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PARABOLIC PROBLEMS AND INTERPOLATION WITH A

FUNCTION PARAMETER

VALERII LOS AND ALEKSANDR A. MURACH

Abstract. We give an application of interpolation with a function parameter to
parabolic differential operators. We introduce a refined anisotropic Sobolev scale

that consists of some Hilbert function spaces of generalized smoothness. The latter
is characterized by a real number and a function varying slowly at infinity in Kara-
mata’s sense. This scale is connected with anisotropic Sobolev spaces by means of

interpolation with a function parameter. We investigate a general initial–boundary
value parabolic problem in the refined Sobolev scale. We prove that the operator cor-
responding to this problem sets isomorphisms between appropriate spaces pertaining
to this scale.

1. Introduction

In the theory of partial differential equations, the question about regularity properties
of solutions to equations is of great importance. As a rule, an answer to this question is
given in the form of sufficient conditions for the solutions to belong to certain function
spaces. The latter depend on a finite collection of number parameters and form a scale
of spaces. The more finely the scale is calibrated by these parameters, the more precise
and complete an information about the solution properties will be.

Basically, researchers use the two scales formed by Sobolev spaces and Hölder–Zyg-
mund spaces respectively. For these scales, we have the theory of general elliptic boundary–
value problems [1, 2, 12, 16, 32, 35, 38] and parabolic initial–boundary value problems
[8, 10, 11, 15, 17] (also see the surveys [3, 9] and the bibliography given therein). How-
ever, these scales proved to be coarse for some applications to differential operators
[12, 13, 24, 25, 26].

In this connection, of interest are spaces for which a function parameter, not a num-
ber, serves as a smoothness index. They are called spaces of generalized smoothness.
Important classes of such spaces were introduced and investigated by L. Hörmander [12]
and L. R. Volevich, B. P. Paneah [37]. L. Hörmander [12, 13] gave a systematical appli-
cation of these spaces to the research on regularity properties of solutions to hypoelliptic
equations. Nowadays spaces of generalized smoothness are used in various investigations
[14, 30, 31, 36].

With regard to applications – specifically, to the spectral theory of differential equa-
tions – scales of Hilbert function spaces are especially important. Until recently only
Hilbert Sobolev scale and its various weighted or anisotropic modifications have been
used in the theory of differential equations. Lately V. A. Mikhailets and the second
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author [18–24, 27–29] elaborated a theory of general elliptic differential operators and
elliptic boundary–value problems in the Hilbert scales formed by the Hörmander spaces,

(1.1) Hs,ϕ := B2,µ for µ(ξ) := (1 + |ξ|2)s/2ϕ
(
(1 + |ξ|2)1/2

)
.

Here the number parameter s is real, whereas the function parameter ϕ varies slowly
at infinity in J. Karamata’s sense. For example, ϕ can be logarithmic function, its
iterations, each of their powers, and multiplications of these functions. The class of the
spaces (1.1) contains the Sobolev scale {Hs} = {Hs,1} and is attached to it by means
of s but is calibrated more finely than the Sobolev scale. The number parameter s sets
the main (power) smoothness, while the function parameter ϕ defines a supplementary
(subpower) smoothness. The latter may give the broader or narrower space Hs,ϕ as
compared with Hs.

The spaces (1.1) form the refined Sobolev scale. It possesses an important interpo-
lation property. Namely, each space (1.1) can be obtained by interpolation, with an
appropriate function parameter, of a certain couple of Sobolev spaces (see [22, Sec. 3.2]
or [24, Sec. 1.3.4]). This parameter is a function that varies slowly of an index θ ∈ (0, 1)
at infinity, in the sense of J. Karamata. The refined Sobolev scale is closed with respect
to the interpolation with these function parameters.

For linear operators, their boundedness and Fredholm property will be preserved when
the interpolation of the corresponding spaces is done. This fact allowed the authors
by [24] to transfer, to the full extent, the classical (Sobolev) theory of elliptic partial
differential equations to the case of the refined Sobolev scale. As an application of this
theory, we mention the theorems on convergence almost everywhere and uniformly of
spectral expansions in eigenfunctions of self-adjoint positive elliptic differential operators
(see [24, Sec. 2.3] or [27, Sec. 7.2]). It is essential for this theorems that the smoothness
index is a function parameter (also see [25, 26]).

Note that, the interpolation with a power parameter ϕ(t) ≡ tθ plays an important
role in the Sobolev theory of partial differential equations, the exponent θ serving as a
number parameter of the interpolation. A systematic application of this interpolation to
various classes of differential operators is given by J.-L. Lions, E. Magenes [16, 17], and
H. Triebel [34, 35].

In this paper we give an application of interpolation with a function parameter to
parabolic partial differential equations. They differ from elliptic equations in disparity of
independent variables (temporal and spatial), which implies the need to use anisotropic
function spaces. Therefore we introduce a certain anisotropic analog of the refined
Sobolev scale. For this analog, we establish a theorem on the isomorphisms that are
realized by the operator corresponding to an initial–boundary value problem for a para-
bolic equation of an arbitrary even order. This theorem will be proved by means of the
interpolation with a function parameter between anisotropic Sobolev spaces. We use reg-
ularly varying functions as interpolation parameters. In order that our reasoning should
be more transparent, we restrict ourselves to the two-dimensional case and assume that
the initial conditions are homogeneous.

The paper consists of six sections. Section 1 is Introduction. In Section 2, we state an
initial-boundary value problem for a general parabolic equation given in a rectangular
planar domain. Here we also formulate the main result of the paper, the theorem on
isomorphisms. In Section 3, we introduce and discuss the refined anisotropic Sobolev
scale over R2 and its analogs for the rectangular domain. These analogs conform to the
parabolic problem under consideration. In Section 4, we give necessary facts about the
interpolation with a function parameter between general Hilbert spaces. Main Theorem
is proved in Section 5. Here we previously deduce necessary interpolation formulas, which
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connect the introduced scale with anisotropic Sobolev spaces. In the last section, 6, we
indicate some applications and generalizations of Main Theorem.

