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REMARKS ON SCHRÖDINGER OPERATORS WITH SINGULAR

MATRIX POTENTIALS

VLADIMIR MIKHAILETS AND VOLODYMYR MOLYBOGA

Abstract. In this paper, an asymmetric generalization of the Glazman–Povzner–
Wienholtz theorem is proved for one-dimensional Schrödinger operators with strongly

singular matrix potentials from the space H
−1
loc

(R,Cm×m). This result is new in the
scalar case as well.

1. Introduction and main results

Let us consider, in the complex separable Hilbert space of vector-valued functions
L2(R,Cm), m ∈ N, the operators generated by the formal differential expression

(1) l[u] := −u′′ + qu, u = (u1, . . . , um),

where the matrix potential q = {qij}
m
i,j=1 belongs to the Sobolev negative class H−1

loc (R,

C
m×m). Without loss of generality, we assume that the potential q in (1) can be presented

in the form

q = Q′ + s, Q ∈ L2
loc(R,C

m×m), s ∈ L1
loc(R,C

m×m),

where the derivative is understood in the distribution sense. Then the block Shin–Zettl
matrices are defined by

(2) A(x) :=

(

Q Im
−Q2 + s −Q

)

∈ L1
loc

(

R,C2m×2m)
)

,

where Im is a unit (m × m)-matrix. Similarly to the scalar case [15, 7], Shin–Zettl
matrices define the quasiderivatives [13]

u[0] := u, u[1] := u′ −Qu, u[2] :=
(

u[1]
)′

+Qu[1] +
(

Q2 − s
)

u.

Then formal differential equation (1) is quasidifferential,

l[u] := −u[2], Dom(l) :=
{

u
∣

∣

∣
u, u[1] ∈ ACloc(R,C

m)
}

,

where by ACloc(R,C
m) we denote the class of locally absolutely continuous vector-valued

functions. This definition is motivated by the fact that

−u[2] = −u′′ + qu

in the distribution sense, i. e.,

〈−u[2], ϕ〉 = 〈−u′′ + qu, ϕ〉, u ∈ Dom(l), ϕ ∈ C∞
0 (R,Cm).

We say that a function u solves the Cauchy problem

l[u] = f, f ∈ L1
loc(R,C

m),(3)

u(x0) = c0, u[1](x0) = c1, x0 ∈ R, c0, c1 ∈ C
m,(4)
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if u is the first coordinate of the vector-valued function solving the Cauchy problem for
the associated Cauchy problem with initial conditions (4)

(5)
d

dx

(

u

u[1]

)

= A(x)

(

u

u[1]

)

+

(

0
−f

)

.

An existence and uniqueness theorem implies that the Cauchy problem for system (5)
has a unique solution (see [14, Theorem 16.1] and [17, Theorem 2.1]). Therefore our
definition of a solution of the equation (3) is correct.

Differential expression (1) gives rise to associated maximal and preminimal operators
L and L00 in the Hilbert space L2(R,Cm),

Lu := l[u], Dom(L) :=
{

u ∈ L2(R,Cm)
∣

∣

∣
u, u[1] ∈ ACloc(R,C

m), l[u] ∈ L2(R,Cm)
}

,

and

L00u := l[u], Dom(L00) := {u ∈ Dom(L) | suppu ⋐ R} .

The block Shin–Zettl matrix (2) defines a Lagrange adjoint quasidifferential expression
l+ in the following way:

v{0} := v, v{1} := v′ −Q∗v, v{2} :=
(

v{1}
)′

+Q∗v{1} +
(

(Q∗)2 − s∗
)

v,

l+[v] := −v{2}, Dom(l+) :=
{

v
∣

∣

∣
v, v{1} ∈ ACloc(R,C

m)
}

,

where the matrix Q∗ := Q
T
is Hermitian conjugate to Q. The matrix s∗ has the similar

meaning.
The quasidifferential expression l+ gives rise to associated maximal and preminimal

operators L+ and L+
00,

L+v := l+[v],

Dom(L+) :=
{

v ∈ L2(R,Cm)
∣

∣

∣
v, v{1} ∈ ACloc(R,C

m), l+[v] ∈ L2(R,Cm)
}

,

and

L+
00v := l+[v], Dom(L+

00) :=
{

v ∈ Dom(L+) | supp v ⋐ R
}

.

