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AN OPERATOR APPROACH TO VLASOV SCALING

FOR SOME MODELS OF SPATIAL ECOLOGY

D. FINKELSHTEIN, YU. KONDRATIEV, AND O. KUTOVIY

Abstract. We consider Vlasov-type scaling for Markov evolution of birth-and-death
type in continuum, which is based on a proper scaling of corresponding Markov

generators and has an algorithmic realization in terms of related hierarchical chains
of correlation functions equations. The existence of rescaled and limiting evolutions
of correlation functions and convergence to the limiting evolution are shown. The

obtained results enable us to derive a non-linear Vlasov-type equation for the density
of the limiting system.

1. Introduction

The Vlasov equation is a famous example of a kinetic equation which describes the
dynamical behavior of a many-body system. In physics, it characterizes the Hamiltonian
motion of an infinite particle system influenced by weak long-range forces in the mean
field scaling limit. The detailed exposition of the Vlasov scaling for the Hamiltonian
dynamics was given by W. Braun and K. Hepp [3] and later by R. L. Dobrushin [5] for
more general deterministic dynamical systems. The limiting Vlasov-type equations for
particle densities in both papers are considered in classes of integrable functions (or finite
measures in the weak form). This actually corresponds to the situation of finite volume
systems or systems with zero mean density in an infinite volume. The Vlasov equation
for the integrable functions was investigated in details by V. V. Kozlov [17]. An excellent
review about kinetic equations which describe dynamical multi-body systems was given
by H. Spohn [25], [26]. Note that in the framework of interacting diffusions a similar
problem is known as the McKean–Vlasov limit.

Motivated by the study of Vlasov scaling for some classes of stochastic evolutions in
continuum for which the use of the mentioned above approaches breaks down (even in the
finite volumes), we developed the general approach to study the Vlasov-type dynamics
(see [9]). It is based on a proper scaling of the hierarchical equations for the evolution of
correlation functions and can be interpreted in terms of the rescaled Markov generators.
To the best of our knowledge presently it is only this technique that may give a possibility
to control the convergence in the Vlasov limit in the case of non-integrable densities which
is generic for infinite volume infinite particle systems. Speaking about the evolutions
whose kinetic equations can not be studied by the classical techniques described in [3]
and [5], we have in mind, first of all, spatial birth-and-death Markov processes (e.g.,
continuous Glauber dynamics, spatial ecological models) and hopping particles Markov
evolutions (e.g., Kawasaki dynamics in continuum). The main difficulty to carry out
the approach proposed by W. Braun, K. Hepp [3] and R. L. Dobrushin [5] for such
models is the absence of a proper description in terms of stochastic evolution equations.
Another problem concerns the possible variation of particles number in the evolution.
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The important point to note also is that an application of the technique proposed in [9]
leads to a limiting hierarchy which posses a chaos preservation property.

The aim of this paper is to study the Vlasov scaling for the individual based model
(IBM) in spatial ecology introduced by B. Bolker and S. Pacala [1, 2], U. Dieckmann and
R. Law [4] (BDLP model) using the scheme developed in [9]. A population in this model
is represented by a configuration of motionless organisms (plants) located in an infinite
habitat (a Euclidean space in our considerations). The unbounded habitat is taken to
avoid boundary effects in the population evolution.

The evolution equation for the correlation functions of the BDLP model was studied
in details in [8]. In [1, 2, 4] this system was called the system of spatial moment equations
for plant competition and, actually, this system itself was taken as a definition of the
dynamics in the BDLP model. The mathematical structure of the correlation functions
evolution equation is close to other well-known hierarchical systems in mathematical
physics, e.g., BBGKY hierarchy for the Hamiltonian dynamics (see, e.g. [6]). As in all
hierarchical chains of equations, we can not expect an explicit form of the solution, and
furthermore, the existence problem for these equations is a highly delicate question.

According to the general scheme (see [9]), we state conditions on structural coefficients
of the BDLP Markov generator, which give a weak convergence of the rescaled generator
to the limiting generator of the related Vlasov hierarchy. Next, we may compute li-
miting Vlasov type equation for the BDLP model leaving the question about the strong
convergence of the hierarchy solutions for a separate analysis. A control of the strong
convergence of the rescaled hierarchy is, in general, a difficult technical problem. In
particular, this problem remains open for BBGKY hierarchy for the case of Hamiltonian
dynamics as well as for Bogoliubov–Streltsova hierarchy corresponding to the gradient
diffusion model. In the present paper we show the existence of the rescaled and limiting
evolutions of correlation functions related to the Vlasov scaling of the BDLP model and
the convergence to the limiting evolution. With this evolution for a special class of initial
conditions is related a non-linear equation for the density, which is called Vlasov equation
for the considered stochastic dynamics.

Let us mention that a version of the BDLP model for the case of finite populations
was studied in the paper [12]. In this work the authors developed a probabilistic repre-
sentation for the finite BDLP process and applied this technique to analyze a mean-field
limit in the spirit of classical Dobrushin or McKean–Vlasov schemes. They obtained an
integro-differential equation for the limiting deterministic process corresponding to an
integrable initial condition. The latter equation coincides with the Vlasov equation for
the BDLP model derived below in our approach.

The present paper is organized in the following way. Section 2 is devoted to the general
settings required for the description of the model which we study. In Subsection 3.1 we
discuss the general Vlasov scaling approach for spatial continuous models. Subsection
3.2 is devoted to the abstract convergence result for semigroups in Banach spaces which
will be crucial to prove the main statements of the paper presented in Subsection 3.3.
The corresponding proofs are given in Subsection 3.4.

We would like to note also about our recent paper [10]. In that paper we realized some
parts of scheme mentioned above for general birth-and-death operators in continuum.
In principle, the convergence result for the rescaled hierarchy in the present paper may
be obtained after proper computations from the general scheme. We include this result in
the present paper by the several reasons. First of all, the rescaled generator for the BDLP
model has very specific structure (see Proposition 3.2). This form is quite typical for
spatial ecological models and it is very important for modeling and computer simulations
in applications to ecological models (see, e.g., [20] and references therein). On the other
hand, the use of this structure allows us to make the proof of convergence more clear
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and natural. Moreover, it yields explicit expressions for resolvents of generators (see
Remark 3.18) as well as estimates for these resolvents (see Subsection 3.4). It is clear
now that the technique considered in the present paper might be easily applied for many
other cases of stochastic dynamics of spatial ecology, in particular, for various multi-
types dynamics. It is worth noting also that the nonlinear Vlasov (a.k.a. mesoscopic)
equation for BDLP model which we derive in Theorem 3.11 is the generalization of the
equation considered in [21]. In this theorem we prove the existence and uniqueness of
a nonnegative bounded solution to this equation from the class of integrable densities,
which is very important for real-life applications.

