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THE TWO-DIMENSIONAL MOMENT PROBLEM IN A STRIP

S. M. ZAGORODNYUK

To Professor M. L. Gorbachuk on the occasion of his 75th birthday

Abstract. In this paper we study the two-dimensional moment problem in a strip

Π(R) = {(x1, x2) ∈ R2 : |x2| ≤ R}, R > 0. We obtained an analytic parametrization

of all solutions of this moment problem. Usually the problem is reduced to an exten-
sion problem for a pair of commuting symmetric operators but we have no possibility

to construct such extensions in larger spaces in a direct way. It turns out that we can

find solutions without knowing the corresponding extensions in larger spaces. We
used the fundamental results of Shtraus on generalized resolvents and some results

from the measure theory.

1. Introduction

In this paper we consider the following problem: to find a non-negative Borel measure
µ in a strip

Π = Π(R) = {(x1, x2) ∈ R2 : |x2| ≤ R}, R > 0,

such that

(1)

∫
Π

xm1 x
n
2dµ = sm,n, m, n ∈ Z+,

where {sm,n}m,n∈Z+
is a prescribed sequence of complex numbers. This problem is said

to be the two-dimensional moment problem in a strip.
The two-dimensional moment problem and the complex moment problem have an

extensive literature, see books [1], [2], [3], [4] surveys in [5], [6], [7] and [8]. The moment
problem (1) has a solution if and only if for arbitrary complex numbers αm,n (where all
but finite numbers are zeros) the following relations hold:

(2)

∞∑
m,n,k,l=0

αm,nαk,lsm+k,n+l ≥ 0,

(3)

∞∑
m,n,k,l=0

αm,nαk,l(R
2sm+k,n+l − sm+k,n+l+2) ≥ 0.

This result is not new and it follows directly from more general results on the moment
problems for semi-algebraic sets in [9] (see Theorem 5.1 and Proposition 1.3 therein) and
in [10, Corollary 10] (for the case R = 1 see [11, Theorem 6]). Conditions of solvability
and a description of all solutions for the two-dimensional moment problem on a semi-
algebraic set (even for the multidimensional case) in terms of a dimensional extension
were obtained in [12, Theorem 2.7]. Also we refer to [13, Theorem 4.2]. However, to
the best of our knowledge, no analytic description for solutions of the two-dimensional
moment problem in a strip was obtained. In general, only few steps are done to describe
all solutions of the two-dimensional (or multidimensional) moment problem, see [14], [12],
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[8, Section 7], [15]. In [15] we proposed an algorithm for solving the two-dimensional
moment problem. Roughly speaking, this algorithm reduces to the solving of linear
systems of equations with an infinite number of variables by the Gauss algorithm. The
two-dimensional moment problem has a solution iff the (countable) intersection of the
sets of solutions of such systems and some other explicitly given sets is non-empty. Then
the points of the limit set play a role of parameters in a description of all solutions (we
refer to [15] for more details). Operator multidimensional moment problems were studied
in [16], [17]. For a moment problems with an infinite number of variables we refer to the
book of Berezansky and Kondratiev [18] and references therein.

The operator approach to the moment problems probably takes its origin in 1940–1943,
in papers of Neumark [19], [20] for the case of the Hamburger moment problem. Neumark
obtained the Nevanlinna formula using his results on the generalized resolvents of a
symmetric operator with the deficiency index (1, 1). Then this approach was developed
by Krein and Krasnoselskiy in [21], using the ideas of Krein of 1946–1948 [22], [23].
Various modifications appeared afterwords. Concerning the multidimensional moment
problem we refer to the book of Berezansky [3], historical comments and the bibliography
therein, to the papers of Fuglede [5], Putinar and Schmüdgen [8] and references therein.

The usual operator-theoretic core of our problem (1) is the following: in a Hilbert
space H there are given a symmetric operator A and a bounded self-adjoint operator

B of the norm ‖B‖ ≤ R and commuting with A. One has to find extensions Ã ⊇ A,

B̃ ⊇ B, in a Hilbert space H̃ ⊇ H, such that Ã and B̃ are self-adjoint, commute and

‖B̃‖ ≤ R. However, this core does not help in our case: we do not know how to construct
such extensions in larger spaces.

Suppose we know (Ã, B̃) satisfying the above properties. Let Ẽ, F̃ be their orthogonal
resolutions of the identity, respectively. Let F be the orthogonal resolution of the identity
of B. In our case we have

F = P H̃H F̃ .

Set

(4) E = P H̃H Ẽ.

The pair (E, F ) commute and generate a solution by the formula (13) below.
Question (A). Given is an arbitrary spectral function E of the operator A which com-

mutes with the orthogonal spectral function F of B. Does there exists a pair (Ã, B̃) with
the above-mentioned properties such that (4) holds? In other words, is the mapping

(Ã, B̃) 7→ (E, F )

surjective?
We do not see a direct way to answer Question (A) in the usual operator-theoretic

interpretation. Of course, for an arbitrary spectral function E of the operator A there

exists a self-adjoint operator Â ⊇ A in a Hilbert space Ĥ ⊇ H, such that E = P ĤH Ê,

where Ê is the orthogonal resolution of the identity of the operator Â. However it is not

known that it commutes with some (at least one) extension B̂ of B in Ĥ (even without

the property ‖B̂‖ ≤ R).
Thus, we do not see a way to solve the problem (1) in this general operator-theoretic

formulation.
The choice of a concrete version of the operator approach depends on the concrete

problem under consideration and the taste of the researcher. For our problem (1) we
shall use the ”pure operator” approach of Szökefalvi-Nagy and Koranyi ([24], [25], [2,
p. 217]). The modern exposition of this approach and related results are presented in
the book of Nikolski [26]. This approach allows to hide details which are not important
for us.
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We shall use the fundamental results of Shtraus on generalized resolvents [27], as
well as some facts from the measure theory and properties of decomposable operators to
obtain an analytic description of all solutions of the moment problem (1). Also we shall
use our results in [28].

