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EXTENDED WEYL THEOREMS AND PERTURBATIONS

M. H. M. RASHID

Abstract. In this paper we study the properties (gaw), (aw), (gab) and (ab), a vari-
ant of Weyl’s type theorems introduced by Berkani. We established for a bounded lin-

ear operator defined on a Banach space several sufficient and necessary conditions for

which the properties (gaw), (aw), (gab) and (ab) hold. Among other things, we study
the stability of the properties (gaw), (aw), (gab) and (ab) for a polaroid operator T

acting on a Banach space, under perturbations by finite rank operators, by nilpotent
operators and, more generally, by algebraic operators commuting with T .

1. introduction

Throughout this paper, L(X) denotes the Banach algebra of all bounded linear ope-
rators acting on a Banach space X. For T ∈ L(X), let T ∗, ker(T ),<(T ), σ(T ) and σa(T )
denote the adjoint, the null space, the range, the spectrum and the approximate point
spectrum of T respectively. Let α(T ) and β(T ) be the nullity and the deficiency of T
defined by α(T ) = dim ker(T ) and β(T ) = co dim(T ). Recall that an operator T ∈ L(X)
is called upper semi-Fredholm if α(T ) <∞ and <(T ) is closed, and is called lower semi-
Fredholm if β(T ) < ∞. Let SF+(X) and SF−(X) denote the class of all upper (resp.
lower) semi-Fredholm operators. If T ∈ L(X) is either upper or lower semi- Fredholm
operator, then T is called a semi-Fredholm operator, and the index of T is defined by

ind(T ) = α(T )− β(T ).

If both α(T ) and β(T ) are finite, then T is called a Fredholm operator. An operator
T ∈ L(X) is called a Weyl operator if it is a Fredholm operator of index 0. Define

SF−+ (X) = {T ∈ SF+(X) : ind(T ) ≤ 0}
and

SF+
− (X) = {T ∈ SF−(X) : ind(T ) ≥ 0} .

The classes of operators defined above generate the following spectra : The Weyl spectrum
is defined by

σW (T ) = {λ ∈ C : T − λI is not Weyl operator} ,
the Weyl essential approximate spectrum is defined by

σSF−
+

(T ) =
{
λ ∈ C : T − λI /∈ SF−+ (X)

}
,

while the Weyl essential surjective spectrum is defined by

σSF+
−

(T ) =
{
λ ∈ C : T − λI /∈ SF+

− (X)
}
.

Let ∆(T ) = σ(T ) \ σW (T ) and ∆a(T ) = σa(T ) \ σ−+(T ). Following Coburn [21], we
say that Weyl’s theorem holds for T ∈ L(X) if ∆(T ) = E0(T ), where E0(T ) = {λ ∈
isoσ(T ) : 0 < α(T − λI) < ∞}. Here and elsewhere in this paper, for K ⊂ C,
isoK is the set of isolated points of K. According to Rakoc̃ević [30], an operator
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T ∈ L(X) is said to satisfy a-Weyl’s theorem if ∆a(T ) = Ea0 (T ), where Ea0 (T ) =
{λ ∈ isoσa(T ) : 0 < α(T − λI) <∞} .

For T ∈ L(X) and a nonnegative integer n define T[n] to be the restriction of T to
<(Tn) viewed as a map from <(Tn) into <(Tn) (in particular T[0] = T ). If for some inte-
ger n the range space <(Tn) is closed and T[n] is an upper (resp. a lower) semi-Fredholm
operator, then T is called an upper (resp. a lower) semi-B-Fredholm. In this case the
index of T is defined as the index of the semi-Fredholm operator T[n], see [11]. Moreover,
if T[n] is a Fredholm operator, then T is called a B-Fredholm operator. An operator T
is called a B-Weyl [13, Definition 1.1] if it is a B-Fredholm operator of index zero. The
B-Weyl spectrum of T is defined by

σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator} .
Recall that the ascent, a(T ), of an operator T is the smallest non-negative integer

p such that ker(T p) = ker(T p+1). If such an integer does not exist we put a(T ) = ∞.
Analogously, the descent, d(T ), of an operator T is the smallest non-negative integer q
such that <(T q) = <(T q+1), and if such an integer does not exist we put d(T ) =∞. It is
well known that if a(T ) and d(T ) are both finite then a(T ) = d(T ) [22, Proposition 1.49].
Moreover, 0 < a(T − λI) = d(T − λI) <∞ precisely when λ is a pole of the resolvent of
T, see Dowson [22, Theorem 1.54].

An operator T ∈ L(X) is called Drazin invertible if it has a finite ascent and descent.
The Drazin spectrum of T is defined by

σD(T ) = {λ ∈ C : T − λI is not Drazin invertible} .
Define also the set

LD(X) :=
{
T ∈ L(X) : a(T ) <∞ and <(T a(T )+1) is closed

}
and

σLD(T ) = {λ ∈ C : T − λI /∈ LD(X)} .
Following [15], an operator T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X).

We say that λ ∈ σa(T ) is a left pole of T if T −λI ∈ LD(X), and that λ ∈ σa(T ) is a left
pole of T of finite rank if λ is a left pole of T and α(T − λI) < ∞. Let πa(T ) denotes
the set of all left poles of T and let πa0 (T ) denotes the set of all left poles of T of finite
rank. From [15, Theorem 2.8], it follows that if T ∈ L(X) is left Drazin invertible, then
T is upper semi-B-Fredholm of index less or equal than 0.

We say that Browder’s theorem holds for T ∈ L(X) if π0(T ), where π0(T ) is the set of
all poles of T of finite rank and that a-Browder’s theorem holds for T if ∆a(T ) = πa0 (T ).
Let ∆g(T ) = σ(T ) \ σBW (T ). Following [13], we say that generalized Weyl’s theorem
holds for T ∈ L(X) if ∆g(T ) = E(T ), where E(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI)} , and
that generalized Browder’s theorem holds for T if ∆g(T ) = π(T ), where π(T ) is the set
of all poles of T. It is proved in [10, Theorem 2.1] that generalized Browder’s theorem
is equivalent to Browder’s theorem. In [15, Theorem 3.9], it is shown that an operator
satisfying generalized Weyl’s theorem satisfies also Weyl’s theorem, but not conversely,
and under the assumption E(T ) = π(T ), it is proved in [14, Theorem 2.9] that genera-
lized Weyl’s theorem is equivalent to Weyl’s theorem.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators, SBF+
− (X) =

{T ∈ SBF+(X) : ind(T ) ≤ 0} and let SBF−(X) be the class of all lower semi-B-Fredholm
operators, SBF+

− (X) = {T ∈ SBF−(X) : ind(T ) ≥ 0} . The upper B-Weyl spectrum of T
is defined by

σSBF−
+

(T ) =
{
λ ∈ C : T − λI /∈ SBF−+ (X)

}
,

while the lower B-Weyl spectrum of T is defined by

σSBF+
−

(T ) =
{
λ ∈ C : T − λI /∈ SBF+

− (X)
}
.
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Let ∆g
a(T ) = σa(T ) \ σSBF−

+
(T ). We say that generalized a-Weyl’s theorem holds for

T ∈ L(X) if ∆g
a(T ) = Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI)} and that

T ∈ L(X) obeys generalized a-Browder’s theorem if ∆g
a(T ) = πa(T ). It is proved in [10,

Theorem 2.2] that generalized a-Browder’s theorem is equivalent to a-Browder’s the-
orem, and it is known [15, Theorem 3.11] that an operator satisfying generalized a-
Weyl’s theorem satisfies a-Weyls theorem, but not conversely, and under the assumption
Ea(T ) = πa(T ), it is proved in [14, Theorem 2.10] that generalized a-Weyl’s theorem is
equivalent to a-Weyl’s theorem.