2. Basic facts and description of model

2.1. General facts and notations. Let B(Rd) be the family of all Borel sets in Rd and
let Bb(R

d) denote the system of all bounded sets in B(Rd).
The space of n-point configuration is

Γ
(n)
0 = Γ

(n)

0,Rd :=
{

η ⊂ Rd
∣

∣ |η| = n
}

, n ∈ N0 := N ∪ {0},

where |A| denotes the cardinality of the set A. The space Γ
(n)
Λ := Γ

(n)
0,Λ for Λ ∈ Bb(R

d) is

defined analogously to the space Γ
(n)
0 . As a set, Γ

(n)
0 is equivalent to the symmetrization

of

(̃Rd)n =
{

(x1, . . . , xn) ∈ (Rd)n
∣

∣ xk 6= xl if k 6= l
}

,

i.e. (̃Rd)n/Sn, where Sn is the permutation group over {1, . . . , n} acting naturally on

(̃Rd)n. Hence one can introduce the corresponding topology and Borel σ-algebra, which

we denote by O(Γ
(n)
0 ) and B(Γ

(n)
0 ), respectively. Also one can define a measure m(n) as

the image of the product of Lebesgue measures dm(x) = dx on
(

Rd,B(Rd)
)

.
The space of finite configurations

Γ0 :=
⊔

n∈N0

Γ
(n)
0

is equipped with the topology which has the structure of disjoint union. Therefore, one
can define the corresponding Borel σ-algebra B(Γ0).

A set B ∈ B(Γ0) is called bounded if there exists Λ ∈ Bb(R
d) and N ∈ N such that

B ⊂
⊔N

n=0 Γ
(n)
Λ . The Lebesgue–Poisson measure λz on Γ0 is defined as

λz :=

∞
∑

n=0

zn

n!
m(n).

Here z > 0 is the so called activity parameter. The restriction of λz to ΓΛ will be also
denoted by λz.

The configuration space

Γ :=
{

γ ⊂ Rd
∣

∣ |γ ∩ Λ| < ∞ for all Λ ∈ Bb(R
d)
}

is equipped with the vague topology. It is a Polish space (see e.g. [15]). The corres-
ponding Borel σ-algebra B(Γ) is defined as the smallest σ-algebra for which all mappings
NΛ : Γ → N0, NΛ(γ) := |γ ∩ Λ| are measurable, i.e.,

B(Γ) = σ
(

NΛ

∣

∣Λ ∈ Bb(R
d)
)

.

One can also show that Γ is the projective limit of the spaces {ΓΛ}Λ∈Bb(Rd) w.r.t. the

projections pΛ : Γ → ΓΛ, pΛ(γ) := γΛ, Λ ∈ Bb(R
d).

The Poisson measure πz on (Γ,B(Γ)) is given as the projective limit of the family of
measures {πΛ

z }Λ∈Bb(Rd), where πΛ
z is the measure on ΓΛ defined by πΛ

z := e−zm(Λ)λz.
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We will use the following classes of functions: L0
ls(Γ0) is the set of all measurable

functions on Γ0 which have a local support, i.e. G ∈ L0
ls(Γ0) if there exists Λ ∈ Bb(R

d)
such that G ↾Γ0\ΓΛ

= 0; Bbs(Γ0) is the set of bounded measurable functions with bounded
support, i.e. G ↾Γ0\B= 0 for some bounded B ∈ B(Γ0).

On Γ we consider the set of cylinder functions Fcyl(Γ), i.e. the set of all measurable
functions G on

(

Γ,B(Γ))
)

which are measurable w.r.t. BΛ(Γ) for some Λ ∈ Bb(R
d).

These functions are characterized by the following relation: F (γ) = F ↾ΓΛ
(γΛ).

The following mapping between measurable functions on Γ0, e.g. L0
ls(Γ0), and mea-

surable functions on Γ, e.g. Fcyl(Γ), plays the key role in our further considerations

(2.1) KG(γ) :=
∑

η⋐γ

G(η), γ ∈ Γ,

where G ∈ L0
ls(Γ0), see e.g. [14, 18, 19]. The summation in the latter expression is

taken over all finite subconfigurations of γ, which is denoted by the symbol η ⋐ γ. The
mapping K is linear, positivity preserving, and invertible, with

(2.2) K−1F (η) :=
∑

ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0.

Let M1
fm(Γ) be the set of all probability measures µ on

(

Γ,B(Γ)
)

which have finite

local moments of all orders, i.e.
∫

Γ
|γΛ|

nµ(dγ) < +∞ for all Λ ∈ Bb(R
d) and n ∈ N0. A

measure ρ on
(

Γ0,B(Γ0)
)

is called locally finite iff ρ(A) < ∞ for all bounded sets A from
B(Γ0). The set of such measures is denoted by Mlf(Γ0).

One can define a transform K∗ : M1
fm(Γ) → Mlf(Γ0), which is dual to the

K-transform, i.e., for every µ ∈ M1
fm(Γ), G ∈ Bbs(Γ0) we have

∫

Γ

KG(γ)µ(dγ) =

∫

Γ0

G(η) (K∗µ)(dη).

The measure ρµ := K∗µ is called the correlation measure of µ.
As shown in [14] for µ ∈ M1

fm(Γ) and any G ∈ L1(Γ0, ρµ) the series (2.1) is µ-a.s.
absolutely convergent. Furthermore, KG ∈ L1(Γ, µ) and

(2.3)

∫

Γ0

G(η) ρµ(dη) =

∫

Γ

(KG)(γ)µ(dγ).

Ameasure µ ∈ M1
fm(Γ) is called locally absolutely continuous w.r.t. πz iff µΛ := µ◦p−1

Λ

is absolutely continuous with respect to πΛ
z for all Λ ∈ BΛ(R

d). In this case ρµ := K∗µ
is absolutely continuous w.r.t λz. We denote

kµ(η) :=
dρµ
dλz

(η), η ∈ Γ0.

The functions

(2.4) k(n)µ : (Rd)n −→ R+

k(n)µ (x1, . . . , xn) :=

{

kµ({x1, . . . , xn}), if (x1, . . . , xn) ∈ (̃Rd)n

0, otherwise

are the correlation functions well known in statistical physics, see e.g. [23], [24].