The problem of a continuation of a positive definite function in a strip to the whole
plane was studied by Berezansky and Gorbachuk [29], by Levin and Ovcharenko [30].
In [29] the problem was reduced to the problem of a continuation of a positive definite
matrix-valued function (of one variable) on an interval with additional properties. The
results of Gorbachuk on a continuation of positive-definite operator-valued functions of
one variable (with an additional condition of ”maximality” of defect numbers) [31] were
used. Since the matrix moment problem on an interval is always determinate, it is clear
that such a reduction is impossible in the case of the two-dimensional moment problem
in a strip.

On the other hand the approach from [30] was used by Ovcharenko to study the two-
dimensional moment problem in [32]. However, no description of solutions was obtained
there.

The reason of the above situation, probably, is that the ”strip” appears in different
circumstances in the above-mentioned problems: while the positive definite function is
defined in a strip, the positive definite sequence (1) is defined for m,n ∈ Z+.

The paper is organized as follows. In Section 2 we describe solutions of the moment
problem (1) in terms of spectral functions of the corresponding symmetric operators.
As a first application of this description, we describe canonical solutions of the moment
problem (see the precise definition below).

In Section 3 we obtain the main result of this paper: an analytic parametrization of
all solutions of the two-dimensional moment problem in a strip. In a consequence, in
Section 4 we derive conditions of the solvability and describe all solutions of the complex
moment problem with the support in a strip.

In this paper we followed notions and notations from books [33], [34].
Notations. As usual, we denote by R,C,N,Z,Z+ the sets of real numbers, complex
numbers, positive integers, integers and non-negative integers, respectively. For a subset
S of the complex plane we denote by B(S) the set of all Borel subsets of S. Everywhere
in this paper, all Hilbert spaces are assumed to be separable. By (·, ·)H and ‖ · ‖H we
denote the scalar product and the norm in a Hilbert space H, respectively. The indices
may be omitted in obvious cases. For a set M in H, by M we mean the closure of M
in the norm ‖ · ‖H . For {xm,n}m,n∈Z+ , xm,n ∈ H, we write Lin{xm,n}m,n∈Z+ for the

span of vectors {xm,n}m,n∈Z+
and span{xm,n}m,n∈Z+

= Lin{xm,n}m,n∈Z+
. The identity

operator in H is denoted by EH . For an arbitrary linear operator A in H, the operators
A∗,A,A−1 mean its adjoint operator, its closure and its inverse (if they exist). By D(A)
and R(A) we mean the domain and the range of the operator A. By σ(A), ρ(A) we
denote the spectrum of A and the resolvent set of A, respectively. We denote by Rz(A)
the resolvent function of A, z ∈ ρ(A); ∆A(z) = (A − zEH)D(A), z ∈ C. The norm
of a bounded operator A is denoted by ‖A‖. By PHH1

= PH1
we mean the operator of

orthogonal projection in H on a subspace H1 in H. By B(H) we denote the set of all
bounded operators in H.

2. A description of solutions of the two-dimensional moment problem in
a strip via spectral functions. Canonical solutions

Let the moment problem (1) be given and conditions (2) and (3) hold. Relations (2)
mean that the kernelK((m,n), (k, l)) = sm+k,n+l, m,n, k, l ∈ Z+, is non-negative definite
and by Lemma in [25, p. 177] (see also [35, pp. 361–363]) there exists a Hilbert space H
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and a sequence {xm,n}m,n∈Z+
, xm,n ∈ H, such that

(5) (xm,n, xk,l)H = sm+k,n+l, m, n, k, l ∈ Z+.

Such a Hilbert space and a sequence of elements in it are not uniquely defined. We choose
an arbitrary such a space H and {xm,n}m,n∈Z+

, and fix them for the rest of this paper.
Set L = Lin{xm,n}m,n∈Z+ . Introduce the following operators:

(6) A0x =
∑

m,n∈Z+

αm,nxm+1,n, B0x =
∑

m,n∈Z+

αm,nxm,n+1,

where

(7) x =
∑

m,n∈Z+

αm,nxm,n ∈ L, αm,n ∈ C.

The values of A0 and B0 does not depend on the choice of the representation of x. To
see that scalar multiply the corresponding values by an arbitrary element of L and use
the properties of K. It is not hard to see that operators A0 and B0 are symmetric
and therefore they are closable. Moreover, condition (3) implies that the operator B0 is
bounded. Set

(8) A = A0, B = B0.