2. Statement of the problem and main result

Let Ω := (0, l)×(0, τ), where positive numbers l and τ are chosen arbitrarily. Consider
the following linear parabolic initial–boundary value problem in the open rectangle Ω:

A(x, t,Dx, ∂t)u(x, t)

≡
∑

α+2bβ≤2m

aα,β(x, t)Dα
x∂

β
t u(x, t) = f(x, t) in Ω,(2.1)

Bj,0(t,Dx, ∂t)u(x, t)
∣∣
x=0

≡
∑

α+2bβ≤mj

bα,βj,0 (t)Dα
x∂

β
t u(x, t)

∣∣
x=0

= gj,0(t) and(2.2)

Bj,1(t,Dx, ∂t)u(x, t)
∣∣
x=l

≡
∑

α+2bβ≤mj

bα,βj,1 (t)Dα
x∂

β
t u(x, t)

∣∣
x=l

= gj,1(t)(2.3)

for 0 < t < τ and j = 1, . . . ,m,

∂ku(x, t)

∂tk

∣∣∣∣
t=0

= 0 for 0 < x < l and k = 0, . . . ,κ − 1.(2.4)

Here b, m, and allmj are arbitrarily fixed integers such thatm ≥ b ≥ 1, κ := m/b ∈ Z,
andmj ≥ 0. All coefficients of the partial differential expressions A := A(x, t,Dx, ∂t) and
Bj,k := Bj,k(t,Dx, ∂t), with j ∈ {1, . . . ,m} and k ∈ {0, 1}, are supposed to be complex-

valued and infinitely smooth functions; namely, aα,β ∈ C∞(Ω) and bα,βj,k ∈ C∞[0, τ ],

where Ω := [0, l] × [0, τ ] as usual. We use the notation Dx := i ∂/∂x and ∂t := ∂/∂t for
partial derivatives and take summation over the integer-valued indexes α, β ≥ 0 satisfying
the conditions indicated.

Recall [4, § 9, Subsec. 1] that the initial–boundary value problem (2.1)–(2.4) is said
to be parabolic in Ω if the following three conditions are fulfilled:

(i) Given any x ∈ [0, l], t ∈ [0, τ ], ξ ∈ R, and p ∈ C with Re p ≥ 0, we have

A(0)(x, t, ξ, p)

≡
∑

α+2bβ=2m

aα,β(x, t) ξαpβ 6= 0 whenever |ξ|+ |p| 6= 0.

(ii) Let x ∈ {0, l}, t ∈ [0, τ ], and p ∈ C \ {0} with Re p ≥ 0 be arbitrary. Then the
polynomial A(0)(x, t, ξ, p) in ξ ∈ C has m roots ξ+j (x, t, p), j = 1, . . . ,m, with
positive imaginary part and m roots with negative imaginary part provided that
each root is taken the number of times equal to its multiplicity.

(iii) Assume that x, t, and p are the same as ones considered in (ii). Let k := 0 if
x = 0, and let k := 1 if x = l. Then the polynomials

B
(0)
j,k (t, ξ, p) ≡

∑

α+2bβ=mj

bα,βj,k (t) ξ
αpβ , j = 1, . . . ,m,

in ξ are linearly independent modulo

m∏

j=1

(
ξ − ξ+j (x, t, p)

)
.
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Consider the linear mapping

(2.5)
C∞

+ (Ω) ∋ u 7→ (Au,Bu)

:=
(
Au,B1,0u,B1,1u, . . . , Bm,0u,Bm,1u

)
∈ C∞

+ (Ω)×
(
C∞

+ [0, τ ]
)2m

,

which is associated with the parabolic problem (2.1)–(2.4). Here

C∞
+ (Ω) : =

{
w ↾ Ω : w ∈ C∞(R2), suppw ⊆ R× [0,∞)

}

=
{
u ∈ C∞(Ω) : ∂βt u(x, t)|t=0 = 0 for all β ∈ N ∪ {0}, x ∈ [0, l]

}

and
C∞

+ [0, τ ] : =
{
h↾ [0, τ ] : h ∈ C∞(R), supph ⊆ [0,∞)

}

=
{
v ∈ C∞[0, τ ] : v(β)(0) = 0 for all β ∈ N ∪ {0}

}
.

In the paper, functions (and distributions) are supposed to be complex-valued unless
otherwise stated.

The mapping (2.5) sets a one-to-one correspondence between the spaces C∞
+ (Ω) and

C∞
+ (Ω)×

(
C∞

+ [0, τ ]
)2m

(see Remark 3.3 below). Our purpose is to show that this mapping
extends by continuity to an isomorphism between appropriate couples of Hilbert function
spaces of generalized smoothness. Namely, we will prove the following result.

Let σ0 be the smallest integer such that

σ0 ≥ 2m, σ0 ≥ mj + 1 for all j ∈ {1, . . . ,m}, and
σ0
2b

∈ Z.

Note, if mj ≤ 2m− 1 for every j ∈ {1, . . . ,m}, then σ0 = 2m.

Main Theorem. Let a real number σ > σ0 and function parameter ϕ ∈ M be chosen
arbitrarily. Then the mapping (2.5) extends uniquely (by continuity) to an isomorphism

(A,B) : H
σ,σ/(2b),ϕ
+ (Ω)

↔ H
σ−2m,(σ−2m)/(2b),ϕ
+ (Ω)⊕

m⊕

j=1

(
H

(σ−mj−1/2)/(2b),ϕ
+ (0, τ)

)2
.

(2.6)

The class M and the Hilbert function spaces occurring in (2.6) will be defined in the
next section. These spaces form the refined Sobolev scales.