2.2. Description of model. We consider a system of interacting individuals (particles)
in the space Rd which evolves in time. The state of the system at a fixed moment of time
t > 0 is described by a random configuration γt from Γ. Heuristically, the mechanism of
the evolution is given by a Markov generator which has the following form

L := L− + L+,
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where

(L−F )(γ) := (L−(m,κ−, a−)F )(γ) :=
∑

x∈γ

[

m+ κ−
∑

y∈γ\x

a−(x− y)

]

D−
x F (γ),

(L+F )(γ) := (L+(κ+, a−)F )(γ) := κ+

∫

Rd

∑

y∈γ

a+(x− y)D+
x F (γ) dx.

(2.5)

Here 0 ≤ a−, a+ ∈ L1(Rd) are arbitrary, even functions such that
∫

Rd

a−(x) dx =

∫

Rd

a+(x) dx = 1

(in other words, a−, a+ are probability densities) and m, κ−, κ+ > 0 are some positive
constants.

The pre-generator L describes the Bolker–Dieckmann–Law–Pacala BDLP model,
which was introduced in [1, 2, 4]. During the corresponding stochastic evolution, the
birth of individuals occurs independently and the death is ruled not only by the global
regulation (mortality m) but also by the local regulation with the kernel κ−a−. This
regulation may be described as a competition (e.g., for resources) between individuals in
the population.

The evolution of the one-dimensional distribution for such systems can be expressed
in terms of their characteristics, e.g. the correlation functions (see (2.4)). The dynamics
of correlation functions for the BDLP model was studied in [8]. The main result of this
paper informally says the following:

If the mortality m and the competition kernel κ−a− are large enough, then the dyna-
mics of correlation functions associated with the pre-generator (2.5) exists and preserves
(sub-)Poissonian bound.

For the reader’s convenience we repeat below the relevant material from [8] without
proofs.

Let L̂± := K−1L±K be the K-image of L±, which can be initially defined on functions
from Bbs(Γ0). For arbitrary and fixed C > 0 we consider the operator L̂ := L̂+ + L̂− in
the functional space

LC = L1
(

Γ0, C
|η|dλ (η)

)

.

Below, symbol ‖·‖C stands for the norm of this space.
For any ω > 0 we define H(ω) to be the set of all densely defined closed operators T

on LC , the resolvent set ρ(T ) of which contains the sector

Sect
(π

2
+ ω

)

:=
{

ζ ∈ C

∣

∣

∣
|arg ζ| <

π

2
+ ω

}

,

and for any ε > 0

||(T − ζ11)−1|| ≤
Mε

|ζ|
, | arg ζ| ≤

π

2
+ ω − ε,

where Mε does not depend on ζ.
The first non-trivial result, which is based on the perturbation theory, says that the

operator L̂ with the domain

D(L̂) :=
{

G ∈ LC

∣

∣

∣
|·|G(·) ∈ LC , E

a−

(·)G(·) ∈ LC

}

is a generator of a holomorphic C0-semigroup Ût on LC .
To construct the corresponding evolution of correlation functions we note that the

dual space (LC)
′ =

(

L1(Γ0, dλC)
)′

= L∞(Γ0, dλC), where dλC := C |·|dλ. The space
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(LC)
′ is isometrically isomorphic to the Banach space

KC :=
{

k : Γ0 → R

∣

∣

∣
k(·)C−|·| ∈ L∞(Γ0, λ)

}

with the norm

‖k‖KC
:= ‖C−|·|k(·)‖L∞(Γ0,λ),

where the isomorphism is provided by the isometry RC

(2.6) (LC)
′ ∋ k 7−→ RCk := k(·)C |·| ∈ KC .

In fact, we have duality between Banach spaces LC and KC given by the following
expression:

(2.7) 〈〈G, k〉〉 :=

∫

Γ0

G · k dλ, G ∈ LC , k ∈ KC

with

(2.8) |〈〈G, k〉〉| ≤ ‖G‖C · ‖k‖KC
.

It is clear that for any k ∈ KC

(2.9) |k(η)| ≤ ‖k‖KC
C |η| for λ-a.a. η ∈ Γ0.

Let L̂′ be the adjoint operator to L̂ in (LC)
′ with domain D(L̂′). Its image in KC

under the isometry RC we denote by L̂∗ = RCL̂
′RC−1 . It is evident that the domain of

L̂∗ will be D(L̂∗) = RCD(L̂′), correspondingly. Then, for any G ∈ LC , k ∈ D(L̂∗)

∫

Γ0

G · L̂∗k dλ =

∫

Γ0

G ·RCL̂
′RC−1k dλ =

∫

Γ0

G · L̂′RC−1k dλC

=

∫

Γ0

L̂G ·RC−1k dλC =

∫

Γ0

L̂G · k dλ,

therefore, L̂∗ is the dual operator to L̂ w.r.t. the duality (2.7). By [11], we have the

precise form of L̂∗

(2.10)

(L̂∗k)(η) =−
(

m|η|+ κ−Ea−

(η)
)

k(η)

+ κ+
∑

x∈η

∑

y∈η\x

a+(x− y)k(η \ x)

+ κ+

∫

Rd

∑

y∈η

a+(x− y)k((η \ y) ∪ x) dx

+ κ−

∫

Rd

∑

y∈η

a−(x− y)k(η ∪ x) dx.

Now we consider the adjoint semigroup T̂ ′(t) on (LC)
′ and its image T̂ ∗(t) in KC .

The latter one describes the evolution of correlation functions. Transferring the general
results about adjoint semigroups (see, e.g., [7]) onto semigroup T̂ ∗(t) we deduce that

it will be weak*-continuous and weak*-differentiable at 0. Moreover, L̂∗ will be the
weak*-generator of T̂ ∗(t). Here and subsequently we mean “weak*-properties” w.r.t. the
duality (2.7).
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3. Vlasov scaling

3.1. Description of Vlasov scaling. We begin with a general idea of the Vlasov-type
scaling. It is of interest to construct some scaling Lε, ε > 0 of the generator L such that
the following scheme is realized.

Suppose that we know a proper scaling of L and we are able to prove the existence of
the semigroup T̂ε(t) with the generator L̂ε := K−1LεK in the space LC for some C > 0.

Let us consider the Cauchy problem corresponding to the adjoint operator L̂∗ and take
an initial function with a strong singularity in ε. Namely,

k
(ε)
0 (η) ∼ ε−|η|r0(η), ε → 0, η ∈ Γ0,

where the function r0 is independent of ε. The solution to this problem is described by
the dual semigroup T̂ ∗

ε (t). The scaling L 7→ Lε has to be chosen in such a way that T̂ ∗
ε (t)

preserves the order of the singularity:

(T̂ ∗
ε (t)k

(ε)
0 )(η) ∼ ε−|η|rt(η), ε → 0, η ∈ Γ0.