Observe that B is a bounded self-adjoint operator in H. We shall also need the following
operator:

(9) J0x =
∑

m,n∈Z+

αm,nxm,n,

where x =
∑
m,n∈Z+

αm,nxm,n ∈ L. The value J0x does not depend on the choice of

the representation for x. To verify that, calculate the norm of the difference of the
corresponding values, using the properties of K. We can easily check that (J0x, J0y)H =
(y, x), x, y ∈ L. By continuity we extend J0 to a a conjugation J in H. Notice that J0

commutes with A0 and B0.
Let Ã ⊇ A be a self-adjoint extension of A in a Hilbert space H̃ ⊇ H and EÃ be the

spectral measure of Ã. Recall that the function

(10) Rz(A) := P H̃H Rz(Ã), z ∈ C\R,
is said to be a generalized resolvent of A. The function

(11) EA(δ) := P H̃H EÃ(δ), δ ∈ B(R),

is said to be a spectral measure of A. There exists a one-to-one correspondence between
generalized resolvents and (left-continuous) spectral measures according to the following
relation [35]:

(12) (Rz(A)x, y)H =

∫
R

1

t− z
d(EAx, y)H , x, y ∈ H.

The spectral measure EA is defined by the Stieltjes-Perron inversion formula. The gene-
ralized resolvent Rz(A) and the spectral function EA, related by (12), are said to belong
to each other [35, p. 378].

Theorem 2.1. Let the moment problem (1) be given and conditions (2),(3) hold. Choose
a Hilbert space H and a sequence {xm,n}m,n∈Z+ , xm,n ∈ H, such that relation (5) holds,
and fix them. Consider operators A0,B0,A,B defined by (6) and (8). Then the following
statements hold:

1) All solutions of the moment problem (6) have the following form:

(13) µ(δ) = ((E× F )(δ)x0,0, x0,0)H , δ ∈ B(Π),

where F is the orthogonal spectral measure of B, E is a spectral measure of A
which commutes with F . Here by ((E × F )(δ)x0,0, x0,0)H we denote the unique
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non-negative Borel measure on R which is obtained by the Lebesgue continuation
procedure from the following non-negative measure on rectangles

(14) ((E× F )(Ix1
× Ix2

)x0,0, x0,0)H := (E(Ix1
)F (Ix2

)x0,0, x0,0)H ,

where Ix1
⊂ R, Ix2

⊆ [−R,R] are arbitrary intervals.
2) Given an arbitrary spectral measure E of A which commutes with the spectral

measure F of B, by relation (13) we can define a solution µ of the moment
problem (1).

3) The correspondence between the spectral measures of A which commute with the
spectral measure of B and solutions of the moment problem, which is established
by (13), is bijective.

Remark. It is straightforward to check that the measure in (14) is non-negative and
additive. Moreover, repeating the standard arguments [36, Chapter 5, Theorem 2, p. 254–
255] we conclude that the measure in (14) is σ-additive. Consequently, it has the (unique)
Lebesgue continuation to a (finite) non-negative Borel measure on Π.

Proof. Let us check the first statement of the Theorem. Let µ be an arbitrary solution
of the moment problem (1). We need to verify that it admits a representation of the
form (13).

Consider the space L2
µ of complex functions on Π which are square integrable with

respect to the measure µ. The scalar product and the norm are given by

(f, g)µ =

∫
Π

f(x1, x2)g(x1, x2) dµ, ‖f‖µ = ((f, f)µ)
1
2 , f, g ∈ L2

µ.

Consider the following operators:

(15) Aµf(x1, x2) = x1f(x1, x2), D(Aµ) = {f ∈ L2
µ : x1f(x1, x2) ∈ L2

µ},

(16) Bµf(x1, x2) = x2f(x1, x2), D(Bµ) = L2
µ.

The operator Aµ is self-adjoint and the operator Bµ is self-adjoint and bounded. These
operators commute and therefore the spectral measure Eµ of Aµ and the spectral measure
Fµ of Bµ commute, as well.

Let p(x1, x2) be a polynomial of the form (1) and q(x1, x2) be a polynomial of the
form (1) with βm,n ∈ C instead of αm,n. Then

(p, q)µ =
∑

m,n,k,l∈Z+

αm,nβk,l

∫
Π

xm+k
1 xn+l

2 dµ

=
∑

m,n,k,l∈Z+

αm,nβk,lsm+k,n+l.

On the other hand, we may write( ∑
m,n∈Z+

αm,nxm,n,
∑

k,l∈Z+

βk,lxk,l

)
H

=
∑

m,n,k,l∈Z+

αm,nβk,l(xm,n, xk,l)H

=
∑

m,n,k,l∈Z+

αm,nβk,lK((m,n), (k, l)) =
∑

m,n,k,l∈Z+

αm,nβk,lsm+k,n+l.

Therefore

(17) (p, q)µ =

( ∑
m,n∈Z+

αm,nxm,n,
∑

k,l∈Z+

βk,lxk,l

)
H

.

Consider the following operator:

(18) V [p] =
∑

m,n∈Z+

αm,nxm,n, p =
∑

m,n∈Z+

αm,nx
m
1 x

n
2 .
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Here by [p] we mean the class of equivalence in L2
µ defined by p. If two different polyno-

mials p and q belong to the same class of equivalence then by (17) we get

0 = ‖p− q‖2µ = (p− q, p− q)µ =

( ∑
m,n∈Z+

(αm,n − βm,n)xm,n,
∑

k,l∈Z+

(αk,l − βk,l)xk,l

)
H

=

∥∥∥∥∥ ∑
m,n∈Z+

αm,nxm,n −
∑

m,n∈Z+

βm,nxm,n

∥∥∥∥∥
2

H

.

Thus, the definition of V is correct. The operator V maps the set of all polynomials P 2
0,µ

in L2
µ on L. By continuity we extend V to an isometric transformation from the closure

of polynomials P 2
µ = P 2

0,µ onto H.