Below we prove (Proposition 7) that the preminimal operators L00, L+
00 are densely

defined in the space L2(R,Cm) and have closures L0 and L+
0 which are called minimal

operators. Maximal operators L and L+ are closed.
For the case where the potential q is a real-valued symmetric matrix, such operators

were earlier considered in [13]. Matrix Schrödinger operators with strongly singular
self-adjoint potentials of Miura class were investigated in detail in [2]. These references
contain a more detailed review and a more extensive bibliography. For the scalar case of
quasidifferential operators generated by Shin–Zettl matrices in a general form, one can
find a review of results in [4], see also [8, 18].

Recall that an operator A on a Hilbert space H is called accretive if

Re 〈Au, u〉H ≥ 0, u ∈ Dom(A).

If, in addition, the left half-plane {λ ∈ C | Reλ < 0} belongs to the resolvent set of
the operator A, then the operator A is called m-accretive [10, 16]. This operator is also
maximal accretive in the sense that it has no accretive extensions in the space H. If an
operator A is m-accretive, then the operator −A generates a semigroup of contractions
in the space H. The converse is also true.

The main result of this paper is a non-symmetric generalization of the Glazman–
Povzner–Wienholtz theorem for the operators generated by differential expression (1).
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Theorem 1. The operator L0 is m-accretive if and only if preminimal operators L00 and

L+
00 are accretive. In this case, L0 = L.

Note that in this theorem we assume both preminimal operators L00 and L+
00 to be

accretive. In the scalar case, one of these operators being accretive implies that other is
also accretive.

Corollary 2. (Cf. [5]). If the matrix potential q is self-adjoint, Q = Q∗ and s = s∗,

then the operator L0 is symmetric. Moreover, if the operator L0 is bounded from below,

then it is self-adjoint and L0 = L.

For m = 1 this is known [1, Remark III.2], see also [3, 9, 11].

Remark 3. If the complex matrices Q and s are symmetric, i. e., Q = QT , s = sT , then
Theorem 1 can be strengthened. Since the operator L00 is accretive, the operator L0 is
maximal accretive and its residual spectrum is empty.

In particular, this condition is satisfied in the scalar case, when m = 1. In this case,
the operators L00 and L+

00 are obviously accretive if the real part of the potential q is
positive in the sense of distributions. This condition is equivalent to

q = µ+ iν,

where µ is a nonnegative Radon measure on a locally compact space R and ν is a real-
valued distribution from H−1

loc (R,C
m×m).

The paper is organized as follows. In Section 2, we introduce notations used in the
paper and thoroughly investigate properties of the operators L, L0 and L+, L+

0 (Propo-
sition 7). Section 3 contains proofs of the main Theorem 1, Corollary 2 and Remark 3.

2. Properties of the minimal and maximal operators

In this paper, we use the following notations. We denote by (· , ·)
Cm the inner product

in the space C
m,

(u, v)
Cm :=

m
∑

i=1

uivi, u = (u1, . . . , um), v = (v1, . . . , vm) ∈ C
m.

We denote by 〈· , ·〉L2(R,Cm) the inner product in the Hilbert space of square-integrable

vector-valued functions L2(R,Cm),

〈u, v〉L2(R,Cm) :=

∫

R

(u, v)Cmd x.

For an arbitrary matrix A = {aij}
m
i,j=1 ∈ C

m×m, we denote the transposed matrix by

AT = {aTij}
m
i,j=1 and the Hermitian conjugate matrix by A∗ = {a∗ij}

m
i,j=1: a

∗
ij = aji. For

an arbitrary complex number a ∈ C, we denote the corresponding complex conjugate
number by a.