Another important requirement on a proper scaling concerns the dynamics r0 7→ rt. It
should preserve the so-called Lebesgue–Poisson exponents: if

r0(η) = eλ(ρ0, η) :=
∏

x∈η

ρ0(x)

then
rt(η) = eλ(ρt, η) :=

∏

x∈η

ρt(x)

and there exists an explicit (nonlinear, in general) differential equation for ρt

(3.1)
∂

∂t
ρt(x) = υ(ρt(x)),

which will be called a Vlasov-type equation.
Now let us explain the main technical steps to realize a Vlasov-type scaling. Let us

consider for any ε > 0 the following mapping (cf. (2.6)) on functions on Γ0

(3.2) (Rεr)(η) := ε|η|r(η).

This mapping is “self-dual” w.r.t. the duality (2.7), moreover, R−1
ε = Rε−1 . Then we

have k
(ε)
0 ∼ Rε−1r0, and we need rt ∼ RεT̂

∗
ε (t)k

(ε)
0 ∼ RεT̂

∗
ε (t)Rε−1r0. Therefore, we have

to show that for any t ≥ 0 the operator family RεT̂
∗
ε (t)Rε−1 , ε > 0 has limiting (in a

proper sense) operator U(t) and

(3.3) U(t)eλ(ρ0) = eλ(ρt).

But, informally, T̂ ∗
ε (t) = exp {tL̂∗

ε} and RεT̂
∗
ε (t)Rε−1 = exp {tRεL̂

∗
εRε−1}. Let us con-

sider the “renormalized” operator

(3.4) L̂∗
ε, ren := RεL̂

∗
εRε−1 .

In fact, we need that there exists an operator V̂ ∗ (called Vlasov operator) such that

exp {tRεL̂
∗
εRε−1} → exp {tV̂ ∗} =: U(t) for which (3.3) holds. Hence, heuristic way to

produce the scaling L 7→ Lε is to demand that

lim
ε→0

(

∂

∂t
eλ(ρt, η)− L̂∗

ε, reneλ(ρt, η)

)

= 0, η ∈ Γ0,

if ρt satisfies (3.1). The point-wise limit of L̂∗
ε, ren will be a natural candidate for V̂ ∗.

Having chosen a proper scaling we proceed to the following technical steps which give
a rigorous meaning to the idea introduced above. Note that definition (3.4) implies

L̂ε, ren = Rε−1L̂εRε. We prove that “renormalized” operator L̂ε, ren is the generator of
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a contraction semigroup T̂ε, ren(t) on LC . Next we show that this semigroup converges

strongly to some semigroup T̂V (t) with the generator V̂ . This limiting semigroup leads
us directly to the solution for the Vlasov-type equation. Below we show how to realize
this scheme in details.

3.2. Approximation in Banach space. In this subsection we study general question
about the strong convergence of semigroups in Banach spaces. The obtained results will
be crucial in the realization of the Vlasov-type scaling for the BDLP model.

Let {Uε
t , t ≥ 0} , ε ≥ 0 be a family of semigroups on a Banach space E. We set

(Lε, D(Lε)) to be the generator of {Uε
t , t ≥ 0} for each ε ≥ 0. Our purpose now is

to describe the strong convergence of semigroups {Uε
t , t ≥ 0} , ε ≥ 0 in terms of the

corresponding generators as ε tends to 0. According to the classical result (see e.g. [13]),
it is enough to show that there exists β > 0 and λ : Reλ > β such that

(3.5) (Lε − λ11)
−1 s

−→ (L0 − λ11)
−1

, ε → 0,

where 11 is the identical operator. In this subsection we show how to prove (3.5) under
the following assumptions on the family (Lε, D(Lε)), ε ≥ 0:

Assumptions (A):

(1) For any ε ≥ 0, the operator (Lε, D(Lε)) admits a representation

Lε = A1(ε) +A2(ε),

where A1(ε) is a closed operator and D(A1(ε)) = D(A2(ε)) := D(Lε).
(2) There exist β > 0 and λ, Reλ > β, such that

(a) λ belongs to the resolvent set of A1(ε) for any ε ≥ 0 and

(A1(ε)− λ11)
−1 s

−→ (A1(0)− λ11)
−1

, ε → 0,

(b) the family of resolvents (A1(ε)− λ11)
−1

, ε > 0, is uniformly bounded, more-
over,

sup
ε>0

∥

∥

∥
(A1(ε)− λ11)

−1
∥

∥

∥
≤

∥

∥

∥
(A1(0)− λ11)

−1
∥

∥

∥
,

(c) for any ε ≥ 0
∥

∥

∥
A2(ε) (A1(ε)− λ11)

−1
∥

∥

∥
< 1,

(d) the operator
(

A2(ε) (A1(ε)− λ11)
−1

+ 11
)−1

converges strongly to the ope-

rator
(

A2(0) (A1(0)− λ11)
−1

+ 11
)−1

as ε → 0.

The strong convergence result for the family {Uε
t , t ≥ 0} , ε ≥ 0 is established by our

next theorem.

Theorem 3.1. Let (Lε, D(Lε)), ε ≥ 0 be the family of generators corresponding to a
family of C0-semigroups {Uε

t , t ≥ 0} , ε ≥ 0. Then, Uε
t converges strongly to U0

t as ε → 0
uniformly on each finite interval of time, provided assumptions (A) are satisfied.

Proof. The proof is completed by showing (3.5). For any ε ≥ 0 and λ from the resolvent
set of A1(ε) we have

Ran
(

(A1(ε)− λ11)
−1

)

= D (A1(ε)) = D (A2(ε)) = D(Lε).

Hence,

(3.6)
Lε − λ11 = A1(ε) +A2(ε)− λ11

=
(

A2(ε) (A1(ε)− λ11)
−1

+ 11
)

(A1(ε)− λ11) .
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Combining (3.6) with the assumption 2(c) of (A) we get the following representations
for the resolvent:

(3.7)
(Lε − λ11)

−1
= (A1(ε) +A2(ε)− λ11)

−1

= (A1(ε)− λ11)
−1

(

A2(ε) (A1(ε)− λ11)
−1

+ 11
)−1

.