Set H0 := L2
µ 	 P 2

µ . Introduce the following operator:

(19) U := V ⊕ EH0 ,

which maps isometrically L2
µ onto H̃ := H ⊕H0. Set

(20) Ã := UAµU
−1, B̃ := UBµU

−1.

Notice that

Ãxm,n = UAµU
−1xm,n = UAµx

m
1 x

n
2 = Uxm+1

1 xn2 = xm+1,n,

B̃xm,n = UBµU
−1xm,n = UBµx

m
1 x

n
2 = Uxm1 x

n+1
2 = xm,n+1.

Therefore Ã ⊇ A and B̃ ⊇ B. Let

(21) Ã =

∫
R
x1dẼ(x1), B̃ =

∫
[−R,R]

x2dF̃ (x2),

where Ẽ and F̃ are the spectral measures of Ã and B̃, respectively.
By the induction argument we get

xm,n = Amx0,n, m, n ∈ Z+,

and
x0,n = Bnx0,0, n ∈ Z+.

Therefore we obtain

(22) xm,n = AmBnx0,0, m, n ∈ Z+.

We may write

xm,n =

∫
R
xm1 dẼ(x1)

∫
[−R,R]

xn2dF̃ (x2)x0,0 =

∫
Π

xm1 x
n
2d(Ẽ × F̃ )(x1, x2)x0,0,

where (Ẽ × F̃ ) is the product measure of Ẽ and F̃ . Then

(23) sm,n = (xm,n, x0,0)H =

∫
Π

xm1 x
n
2d((Ẽ × F̃ )x0,0, x0,0)H , m, n ∈ Z+.

Thus, the measure µ̃ := ((Ẽ × F̃ )x0,0, x0,0)H̃ is a solution of the moment problem.
Let Ix1 ⊂ R, Ix2 ⊆ [−R,R] be arbitrary intervals. Observe that

P H̃H Ẽ(Ix1
)F̃ (Ix2

)P H̃H = P H̃H Ẽ(Ix1
)P H̃H F̃ (Ix2

)P H̃H = E(Ix1
)F (Ix2

);

P H̃H Ẽ(Ix1
)F̃ (Ix2

)P H̃H = P H̃H F̃ (Ix2
)Ẽ(Ix1

)P H̃H = P H̃H F̃ (Ix2
)P H̃H Ẽ(Ix1

)P H̃H

= F (Ix2)E(Ix1),

and therefore

(24) E(Ix1)F (Ix2) = F (Ix2)E(Ix1),
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where E is the corresponding spectral function of A and F is the spectral function of B.
Then

µ̃(Ix1 × Ix2) = ((Ẽ × F̃ )(Ix1 × Ix2)x0,0, x0,0)H̃

= (Ẽ(Ix1
)F̃ (Ix2

)x0,0, x0,0)H̃ = (P H̃H F̃ (Ix2
)Ẽ(Ix1

)x0,0, x0,0)H̃

= (P H̃H F̃ (Ix2
)P H̃H Ẽ(Ix1

)x0,0, x0,0)H̃ = (F (Ix2
)E(Ix1

)x0,0, x0,0)H

= (E(Ix1)F (Ix2)x0,0, x0,0)H ,

where E is the corresponding spectral function of A and F is the spectral function of B.
Thus, the measure µ̃ admits the representation (13) since the Lebesgue continuation is
unique.

Let us show that µ̃ = µ. Consider the following transformation:

(25) S : (x1, x2) ∈ Π 7→
(

Arg
x1 − i
x1 + i

, x2

)
∈ Π0,

where Π0 = [−π, π) × [−R,R] and Arg eiy = y ∈ [−π, π). By virtue of V we define the
following measures:

(26) µ0(V G) := µ(G), µ̃0(V G) := µ̃(G), G ∈ B(Π).

It is not hard to see that µ0 and µ̃0 are non-negative measures on B(Π0). Then

(27)

∫
Π

(
x1 − i
x1 + i

)m
xn2dµ =

∫
Π0

eimψxn2dµ0,

(28)

∫
Π

(
x1 − i
x1 + i

)m
xn2dµ̃ =

∫
Π0

eimψxn2dµ̃0, m ∈ Z, n ∈ Z+;

and

(29)

∫
Π

(
x1 − i
x1 + i

)m
xn2dµ̃ =

∫
Π

(
x1 − i
x1 + i

)m
xn2d((Ẽ × F̃ )x0,0, x0,0)H̃

=

(∫
Π

(
x1 − i
x1 + i

)m
xn2d(Ẽ × F̃ )x0,0, x0,0

)
H̃

=

(∫
R

(
x1 − i
x1 + i

)m
dẼ

∫
[−R,R]

xn2dF̃x0,0, x0,0

)
H̃

=
((

(Ã− iEH̃)(Ã+ iEH̃)−1
)m

B̃nx0,0, x0,0

)
H̃

=
(
U−1

(
(Ã− iEH̃)(Ã+ iEH̃)−1

)m
B̃nU1, U1

)
µ

=
((

(Aµ − iEL2
µ
)(Aµ + iEL2

µ
)−1
)m

Bnµ1, 1
)
µ

=

∫
Π

(
x1 − i
x1 + i

)m
xn2dµ, m ∈ Z, n ∈ Z+.

By virtue of relations (27), (28) and (29) we get

(30)

∫
Π0

eimψxn2dµ0 =

∫
Π0

eimψxn2dµ̃0, m ∈ Z, n ∈ Z+.