If ϕ ≡ 1, then the operator (2.6) acts between Sobolev spaces. In this case, this
theorem was proved by M. S. Agranovich and M. I. Vishik [4, Theorem 11.1] on the
assumption that σ/(2b) ∈ Z. Their result includes the limiting case of σ = σ0 and relates
to general parabolic problems with nonhomogeneous initial conditions.

3. Refined Sobolev scales

In this section we will introduce and discuss the function spaces used in the statement
of Main Theorem. The regularity properties of the distributions belonging to these spaces
are characterized by two number parameters and a function parameter. The latter runs
over a certain function class M, which is defined as follows.

The class M consists of all functions ϕ : [1,∞) → (0,∞) such that

a) ϕ is Borel measurable on [1,∞);
b) both the functions ϕ and 1/ϕ are bounded on each compact interval [1, b], with

1 < b <∞;
c) ϕ is a slowly varying function at infinity in the sense of J. Karamata; i.e.,

(3.1) lim
r→∞

ϕ(λr)

ϕ(r)
= 1 for every λ > 0.
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Remark 3.1. The theory of slowly varying functions is set forth in the monographs [7, 33].
We give an important and standard example of functions satisfying (3.1) if we put

(3.2) ϕ(r) := (log r)θ1 (log log r)θ2 . . . ( log . . . log︸ ︷︷ ︸
k times

r )θk for r ≫ 1,

where the parameters k ∈ N and θ1, θ2, . . . , θk ∈ R are chosen arbitrarily. The functions
(3.2) form the logarithmic multiscale, which has a number of applications in the theory
of function spaces. Some other examples of slowly varying functions can be found in [7,
Sec. 1.3.3] and [24, Sec. 1.2.1].

Let s ∈ R, ϕ ∈ M, and γ := 1/(2b). By definition, the linear space Hs,sγ,ϕ(R2)
consists of all tempered distributions w ∈ S ′(R2) such that their Fourier transform w̃ (in
two variables) is locally Lebesgue integrable over R2 and satisfies the condition

(3.3)

∫ ∞

−∞

∫ ∞

−∞

r2sγ (ξ, η)ϕ2(rγ(ξ, η)) |w̃(ξ, η)|
2 dξdη <∞.

Here and below we use the notation

rγ(ξ, η) :=
(
1 + |ξ|2 + |η|2γ

)1/2
for each ξ, η ∈ R.

The space Hs,sγ,ϕ(R2) is endowed with the inner product

(w1, w2)Hs,sγ,ϕ(R2) :=

∫ ∞

−∞

∫ ∞

−∞

r2sγ (ξ, η)ϕ2(rγ(ξ, η)) w̃1(ξ, η) w̃2(ξ, η) dξdη,

where w1, w2 ∈ Hs,sγ,ϕ(R2). It induces the norm

‖w‖Hs,sγ,ϕ(R2) := (w,w)
1/2
Hs,sγ,ϕ(R2),

which is equal to the square root of the left-hand side of inequality (3.3).
Note that Hs,sγ,ϕ(R2) is the inner product Hörmander space B2,µ(R

2) which corres-
ponds to the function parameter

µ(ξ, η) := rsγ(ξ, η)ϕ(rγ(ξ, η)) for ξ, η ∈ R.

We refer the reader to the monographs by L. Hörmander [12, Sec. 2.2], [13, Sec. 10.1], and
to the paper by L. R. Volevich and B. P. Paneah [37], where such spaces are investigated
systematically. It follows from properties of Hörmander spaces that the spaceHs,sγ,ϕ(R2)
is Hilbert and separable, is embedded continuously in S ′(R2), and that the set C∞

0 (R2)
is dense in Hs,sγ,ϕ(R2).

Remark 3.2. We use conventional notation for main function spaces. So, S ′(Rn) denotes
the linear topological L. Schwartz space of all tempered distributions given in R

n, with
n ∈ N. If G is an open subset of Rn (in particular, G = R

n), then C∞
0 (G) stands for the

class of all functions w ∈ C∞(Rn) such that their support is a compact subset of G. We
may naturally identify a function w ∈ C∞

0 (G) with its restriction to G; from the context
it will always be understood on which set — R

n or G — the function w is considered.
The designation L2(G, dµ) refers to the Hilbert space of all functions that are square
integrable over G with respect to a Radon measure µ. Specifically, if µ is the Lebesgue
measure, then we omit dµ and write L2(G).

If ϕ(r) ≡ 1, then Hs,sγ,ϕ(R2) becomes the anisotropic Sobolev space of order (s, sγ);
we denote this space by Hs,sγ(R2). Note that, in the case where s, sγ ∈ N the space
Hs,sγ(R2) consists of all functions w(x, t) such that w, Ds

xw, and ∂
sγ
t w are square inte-

grable over R2, providing the partial derivatives are understood in the sense of the theory
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of distributions. In this case, we have the equivalence of Hilbert norms

(3.4) ‖w‖Hs,sγ(R2) ≍

( ∫ ∞

−∞

∫ ∞

−∞

(
|w(x, t)|2 + |Ds

xw(x, t)|
2 + |∂sγt w(x, t)|

2
)
dxdt

)1/2

.

Every space Hs,sγ,ϕ(R2), with s ∈ R and ϕ ∈ M, is closely connected to anisotropic
Sobolev spaces. Specifically, we have the continuous and dense embeddings

(3.5) Hs1,s1γ(R2) →֒ Hs,sγ,ϕ(R2) →֒ Hs0,s0γ(R2) whenever s0 < s < s1.

They follow from the next property of ϕ ∈ M: for each ε > 0 there exists a number
c = c(ε) ≥ 1 such that c−1r−ε ≤ ϕ(r) ≤ c rε for all r ≥ 1 (see [33, Sec. 1.5, Subsec. 1]).