Following [29], we say that T ∈ L(X) possesses property (w) if ∆a(T ) = E0(T ). The
property (w) has been studied in [4, 29]. Following [9], we say that T ∈ L(X) possesses
property (gw) if ∆g

a(T ) = E(T ). The property (gw) has been introduced and studied
in [9], which is an extension to the context of B-Fredholm theory of the property (w). It
is shown [9, Theorem 2.3] that an operator possessing property (gw) possesses property
(w), but not conversely, and it is shown [9, Theorem 2.4] that an operator possessing
property (gw) satisfies generalized Weyl’s theorem, but not conversely. For more details
about these properties the reader should refer to [32, 34].

Following [17], we say that property (b) holds for T ∈ L(X) if ∆a(T ) = π0(T ) and
that property (gb) holds for T if ∆g

a(T ) = π(T ). Property (gb) extends property (b)
to the context of B-Fredholm theory. It is known [17, Theorem 2.5] that an operator
possessing property (b) satisfies a-Browder’s theorem, but the converse does not hold in
general and it is proved in [17, Theorem 2.3] that an operator possessing property (gb)
possesses property (b), but not conversely and under the assumption π(T ) = π0(T ), it
is proved in [17, Theorem 2.10] that the two properties are equivalent. Recently in [31],
property (gb) and perturbations were extensively studied by Rashid.

Following [18], we say that property (ab) holds for T ∈ L(X) if ∆(T ) = πa0 (T ), and
is said to possess property (gab) if ∆g(T ) = πa(T ). It is known that [18, Theorem 2.2]
that an operator possessing property (gab) possesses property (ab), but not conversely
and under the assumption π(T ) = πa(T ), it is proved in [18, Theorem 2.8] that the two
properties are equivalent.

Following [18], we say that property (aw) holds for T ∈ L(X) if ∆(T ) = Ea0 (T ), and
is said to possess property (gaw) if ∆g(T ) = Ea(T ). It is known that [18, Theorem 3.3]
that an operator possessing property (gaw) possesses property (gab), but not conversely
and under the assumption Ea(T ) = πa(T ), it is proved in [18, Theorem 3.5] that the two
properties are equivalent.

The quasinilpotent part H0(T − λI) and the analytic core K(T − λI) of T − λI are
defined by

H0(T − λI) := {x ∈ X : lim
n−→∞

‖(T − λI)nx‖ 1
n = 0}

and

K(T − λI) ={x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0

for which x = x0, (T − λI)xn+1 = xn and

‖xn‖ ≤ δn‖x‖ for all n = 1, 2, . . .}.

We note that H0(T − λI) and K(T − λI) are generally non-closed hyper-invariant
subspaces of T − λI such that (T − λI)−p(0) ⊆ H0(T − λI) for all p = 0, 1, . . . and
(T−λI)K(T−λI) = K(T−λI). Recall that if λ ∈ iso(σ(T )), thenH0(T−λI) = χT ({λ}),
where χT ({λ}) is the local spectral subspace consisting of all x ∈ H for which there
exists an analytic function f : C \ {λ} −→ X that satisfies (T − µI)f(µ) = x for all
µ ∈ C \ {λ}(see [24]).
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2. New extended Weyl’s type theorems

Let Hol(σ(T )) be the space of all functions that analytic in an open neighborhoods
of σ(T ). Following [25] we say that T ∈ L(X) has the single-valued extension property
(SVEP) at point λ ∈ C if for every open neighborhood Uλ of λ, the only analytic function
f : Uλ −→ H which satisfies the equation (T −µ)f(µ) = 0 is the constant function f ≡ 0.
It is well-known that T ∈ L(X) has SVEP at every point of the resolvent ρ(T ) := C\σ(T ).
Moreover, from the identity Theorem for analytic function it easily follows that T ∈ L(X)
has SVEP at every point of the boundary ∂σ(T ) of the spectrum. In particular, T has
SVEP at every isolated point of σ(T ). In [26, Proposition 1.8], Laursen proved that if T
is of finite ascent, then T has SVEP, see also [33].

Lemma 2.1. Let T ∈ L(X). Then the following statements hold:

(i) T ∗ has the SVEP at every λ ∈ σSF−
+

(T ) if and only if T possesses property (ab)

and σW (T ) = σSF−
+

(T ).

(ii) T has the SVEP at every λ ∈ σSF+
−

(T ) if and only if T possesses property (ab)

and σW (T ) = σSF+
−

(T ).

(iii) If T possesses property (ab), then T has the SVEP at every λ ∈ σW (T ).

Proof. (i) Assume that T ∗ has the SVEP at every λ /∈ σSF−
+

(T ). From [4, Theorem 2.2],

T satisfies a-Browder’s theorem , that is ∆a(T ) = πa0 (T ). By [19, Lemma 2.1], we have
∆(T ) = ∆a(T ) and σSF−

+
(T ) = σW (T ). Therefore ∆(T ) = πa0 (T ), i.e. T possesses

property (ab) and σSF−
+

(T ) = σW (T ). Conversely, assume that T possesses property (ab)

and σSF−
+

(T ) = σW (T ). Let λ ∈ σSF−
+

(T ) = σW (T ). If λ ∈ σ(T ), then λ ∈ ∆(T ) =

πa0 (T ). Hence λ ∈ isoσa(T ) and T ∗ has the SVEP at λ. If λ /∈ σ(T ), then λ /∈ σW (T ).
Therefore T − λI is surjective. Hence T ∗ has the SVEP at λ.

(ii) Suppose that T has the SVEP at every λ ∈ σSF+
−

(T ). From [4, Theorem 2.2], T ∗

satisfies a-Browder’s theorem which implies that T ∗ satisfies Browder’s theorem, that is
∆a(T ∗) = πa0 (T ∗). From [19, Lemma 2.1] we have ∆(T ∗) = ∆a(T ∗). Hence property (ab)
holds for T ∗. Conversely, assume that T ∗ possesses property (ab) and σW (T ) = σSF+

−
(T ).

Let λ /∈ σSF+
−

(T ). If λ ∈ σ(T ∗), then λ ∈ ∆(T ∗) = πa0 (T ∗). Hence T has the SVEP at

λ. If λ /∈ σ(T ∗), then λ /∈ σW (T ). Hence T − λI is injective and T has the SVEP at λ.
(iii) Suppose that T possesses property (ab) and let λ /∈ σW (T ). If λ ∈ σ(T ), then

λ ∈ πa0 (T ) and hence T has the SVEP at λ. If λ /∈ σ(T ), then T − λI is invertible and
hence T has the SVEP at λ. �

Example 2.2. 1) The following example shows that property (ab) does not imply the
SVEP for T ∗ at every λ ∈ σW (T ). Consider the operator T = R ⊕ S defined on the
Banach space X = `2(N) ⊕ `2(N), where R is the right shift operator defined on `2(N)
and S is defined on `2(N) by

S(x1, x2, x3, . . .) =
(1

2
x2,

1

3
x3, . . .

)
.

Then σ(T ) = σW (T ) = D(0, 1) the closed unit disc in C. This implies that π0(T ) = ∅.
On the other hand, σa(T ) = σSF−

+
(T ) = C(0, 1)∪ {0}; where C(0, 1) is the unit circle of

C. This implies that πa0 (T ) = ∅. Suppose that T ∗ has the SVEP at every λ /∈ σSF−
+ (T ).

Then σW (T ) = σSF−
+

(T ). But this is impossible. Therefore there exists at least one

scalar µ0 /∈ σSF−
+

(T ) such that T ∗ does not have the SVEP at µ0. Hence T possesses

property (ab), but T ∗ does not have the SVEP at µ0 /∈ σSF−
+

(T ). Now, we consider

U = T ∗. Then U∗ = T possesses property (ab). But U does not have the SVEP at
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µ0 /∈ σSF−
+

(T ) = σSF+
−

(U).