We say that a matrix-valued function A(x) = {aij(x)}
m
i,j=1 belongs to the space

L
p
loc(R,C

m×m), if each element of this matrix aij(x) belongs to the space L
p
loc(R,C),

p ∈ [1,∞).
J. Weidmann [17] previously studied in detail the quasidifferential matrix-valued Sturm–

Liouville operators generated by quasidifferential expressions τ ,

τ [u] := −(u′ −Qu)′ −Q∗(u′ −Qu)− (Q∗Q− s)u,

Q ∈ L2
loc(R,C

m×m), s ∈ L1
loc(R,C

m×m), s = s∗.

In this case, the preminimal operators generated by the quasidifferential expressions τ

are symmetric [17, Theorem 3.1].
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Obviously, if the matrices Q = Q∗ and s = s∗ are self-adjoint, then the operators
generated by the quasidifferential expressions τ and the operators generated by the qua-
sidifferential expressions l and l+ coincide.

The following properties of the operators L, L0, L00 and L+, L+
0 , L

+
00 we state without

a proof, since they are proved in the same way as the properties of operators generated
by the quasidifferential expressions τ [17].

Lemma 4. For arbitrary vector-valued functions u ∈ Dom(L), v ∈ Dom(L+) and an

arbitrary bounded line segment [a, b], we have

∫ b

a

(l[u], v)
Cm d x−

∫ b

a

(

u, l+[v]
)

Cm
d x = [u, v]ba,

where

[u, v](t) ≡ [u, v] :=
(

u, v{1}
)

Cm

−
(

u[1], v
)

Cm

,

[u, v]ba := [u, v](b)− [u, v](a), −∞ ≤ a ≤ b ≤ ∞.

Lemma 5. For arbitrary vector-valued functions u ∈ Dom(L) and v ∈ Dom(L+), the
following limits exist and are finite:

[u, v](−∞) := lim
t→−∞

[u, v](t), [u, v](∞) := lim
t→∞

[u, v](t).

Lemma 6. (Generalized Lagrange identity). For arbitrary vector functions u ∈ Dom(L)
and v ∈ Dom(L+), the following relation holds:

∫ ∞

−∞

(l[u], v)
Cm d x−

∫ ∞

−∞

(l[u], v)
Cm d x = [u, v]∞−∞.

Proposition 7. The operators L, L00 and L+, L+
00 have the following properties:

10. The operators L00 and L+
00 are densely defined in the Hilbert space L2(R,Cm).

20. The equalities

(L00)
∗
= L+,

(

L+
00

)∗
= L

hold. In particular, the operators L, L+ are closed and the operators L00, L
+
00

are closable.

30. Domains of the operators L0, L
+
0 may be described in the following way:

Dom(L0) =
{

u ∈ Dom(L)
∣

∣ [u, v]∞−∞ = 0 ∀v ∈ Dom(L+)
}

,

Dom(L+
0 ) =

{

v ∈ Dom(L+)
∣

∣ [u, v]∞−∞ = 0 ∀u ∈ Dom(L)
}

.

40. The following inclusions take place:

Dom(L) ⊂ H1
loc(R,C

m), Dom(L+) ⊂ H1
loc(R,C

m).

For the case m = 1 the results of this section are established in [12].

3. Proofs

The following lemma is proved by a direct calculation.

Lemma 8. For arbitrary vector-valued functions u ∈ Dom(L), v ∈ Dom(L+), and func-

tions ϕ ∈ C∞
0 (R,C) we have

i) l[ϕImu] = ϕIml[u]− ϕ′′Imu− 2ϕ′Imu′, ϕImu ∈ Dom(L00);

ii) l+[ϕImv] = ϕIml+[v]− ϕ′′Imv − 2ϕ′Imv′, ϕImv ∈ Dom(L+
00).
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Proof of Theorem 1. Sufficiency. Due to the assumptions of the theorem, the minimal
operators L0 and L+

0 are accretive. Without loss of generality we assume that the fol-
lowing inequalities hold:

Re 〈L0u, u〉L2(R,Cm) ≥ 〈u, u〉L2(R,Cm) , u ∈ Dom(L0),

and

(6) Re
〈

L+
0 v, v

〉

L2(R,Cm)
≥ 〈v, v〉L2(R,Cm) , v ∈ Dom(L+

0 ).