By the Weierstrass theorem we can approximate any continuous function by exponentials
and therefore

(31)

∫
Π0

f(ψ)xn2dµ0 =

∫
Π0

f(ψ)xn2dµ̃0, n ∈ Z+,

for arbitrary continuous functions on Π0. In particular, we have

(32)

∫
Π0

xm1 x
n
2dµ0 =

∫
Π0

xm1 x
n
2dµ̃0, n,m ∈ Z+.
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However, the two-dimensional Hausdorff moment problem is determinate ([1]) and there-
fore we get µ0 = µ̃0 and µ = µ̃. Thus, we have proved that an arbitrary solution µ of
the moment problem (1) can be represented in the form (13).

Let us check the second assertion of the Theorem. Let an arbitrary spectral measure
E of A which commutes with the spectral measure F of B be given. By relation (13)
we define a non-negative Borel measure µ on Π. Let us show that the measure µ is a
solution of the moment problem (1).

Let Â be a self-adjoint extension of the operator A in a Hilbert space Ĥ ⊇ H, such
that

E = P ĤH Ê,

where Ê is the spectral measure of Â. By (22) we get

(33)

xm,n = AmBnx0,0 = ÂmBnx0,0 = P ĤH Â
mBnx0,0

= P ĤH lim
a→+∞

∫
[−a,a)

xm1 dÊ(x1)Bnx0,0 = lim
a→+∞

P ĤH

∫
[−a,a)

xm1 dÊ(x1)Bnx0,0

= lim
a→+∞

∫
[−a,a)

xm1 dE(x1)Bnx0,0,

m, n ∈ Z+,

where the integrals are understood as strong limits of the Stieltjes operator sums. Let a
be a positive integer. We choose arbitrary points

−a = x1,0 < x1,1 < · · · < x1,N = a,

(34) max
1≤i≤N

|x1,i − x1,i−1| =: d, N ∈ N;

−R = x2,0 < x2,1 < · · · < x2,M = R,

(35) max
1≤j≤M

|x2,j − x2,j−1| =: r, M ∈ N.

Set I2,j = [x2,j−1, x2,j), if 1 ≤ j < M , and I2,M = [x2,M−1, x2,M ]. Then

Ca :=

∫
[−a,a)

xm1 dE

∫
[−R,R]

xn2dF = lim
d→0

N∑
i=1

xm1,i−1E([x1,i−1, x1,i)) lim
r→0

M∑
j=1

xn2,j−1F (I2,j),

where the integral sums converge in the strong operator topology. Then

Ca = lim
d→0

lim
r→0

N∑
i=1

xm1,i−1E([x1,i−1, x1,i))

M∑
j=1

xn2,j−1F (I2,j)

= lim
d→0

lim
r→0

N∑
i=1

M∑
j=1

xm1,i−1x
n
2,j−1E([x1,i−1, x1,i))F (I2,j),

where the limits are understood in the strong operator topology. Then

(Cax0,0, x0,0)H =

(
lim
d→0

lim
r→0

N∑
i=1

M∑
j=1

xm1,i−1x
n
2,j−1E([x1,i−1, x1,i))F (I2,j)x0,0, x0,0

)
H

= lim
d→0

lim
r→0

N∑
i=1

M∑
j=1

xm1,i−1x
n
2,j−1 (E([x1,i−1, x1,i))F (I2,j)x0,0, x0,0)H

= lim
d→0

lim
r→0

N∑
i=1

M∑
j=1

xm1,i−1x
n
2,j−1 ((E× F )([x1,i−1, x1,i)× I2,j)x0,0, x0,0)H

= lim
d→0

lim
r→0

N∑
i=1

M∑
j=1

xm1,i−1x
n
2,j−1 (µ([x1,i−1, x1,i)× I2,j)x0,0, x0,0)H .
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Therefore

(Cax0,0, x0,0)H = lim
d→0

lim
r→0

∫
[−a,a)×[−R,R]

fd,r(x1, x2) dµ,

where fd,r is equal to xm1,i−1x
n
2,j−1 on the rectangular [x1,i−1, x1,i) × I2,j , 1 ≤ i ≤ N ,

1 ≤ j ≤M .
If r → 0, then the function fd,r(x1, x2) converges pointwise to a function fd(x1, x2)

which is equal to xm1,i−1x
n
2 on the rectangular [x1,i−1, x1,i)× [−R,R], 1 ≤ i ≤ N . More-

over, the function fd,r(x1, x2) is uniformly bounded. By the Lebesgue theorem we obtain

(Cax0,0, x0,0)H = lim
d→0

∫
[−a,a)×[−R,R]

fd(x1, x2) dµ.

If d → 0, then the function fd converges pointwise to a function xm1 x
n
2 . Since |fd| ≤

amRn, by the Lebesgue theorem we get

(36) (Cax0,0, x0,0)H =

∫
[−a,a)×[−R,R]

xm1 x
n
2dµ.

By virtue of relations (33) and (36) we get

(37)

sm,n = (xm,n, x0,0)H = lim
a→+∞

(Cax0,0, x0,0)H

= lim
a→+∞

∫
[−a,a)×[−R,R]

xm1 x
n
2dµ =

∫
Π

xm1 x
n
2dµ.