2) The converse of the statement (iii) of Lemma 2.1 is not true in general as the
following example [4, Example 2.14] shows : Let R ∈ (

¯
`2(N)) the unilateral right shift

and S ∈ (
¯
`2(N)) the operator defined by

S(x1, x2, . . .) = (0, x2, x3, . . .).

Consider the operator T = R⊕ S, then σ(T ) = σW (T ) = D(0, 1) the closed unit disc in
C, isoσ(T ) = ∅ and σa(T ) = C(0, 1)∪{0}, where C(0, 1) is the unit circle of C. Therefore
σa(T ) has empty interior and T has the SVEP. On the other hand, σSF−

+
(T ) = C(0, 1)

and πa0 (T ) = {0}. Hence T does not possess property (ab).

Lemma 2.3. Let T ∈ L(X). Then the following statements hold:

(i) T ∗ has the SVEP at every λ /∈ σSBF−
+

(T ) if and only if T possesses property

(gab) and σSBF−
+

(T ) = σBW (T ).

(ii) T has the SVEP at every λ /∈ σSBF+
−

(T ) if and only if T possesses property (gab)

and σSBF+
−

(T ) = σBW (T ).

(iii) If T possesses property (gab), then T has the SVEP at every λ /∈ σBW (T ).

Proof. (i) Suppose that T ∗ has the SVEP at every λ /∈ σSBF−
+

(T ). From [19, Lemma 2.4],

we have σBW (T ) = σD(T ), so T satisfies generalized a-Browder’s theorem ∆g
a(T ) =

πa(T ). Again by [19, Lemma 2.4], we have σSBF−
+

(T ) = σBW (T ), ∆g
a(T ) = ∆g(T ) and

T possesses property (gab). Conversely, suppose that property (gab) holds for T and
σSBF−

+
(T ) = σBW (T ). Let λ /∈ σBW (T ). If λ ∈ σ(T ), then λ ∈ ∆g(T ) = πa(T ). Hence

T ∗ has the SVEP at λ. The second possibility is that λ /∈ σ(T ), in this case we have
λ /∈ σBW (T ), it follows that T − λI is surjective. Hence T ∗ has the SVEP at λ.

(ii) Suppose that T has the SVEP at every λ /∈ σSBF+
−

(T ). Then T ∗ satisfies gene-

ralized a-Browder’s theorem ∆g
a(T ∗) = πa(T ∗), and again by [19, Lemma 2.4] we have

σBW (T ) = σSBF+
−

(T ), ∆g
a(T ∗) = ∆g(T ∗) and T ∗ possesses property (gab). Conversely,

suppose that T ∗ possesses property (gab) and σBW (T ) = σSBF+
−

(T ). Let λ /∈ σSBF+
−

(T ).

If λ ∈ σ(T ∗), then λ ∈ ∆g(T ∗) = πa(T ∗). Hence T has the SVEP at λ. If λ /∈ σ(T ∗),
then λ /∈ σBW (T ∗). Hence T − λI is injective and T has the SVEP at λ.

(iii) Suppose that T possesses property (gab) and let λ /∈ σBW (T ). If λ ∈ σ(T ), then
λ ∈ πa(T ) and hence T has the SVEP at λ. If λ /∈ σ(T ), then T − λ is injective and
hence T has the SVEP at λ. �

Example 2.4. 1) The following example shows that property (gab) does not imply the
SVEP for T ∗ at every λ ∈ σBW (T ). Consider the operator T = R ⊕ S defined on the
Banach space X = `2(N) ⊕ `2(N), where R is the right shift operator defined on `2(N)
and S is defined on `2(N) by

S(x1, x2, x3, . . .) =
(1

2
x2,

1

3
x3, . . .

)
.

Then σ(T ) = σBW (T ) = D(0, 1) the closed unit disc in C. This implies that π(T ) = ∅.
On the other hand, σa(T ) = σSBF−

+
(T ) = C(0, 1)∪{0}; where C(0, 1) is the unit circle of

C. This implies that πa(T ) = ∅ Suppose that T ∗ has the SVEP at every λ /∈ σSBF−
+ (T ).

Then σBW (T ) = σSBF−
+

(T ). But this is impossible. Therefore there exists at least one

scalar µ0 /∈ σSF−
+

(T ) such that T ∗ does not have the SVEP at µ0. Hence T possesses

property (gab), but T ∗ does not have the SVEP at µ0 /∈ σSF−
+

(T ). Now, we consider

U = T ∗. Then U∗ = T possesses property (gab). But U does not have the SVEP at
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µ0 /∈ σSBF−
+

(T ) = σSBF+
−

(U).

2) The converse of the statement (iii) of Lemma 2.3 is not true in general as the
following example [4, Example 2.14] shows : Let R ∈ (

¯
`2(N)) the unilateral right shift

and S ∈ (
¯
`2(N)) the operator defined by

S(x1, x2, . . .) = (0, x2, x3, . . .).

Consider the operator T = R⊕S, then σ(T ) = σBW (T ) = D(0, 1) the closed unit disc in
C, isoσ(T ) = ∅ and σa(T ) = C(0, 1)∪{0}, where C(0, 1) is the unit circle of C. Therefore
σa(T ) has empty interior and T has the SVEP. On the other hand, σSBF−

+
(T ) = C(0, 1)

and πa(T ) = {0}. Hence T does not possess property (gab).

As a consequence of [18, Corollary 2.7] and [18, Theorem 3.5], we have

Proposition 2.5. Let T ∈ L(X). If T satisfies property (gaw). Then T satisfies gene-
ralized Browder’s theorem and π(T ) = Ea(T ).

Definition 2.6. An operatorT ∈ L(X) is said to be polaroid if isoσ(T ) is empty or every
isolated point of σa(T ) is a pole of the resolvent.

Definition 2.7. An operatorT ∈ L(X) is said to be a-polaroid if isoσa(T ) is empty or
every isolated point of σ(T ) is a pole of the resolvent.

Clearly,

T a-polaroid⇒ T polaroid.

Observe that if T ∗ has SVEP then σ(T ) = σa(T ), see [1, Corollary 2.45], so that

T ∗ has SVEP and T polaroid⇒ T a-polaroid.

If T is polaroid then T ∗ is polaroid [7]. Moreover, if T has SVEP then σ(T ) = σa(T ∗),
see [1, Corollary 2.45], hence

T has SVEP and T polaroid⇒ T ∗ a-polaroid.

Theorem 2.8. Suppose that T ∈ L(X) is a-polaroid. Then T satisfies property (ab) if
and only if T satisfies property (aw). Analogously, T ∗ satisfies property (ab) if and only
if T ∗ satisfies property (aw).

Proof. The implication (aw) ⇒ (ab) holds for every T ∈ L(X), so we have only to
show that (ab) ⇒ (aw). Let T satisfy property (ab). Then ∆(T ) = πa0 (T ). Now, let
λ ∈ Ea0 (T ). then λ is an isolated point of σa(T ), so that λ is a pole and consequently,
a(T − λI) = (.T − λI) < ∞. Since α(T − λI) < ∞ by [1, Theorem 3.4] it then follows

that β(T − λI) <∞, hence T − λI is Browder and consequently λ ∈ π0(T ). Therefore,
Ea0 (T ) ⊂ π0(T ) ⊂ πa0 (T ). The opposite inclusion holds for every operator, so Ea0 (T ) =
πa0 (T ) and hence ∆(T ) = Ea0 (T ), i.e. T satisfies property (aw).

The second statement is clear: if T is a-polaroid then T ∗ is polaroid ( [7]), so the first
part applies. �

The following two examples show that a-Weyl’s theorem and property (ab) for T ∈
L(X) are independent. The first example shows that Weyl’s theorem does not imply
property (ab).

