theorem 2]). The extension AT given by formula (5.11) is PT -
symmetric if and only if

(5.13) a, d ∈ R, b, c ∈ iR.
Proof. According to Lemma 2.1, the operator AT is PT -symmetric if and only if the
operator T is PHTH-symmetric in H = C2. The latter condition is reduced to the
equality σ1τTh = Tσ1τh, ∀h ∈ C2. Using (5.10) and (5.12), we rewrite this equality in
the following form: 

d(∆ + 4 + 2(b− c)) = d(∆ + 4− 2(b− c)),
d(∆− 4− 2(b+ c)) = d(∆− 4 + 2(b+ c)),

d(∆− 4 + 2(b+ c)) = d(∆− 4− 2(b+ c)),

d(∆ + 4− 2(b− c)) = d(∆ + 4 + 2(b− c)).
It is easy to verify that the obtained system is equivalent to conditions (5.13). The
theorem is proved. �

The subset of PT -symmetric nonself-adjoint extensions AT is distinguished by the
condition |b|+|c| 6= 0. For these operators, we can describe the case of stable C-symmetry.

Proposition 5.2. The PT -symmetric nonself-adjoint extension AT given by formula
(5.11) has the stable C-symmetry if and only if

(5.14) (∆− 4)2 + 16ad > 0.

Proof. Theorem 4.1 implies that a PT -symmetric nonself-adjoint extension AT has the
stable C-symmetry if and only if inequality (3.2) is satisfied. Using (5.12), we conclude

that 4 det T = −4ad

d2
and (Tr T )2 =

(∆− 4)2

4d2
. Substituting these quantities into (3.2),

we obtain(5.14). �
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