Consider the class of Hilbert function spaces

(3.6)
{
Hs,sγ,ϕ(R2) : s ∈ R, ϕ ∈ M

}
.

Owing to the embeddings (3.5), we may assert that in (3.6) the function parameter
ϕ defines a supplementary (subpower) smoothness with respect to the basic (power)
anisotropic (s, sγ)-smoothness. Specifically, if ϕ(r) → ∞ [ϕ(r) → 0] as r → ∞, then
ϕ defines a positive [negative] supplementary smoothness. In other words, ϕ refines the
power smoothness (s, sγ).

Therefore we will naturally call (3.6) the refined anisotropic Sobolev scale over R
2;

here γ serves as an anisotropy parameter.
Using this scale, let us introduce some function spaces related to the parabolic problem

under consideration. As before, s ∈ R and ϕ ∈ M. We put

Hs,sγ,ϕ
+ (R2) :=

{
w ∈ Hs,sγ,ϕ(R2) : suppw ⊆ R× [0,∞)

}
.

The linear space Hs,sγ,ϕ
+ (R2) is endowed with the inner product and norm in Hs,sγ,ϕ(R2).

The space Hs,sγ,ϕ
+ (R2) is complete (Hilbert) because of the continuous embedding

Hs,sγ,ϕ(R2) →֒ S ′(R2).

Next, we define the normed linear space

(3.7)
Hs,sγ,ϕ

+ (Ω) :=
{
w ↾ Ω : w ∈ Hs,sγ,ϕ

+ (R2)
}
,

‖u‖Hs,sγ,ϕ
+

(Ω) := inf
{
‖w‖Hs,sγ,ϕ(R2) : w ∈ Hs,sγ,ϕ

+ (R2), w = u in Ω
}
,

with u ∈ Hs,sγ,ϕ
+ (Ω). In other words, Hs,sγ,ϕ

+ (Ω) is the factor space of the space
Hs,sγ,ϕ

+ (R2) by its subspace

(3.8) Hs,sγ,ϕ
Q (R2) :=

{
w ∈ Hs,sγ,ϕ(R2) : suppw ⊆ Q := R× [0,∞) \ Ω

}
.

Hence, the space Hs,sγ,ϕ
+ (Ω) is Hilbert. The norm (3.7) is induced by the inner product

(u1, u2)Hs,sγ,ϕ
+

(Ω) := (w1 −Υw1, w2 −Υw2)Hs,sγ,ϕ(R2),

where wj ∈ Hs,sγ,ϕ(R2), wj = uj in Ω for each j ∈ {1, 2}, and Υ is the orthogonal
projector of the space Hs,sγ,ϕ

+ (R2) onto its subspace (3.8).
Note that both Hilbert spaces Hs,sγ,ϕ

+ (R2) and Hs,sγ,ϕ
+ (Ω) are separable. The set

C∞
0 (R × (0,∞)) is dense in Hs,sγ,ϕ

+ (R2) [37, Lemma 3.3]; this implies the density of

C∞
+ (Ω) in Hs,sγ,ϕ

+ (Ω).
It remains to introduce the function spaces in which the right-hand sides of the

boundary-value conditions (2.2) and (2.3) are considered. Let s ∈ R and ϕ ∈ M.
By definition, the linear space Hs,ϕ(R) consists of all tempered distributions h ∈ S ′(R)

such that their Fourier transform ĥ is locally Lebesgue integrable over R and satisfies
the condition ∫ ∞

−∞

〈ξ〉2s ϕ2(〈ξ〉) |ĥ(ξ)|2 dξ <∞.
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Here, as usual, 〈ξ〉 := (1 + |ξ|2)1/2 is the smooth modulus of ξ ∈ R. The space Hs,ϕ(R)
is endowed with the inner product

(h1, h2)Hs,ϕ(R) :=

∫ ∞

−∞

〈ξ〉2s ϕ2(〈ξ〉) ĥ1(ξ) ĥ2(ξ) dξ,

where h1, h2 ∈ Hs,ϕ(R). It induces the norm

‖h‖Hs,ϕ(R) := (h, h)
1/2
Hs,ϕ(R).

Notice that Hs,ϕ(R) is the inner product Hörmander space B2,µ(R) corresponding to
the function parameter µ(ξ) := 〈ξ〉sϕ(〈ξ〉) of ξ ∈ R (see the references [12, 13, 37] men-
tioned above). Therefore Hs,ϕ(R) is a separable Hilbert space embedded continuously
in S ′(R), and the set C∞

0 (R) is dense in Hs,ϕ(R).
If ϕ(r) ≡ 1, then Hs,ϕ(R) becomes the Sobolev space Hs(R) of order s. Analogously

to (3.5), we have the continuous and dense embedding

(3.9) Hs1(R) →֒ Hs,ϕ(R) →֒ Hs0(R) whenever s0 < s < s1, ϕ ∈ M.

The class of Hilbert function spaces

(3.10)
{
Hs,ϕ(R) : s ∈ R, ϕ ∈ M

}

is called the refined Sobolev scale over R (see [24, Sec. 1.3.3] and [27, Sec. 3.2]).
Using this scale, introduce one-dimensional analogs of the spaces considered above.

We let

Hs,ϕ
+ (R) :=

{
h ∈ Hs,ϕ(R) : supph ⊆ [0,∞)

}

and interpret Hs,ϕ
+ (R) as a (closed) subspace of Hs,ϕ(R). Then define the normed linear

space

Hs,ϕ
+ (0, τ) :=

{
h↾ (0, τ) : h ∈ Hs,ϕ

+ (R)
}
,

‖v‖Hs,ϕ
+

(0,τ) := inf
{
‖h‖Hs,ϕ(R) : h ∈ Hs,ϕ

+ (R), h = v in (0, τ)
}
,

with v ∈ Hs,ϕ
+ (0, τ). This space is Hilbert as it is the factor space of Hs,ϕ

+ (R) by

(3.11)
{
h ∈ Hs,ϕ(R) : supph ⊆ {0} ∪ [τ,∞)

}
.