Example 2.9. Let R be the canonical unilateral right shift on `2(N) and let P denote
the projection defined by

P (x1, x2, . . .) := (0, x2, . . .) for all x := (x1, x2, . . .) ∈ `2(N).

Consider T := R ⊕ P on X = `2(N) ⊕ `2(N). Then σ(T ) = σW (T ) = D(0, 1), where
D(0, 1) is the closed unit disc of C, so that σ(T ) has no isolated points and hence
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π0(T ) = ∅. Furthermore, σa(T ) = C(0, 1) ∪ {0}, where C(0, 1) is the closed unit circle,
and σSF−

+
(T ) = {0}. Therefore, T does not satisfies property (ab), since

∆(T ) 6= πa0 (T ) = {0} .
On the other hand, T satisfies a-Weyl’s theorem, since ∆a(T ) = Ea0 (T ) = {0} and hence
T satisfies Weyl’s theorem.

The second example shows that property (ab) does not imply a-Weyl’s theorem.

Example 2.10. Let R ∈ (
¯
`2(N)) be right shift and let L be the weighted unilateral left

shift defined by

L(x1, x2, . . .) =
(x2

2
,
x3
3
, . . .

)
for all x := (x1, x2, . . .) ∈ `2(N).

If T = R⊕ L, then σ(T ) = σW (T ) = D(0, 1), where D(0, 1) is the closed unit disc of C,
so that σ(T ) has no isolated points and hence π0(T ) = ∅. Moreover, σa(T ) = σSF−

+
(T ) =

C(0, 1) ∪ {0}, thus

∆(T ) = πa0 (T ) = ∅,
hence T satisfies property (ab). On the other hand, Ea0 (T ) = {0} so T does not satisfy
a-Weyl’s theorem.

Theorem 2.11. Let T ∈ L(X). If T is a-polaroid then the following statements are
equivalent:

(i) T satisfies property (aw);
(ii) T satisfies Weyl’s theorem;
(iii) T satisfies property (ab).

Proof. We show that if T is a-polaroid then π0(T ) = Ea0 (T ). Let λ ∈ Ea0 (T ). then λ is an
isolated point of σa(T ), so that λ is a pole and consequently, a(T −λI) = (.T −λI) <∞.

Since α(T − λI) < ∞ by [1, Theorem 3.4] it then follows that β(T − λI) < ∞, hence
T − λI is Browder and consequently λ ∈ π0(T ). The opposite inclusion holds for every
operator, so Ea0 (T ) = π0(T ).

(i)⇒(ii). If T satisfies property (aw) then ∆(T ) = Ea0 (T ) = E0(T ), thus T satisfies
Weyl’s theorem.

(ii)⇒(iii). If T satisfies Weyl’s theorem then ∆(T ) = E0(T ) = πa0 (T ), so T satisfies
property (ab).

(iii)⇒(i). If T satisfies property (ab) then ∆(T ) = πa0 (T ) = Ea0 (T ), thus T satisfies
property (aw). �

Theorem 2.12. Let T ∈ L(X). If T is a-polaroid then the following statements are
equivalent:

(i) T satisfies property (gaw);
(ii) T satisfies generalized Weyl’s theorem;
(iii) T satisfies property (gab).

Proof. We show that if T is a-polaroid then π(T ) = Ea(T ). Let λ ∈ Ea(T ). then λ is an
isolated point of σa(T ), so that λ is a pole and consequently, a(T −λI) = (.T −λI) <∞.

Since α(T − λI) < ∞ by [1, Theorem 3.4] it then follows that β(T − λI) < ∞, hence
T − λI is Browder and consequently λ ∈ π(T ). The opposite inclusion holds for every
operator, so Ea(T ) = π(T ).

(i)⇒(ii). If T satisfies property (gaw) then ∆g(T ) = Ea(T ) = E(T ), thus T satisfies
generalized Weyl’s theorem.

(ii)⇒(iii). If T satisfies generalized Weyl’s theorem then ∆g(T ) = E(T ) = πa(T ), so
T satisfies property (gab).



EXTENDED WEYL THEOREMS AND PERTURBATIONS 87

(iii)⇒(i). If T satisfies property (gab) then ∆g(T ) = πa(T ) = Ea(T ), thus T satisfies
property (gaw). �

Theorem 2.13. Let T ∈ L(X). If T is a-polaroid. Then T possesses property (gw) if
and only if

(i) T possesses property (gaw);
(ii) ind(T − λI) = 0 for all λ ∈ ∆g

a(T ).

Proof. Assume that T possesses property (gw), then from [9, Theorem 2.4], T satisfies
generalized Weyl’s theorem, i.e. ∆g(T ) = E(T ), and from [9, Theorem 2.5] we have
E(T ) = πa(T ). As T is a-polaroid then Ea(T ) = πa(T ). Therefore ∆g(T ) = Ea(T )
and T possesses property (gaw), as T possesses property (gw) then it follows from [9,
Theorem 2.4] that ind(T−λI) = 0 for all λ ∈ ∆g

a(T ). Conversely, assume that T possesses
property (gaw) and ind(T − λI) = 0 for all λ ∈ ∆g

a(T ). If λ ∈ ∆g
a(T ), then T − λI is a

semi-B-Fredholm such that ind(T − λI) = 0. Hence T − λI is a B-Weyl operator. Since
T satisfies property (gaw) and T is a-polaroid then λ ∈ Ea(T ) = E(T ). To show the
opposite inclusion, let λ ∈ Ea(T ) = E(T ), then T − λI is a B-Weyl operator and since
λ ∈ σ(T ), then α(T − λI) > 0. Thus λ ∈ ∆g

a(T ). Consequently, T satisfies property
(gw). �

Remark 2.14. If T ∗ has SVEP, then it known [27, p. 35] that σa(T ) = σ(T ) and from [5,
Theorem 2.9] we have σSBF−

+
(T ) = σBW (T ). Thus Ea(T ) = E(T ) and ∆g

a(T ) = ∆g(T ).

Theorem 2.15. Let T ∈ L(X). If T ∗ has the SVEP, then the following conditions are
equivalent:

(i) property (gw) holds for T ;
(ii) generalized Weyl’s theorem holds for T ;
(iii) generalized a-Weyl’s theorem holds for T ;
(iv) property (gaw) holds for T .

Proof. Suppose that T ∗ has SVEP, then it follows from Remark 2.14 that

σa(T ) = σ(T ), σSBF−
+

(T ) = σBW (T ), Ea(T ) = E(T ) and ∆g
a(T ) = ∆g(T ).

Now the equivalence between (i), (ii) and (iii) follows from [9, Theorem 2.7].
(ii)⇔(iv). If T satisfies generalized Weyl’s theorem, then ∆g(T ) = E(T ) and since

E(T ) = Ea(T ). Then ∆g(T ) = Ea(T ) and so T satisfies property (gaw). Conversely, if
property (gaw) holds for T , then ∆g(T ) = Ea(T ). But E(T ) = Ea(T ). So T satisfies
generalized Weyl’s theorem. �

If T has the SVEP, then from [27, p. 35] we have σ(T ∗) = σa(T ∗). In the same way
as in the previous theorem, we have the following result:

Theorem 2.16. Let T ∈ L(X). If T has the SVEP, then the following conditions are
equivalent:

(i) property (gw) holds for T ∗;
(ii) generalized Weyl’s theorem holds for T ∗;
(iii) generalized a-Weyl’s theorem holds for T ∗;
(iv) property (gaw) holds for T ∗.