From this formula, triangle inequality and assumptions 2(a), 2(b) and 2(d) of (A) we
conclude the assertion of the theorem. �

3.3. Main results. We check at once that a proper scaling for the BDLP pre-generator
is the following one:

(3.8)

(LεF )(γ) :=
∑

x∈γ

[

m+ εκ−
∑

y∈γ\x

a−(x− y)

]

D−
x F (γ)

+κ+

∫

Rd

∑

y∈γ

a+(x− y)D+
x F (γ) dx, ε > 0.

Next we consider the formal K-image of Lε and the corresponding renormalized ope-
rator on Bbs(Γ0):

L̂εG := K−1LεKG; L̂ε, renG := Rε−1L̂εRεG.

In the proposition below we calculate the precise form of the operator L̂ε, ren for the
BDLP model.

Proposition 3.2. For any ε > 0 and any G ∈ Bbs (Γ0)

L̂ε,renG =A1G+A2G+ ε (B1G+B2G) ,

where

(A1G) (η) =−m |η|G (η) ,

(A2G) (η) =− κ−
∑

x∈η

∑

y∈η\x

a− (x− y)G (η \ x)

+ κ+
∑

y∈η

∫

Rd

a+ (x− y)G (η \ y ∪ x) dx,

(B1G) (η) =− κ−Ea−

(η)G (η) ,

(B2G) (η) =κ+
∑

y∈η

∫

Rd

a+ (x− y)G (η ∪ x) dx.

Proof. According to the definition, we have L̂ε,ren = Rε−1L̂εRε, where

L̂ε = L̂−
(

m, εκ−a−
)

+ ε−1L̂+
(

εκ+a+
)

.

As a result,

(L̂εG) (η) = (A1G) (η) + ε(B1G) (η) + (B2G) (η)

− εκ−
∑

x∈η

∑

y∈η\x

a− (x− y)G (η \ x)

+ κ+
∑

y∈η

∫

Rd

a+ (x− y)G (η \ y ∪ x) dx

and hence

(L̂ε,renG) (η) = (A1G) (η) + (A2G) (η) + ε((B1 +B2)G) (η) ,

which completes the proof. �
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Remark 3.3. It is easily seen that the operator V̂ := A1+A2 will be the point-wise limit
of L̂ε, ren as ε tends to 0. Therefore, the adjoint operator to V̂ w.r.t. to the duality (2.7)
(if it exists) can be considered as a candidate for the Vlasov operator in our model.

Below we give a rigorous meaning to the operator L̂ε,ren. Let us define the set

D1 :=
{

G ∈ LC

∣

∣

∣
Ea−

(·)G (·) ∈ LC , |·|G (·) ∈ LC

}

.

Proposition 3.4. For any ε, m, κ−, C > 0 the operator

(3.9) A1(ε) := A1 + εB1

with the domain D1 is the generator of a contraction C0-semigroup on LC . Moreover,
A1(ε) ∈ H (ω) for all ω ∈

(

0; π
2

)

.

Proof. See the proof of Proposition 4.2 in [8]. �

Remark 3.5. It is a simple matter to check that Proposition 3.4 holds also in the case
ε = 0, provided the domain of the operator A1(0) := A1 is changed to

D0 := {G ∈ LC | |·|G ∈ LC} ⊃ D1.

The next task is to show that for any ε > 0 the operator

(3.10) A2(ε) := L̂ε,ren −A1(ε) = A2 + εB2

with the domain D1 as well as the operator A2(0) := A2 with the domain D0 are
relatively bounded w.r.t. the operator (A1(ε), D1) and (A1, D0), correspondingly. This
is demonstrated in Propositions 3.6 and 3.7, which can be proved similarly to Lemmas 4.4
and 4.5 in [8].

Proposition 3.6. For any δ > 0 and any κ−,κ+,m,C > 0 such that

κ−C

m
+

κ+

m
≤ δ

the following estimate holds:

‖A2G‖C ≤ δ ‖A1G‖C , G ∈ D0.

Moreover, for all ε > 0

‖A2G‖C ≤ δ ‖A1(ε)G‖C , G ∈ D1.

Now, the operator (A2, D0) is well-defined on LC .

Proposition 3.7. For any ε, δ > 0 and any κ−,κ+,m,C > 0 such that

εκ+Ea+

(η) < δC
(

εκ−Ea−

(η) +m |η|
)

, η 6= ∅

the following estimate holds:

‖εB2G‖C ≤ a ‖A1(ε)G‖C , G ∈ D1

with a < δ.

Remark 3.8. Proposition 3.7 enables us to take D(B2) = D1. As a result, Remark 3.5
shows that the domain of the operator A2(ε) will be D0 ∩D1 = D1.

We are now in position to show that the operator (L̂ε,ren, D1) generates a semigroup
on LC . To this end we use the classical result about a perturbation of a holomorphic
semigroup (see, e.g. [13]). For the convenience of the reader we formulate below the
main statement without proof:
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For any T ∈ H(ω), ω ∈ (0; π
2 ) and for any ǫ > 0 there exist positive constants α, δ

such that if the operator A satisfies

||Au|| ≤ a||Tu||+ b||u||, u ∈ D(T ) ⊂ D(A),

with a < δ, b < δ, then T +A is the generator of a holomorphic semigroup. In particular,
if b = 0, then T +A ∈ H(ω − ǫ).

Theorem 3.9. Let the functions a−, a+ and the constants m, κ−,κ+, C > 0 satisfy

m > 4
(

κ−C + κ+
)

,(3.11)

Cκ−a− (x) ≥ 4κ+a+ (x) , x ∈ Rd.(3.12)

Then, for any ε > 0 the operator (L̂ε,ren, D1) is the generator of a holomorphic semigroup

Ût,ε, t ≥ 0 on LC .

Proof. Let ε > 0 be arbitrary and fixed. By definition,

L̂ε,ren = A1(ε) +A2(ε).

The direct application of the theorem about perturbation of holomorphic semigroups
(see the formulation above the assertion of Theorem 3.9) to T = A1(ε) and A = A2(ε)
gives now the desired claim. It is important to note that Proposition 3.4 enables us to
consider δ equal to 1

2 in the formulation of the classical theorem introduced above. The
appearance of the multiplicand 4 on the left-hand side of both assumptions in assertion
of Theorem 3.9 is motivated exactly by the latter fact. �

Theorem 3.10. Assume that the constants m,κ−,κ+, C > 0 satisfy

m > 2
(

κ−C + κ+
)

.

Then, the operator V̂ = A1 + A2 with the domain D0 is the generator of a holomorphic
semigroup ÛV

t , t ≥ 0 on LC .