Both Hilbert spaces Hs,ϕ
+ (R) and Hs,ϕ

+ (0, τ) are separable. The set C∞
0 (0,∞) is dense

in Hs,ϕ
+ (R) [37, Lemma 3.3] so that C∞

+ [0, τ ] is dense in Hs,ϕ
+ (0, τ).

In the Sobolev case of ϕ ≡ 1 we will omit the index ϕ in the designations of the spaces
introduced.

We finish this section with the following observation.

Remark 3.3. According to the Sobolev embedding theorem and the above-mentioned
result by Agranovich and Vishik [4, theorem 11.1], we obtain the equalities

C∞
+ (Ω) =

⋂

σ>σ0,
σ/(2b)∈Z

H
σ,σ/(2b)
+ (Ω),

C∞
+ (Ω)×

(
C∞

+ [0, τ ]
)2m

=
⋂

σ>σ0,
σ/(2b)∈Z

(A,B)
(
H
σ,σ/(2b)
+ (Ω)

)
.

It follows from them that the mapping (2.5) sets a one-to-one correspondence between

the spaces C∞
+ (Ω) and C∞

+ (Ω)×
(
C∞

+ [0, τ ]
)2m

.
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4. Abstract auxiliary results

Here we recall the definition of the interpolation with a function parameter in the case
of general Hilbert spaces and then discuss the interpolation properties which will be used
in Section 5. We follow the monograph [24, Sec. 1.1] (also see [22, Sec. 2]). It is sufficient
to restrict ourselves to separable complex Hilbert spaces.

Let X := [X0, X1] be an ordered couple of separable complex Hilbert spaces such
that the continuous and dense embedding X1 →֒ X0 holds. This couple is said to be
admissible. For X there exists an isometric isomorphism J : X1 ↔ X0 such that J is a
self-adjoint and positive operator on X0 with the domain X1. The operator J is uniquely
determined by the couple X and is called the generating operator for X.

Let ψ ∈ B, where B denotes the set of all Borel measurable functions ψ : (0,∞) →
(0,∞) such that ψ is bounded on each compact interval [a, b], with 0 < a < b <∞, and
that 1/ψ is bounded on every semiaxis [a,∞), with a > 0.

Consider the operator ψ(J), which is defined (and positive) in X0 as the Borel function
ψ of J . Denote by [X0, X1]ψ or simply by Xψ the domain of the operator ψ(J) endowed
with the inner product

(u1, u2)Xψ := (ψ(J)u1, ψ(J)u2)X0
.

It induces the norm ‖u‖Xψ := ‖ψ(J)u‖X0
. The space Xψ is Hilbert and separable.

A function ψ ∈ B is called an interpolation parameter if the following condition is
fulfilled for all admissible couples X = [X0, X1] and Y = [Y0, Y1] of Hilbert spaces and
for an arbitrary linear mapping T given on X0: if the restriction of T to Xj is a bounded
operator T : Xj → Yj for each j ∈ {0, 1}, then the restriction of T to Xψ is also a
bounded operator T : Xψ → Yψ.

If ψ is an interpolation parameter, then we say that the Hilbert space Xψ is obtained
by the interpolation with the function parameter ψ of the couple X = [X0, X1] (or, in
other words, between the spaces X0 and X1). In this case the dense and continuous
embeddings X1 →֒ Xψ →֒ X0 are valid.

It is known that a function ψ ∈ B is an interpolation parameter if and only if ψ is
pseudoconcave in a neighborhood of ∞, i.e. there is a concave positive function ψ1(r) of
r ≫ 1 such that both the functions ψ/ψ1 and ψ1/ψ are bounded on some neighborhood
of ∞. This criterion follows from J. Peetre’s description of all interpolation functions for
the weighted Lp(R

n)-type spaces (see [5, Theorem 5.4.4]). The corresponding proof is
given in [24, Sec. 1.1.9].

For us, it is important the next consequence of this criterion [24, Theorem 1.11].

Proposition 4.1. Suppose that a function ψ ∈ B varies regularly of index θ at infinity,
with 0 < θ < 1, i.e.

lim
r→∞

ψ(λr)

ψ(r)
= λθ for each λ > 0.

Then ψ is an interpolation parameter.

Remark 4.1. In the case of power functions this proposition leads us to the classical
result by J.-L. Lions and S. G. Krein, which consists in that the function ψ(r) ≡ rθ is
an interpolation parameter whenever 0 < θ < 1. Here the exponent θ is regarded as a
number parameter of the interpolation.

At the end of this section we formulate two properties of the interpolation; they
will be used in our proofs. The first of them enables us to reduce the interpolation of
subspaces or factor spaces to the interpolation of initial spaces (see [24, Sec. 1.1.6] and
[35, Sec. 1.17]). Note that subspaces are assumed to be closed and that we generally
consider nonorthogonal projectors onto subspaces.
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Proposition 4.2. Let X = [X0, X1] be an admissible couple of Hilbert spaces, and let
Y0 be a subspace of X0. Then Y1 := X1 ∩ Y0 is a subspace of X1. Suppose that there
exists a linear mapping P : X0 → X0 such that P is a projector of the space Xj onto
its subspace Yj for every j ∈ {0, 1}. Then the couples [Y0, Y1] and [X0/Y0, X1/Y1] are
admissible, and

[Y0, Y1]ψ = Xψ ∩ Y0,

[X0/Y0, X1/Y1]ψ = Xψ/(Xψ ∩ Y0)

with equivalence of norms. Here ψ ∈ B is an arbitrary interpolation parameter.

The second property reduces the interpolation of direct sums of Hilbert spaces to the
interpolation of their summands.