Theorem 2.17. Let T ∈ L(X) be a polaroid operator.

i) If T ∗ has the SVEP, then property (gaw) holds for T .
ii) If T has the SVEP, then property (gaw) holds for T ∗.
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Proof. i) Suppose that T is a polaroid operator and T ∗ has the SVEP. Then from [8,
Theorem 2.3] , T satisfies generalized Browder’s theorem. As T is polaroid, then E(T ) =
π(T ). Hence T satisfies generalized Weyl’s theorem. Since T ∗ has the SVEP, from
Theorem 2.15, it follows that T satisfies property (gaw).

ii) As T has the SVEP, then T satisfies generalized Browder’s theorem. As T is
polaroid, then E(T ) = π(T ). Hence T satisfies generalized Weyl’s theorem. As we have
σ(T ∗) = σ(T ), σBW (T ∗) = σBW (T ), π(T ) = π(T ∗), E(T ) = E(T ∗), then T ∗ satisfies
generalized Weyl’s theorem too. From Theorem 2.16, it follows that T ∗ satisfies property
(gaw). �

Theorem 2.18. Let T ∈ L(X) be a polaroid operator. If T ∗ has the SVEP, then f(T )
satisfies property (gaw) for every f ∈ Hol(σ(T )).

Proof. Suppose that T ∗ has the the SVEP, then f(T )∗ = f(T ∗) has the SVEP, which
in turn implies that generalized Browder’s theorem holds for f(T ) that is ∆g(T ) =
π(f(T )) = πa(f(T )). As T is polaroid and T ∗ has SVEP, then T is a-polaroid. So it
follows from [14, Theorem 3.3] that Ea(f(T )) = πa(f(T )). Hence f(T ) satisfies property
(gaw). �

Theorem 2.19. Let T ∈ L(X). T satisfies property (gaw), if and only if T satisfies
property (aw) and π(T ) = Ea(T ).

Proof. If T satisfies property (gaw), then from [18, Theorem 3.3] T satisfies property
(aw). As T satisfies property (gaw) then ∆g(T ) = Ea(T ). Since T satisfies property
(gaw), then T satisfies property (gab). So from [18, Corollary 2.7] and [18, Theorem 3.5],
we conclude that πa(T ) = π(T ) and Ea(T ) = πa(T ). Conversely, assume that T satisfies
property (aw) and π(T ) = Ea(T ), then it follows from [18, Theorem 3.6] that T satisfies
property (ab) and hence from [18, Theorem 2.4] that T satisfies Browder’s theorem
and hence by [10, Theorem 2.1] T satisfies generalized Browder’s theorem. That is,
∆g(T ) = π(T ). Therefore, ∆g(T ) = Ea(T ). So T satisfies property (gaw). �

Theorem 2.20. Let T ∈ L(X). T satisfies property (w) if and only if T satisfies property
(aw) and E0(T ) = Ea0 (T ).

Proof. Suppose that T satisfies property (w), then by [4, Theorem 2.8], T satisfies Weyl’s
theorem, i.e., ∆(T ) = E0(T ), and from [18, Theorem 3.6] we have Ea0 (T ) = πa0 (T ) and
from [18, Corollary 2.6] we have π0(T ) = πa0 (T ). Hence ∆(T ) = Ea0 (T ). So T satisfies
property (aw). Conversely, Assume that T satisfies property (aw) and E0(T ) = Ea0 (T ).
Then T satisfies property (ab). So from Corollary 2.6 and Theorem 3.6 of [18] we conclude
that π0(T ) = πa0 (T ) = Ea0 (T ). Hence T satisfies a-Browder’s theorem. That is, ∆a(T ) =
πa0 (T ) and so ∆a(T ) = Ea0 (T ). Therefore, T satisfies property (w). �

Theorem 2.21. Let T ∈ L(X). T satisfies property (gw) if and only if T satisfies
property (gaw) and E(T ) = Ea(T ).

Theorem 2.22. Let T ∈ L(X). If T satisfies property (aw). Then T satisfies Weyl’s
theorem.

Proof. From [18, Corollary 2.6] and [18, Theorem 3.6] we conclude that T satisfies prop-
erty (ab), and π0(T ) = πa0 (T ) = Ea0 (T ). But π0(T ) ⊆ E0(T ) ⊆ Ea0 (T ) is always verified.
Hence ∆(T ) = E0(T ). That is, T satisfies Weyl’s theorem. �

The following example shows the converse of Theorem 2.22 is not true in general.

Example 2.23. Let R ∈ `2(N) be the unilateral right shift and

S(x1, x2, . . .) := (0, x2, x3, . . .) for all xn ∈ `2(N).
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If T := R ⊕ S then σ(T ) = σW (T ) = D(0, 1). so isoσ(T ) = E0(T ) = ∅. Moreover,
σa(T ) = C(0, 1) ∪ {0} , where C(0, 1) is the unit circle of C, σSF−

+
(T ) = C(0, 1). On the

other hand we have Ea0 (T ) = {0} , then ∆a(T ) = {0} . So T satisfies a-Weyl’s theorem
and hence T satisfies Weyl’s theorem, while ∆(T ) = ∅ 6= Ea0 (T ). So T does not satisfies
property (aw).

Theorem 2.24. Let T ∈ L(X). If T satisfies property (gaw). Then T satisfies genera-
lized Weyl’s theorem.

Proof. From [18, Corollary 2.7] and [18, Theorem 3.5] we conclude that T satisfies pro-
perty (gab), and π(T ) = πa(T ) = Ea(T ). But π(T ) ⊆ E(T ) ⊆ Ea(T ) is always verified.
Hence ∆g(T ) = E(T ). That is, T satisfies generalized Weyl’s theorem. �

The following example shows the converse of Theorem 2.24 is not true in general.

Example 2.25. Let R ∈ `2(N) be the unilateral right shift and

S(x1, x2, . . .) := (0, x2, x3, . . .) for all xn ∈ `2(N).

If T := R ⊕ S then σ(T ) = σBW (T ) = D(0, 1). so isoσ(T ) = E(T ) = ∅. Moreover,
σa(T ) = C(0, 1)∪{0} , where C(0, 1) is the unit circle of C, σSBF−

+
(T ) = C(0, 1). On the

other hand we have Ea(T ) = {0} , then ∆g
a(T ) = {0} . So T satisfies generalized a-Weyl’s

theorem and hence T satisfies generalized Weyl’s theorem, while ∆g(T ) = ∅ 6= Ea(T ).
So T does not satisfies property (gaw).

3. Perturbations

We begin this section by the following lemmas in order to give the proof of our main
results.

Lemma 3.1. Let T ∈ L(X). If T satisfies generalized Browder’s theorem and if F is
a finite rank operator commuting with T , then T + F satisfies generalized Browder’s
theorem.

Proof. From the characterization of σBW (T ) it follows that if F is a finite rank operator,
then σBW (T + F ) = σBW (T ). Moreover, if F commutes with T , it follows from [13,
Theorem 2.7] that σD(T + F ) = σD(T ). If T satisfies generalized Browder’s theorem,
σBW (T ) = σD(T ). Hence σBW (T + F ) = σD(T + F ), and so T + F satisfies generalized
Browder’s theorem. �

Corollary 3.2. Let T ∈ L(X). If T satisfies Browder’s theorem and if F is a finite rank
operator commuting with T , then T + F satisfies Browder’s theorem.

Theorem 3.3. Let T ∈ L(X). If F is a finite rank operator commuting with T . Then
the following statements are equivalent:

(i) T + F satisfies generalized Browder’s theorem;
(ii) σBW (T + F ) = σD(T + F );
(iii) σ(T + F ) = σBW (T + F ) ∪ E(T + F );
(iv) acc(σ(T + F )) ⊆ σBW (T + F );
(v) σ(T + F ) \ σBW (T + F ) ⊆ E(T + F ).