Proof. We use the same classical result as for Theorem 3.9 in the case: A1 is the gene-
rator of a holomorphic semigroup, A2 is relatively bounded w.r.t. A1 with boundary less
than 1

2 . �

Now we may repeat the same considerations as in the end of Section 2. Namely,
applying the general results about adjoint semigroups (see, e.g., [7]) to the semigroup

(ÛV
t )∗ in KC , we deduce that it will be weak*-continuous and weak*-differentiable at 0.

Moreover, V̂ ∗ will be the weak*-generator of T̂ ∗(t). This means, in particular, that for

any G ∈ D(V̂ ) ⊂ LC , k ∈ D(V̂ ∗) ⊂ KC

(3.13)
d

dt

〈〈

G, (ÛV
t )∗k

〉〉

=
〈〈

G, V̂ ∗(ÛV
t )∗k

〉〉

.

An explicit form of V̂ ∗ follows from (2.10), namely, for any k ∈ D(V̂ ∗)

(3.14)

V̂ ∗k(η) =−m|η|k(η)− κ−

∫

Rd

∑

x∈η

a−(x− y)k(η ∪ y) dy

+ κ+
∑

x∈η

∫

Rd

a+(x− y)k(η \ x ∪ y) dy.

As a result, we have that for any k0 ∈ D(V̂ ∗) the function kt = (ÛV
t )∗k0 provides a

weak* solution of the following Cauchy problem:

(3.15)







∂

∂t
kt = V̂ ∗kt,

kt
∣

∣

t=0
= k0.
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In the next theorem we show that the limiting Vlasov dynamics has chaos preservation
property, i.e. preserves the Lebesgue–Poisson exponents.

Theorem 3.11. Let the conditions of Theorem 3.9 be satisfied and, additionally,

C ≥
4

16e− 1
. Let ρ0 ≥ 0 be a measurable nonnegative function on Rd such that

ess supx∈Rd ρ0(x) ≤ C. Then the Cauchy problem (3.15) with k0 = eλ(ρ0) has a weak*
solution kt = eλ(ρt) ∈ KC , where ρt is a unique nonnegative solution to the Cauchy
problem

(3.16)











∂

∂t
ρt(x) = κ+(a+ ∗ ρt)(x)− κ−ρt(x)(a

− ∗ ρt)(x)−mρt(x),

ρt
∣

∣

t=0
(x) = ρ0(x),

and ess supx∈Rd ρt(x) ≤ C, t ≥ 0.

Proof. First of all, if (3.16) has a solution ρt(x) ≥ 0 then

∂

∂t
ρt(x) ≤ κ+(a+ ∗ ρt)(x)−mρt(x)

and, therefore, ρt(x) ≤ rt(x) where rt(x) is a solution of the Cauchy problem










∂

∂t
rt(x) = κ+(a+ ∗ rt)(x)−mrt(x),

rt
∣

∣

t=0
(x) = ρ0(x) ≥ 0,

for a.a. x ∈ Rd. Hence,

rt(x) = e−(m−κ
+)teκ

+tL
a+ρ0(x),

where

(La+f)(x) :=

∫

Rd

a+(x− y)[f(y)− f(x)]dy.

Since for f ∈ L∞(Rd) we have
∣

∣(La+f)(x)| ≤ 2‖f‖L∞(Rd) then, by (3.11),

rt(x) ≤ Ce−(m−κ
+)te2κ

+t ≤ C,

which yields 0 ≤ ρt(x) ≤ C.
To prove the existence and uniqueness of the solution of (3.16) let us fix some T > 0

and define the Banach space XT = C([0;T ], L∞(Rd)) of all continuous functions on
[0;T ] with values in L∞(Rd); the norm on XT is given by ‖u‖T := max

t∈[0;T ]
‖ut‖L∞(Rd). We

denote by X+
T the cone of all nonnegative functions from XT .

Let Φ be a mapping which assigns to any v ∈ XT the solution ut of the linear Cauchy
problem

(3.17)











∂

∂t
ut(x) = κ+(a+ ∗ vt)(x)− κ−ut(x)(a

− ∗ vt)(x)−mut(x),

ut

∣

∣

t=0
(x) = ρ0(x),

for a.a. x ∈ Rd. Therefore,

(3.18)

(Φv)t(x) = exp

{

−

∫ t

0

(

m+ κ−(a− ∗ vs)(x)
)

ds

}

ρ0(x)

+

∫ t

0

exp

{

−

∫ t

s

(

m+ κ−(a− ∗ vτ )(x)
)

dτ

}

κ+(a+ ∗ vs)(x) ds.
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We have that v ∈ X+
T implies Φv ≥ 0 as well as the estimate

(Φv)t(x) ≤ ρ0(x) + κ+‖v‖T

∫ t

0

e−(t−s)mds ≤ C +
κ+

m
‖v‖T ,

where we use the trivial inequality

(3.19) ‖f ∗ g‖L∞(Rd) ≤ ‖f‖L1(Rd)‖g‖L∞(Rd), f ∈ L1(Rd), g ∈ L∞(Rd).

Therefore, Φv ∈ X+
T . For simplicity of notations we denote for v ∈ X+

T

(Bv)(t, x) = m+ κ−(a− ∗ vt)(x) ≥ m > 0.

Then, for any v, w ∈ X+
T

∣

∣(Φv)t(x)− (Φw)t(x)
∣

∣

≤

∣

∣

∣

∣

exp

{

−

∫ t

0

(Bv)(s, x) ds

}

− exp

{

−

∫ t

0

(Bw)(s, x) ds

}∣

∣

∣

∣

ρ0(x)

+

∫ t

0

∣

∣

∣

∣

exp

{

−

∫ t

s

(Bv)(τ, x) dτ

}

κ+(a+ ∗ vs)(x)

− exp

{

−

∫ t

s

(Bw)(τ, x) dτ

}

κ+(a+ ∗ ws)(x)

∣

∣

∣

∣

ds.

We have

∣

∣

∣

∣

exp

{

−

∫ t

0

(Bv)(s, x) ds

}

− exp

{

−

∫ t

0

(Bw)(s, x) ds

}∣

∣

∣

∣

≤ e−mt

∣

∣

∣

∣

exp

{

−

∫ t

0

κ−(a− ∗ vs)(x) ds

}

− exp

{

−

∫ t

0

κ−(a− ∗ ws)(x) ds

}∣

∣

∣

∣

≤ e−mt

∣

∣

∣

∣

∫ t

0

κ−(a− ∗ vs)(x) ds−

∫ t

0

κ−(a− ∗ ws)(x) ds

∣

∣

∣

∣

≤ e−mtκ−‖v − w‖T · t ≤
κ−

em
‖v − w‖T ,

where we used (3.19) and obvious inequalities |e−a − e−b| ≤ |a − b| for a, b ≥ 0;
e−xx ≤ e−1 for x ≥ 0.