Proposition 4.3. Let [X
(j)
0 , X

(j)
1 ], with j = 1, . . . , p, be a finite collection of admissible

couples of Hilbert spaces. Then
[ p⊕

j=1

X
(j)
0 ,

p⊕

j=1

X
(j)
1

]

ψ

=

p⊕

j=1

[
X

(j)
0 , X

(j)
1

]
ψ

with equality of norms. Here ψ ∈ B is an arbitrary interpolation parameter.

5. Proof of the main result

We will previously prove that the spaces appearing in (2.6) can be obtained by the
interpolation with a function parameter between certain Sobolev spaces. Using this inter-
polation we will deduce Main Theorem from the above-mentioned result by Agranovich
and Vishik.

In this section we suppose that

(5.1) s, s0, s1 ∈ R, s0 < s < s1, and ϕ ∈ M.

Consider the function

(5.2) ψ(r) :=

{
r(s−s0)/(s1−s0) ϕ(r1/(s1−s0)) for r ≥ 1,

ϕ(1) for 0 < r < 1.

This function is an interpolation parameter by Proposition 4.1 because ψ varies regularly
of index θ := (s − s0)/(s1 − s0) at infinity, with 0 < θ < 1. We will interpolate couples
of Sobolev spaces with the function parameter ψ.

We begin with anisotropic spaces and prove necessary interpolation formulas for the
spaces Hs,sγ,ϕ(R2), Hs,sγ,ϕ

+ (R2), and Hs,sγ,ϕ
+ (Ω) deducing each next formula from the

previous one. The corresponding results will be formulated as lemmas.

Lemma 5.1. On the assumption (5.1) we have

(5.3) Hs,sγ,ϕ(R2) =
[
Hs0,s0γ(R2), Hs1,s1γ(R2)

]
ψ

with equality of norms.

Proof. The couple of Sobolev spaces

X :=
[
Hs0,s0γ(R2), Hs1,s1γ(R2)

]

is admissible in view of (3.5). The generating operator for this couple is given by the
formula

J : w 7→ F−1[rs1−s0γ Fw ], with w ∈ Hs1,s1γ(R2).

This follows immediately from the definition of these spaces. Here F and F−1 stand for
the operators of the direct and inverse Fourier transform (in two variables) of tempered
distributions given in R

2.
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Note that J is reduced to the operator of multiplication by rs1−s0γ with the help of
the Fourier transform considered as an isometric isomorphism

F : Hs0,s0γ(R2) ↔ L2

(
R

2, r2s0γ (ξ, η)dξdη
)
.

Hence F reduces ψ(J) to the operator of multiplication by the function

ψ(rs1−s0γ (ξ, η)) ≡ rs−s0γ (ξ, η)ϕ(rγ(ξ, η)),

in view of (5.2). Now for each w ∈ C∞
0 (R2) we may write the following:

‖w‖2Xψ = ‖ψ(J)w‖2Hs0,s0γ(R2)

=

∫ ∞

−∞

∫ ∞

−∞

|ψ(rs1−s0γ (ξ, η)) (Fw)(ξ, η)|2 r2s0γ (ξ, η)dξdη

= ‖w‖Hs,sγ,ϕ(R2).

This implies the equality of spaces (5.3) as C∞
0 (R2) is dense in both of them. (Note that

C∞
0 (R2) is dense in the second space denoted by Xψ because C∞

0 (Rn) is dense in the
space Hs1,s1γ(R2) embedded continuously and densely in Xψ.) �

To apply this lemma to the interpolation between the subspaces Hs0,s0γ
+ (R2) and

Hs1,s1γ
+ (R2) we need the following preparatory result.
Let Π be an open half-plain in R

2 such that its boundary ∂Π is parallel to a certain
coordinate axis. The anisotropic Sobolev space Hs,sγ(Π) is defined as follows

Hs,sγ(Π) :=
{
w ↾ Π : w ∈ Hs,sγ(R2)

}
,

‖v‖Hs,sγ(Π) := inf
{
‖w‖Hs,sγ(R2) : w ∈ Hs,sγ(R2), w = v in Π

}
.

This space is Hilbert.

Lemma 5.2. Let numbers k ∈ N and ε > 0 be arbitrarily chosen. There exists a bounded

linear operator T k,εΠ : L2(Π) → L2(R
2) that satisfies the following conditions:

(i) The mapping T k,εΠ is an extension operator; i.e., T k,εΠ v = v in Π for each v ∈
L2(Π).

(ii) If s, sγ ∈ N ∩ [1, k], then the restriction of T k,εΠ to Hs,sγ(Π) defines a bounded
operator

T k,εΠ : Hs,sγ(Π) → Hs,sγ(R2).

(iii) Let E be an open interval (bounded or not) that lies on ∂Π, and let ν be the unit
vector of an inner normal to ∂Π (with respect to Π). If a function v ∈ L2(Π) is

equal to zero on the set {x1 + x2ν : x1 ∈ E, 0 < x2 < ε}, then T k,εΠ v ≡ 0 on the
set {x1 + x2ν : x1 ∈ E, x2 < 0}.

Proof. Without loss of generality we may restrict ourselves to the case when Π = {(x, t) :
x ∈ R, t > 0}. (The general situation is reduced to this case by translation and reflection

in the plain.) We construct the operator T k,εΠ with the help of the extension method by
M. R. Hestenes (see [6, Sec. 9.9] or [35, Sec. 2.9.1]).

Namely, given a function v : Π → C, let

(T k,εΠ v)(x, t) :=

{
v(x, t) for x ∈ R, t ≥ 0,

χε(t)
∑k+1
j=1 λj v(x,−t/j) for x ∈ R, t < 0.