Proof. (i)⇒(ii). Suppose that T + F satisfies generalized Browder’s theorem. Then
σ(T +F )\σBW (T +F ) = π(T +F ). Let λ ∈ σ(T +F )\σBW (T +F ). Then λ ∈ π(T +F ),
and so T +F −λI is Drazin invertible. Therefore λ ∈ σ(T +F ) \ σD(T +F ), and hence,
σD(T +F ) ⊆ σBW (T +F ). On the other hand, since σBW (T ) ⊆ σD(T ) is always verified
for any operator [15, Lemma 2.12].

(ii)⇒(i). We assume that σBW (T + F ) = σD(T + F ) and we will establish that
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σ(T + F ) \ σBW (T ) = π(T + F ). Suppose first that λ ∈ σ(T + F ) \ σBW (T + F ).
Then λ ∈ σ(T + F ) \ σD(T + F ), and so T + F − λI is Drazin invertible. Therefore,
T + F − λI has finite ascent and descent. Since λ ∈ σ(T + F ), we have λ ∈ π(T + F ).
Thus σ(T + F ) \ σBW (T + F ) ⊆ π(T + F ).

Conversely, suppose that λ ∈ π(T +F ). Then T +F −λI is Drazin invertible but not
invertible. Since λ is an isolated point of σ(T ), then T + F − λI is B-Weyl. Therefore
λ ∈ σ(T + F ) \ σBW (T + F ). Thus π(T + F ) ⊇ σ(T + F ) \ σBW (T + F ).

(ii)⇒(iii). Let λ ∈ σ(T + F ) \ σBW (T + F ). Then λ ∈ σ(T + F ) \ σD(T + F ), and
so T + F − λI is Drazin invertible but not invertible. Therefore λ ∈ E(T + F ). Thus
σ(T + F ) ⊆ σBW (T + F ) ∪E(T + F ). Since the other inclusion is always true, we must
have σ(T + F ) = σBW (T + F ) ∪ E(T + F ).

(iii)⇒(ii). Suppose σ(T + F ) = σBW (T + F ) ∪ E(T + F ). To show that σBW (T +
F ) = σD(T + F ). it suffices to show that σBW (T + F ) ⊆ σD(T + F ). Suppose that
λ ∈ σ(T + F ) \ σBW (T + F ). Then T + F − λI is B-Weyl but not invertible. Since
σ(T + F ) = σBW (T + F ) ∪ E(T + F ), we see that λ ∈ E(T + F ). In particular, λ is an
isolated point of σ(T +F ). Hence, T +F −λI is Drazin invertible, and so σBW (T +F ) =
σD(T + F ).

(i)⇔ (iv). Suppose T+F satisfies generalized Browder’s theorem. Then σBW (T+F ) =
σ(T + F ) \ π(T + F ). Let λ ∈ σ(T + F ) \ σBW (T + F ). Then λ ∈ π(T + F ), and so λ
is an isolated point of σ(T + F ). Therefore λ ∈ σ(T + F ) \ acc(σ(T + F )), and hence,
acc(σ(T + F )) ⊆ σBW (T + F ).

Conversely, let λ ∈ σ(T + F ) \ σBW (T + F ). Since acc(σ(T + F )) ⊆ σBW (T + F ), it
follows that λ ∈ iso(σ(T+F )) and T+F−λI is B-Weyl. It follows from [13, Theorem 2.3]
that λ ∈ π(T + F ). Therefore σ(T + F ) \ σBW (T + F ) ⊆ π(T + F ). For the converse,
suppose λ ∈ π(T +F ). Then λ is a pole of the resolvent of T , and so λ is an isolated point
of σ(T + F ). Therefore λ ∈ σ(T + F ) \ acc(σ(T + F )). It follows from [13, Theorem 2.3]
that λ ∈ σ(T + F ) \ σBW (T + F ). Thus π(T + F ) ⊆ σ(T + F ) \ σBW (T + F ), and so
T + F satisfies generalized Browder’s theorem.

(iv)⇔(v). Suppose that acc(σ(T+F )) ⊆ σBW (T+F ), and let λ ∈ σ(T+F )\σBW (T+
F ). Then T +F −λI is B-Weyl but not invertible. Since acc(σ(T +F )) ⊆ σBW (T +F ), λ
is an isolated point of σ(T+F ). It follows from [13, Theorem 2.3] that λ is a pole of of the
resolvent of T+F . Therefore λ ∈ π(T+F ), and hence, σ(T+F )\σBW (T+F ) ⊆ E(T+F ).

Conversely, suppose that σ(T + F ) \ σBW (T + F ) ⊆ E(T + F ) and let λ ∈ σ(T +
F ) \ σBW (T + F ) ⊆ E(T + F ). Then λ ∈ E(T + F ), and so λ is an isolated point of
σ(T + F ). Therefore λ ∈ σ(T + F ) \ acc(σ(T + F )), which implies that acc(σ(T + F )) ⊆
σBW (T + F ). �

Definition 3.4. A bounded linear operator T is said to be algebraic if there exists a
non-trivial polynomial h such that h(T ) = 0.

From the spectral mapping theorem it easily follows that the spectrum of an algebraic
operator is a finite set. A nilpotent operator is a trivial example of an algebraic operator.
Also finite rank operators K are algebraic; more generally, if Kn is a finite rank operator
for some n ∈ N then K is algebraic. Clearly, if T is algebraic then its dual T ∗ is algebraic,
as well as T ′ in the case of Hilbert space operators.

Corollary 3.5. Let T be quasinilpotent or algebraic. If F is a finite rank operator
commuting with T . Then T + F satisfies generalized Browder’s theorem.

Proof. Straightforward from Theorem 3.3 and the facts that accσ(T ) = ∅ whenever T is
quasinilpotent or algebraic and λ ∈ accσ(T )⇔ λ ∈ accσ(T + F ). �

Theorem 3.6. Let T ∈ L(X). If T satisfies generalized Browder’s theorem and F is a
finite rank operator commuting with T . The following statements are equivalent:
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(i) T + F satisfies generalized Weyl’s theorem;
(ii) σBW (T + F ) ∩ E(T + F ) = ∅;
(iii) E(T + F ) = π(T + F ).

Proof. (i)⇒(ii). Assume that T + F satisfies generalized Weyl’s theorem, that is, σ(T +
F ) \ σBW (T + F ) = E(T + F ). It then easily that σBW (T + F ) ∩ E(T + F ) = ∅, as
required for (ii).

(ii)⇒(iii). Let λ ∈ E(T + F ). The condition in (ii) implies that λ ∈ σ(T + F ) \
σBW (T + F ), and since T + F satisfies generalized Browder’s theorem, we must have
λ ∈ π(T + F ). It follows that E(T + F ) ⊆ π(T + F ), and since the reverse inclusion
always holds, we obtain (iii).

(iii)⇒(i). Since T + F satisfies generalized Browder’s theorem, we know that σ(T +
F ) \ σBW (T + F ) = π(T + F ), and since we are assuming E(T + F ) = π(T + F ), it
follows that σ(T + F ) \ σBW (T + F ) = E(T + F ), that is, T + F satisfies generalized
Weyl’s theorem. �

Theorem 3.7. Let T ∈ L(X). Let F be a finite rank operator such that TF = FT . If T
satisfies property (gab), then the following are equivalent:

(i) T + F satisfies property (gab);
(ii) T + F satisfies generalized Browder’s theorem and π(T + F ) = πa(T + F ).

Proof. (i)⇒(ii). Suppose that T + F satisfies property (gab). Then it follows from [18,
Corollary 2.7] that T +F satisfies generalized Browder’s theorem and π(T +F ) = πa(T +
F ).

(ii)⇒(i). If T +F satisfies generalized Browder’s theorem and π(T +F ) = πa(T +F ).
Then ∆g(T + F ) = π(T + F ) = πa(T + F ). That is, T + F satisfies property (gab). �

Similarly to Theorem 3.7 we have the following result in the case of property (ab),
which we give without proof.