Next, using another simple inequalities for any a, b, p, q ≥ 0, a ≥ b,

|pe−a − qe−b| ≤ e−a|p− q|+ qe−b|e−(a−b) − 1| ≤ e−a|p− q|+ qe−b|a− b|,
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it is easy to verify that
∫ t

0

∣

∣

∣

∣

exp

{

−

∫ t

s

(Bv)(τ, x) dτ

}

κ+(a+ ∗ vs)(x)

− exp

{

−

∫ t

s

(Bw)(τ, x) dτ

}

κ+(a+ ∗ ws)(x)

∣

∣

∣

∣

ds

≤ κ+

∫ t

0

exp

{

−

∫ t

s

(Bv)(τ, x) dτ

}

∣

∣a+ ∗ (vs − ws)
∣

∣(x) ds

+

∫ t

0

exp

{

−

∫ t

s

(Bw)(τ, x) dτ

}

(κ+a+ ∗ ws)(x)

×

∣

∣

∣

∣

∫ t

s

(Bv)(τ, x) dτ −

∫ t

s

(Bw)(τ, x) dτ

∣

∣

∣

∣

ds

≤ κ+‖v − w‖T

∫ t

0

e−m(t−s)ds

+

∫ t

0

exp

{

−

∫ t

s

κ−(a− ∗ wτ )(x) dτ

}

(κ+a+ ∗ ws)(x)

× e−m(t−s)

∫ t

s

κ−(a− ∗ |vτ − wτ |)(x) dτds

and, using (3.12) and the inequalities above, one can continue

≤
κ+

m
‖v − w‖T +

C

4

κ−

em
‖v − w‖T

×

∫ t

0

exp

{

−

∫ t

s

κ−(a− ∗ wτ )(x) dτ

}

κ−(a− ∗ ws)(x) ds

=
κ+

m
‖v − w‖T +

C

4

κ−

em
‖v − w‖T

×

∫ t

0

∂

∂s
exp

{

−

∫ t

s

κ−(a− ∗ wτ )(x) dτ

}

ds

≤

(

κ+

m
+

C

4

κ−

em

)

‖v − w‖T .

Therefore, for v, w ∈ X+
T

‖Φv − Φw‖T ≤

(

κ+

m
+

(

1 +
C

4

)κ−

em

)

‖v − w‖T ≤
4(κ+ + Cκ−)

m
‖v − w‖T ,

if, e.g., 1 +
C

4
≤ 4Ce, that means C ≥

4

16e− 1
.

As a result, by (3.11), Φ is a contraction mapping on the cone X+
T . Taking, as usual,

v(n) = Φnv(0), n ≥ 1 for v(0) ∈ X+
T we obtain that {v(n)} ⊂ X+

T is a Cauchy sequence in

XT which has, therefore, a unique limit point v ∈ XT . Since X
+
T is a closed cone we have

that v ∈ X+
T . Then, identically to the classical Banach fixed point theorem, v will be a

fixed point of Φ on XT and a unique fixed point on X+
T . Then, this v is the nonnegative

solution of (3.16) on the interval [0;T ]. By the note above, vt(x) ≤ C. Changing initial
value in (3.16) to ρt

∣

∣

t=T
(x) = vT (x) we may repeat all our considerations on the time-

interval [T ; 2T ] with the same estimate vt(x) ≤ C; and so on. As a a result, (3.16) has a
unique global bounded non-negative solution ρt(x) on R+.

Consider now

kt(η) = eλ(ρt, η) ∈ KC ,
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then
∂

∂t
eλ(ρt, η) =

∑

x∈η

∂ρt
∂t

(x)eλ(ρt, η \ x).

Using (3.16) and (3.14), we immediately conclude that kt(η) = eλ(ρt, η) is a solution
to (3.15). �

The main result of the paper is formulated in the next theorem. Its proof will be given
in Subsection 3.4.

Theorem 3.12. Under conditions of Theorem 3.9 the semigroup Ût,ε converges strongly

to the semigroup ÛV
t as ε → 0 uniformly on any finite intervals of time.

3.4. Proofs. According to Theorem 3.1, the statement of Theorem 3.12 will be proved
once we verify Assumptions (A) for the operators (A1(ε), D1), (A2(ε), D1), ε > 0, defined
in the previous subsection. Note, that A1(0) = A1 and A2(0) = A2 are defined on the
domain D0.

In the following proposition we verify Assumption 2(a) of (A).

Proposition 3.13. Let λ > 0 then

(A1(ε)− λ11)
−1 s

−→ (A1 − λ11)
−1

, ε → 0.

Proof. For any G ∈ LC

∥

∥

∥
(A1(ε)− λ11)

−1
G− (A1 − λ11)

−1
G
∥

∥

∥

C

=

∫

Γ0

∣

∣

∣

∣

G (η)

(

1

−m |η| − εκ−Ea− (η)− λ
−

1

−m |η| − λ

)∣

∣

∣

∣

C |η|dλ (η)

=

∫

Γ0

|G (η)|Fε (η)C
|η|dλ (η) ,

where

Fε (η) :=
εκ−Ea−

(η)
(

m |η|+ εκ−Ea− (η) + λ
)

(m |η|+ λ)
, η ∈ Γ0.

Since 0 ≤ Fε (η) < 1/λ and Fε (η) → 0 as ε → 0 for any η ∈ Γ0, we get the desired
statement. �

Next we check Assumption 2(b) of (A).

Proposition 3.14. Let λ > 0 be arbitrary and fixed. Then

sup
ε≥0

∥

∥

∥
(A1(ε)− λ11)

−1
∥

∥

∥
≤

∥

∥

∥
(A1 − λ11)

−1
∥

∥

∥
.

Proof. For any G ∈ LC and any ε > 0
∥

∥

∥
(A1(ε)− λ11)

−1
G
∥

∥

∥

C

=

∫

Γ0

|G (η)|
1

m |η|+ εκ−Ea− (η) + λ
C |η|dλ (η)

≤

∫

Γ0

|G (η)|
1

m |η|+ λ
C |η|dλ (η) =

∥

∥

∥
(A1 − λ11)

−1
G
∥

∥

∥

C

≤
∥

∥

∥
(A1 − λ11)

−1
∥

∥

∥
· ‖G‖C .