Here the numbers λ1, . . . , λk, λk+1 are chosen so that

k+1∑

j=1

λj

(
−
1

j

)α
= 1, α = 0, 1, . . . , k.
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Moreover, χε ∈ C∞(R) is a fixed function such that χε(t) = 1 if t > −ε/3 and that

χε(t) = 0 if t < −2ε/3. Then v ∈ Ck(Π) implies T
(k)
Π v ∈ Ck(R2).

Evidently, the mapping v 7→ T k,εΠ v defines a bounded linear operator T k,εΠ : L2(Π) →
L2(R

2) that complies with conditions (i) and (iii). According to [6, Sec. 9.9] this operator
satisfies condition (ii) as well. �

Lemma 5.3. In addition to (5.1) suppose that all the numbers s0, s1, s0γ, and s1γ are
positive integers. Then

Hs,sγ,ϕ
+ (R2) =

[
Hs0,s0γ

+ (R2), Hs1,s1γ
+ (R2)

]
ψ
,(5.4)

Hs,sγ,ϕ
+ (Ω) =

[
Hs0,s0γ

+ (Ω), Hs1,s1γ
+ (Ω)

]
ψ

(5.5)

with equivalence of norms.

Proof. First deduce (5.4). Let Π := {(x, t) : x ∈ R, t < 0}, and let T s1,1Π be the extension

operator from Lemma 5.2. The mapping P : w 7→ w − T s1,1Π (w↾Π), where w ∈ L2(R
2),

defines the projector of the space Hsj ,sjγ(R2) onto its subspace H
sj ,sjγ
+ (R2) for every

j ∈ {0, 1}. Therefore by Proposition 4.2 and Lemma 5.1 we may write
[
Hs0,s0γ

+ (R2), Hs1,s1γ
+ (R2)

]
ψ
=
[
Hs0,s0γ(R2), Hs1,s1γ(R2)

]
ψ
∩Hs0,s0γ

+ (R2)

= Hs,sγ,ϕ(R2) ∩Hs0,s0γ
+ (R2) = Hs,sγ,ϕ

+ (R2)

up to equivalence of norms. Formula (5.4) is proved.
Now we will deduce (5.5) from (5.4). To this end we construct a certain projector

P0 of each space H
sj ,sjγ
+ (R2), with j ∈ {0, 1}, onto its subspace H

sj ,sjγ
Q (R2) defined by

(3.8). Consider the half-plains

Π1 := {(x, t) : x ∈ R, t < τ},

Π2 := {(x, t) : x < l, t ∈ R},

Π3 := {(x, t) : x > 0, t ∈ R}.

For every α ∈ {1, 2, 3}, let Rα denote the restriction mapping w 7→ w ↾ Πα, with w ∈

L2(R
2), and let Tα denote the extension operator T s1,lΠα

from Lemma 5.2. Consider the

mapping P0 : w 7→ w − Λw, with w ∈ Hs0,s0γ
+ (R2) and Λw := T3R3T2R2T1R1w. It

follows from lemma 5.2 that P0 is the projector required. Indeed, P0 is a linear bounded
operator on H

sj ,sjγ
+ (R2) for every j ∈ {0, 1}. Moreover, if w = 0 in Ω, then Λw = 0 in

R
2; therefore P0w = w for each w ∈ H

sj ,sjγ
Q (R2).

Since the projector P0 is given, we may apply Proposition 4.2 and formula (5.4) and
write

[
Hs0,s0γ

+ (Ω), Hs1,s1γ
+ (Ω)

]
ψ
]

=
[
Hs0,s0γ

+ (R2)/Hs0,s0γ
Q (R2), Hs1,s1γ

+ (R2)/Hs1,s1γ
Q (R2)

]
ψ

=
[
Hs0,s0γ

+ (R2), Hs1,s1γ
+ (R2)

]
ψ

/([
Hs0,s0γ

+ (R2), Hs1,s1γ
+ (R2)

]
ψ
∩Hs0,s0γ

Q (R2)
)

= Hs,sγ,ϕ
+ (R2)/

(
Hs,sγ,ϕ

+ (R2) ∩Hs0,s0γ
Q (R2)

)
= Hs,sγ,ϕ

+ (R2)/Hs,sγ,ϕ
Q (R2)

= Hs,sγ,ϕ
+ (Ω)

up to equivalence of norms. Formula (5.5) is proved. �

It remains to prove a necessary interpolation formula for the space Hs,ϕ
+ (0, τ).

Lemma 5.4. In addition to (5.1) suppose that s0 ≥ 0. Then

(5.6) Hs,ϕ
+ (0, τ) =

[
Hs0

+ (0, τ), Hs1
+ (0, τ)

]
ψ

with equivalence of norms.
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Proof. The formula (5.6) can be deduced by analogy with the anisotropic spaces case
considered in the previous lemmas. For the sake of the argumentation completeness, let
us give the proof.

First note that an analog of Lemma 5.1 for isotropic spaces over Rn is proved in [22,
Sec. 3.2, Theorem 3.4] (also see [24, Sec. 1.3.4, Theorem 1.14]). Specifically,

(5.7) Hs,ϕ(R) =
[
Hs0(R), Hs1(R)

]
ψ

with equality of norms.
To deduce (5.6) from (5.7) we will apply the following one-dimensional analog of

Lemma 5.2 on extension operator. Let G ⊂ R be an open semiaxis and k ∈ N. Then

there exists a bounded linear operator T
(k)
G : L2(G) → L2(R) such that T

(k)
G v is an

extension of v ∈ L2(G) and that the mapping v 7→ T
(k)
G v defines the bounded operator

T
(k)
G : Hs(G) → Hs(R) for every real s ∈ [0, k). Here, as usual,

Hs(G) := {h↾G : h ∈ Hs(R)}, with

‖v‖Hs(G) := inf
{
‖h‖Hs(R) : h ∈ Hs(R), h = v in G

}
,

is the Sobolev space over G of order s. This analog is a special case of Lemma 2.9.3

from [35]. As above, the operator T
(k)
G can be constructed with the help of the extension

method by M. R. Hestenes.