Thus, the measure µ is a solution of the moment problem (1).
Let us prove the last assertion of the Theorem. Suppose to the contrary that two

different spectral measures E1 and E1 of A commute with the spectral measure F of B
and produce by relation (13) the same solution µ of the moment problem. Choose an
arbitrary z ∈ C\R. In what follows a will be a positive integer. Let us check that

(38)

∫
Π

xm1
x1 − z

xn2dµ =

∫
Π

xm1
x1 − z

xn2d((Ek × F )(δ)x0,0, x0,0)H

= lim
a→+∞

Da(k), k = 1, 2,

where

Da = Da(k) :=

∫
[−a,a)×[−R,R]

xm1
x1 − z

xn2d((Ek × F )(δ)x0,0, x0,0)H , k = 1, 2.

In fact, set
Πa = [−a, a)× [−R,R], a ∈ N,

D1 = Π1, Da = Πa\Πa−1, a = 2, 3, . . .

Notice that the sets Da are pairwise disjoint and

Πa =

a⋃
j=1

Da, Π =

∞⋃
j=1

Da.

By the known property of the Lebesgue integral ([36, Theorem 3, p. 298]) we may write∫
Π

xm1
x1 − z

xn2d((Ek × F )(δ)x0,0, x0,0)H =

∞∑
j=1

∫
Dj

xm1
x1 − z

xn2d((Ek × F )(δ)x0,0, x0,0)H

= lim
a→∞

a∑
j=1

∫
Dj

xm1
x1 − z

xn2d((Ek × F )(δ)x0,0, x0,0)H = lim
a→∞

Da(k), k = 1, 2.

Consider arbitrary partitions of the type (34), (35). Then

Da = lim
d→0

lim
r→0

∫
[−a,a)×[−R,R]

gz;d,r(x, ϕ)d((Ek × F )(δ)x0,0, x0,0)H .
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Here the function gz;d,r(x1, x2) is equal to
xm1,i−1

x1,i−1−zx
n
2,j−1 on the rectangular

[xi−1, xi)× I2,j−1, 1 ≤ i ≤ N , 1 ≤ j ≤M . Then

Da = lim
d→0

lim
r→0

N∑
i=1

M∑
j=1

xm1,i−1

x1,i−1 − z
xn2,j−1 (Ek([x1,i−1, x1,i))F (I2,j)x0,0, x0,0)H

= lim
d→0

lim
r→0

(
N∑
i=1

xm1,i−1

x1,i−1 − z
Ek([xi−1, xi))

M∑
j=1

xn2,jF (I2,j)x0,0, x0,0

)
H

=

(∫
[−a,a)

xm1
x1 − z

dEk

∫
[−R,R]

xn2dFx0,0, x0,0

)
H

.

Let n = n1 + n2, n1, n2 ∈ Z+. Then we may write

Da =

(
Bn1

∫
[−a,a)

xm1
x1 − z

dEkB
n2x0,0, x0,0

)
H

=

(∫
[−a,a)

xm1
x1 − z

dEkx0,n2 , x0,n1

)
H

.

By substitution of the last expression for Da into relation (38) we get

(39)

∫
Π

xm1
x1 − z

xn2dµ = lim
a→+∞

Da = lim
a→+∞

(∫
[−a,a)

xm1
x1 − z

dÊkx0,n2 , x0,n1

)
Ĥk

=

(∫
R

xm1
x1 − z

dÊkx0,n2
, x0,n1

)
Ĥk

=
(
Âm2

k Rz(Âk)Âm1

k x0,n2
, x0,n1

)
Ĥk

=
(
Rz(Âk)xm1,n2

, xm2,n1

)
H
,

where m1,m2 ∈ Z+ : m1 +m2 = m, and Âk is a self-adjoint extension of A in a Hilbert

space Ĥk ⊇ H such that its spectral measure Êk generates Ek: Ek = P ĤkH Êk; k = 1, 2.
Relation (39) shows that the generalized resolvents corresponding to Ek, k = 1, 2,

coincide. This means that the spectral measures E1 and E2 coincide. We obtained a
contradiction. This completes the proof. �

Definition 2.1. A solution µ of the moment problem (1) is said to be canonical if it is
generated by relation (13) where E is an orthogonal spectral measure of A which com-
mutes with the spectral measure of B. Orthogonal spectral measures are those measures
which are the spectral measures of self-adjoint extensions of A inside H.

Let the moment problem (1) be given and conditions (2), (3) hold. Let us describe
canonical solutions of the two-dimensional moment problem in a strip. Let µ be an
arbitrary canonical solution and E be the corresponding orthogonal spectral measure of

A. Let Ã be the self-adjoint operator in H which corresponds to E. Consider the Cayley

transformation of Ã

(40) UÃ = (Ã+ iEH)(Ã− iEH)−1 ⊇ VA,

where VA := (A+ iEH)(A− iEH)−1.
Since E commutes with the spectral measure F of B, then UÃ commutes with B and

with UB . By the considerations in the proof of Theorem 2.1 in [28], the operator UÃ
have the following form:

(41) UÃ = VA ⊕ Ũ2,4,

where Ũ2,4 is an isometric operator which maps H2 onto H4, and commutes with UB . Let
the operator U2,4 be defined as in the proof of Theorem 2.1 in [28]. Then the following
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operator:

(42) U2 = U−1
2,4 Ũ2,4

is a unitary operator in H2 which commutes with UB;H2
.

Denote by S(UB ;H2) a set of all unitary operators in H2 which commute with UB;H2 .

Choose an arbitrary operator Û2 ∈ S(UB ;H2). Define Û2,4 by the following relation:

(43) Û2,4 = U2,4Û2.