This finishes the proof. �

Assumption 2(c) of (A) is proved in the next Proposition.
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Proposition 3.15. Let the conditions of Theorem 3.9 be satisfied. Then, for any λ > 0

(3.20) sup
ε≥0

∥

∥

∥
A2(ε) (A1(ε)− λ11)

−1
∥

∥

∥
<

1

2

Proof. First we prove the assertion for ε = 0. Since D (A1) = D (A2) = D0 and

Ran
(

(A1 − λ11)
−1

)

= D (A1), the operator A2 (A1 − λ11)
−1

is well defined. Next, in-

equality (3.11) and Proposition 3.6 yield

(3.21)
∥

∥

∥
A2 (A1 − λ11)

−1
∥

∥

∥
<

1

4
.

Indeed,

‖A2G‖C ≤ a ‖A1G‖C < a ‖(A1 − λ11)G‖C
with a < 1

4 . Therefore,
∥

∥

∥
A2 (A1 − λ11)

−1
G
∥

∥

∥

C
<

1

4
‖G‖C ,

and (3.21) is proved.
Now, let ε > 0 be arbitrary and fixed. The main arguments we use to show

∥

∥

∥
A2(ε) (A1(ε)− λ11)

−1
∥

∥

∥
<

1

2

are the following:
1) D (A1(ε)) = D1 ⊂ D0 = D (A2). Hence, A2 (A1(ε)− λ11)

−1
is well-defined on LC .

Moreover, Proposition 3.6 implies

∥

∥

∥
A2 (A1(ε)− λ11)

−1
∥

∥

∥
<

1

4
, ε > 0.

2) D (B2) = D (A1(ε)) = D1 and for any ε > 0
∥

∥

∥
εB2 (A1(ε)− λ11)

−1
∥

∥

∥
<

1

4
,

which follows from Proposition 3.7.
3) Since A2(ε) := A2 + εB2, we have

(3.22)
∥

∥

∥
A2(ε) (A1(ε)− λ11)

−1
∥

∥

∥
<

1

2
.

The latter concludes the proof. �

We set

Qε =
(

A2(ε) (A1(ε)− λ11)
−1

+ 1
)−1

, Q =
(

A2 (A1 − λ11)
−1

+ 11
)−1

.

The latter convergence is nothing else but Assumption 2(d) of (A) in our notations. In

order to verify Assumption 2(d) of (A) we have to show that Qε
s

−→ Q as ε → 0.
Suppose that we can show that

(3.23)
A2 (A1(ε)− λ11)

−1 s
−→ A2 (A1 − λ11)

−1
, ε → 0.

εB2 (A1(ε)− λ11)
−1 s

−→ 0, ε → 0.

Then,

Cε :=A2(ε) (A1(ε)− λ11)
−1

=A2 (A1 + εB1 − λ11)
−1

+ εB2 (A1 + εB1 − λ11)
−1 s

−→ A2 (A1 − λ11)
−1

To check

(3.24) Qε = (Cε + 11)
−1 s

−→ Q
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we proceed as follows:

(Cε + 11)
−1 −Q

= (Cε + 11)
−1 −

(

A2 (A1 − λ11)
−1

+ 11
)−1

= (Cε + 11)
−1

(

A2 (A1 − λ11)
−1

+ 11− Cε − 11
)(

A2 (A1 − λ11)
−1

+ 11
)−1

= (Cε + 11)
−1

(

A2 (A1 − λ11)
−1 − Cε

)(

A2 (A1 − λ11)
−1

+ 11
)−1

.

Assuming (3.23) it is obvious now that convergence (3.24) is equivalent to

sup
ε>0

∥

∥

∥
(Cε + 11)

−1
∥

∥

∥
< ∞,

which is clear from
∥

∥

∥
(Cε + 11)

−1
∥

∥

∥
≤

1

1− ‖Cε‖
and ‖Cε‖ <

1

2
.

The last bound we conclude from (3.22). As a result we shall have established Theo-
rem 3.12 if we show (3.23).

Lemma 3.16. A2 (A1(ε)− λ11)
−1 s

−→ A2 (A1 − λ11)
−1

, as ε → 0.

Proof. Proposition 3.6 and

D (A1(ε)) = D1 ⊂ D (A1) = D (A2) = D0

leads to the following formula:

A2 (A1(ε)− λ11)
−1

= A2 (A1 − λ11)
−1

(A1 − λ11) (A1(ε)− λ11)
−1

.

Now, we are left with the task to show that

(A1 − λ11) (A1(ε)− λ11)
−1 s

−→ 1, as ε → 0.

But, for any G ∈ LC
∥

∥

∥

(

(A1 − λ11) (A1(ε)− λ11)
−1 − 11

)

G
∥

∥

∥

C

=

∫

Γ0

∣

∣

∣

∣

m |η|+ λ

m |η|+ εκ−Ea− (η) + λ
− 1

∣

∣

∣

∣

|G (η)|C |η|dλ (η)

=

∫

Γ0

εκ−Ea−

(η)

m |η|+ εκ−Ea− (η) + λ
|G (η)|C |η|dλ (η) → 0, as ε → 0

due to Lebesgue’s dominated convergence theorem. �

Lemma 3.17. εB2 (A1(ε)− λ11)
−1 s

−→ 0, as ε → 0.

Proof. Since ‖B2G‖C ≤ 1
4 ‖B1G‖C , we have to show that

∥

∥

∥
εB1 (A1(ε)− λ11)

−1
G
∥

∥

∥

C
→ 0, as ε → 0.

But,
∥

∥

∥
εB1 (A1(ε)− λ11)

−1
G
∥

∥

∥

C

=

∫

Γ0

εκ−Ea−

(η)

m |η|+ εκ−Ea− (η) + λ
|G (η)|C |η|dλ (η) → 0, ε → 0.

�

The last two lemmas conclude the proof of the main Theorem.
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Remark 3.18. Under assumptions of Proposition 3.15 we get the following representation
for the resolvents of V̂ and L̂ε,ren:

(

V̂ − λ11
)−1

= (A1 +A2 − λ11)
−1

= (A1 − λ11)
−1

(

A2 (A1 − λ11)
−1

+ 11
)−1

,

(

L̂ε,ren − λ11
)−1

=
(

A1(ε) +A2(ε)− λ11
)−1

= (A1(ε)− λ11)
−1

(

A2(ε)
(

A1(ε)− λ11
)−1

+ 11
)−1

, λ > 0.

(3.25)
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