Theorem 3.8. Let T ∈ L(X). Let F be a finite rank operator such that TF = FT . If T
satisfies property (ab), then the following are equivalent:

(i) T + F satisfies property (ab);
(ii) T + F satisfies Browder’s theorem and π0(T + F ) = πa0 (T + F ).

Theorem 3.9. Let T ∈ L(X). Let F be a finite rank operator such that TF = FT . If T
satisfies property (gaw), then the following are equivalent:

(i) T + F satisfies property (gaw);
(ii) Ea(T + F ) = π(T + F ).

Proof. (i)⇒(ii). Suppose that T + F satisfies property (gaw). From [18, Theorem 3.5]
we have T + F satisfies property (gab) and πa(T + F ) = Ea(T + F ). It follows from
Theorem 3.7 that πa(T + F ) = π(T + F ). Hence (ii) follows.

(ii)⇒(i). Assume that Ea(T + F ) = π(T + F ). Since T satisfies property (gaw), then
T satisfies generalized theorem and so T + F satisfies generalized Browder’s theorem.
That is, ∆g(T + F ) = π(T + F ). Therefore, ∆g(T + F ) = Ea(T + F ). So T + F satisfies
property (gaw). �

Similarly to Theorem 3.9 we have the following result in the case of property (aw),
which we give without proof.

Theorem 3.10. Let T ∈ L(X). Let F be a finite rank operator such that TF = FT . If
T satisfies property (aw), then the following are equivalent:

(i) T + F satisfies property (aw);
(ii) Ea0 (T + F ) = π0(T + F ).
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Example 3.11. In general properties (gw), (w), (gaw) and (aw) are not transmitted
from an operator to a commuting finite rank perturbation as the following example shows.
Let S : `2(N) → `2(N) be an injective quasinilpotent operator which is not nilpotent.
We define T on the Banach space X = `2(N) ⊕ `2(N) by T = I ⊕ S where I is the
identity operator on `2(N). Then σ(T ) = σa(T ) = {0, 1} and Ea(T ) = {1}. It follows
from [16, Example 2] that σBW (T ) = {0}. This implies that σSBF−

+
(T ) = {0}. Hence

∆g
a(T ) = ∆g(T ) = {1} = Ea(T ) = E(T ) and T satisfies property (gw), so it satisfies

property (w), property (gaw) and property (aw).
We define the operator U on `2(N) by

U(x1, x2, . . .) = (−x1, 0, . . .)

and F = U ⊕ 0 on the Banach space X = `2(N)⊕ `2(N). Then F is a finite rank operator
commuting with T. On the other hand, σ(T +F ) = σa(T +F ) = {0, 1} and Ea(T +F ) =
{0, 1}. As σSBF−

+
(T + F ) = σSBF−

+
(T ) = {0}, then ∆g

a(T + F ) = {1} 6= Ea(T + F )

and T + F does not satisfy property (gw). Moreover, E(T + F ) = {0, 1} , and as by [12,
Theorem 4.3] we have σBW (T+F ) = σBW (T ) = {0}, then ∆g(T+F ) = {1} 6= Ea(T+F )
and hence T +F does not satisfy property (gaw). Moreover we have σW (T +F ) = {0, 1}
and E0(T + F ) = {0} = Ea0 (T + F ). As σ(T + F ) = {0, 1} then ∆(T + F ) 6= E0(T + F )
and T + F does not satisfy Weyl’s theorem. So T + F does not satisfy property (w).
Note that ∆(T + F ) 6= Ea0 (T + F ). Hence T + F does not satisfy property (aw).

Theorem 3.12. Suppose that T ∈ L(X) is polaroid, N ∈ L(X) a nilpotent operator
commuting with T .

(i) If T ∗ has SVEP then T +N satisfies property (gaw).
(ii) If T has SVEP then T ∗ +N∗ satisfies property (gaw).

Proof. (i) If T is polaroid then by [7, Theorem 2.5] T ∗ is polaroid. Clearly, N∗ is
nilpotent, since (N∗)n = (Nn)∗ = 0 for some n ∈ N. Therefore T ∗ + N∗ is polaroid,
by [7, Theorem 2.10]. Since T ∗ + N∗ has SVEP, by [1, Corollary 2.12], it then follows,
by Theorem 2.17, that T +N satisfies property (gaw).

(ii) If T has SVEP then T + N has SVEP, see [1, Corollary 2.12]. Moreover, by [7,
Lemma 2.10] T + N is polaroid. By Theorem 2.17 it then follows property (gaw) holds
for T ∗ +N∗. �

Theorem 3.13. Suppose that T is polaroid and N ∈ L(X) a nilpotent operator com-
muting with T . If T ∗ has SVEP and f ∈ Hol(σ(T )) then property (gaw) holds for
f(T ) +N .

Proof. By Theorem 2.17, T satisfies property (gaw). The SVEP for T ∗ implies that
σ(T ) = σa(T ), see [1, Corollary 2.45], so every isolated point of σa(T ) is a pole of the
resolvent of T . By Theorem 2.18 then f(T ) satisfies property (gaw). Finally, by 3.12
f(T ) +N satisfies property (gaw). �

A bounded operator T ∈ L(X) is said to be a-isoloid if every isolated point of σa(T )
is an eigenvalue of T.

Theorem 3.14. Suppose that T ∈ L(X) is a-isoloid and F is a finite rank operator
commuting with T such that σa(T + F ) = σa(T ). If T satisfies property (gaw), then
T + F satisfies property (gaw).

Proof. Suppose that T satisfies property (gaw). Then, by Proposition 2.5, T satisfies
generalized Browder’s theorem, and hence also T + F satisfies generalized Browder’s
theorem. By Theorem 3.9, in order to show that T +F satisfies property (gaw) it suffices
only to prove the equality Ea(T +F ) = π(T +F ). The inclusion π(T +F ) ⊆ Ea(T +F )
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holds for every operator, so we need only to show the opposite inclusion Ea(T + F ) ⊆
π(T + F ). We first show the inclusion

(3.1) Ea(T + F ) ⊆ π(T ).

Let λ ∈ Ea(T + F ). By assumption λ ∈ isoσa(T + F ) and α(T + F − λI) > 0 so
λ ∈ isoσa(T + F ), and hence λ ∈ isoσa(T ). Furthermore, since T is a-isoloid, we have
also 0 < α(T − λI). Therefore, the inclusion Ea(T + F ) ⊆ Ea(T ) is proved. Now, since
property (gaw) entails that T satisfies generalized Browder’s theorem and Ea(T ) = π(T ),
we then have Ea(T+F ) ⊆ π(T ) and hence the inclusion 3.1 is established. Consequently,
if λ ∈ Ea(T + F ), then T − λI is generalized Browder. By Lemma 3.1 it then follows
that T + F − λI is also generalized Browder, hence

λ ∈ ∆g(T + F ) = π(T ),

as desired. �

Theorem 3.15. Suppose that T ∈ L(X) is a-isoloid and suppose that N is a nilpotent
operator that commutes with T . If T satisfies property (gaw), then T+N satisfies property
(gaw).

Proof. Suppose that T satisfies property (gaw). Then, by Proposition 2.5, T satisfies
generalized Browder’s theorem, Ea(T ) = π(T ) and hence also T +N satisfies generalized
Browder’s theorem. By Theorem 3.9, in order to show that T + N satisfies property
(gaw) it suffices only to prove the equality Ea(T + N) = π(T + N). From [20, Lemma
3.1], we have Ea(T +N) = Ea(T ). Consequently, Ea(T +N) = π(T ). If λ ∈ Ea(T +F ),
then T − λI is generalized Browder. By Lemma 3.1 it then follows that T + F − λI is
also generalized Browder, hence

λ ∈ ∆g(T +N) = π(T +N),

and so Ea(T + N) ⊆ π(T + N). Since the other inclusion is always verified. Therefore,
Ea(T +N) = π(T +N), as desired. �

Example 3.16. The following example shows that both Theorem 3.14 and Theorem 3.15
fail if we do not assume that the nilpotent operator N , and the finite rank operator F
do not commute with T . Let X = `2(N) and T and N be defined by

T (x1, x2, . . .) :=
(

0,
x1
2
,
x2
3
, . . .