Chose k ∈ N so that s1 < k. The mapping P : h 7→ h− T
(k)
G (h↾G), where h ∈ L2(R)

and G := (−∞, 0), defines the projector of the space Hsj (R) onto its subspace H
sj
+ (R)

for every j ∈ {0, 1}. Therefore by Proposition 4.2 and formula (5.7) we may write

(5.8)
[
Hs0

+ (R), Hs1
+ (R)

]
ψ
=
[
Hs0(R), Hs1(R)

]
ψ
∩Hs0

+ (R) = Hs,ϕ
+ (R)

up to equivalence of norms.
Now let us deduce (5.6) from (5.8). Recall that Hs,ϕ

+ (0, τ) is the factor space of the
space Hs,ϕ

+ (R) by its subspace (3.11). The latter coincides with

Hs,ϕ
[τ,∞)(R) :=

{
h ∈ Hs,ϕ(R) : supph ⊆ [τ,∞)

}

because s > 0. The mapping Pτ : h 7→ h − T
(k)
Gτ

(h↾Gτ ), where h ∈ L2(R) and Gτ :=

(−∞, τ), sets the projector of the space H
sj
+ (R) onto its subspace H

sj
[τ,∞)(R) for every

j ∈ {0, 1}. Therefore by Proposition 4.2 and formula (5.8) we may write
[
Hs0

+ (0, τ), Hs1
+ (0, τ)

]
ψ
=
[
Hs0

+ (R)/Hs0
[τ,∞)(R), H

s1
+ (R)/Hs1

[τ,∞)(R)
]
ψ

=
[
Hs0

+ (R), Hs1
+ (R)

]
ψ

/([
Hs0

+ (R), Hs1
+ (R)

]
ψ
∩Hs0

[τ,∞)(R)
)

= Hs,ϕ
+ (R)/Hs,ϕ

[τ,∞)(R) = Hs,ϕ
+ (0, τ)

up to equivalence of norms. Formula (5.6) is proved. �

Now we may give

The proof of Main Theorem. Let σ > σ0 and ϕ ∈ M. Chose a number σ1 ∈ N so
that σ1/(2b) ∈ N and σ1 > σ. According to M. S. Agranovich and M. I. Vishik [4,
Theorem 11.1], the mapping (2.5) extends uniquely to isomorphisms between Sobolev
spaces

(5.9) (A,B) : H
σk,σk/(2b)
+ (Ω) ↔ Hk for every k ∈ {0, 1},

where

Hk := H
σk−2m,(σk−2m)/(2b)
+ (Ω)⊕

m⊕

j=1

(
H

(σk−mj−1/2)/(2b)
+ (0, τ)

)2
.
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Define an interpolation parameter by the formula

ψ(r) :=

{
r(σ−σ0)/(σ1−σ0) ϕ(r1/(σ1−σ0)) for r ≥ 1,

ϕ(1) for 0 < r < 1,

which is analogous to (5.2). Applying the interpolation with the function parameter ψ
to (5.9), we get another isomorphism

(5.10) (A,B) :
[
H
σ0,σ0/(2b)
+ (Ω), H

σ1,σ1/(2b)
+ (Ω)

]
ψ
↔ [H0,H1]ψ.

This isomorphism is a unique extension by continuity of the mapping (2.5) because
C∞

+ (Ω) is dense in the domain of (5.10).
Let us describe the interpolation spaces appearing in (5.10). According to Lemma 5.3

we have [
H
σ0,σ0/(2b)
+ (Ω), H

σ1,σ1/(2b)
+ (Ω)

]
ψ
= H

σ,σ/(2b),ϕ
+ (Ω)

with equality of norms. Next, applying Proposition 4.3 and Lemmas 5.3 and 5.4 we may
write

[H0,H1]ψ =
[
H
σ0−2m,(σ0−2m)/(2b)
+ (Ω), H

σ1−2m,(σ1−2m)/(2b)
+ (Ω)

]
ψ

⊕

m⊕

j=1

([
H

(σ0−mj−1/2)/(2b)
+ (0, τ), H

(σ1−mj−1/2)/(2b)
+ (0, τ)

]
ψ

)2

= H
σ−2m,(σ−2m)/(2b),ϕ
+ (Ω)⊕

m⊕

j=1

(
H

(σ−mj−1/2)/(2b),ϕ
+ (0, τ)

)2

with equality of norms. Note that the function ψ satisfies (5.2) because the parameters
s0, s1, and s in these lemmas differ from σ0, σ1, and σ respectively in the same magnitude.
Thus, the isomorphism (5.10) becomes (2.6). �

6. Final remarks

Main Theorem can be used to investigate regularity of solutions to parabolic problems.
Specifically, applying Hörmander’s Embedding Theorem [12, Theorem 2.2.7], we may
establish sufficient conditions for the weak solution to be classical (compare with [20,
Sec. 5 and 6] or [24, Sec. 4.1.2], where elliptic boundary–value problems are considered).

The investigation of parabolic initial–boundary value problems with nonhomogeneous
initial conditions can be reduced to the case of homogeneous ones (see [4, § 10] in the case
of Sobolev spaces). In this connection, we also mention J.-L. Lions and E. Magenes’ ap-
proach [17, Sec. 6.4] based on interpolation with a number parameter. Apparently, their
methods may admit a generalization to the case of function interpolation parameters.

An analog of Main Theorem is also true for the many-dimensional case, when the
parabolic problem is given in a cylinder situated in R

n+1, with n ≥ 2. This analog can
be deduced from M. S. Agranovich and M. I. Vishik’s result [4, Theorem 11.1] by means
of interpolation with a function parameter.

The above-mentioned applications and generalizations of Main Theorem will be pub-
lished elsewhere.
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