Notice that Û2,4UBh = Û2,4UBh, h ∈ H2. Then we define a unitary operator U = VA ⊕
Û2,4 and its Cayley transformation Â which commute with the operator B. Repeating
arguments before (23) we get a canonical solution of the moment problem.

Thus, all canonical solutions of the Devinatz moment problem are generated by ope-

rators Û2 ∈ S(UB ;H2). Notice that different operators U ′, U ′′ ∈ S(UB ;H2) produce
different orthogonal spectral measures E′,E. By Theorem 2.1, these spectral measures
produce different solutions of the moment problem.

Recall some well-known definitions. A pair (Y,A), where Y is an arbitrary set and A
is a fixed σ-algebra of subsets of A is said to be a measurable space. A triple (Y,A, µ),
where (Y,A) is a measurable space and µ is a measure on A is said to be a space with a
measure.

Let (Y,A) be a measurable space, H be a Hilbert space and P = P(H) be a set of all
orthogonal projectors in H. A countably additive mapping E : A→ P, E(Y ) = EH, is
said to be a spectral measure in H. A set (Y,A, H,E) is said to be a space with a spectral
measure. By S(Y,E) one means a set of all E-measurable E-a.e. finite complex-valued
functions on Y .

Let (Y,A, µ) be a separable space with a σ-finite measure and to µ-everyone y ∈ Y it
corresponds a Hilbert space G(y). A function N(y) = dimG(y) is called the dimension
function. It is supposed to be µ-measurable. Let Ω be a set of vector-valued functions
g(y) with values in G(y) which are defined µ-everywhere and are measurable with respect
to some base of measurability. A set of (classes of equivalence) of such functions with
the finite norm

(44) ‖g‖2H =

∫
|g(y)|2G(y)dµ(y) <∞

form a Hilbert space H with the scalar product given by

(45) (g1, g2)H =

∫
(g1, g2)G(y)dµ(y).

The space H = Hµ,N =
∫
Y
⊕G(y)dµ(y) is said to be a direct integral of Hilbert spaces.

Consider the following operator:

(46) X(δ)g = χδg, g ∈ H, δ ∈ A,

where χδ is the characteristic function of the set δ. The projectors X(δ), δ ∈ A, define a
spectral measure in H.

Let t(y) be a measurable operator-valued function with values in B(G(y)) which is
µ-a.e. defined and µ− sup ‖t(y)‖G(y) <∞. The operator

(47) T : g(y) 7→ t(y)g(y),

is said to be decomposable. It is a bounded operator in H which commutes with X(δ),
∀δ ∈ A. Moreover, every bounded operator in H which commutes with X(δ), ∀δ ∈ A, is
decomposable. In the case t(y) = ϕ(y)EG(y), where ϕ ∈ S(Y, µ), we set T =: Qϕ. The
decomposable operator is unitary if and only if µ-a.e. the operator t(y) is unitary.

Return to the investigation of canonical solutions. Consider the spectral measure F2

of the operator UB;H2
in H2. There exists an element h ∈ H2 of the maximal type, i.e.
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the non-negative Borel measure

(48) µ(δ) := (F2(δ)h, h), δ ∈ B([−π, π)),

has the maximal type between all such measures (generated by other elements of H2).
This type is said to be the spectral type of the measure F2. Let N2 be the multiplicity
function of the measure F2. Then there exists a unitary transformation W of the space
H2 on H = Hµ,N2

such that

(49) WUB;H2W
−1 = Qeiy , WF2(δ)W−1 = X(δ).

Notice that Û2 ∈ S(UB ;H2) if and only if the operator

(50) V2 := WÛ2W
−1

is unitary and commutes with X(δ), ∀δ ∈ [−π, π). The latter is equivalent to the condi-
tion that V2 is decomposable and the values of the corresponding operator-valued function
t(y) are µ-a.e. unitary operators. A set of all decomposable operators in H such that the
values of the corresponding operator-valued function t(y) are µ-a.e. unitary operators
we denote by D(UB ;H2).

Theorem 2.2. Let the moment problem (1) be given. In the conditions of Theorem 2.1
all canonical solutions of the moment problem have the form (13) where the spectral
measures E of the operator A are constructed by operators from D(UB ;H2). Namely,

for an arbitrary V2 ∈ D(UB ;H2) we set Û2 = W−1V2W , Û2,4 = U2,4Û2, U = VA ⊕ Û2,4,

Â = i(U + EH)(U − EH)−1, and then E is the spectral measure of Â.
Moreover, the correspondence between D(UB ;H2) and a set of all canonical solutions of
the moment problem is bijective.

Proof. The proof follows from the previous considerations. �

3. An analytic description of all solutions of the two-dimensional
moment problem in a strip

Consider the moment problem (1) and suppose that conditions (2), (3) hold. Let us
turn to a parametrization of all solutions of the moment problem. We shall use Theo-
rem 2.1. Consider relation (13). The spectral measure E commutes with the operator
UB . Choose an arbitrary z ∈ C\R. By virtue of relation (12) we may write

(51)

(UBRz(A)x, y)H = (Rz(A)x, U∗By)H =

∫
R

1

t− z
d(E(t)x, U∗By)H

=

∫
R

1

t− z
d(UBE(t)x, y)H =

∫
R

1

t− z
d(E(t)UBx, y)H , x, y ∈ H;

(52) (Rz(A)UBx, y)H =

∫
R

1

t− z
d(E(t)UBx, y)H , x, y ∈ H,

where Rz(A) is the generalized resolvent which corresponds to E. Therefore we get

(53) Rz(A)UB = UBRz(A), z ∈ C\R.
On the other hand, if relation (53) holds, then

(54)

∫
R

1

t− z
d(EUBx, y)H =

∫
R

1

t− z
d(UBEx, y)H , x, y ∈ H, z ∈ C\R.