)
, (xn) ∈ `2(N),

and

N(x1, x2, . . .) :=
(

0,−x1
2
, 0, . . .

)
, (xn) ∈ `2(N),

Clearly, N is a nilpotent finite rank operator, T is a quasi-nilpotent operator satisfying
generalized Weyl’s theorem. Since T is decomposable, then T satisfies property (gaw).
On the other hand, it is easily seen that 0 ∈ Ea(T + N) and 0 /∈ ∆g(T + N), so that
T +N does not satisfies property (gaw). Note that σa(T +N) = σa(T ).

Example 3.17. The following example shows that and Theorem 3.14 fails if we do
not assume that T is a-isoloid. Let S : `2(N) → `2(N) be an injective quasi-nilpotent
operator, and let U : `2(N)→ `2(N) be defined:

U(x1, x2, . . .) := (−x1, 0, 0, . . .), (xn) ∈ `2(N).

Define on X = `2(N) ⊕ `2(N) the operators T and F by T := I ⊕ S and F := U ⊕ 0.
Clearly, F is a finite-rank operator and TF = FT . It is easy to check that

σ(T ) = σa(T ) = σW (T ) = {0, 1} .
Since α(T ) = 0, then T is not a-isoloid. Now, both T and T ∗ have SVEP, since σ(T ) =
σ(T ∗) is finite. Moreover, ∆g(T ) = {1} = Ea(T ), so T satisfies property (gaw). On the
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other hand, σ(T +F ) = σa(T +F ) = {0, 1}, and Ea(T +F ) = {0, 1}. As σBW (T +F ) =
σBW (T ) = {0}, then ∆g(T + F ) = {1} 6= Ea(T + F ), so that property (gaw) does not
hold for T + F .

An operator R ∈ L(X) is a Riesz operator if R − λI is a Fredholm operator for all
λ ∈ C \ {0}. Evidently, every quasi-nilpotent operator is a Riesz operator. It is well-
known that if Q is a quasi-nilpotent operator commuting with T then

σ(T +Q) = σ(T ) and σa(T +Q) = σa(T ).

It is well known that if R is a Riesz operator which commutes with an operator T ∈ L(X),
then σW (T +R) = σW (T ) [28, Lemma 2.2]. In [23] the author proved that if R is a Riesz
operator which commutes with an operator T ∈ L(X), then σSF−

+
(T + R) = σSF−

+
(T )

and a-Browder’s theorem holds for T +R.

Generally, property (gaw) is not transmitted from T to a quasi-nilpotent perturbation
T+Q. In fact, if we consider on the Hilbert space `2(N) the operators T = 0 andQ defined
by Q(x1, x2, . . .) = (x2

2 ,
x3

3 , . . .). Then Q is a quasi-nilpotent operator commuting with
T . Moreover,we have σ(T ) = σa(T ) = {0} , σSBF−

+
(T ) = ∅ = σBW (T ) and Ea(T ) = {0}.

Hence T satisfies property (gaw). But property (gaw) fails for T +Q = Q. Indeed

σ(T +Q) = σa(T +Q) = σBW (T +Q) = σSBF−
+

(T +Q) = Ea(T +Q) = E(T +Q) = {0} .

A bounded operator T ∈ L(X) is said to have property H(p) if for all λ ∈ C there
exists a p := p(λ) ∈ N such that

H0(T − λI) = ker(T − λI)p.

This class of operators has been introduced in [28] and for the constant function p(λ) :=
1 has been also studied in [6]. Clearly, from the implication

H0(T − λI) closed⇒ T has SVEP at λ,

if T has property H(p) then T has SVEP. Moreover T is polaroid, see [2, Lemma 3.3].

Theorem 3.18. Suppose that T ∈ L(X) and K is an algebraic operator commuting with
T . If T ∈ H(p), then T +K is polaroid.

Proof. Let σ(K) = {ν1, ν2, . . . , νn}. Denote by Pi the spectral projection associated with
K and with the spectral set νi. If Yi := Pi(H) and Zi := ker(Pi), then X = Yi ⊕ Zi, the
closed subspaces Yi and Zi are invariant under T and K, and σ(K|Yi

) = {νi}. Define
Ki := K|Yi

and Ti := T |Yi
. Clearly, the restrictions Ti and Ki commute for every

i = 1, 2, . . . , n. Let h be a polynomial such that h(K) = 0. Then h(Ki) = h(K)|Yi = 0,
and the equalities

{0} = σ(h(Ki)) = h(σ(Ki)) = h({νi})
entail that h(nui) = 0. Write

h(ν) = (ν − νi)µg(ν) with g(νi) 6= 0.

Then 0 = h(Ki) = (Ki − νiI)µg(Ki) where the operators g(Ki) is invertible. Therefore
(Ki − νiI)µ = 0, hence the operators Ni := Ki − νiI are nilpotent for all i = 1, 2, . . . , n.
Note that

Ti +Ki = (Ti + νiI) + (Ki − νiI) = Ti −Ni + νiI.

Since SVEP is inherited by restrictions to closed invariant subspaces, Ti has SVEP and
hence, by [1, Corollary 2.12] also Ti+Ki = Ti−Ni+νiI has SVEP for all i = 1, 2, . . . , n.
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By [1, Theorem 2.9] it then follows that

T +K =

n⊕
i=1

(Ti +Ki)

has SVEP.
Suppose that T ∈ H(p). Let λ ∈ isoσ(T +K). Since σ(T +K) =

⋃n
i=1 σ(Ti+Ki) then

λ ∈ σ(Tj+Kj) for some positive integer 1 ≤ j ≤ n and hence λ−νi ∈ isoσ(Tj+Kj−νjI).
The restriction to a closed invariant subspace of H(p) is H(p), so Tj is polaroid. Since,
as observed before, Kj − νjI is nilpotent then, by [7, Theorem 2.10], also Tj +Kj − νjI
is polaroid. Therefore λ − νj is a pole of the resolvent of Tj + Kj − νjI, so there exists
by [1, Theorem 3.74] a positive integer mj such that

H0 [(Tj +Kj − νjI − (λ− νj)I)] = H0(Tj +Kj − λI) = ker(Tj +Kj − λI)mj .

Therefore, taking in to account that H0(Tj +Kj − λI) = {0} if λ /∈ σ(Tj +Kj), we have

H0(T +K − λI) =

n⊕
j=1

H0(Tj +Kj − λI)

=

n⊕
j=1

ker(Tj +Kj − λI)mj = ker(T +K − λI)m,

where m := max {m1,m2, . . . ,mn} . Arguing as in the proof of [7, Theorem 2.10] it then
follows that λ is a pole of the resolvent of T +K. �

Theorem 3.19. Suppose that T ∈ L(X) and K is an algebraic operator commuting
with T .

(i) If T ∈ H(p) then property (gaw) holds for T ∗ +K∗.
(ii) If T ∗ ∈ H(p) then property (gaw) holds for T +K.

Proof. (i) If T ∈ H(p) then T has SVEP and hence T +K has SVEP by Theorem 3.18.
Moreover, T is polaroid so also T +K is polaroid. By Theorem 2.17, then property (gaw)
holds for T ∗ +K∗.

(ii) If T ∗ ∈ H(p) then T ∗ has SVEP and hence T ∗+K∗ has SVEP. Moreover, T ∗+K∗

is polaroid, so, by [7, Theorem 2.5], T +K is polaroid. By Theorem 2.17 it then follows
that property (gaw) holds for T +K. �
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