By the Stieltjes inversion formula [1], we obtain that E commutes with UB .
We denote by M(A,B) a set of all generalized resolvents Rz(A) of A which satisfy

relation (53).
Recall some known facts from [27] which we shall need here. Let K be a closed

symmetric operator in a Hilbert space H, with the domain D(K), D(K) = H. Set
Nλ = Nλ(K) = H	∆K(λ), λ ∈ C\R.
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Consider an arbitrary bounded linear operator C, which maps Ni into N−i. For

(55) g = f + Cψ − ψ, f ∈ D(K), ψ ∈ Ni,
we set

(56) KCg = Kf + iCψ + iψ.

The operator KC is said to be a quasiself-adjoint extension of the operator K, defined by
the operator K.

The following theorem can be found in [27, Theorem 7]:

Theorem 3.1. Let K be a closed symmetric operator in a Hilbert space H with the do-
main D(K), D(K) = H. All generalized resolvents of the operator K have the following
form:

(57) Rλ(K) =

{
(KF (λ) − λEH)−1, Imλ > 0
(KF∗(λ) − λEH)−1, Imλ < 0

,

where F (λ) is an analytic in C+ operator-valued function, which values are contractions
which map Ni(A) = H2 into N−i(A) = H4 (‖F (λ)‖ ≤ 1), and KF (λ) is the quasiself-
adjoint extension of K defined by F (λ).

On the other hand, for any operator function F (λ) having the above properties there
corresponds by relation (57) a generalized resolvent of K.

Observe that the correspondence between all generalized resolvents and functions F (λ)
in Theorem 3.1 is bijective [27].

Return to the study of the moment problem (1). Let us describe the set M(A,B).
Choose an arbitrary Rλ ∈M(A,B). By (57) we get

(58) Rλ = (AF (λ) − λEH)−1, Imλ > 0,

where F (λ) is an analytic in C+ operator-valued function, which values are contractions
which map H2 into H4, and AF (λ) is the quasiself-adjoint extension of A defined by F (λ).
Then

AF (λ) = R−1
λ + λEH , Imλ > 0.

By virtue of relation (53) we obtain

(59) UBAF (λ)h = AF (λ)UBh, h ∈ D(AF (λ)), λ ∈ C+.

Consider the following operators:

(60) Wλ := (AF (λ) + iEH)(AF (λ) − iEH)−1 = EH + 2i(AF (λ) − iEH)−1,

(61) VA = (A+ iEH)(A− iEH)−1 = EH + 2i(A− iEH)−1,

where λ ∈ C+. Notice that ([27])

(62) Wλ = VA ⊕ F (λ), λ ∈ C+.

The operator (AF (λ)− iEH)−1 is defined on the whole H, see [27, p. 79]. By relation (59)
we obtain

(63) UB(AF (λ) − iEH)−1h = (AF (λ) − iEH)−1UBh, h ∈ H, λ ∈ C+.

Then

(64) UBWλ = WλUB , λ ∈ C+.

Recall that the operator UB reduces the subspaces Hj , 1 ≤ j ≤ 4, and UBVA = VAUB
(see the proof of Theorem 2.1 in [28]). If we choose an arbitrary h ∈ H2 and apply
relations (64), (62), we get

(65) UBF (λ) = F (λ)UB , λ ∈ C+.

Denote by F(A,B) a set of all analytic in C+ operator-valued functions which values
are contractions which map H2 into H4 and which satisfy relation (65). Thus, for an
arbitrary Rλ ∈M(A,B) the corresponding function F (λ) belongs to F(A,B).
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On the other hand, choose an arbitrary F (λ) ∈ F(A,B). Then we derive (64) with
Wλ defined by (60). Then we get (63), (59) and therefore

(66) UBRλ = RλUB , λ ∈ C+.

Calculating the conjugate operators for the both sides of the last equality we conclude
that this relation holds for all λ ∈ C.

Consider the spectral measure F2 of the operator UB;H2 in H2. We shall use rela-
tion (49). Observe that F (λ) ∈ F(A,B) if and only if the operator-valued function

(67) G(λ) := WU−1
2,4F (λ)W−1, λ ∈ C+,

is analytic in C+ and has values which are contractions in H which commute with X(δ),
∀δ ∈ [−π, π).

This means that for an arbitrary λ ∈ C+ the operator G(λ) is decomposable and the
values of the corresponding operator-valued function t(y) are µ-a.e. contractions. A set
of all decomposable operators in H such that the values of the corresponding operator-
valued function t(y) are µ-a.e. contractions we denote by T(B;H2). A set of all analytic
in C+ operator-valued functions G(λ) with values in T(B;H2) we denote by G(A,B).

Theorem 3.2. Let the two-dimensional moment problem in a strip (1) be given. In the
conditions of Theorem 2.1 all solutions of the moment problem have the form (13) where
the spectral measures E of the operator A are defined by the corresponding generalized
resolvents Rλ which are constructed by the following relation:

(68) Rλ = (AF (λ) − λEH)−1, Imλ > 0,

where F (λ) = U2,4W
−1G(λ)W , G(λ) ∈ G(A,B).

Moreover, the correspondence between G(A,B) and a set of all solutions of the moment
problem is bijective.

Proof. The proof follows from the previous considerations. �
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