To prove that the minimal operator L0 id m-accretive, it suffices to show that the
kernel of the operator L+ contains only the zero element.

Let v be a solution to the equation

L+v = 0.

We will show that v ≡ 0.
For an arbitrary function ϕ ∈ C∞

0 (R,R), due to Lemma 8, we have ϕImv ∈ Dom(L+
00).

Therefore, taking into account that l+[v] = 0, after some simple calculations we obtain

(7)
〈

L+
0 ϕImv, ϕImv

〉

L2(R,Cm)
=

∫

R

(ϕ′)2(v, v)Cmd x+

∫

R

ϕϕ′ ((v, v′)Cm − (v′, v)Cm) d x.

Since

Re

∫

R

ϕϕ′ ((v, v′)Cm − (v′, v)Cm) d x = 0,

we obtain from (7), taking into account (6), that

(8)

∫

R

(ϕ′)2(v, v)Cmd x ≥

∫

R

(ϕ)2(v, v)Cmd x ∀ϕ ∈ C∞
0 (R,R).

Furthermore, let us take a sequence of functions {ϕn}n∈N which has the following pro-
perties:

i) ϕn ∈ C∞
0 (R,R);

ii) suppϕn ⊂ [−n− 1, n+ 1];
iii) ϕn(x) = 1, x ∈ [−n, n];
iv) |ϕ′

n(x)| ≤ C where C > 0 is an absolute constant.

Substituting in (8) we get
∫ n

−n

(v, v)Cmd x ≤

∫

R

ϕ2
n(v, v)Cmd x ≤

∫

R

(ϕ′
n)

2(v, v)Cmd x ≤ C2

∫

n≤|x|≤n+1

(v, v)Cmd x,

i. e.

(9)

∫ n

−n

(v, v)Cmd x ≤ C2

∫

n≤|x|≤n+1

(v, v)Cmd x.

Since v ∈ L2(R,Cm) passing in (9) to the limit as n → ∞, we obtain v ≡ 0.
Thus we have proved that the operator L0 is m-accretive.
In a similar way, one can prove that the operator L+

0 is m-accretive. Then taking
into account that an adjoint operator to an m-accretive operator is m-accretive [16,
Proposition 3.20], from property 20 of Proposition 7 we get that the maximal operator L
is also m-accretive. By the definition of maximal accretivity and [16, Proposition 3.24],
we have that L0 = L as L0 ⊂ L. Sufficiency is proved.

Necessity. Let us suppose that the operator L0 is m-accretive. Then taking into
account that an adjoint operator to an m-accretive operator is m-accretive [16, Proposi-
tion 3.20], from property 20 of Proposition 7 we get that the operator L+

0 is m-accretive.
Therefore the operators L00 and L+

00 are accretive. Necessity is proved.
The theorem is proved completely. �
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Proof of Corollary 2. One only needs to note that in the case of the self-adjoint potential
q, the preminimal operators L00 and L+

00 coincide and are symmetric, due to property 20

of Proposition 7 (see also [17, Theorem 3.1]). �

Proof of Remark 3. Note that in the case of complex symmetric matrix potentials, we
have

Q∗ = Q = {Qij}
m
i,j=1, s∗ = s = {sij}

m
i,j=1.

Then domains of the preminimal operators L00 and L+
00 are related by

u ∈ Dom(L00) ⇔ u ∈ Dom(L+
00).

Therefore accretivity of the operator L00 implies accretivity of the operator L+
00 and vice

versa.
Moreover, let J be an antilinear operator of complex conjugation. Then one may easy

verify that the following inclusion takes place:

JL0J = L+
0 ⊂ L+ = L∗

0,

that is, the operator L0 is J-symmetric [6]. If the operators L00 are accretive, then due
to Theorem 1 and property 20 of Proposition 7, the operator L0 is J-self-adjoint,

JL0J = L∗
0.

Therefore its residual spectrum is empty. �
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16. K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Graduate Texts in Mathe-
matics, 265, Springer, Dordrecht, 2012.

17. J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathemat-
ics, Vol. 1258, Springer-Verlag, Berlin, 1987.

18. A. Zettl, Formally self-adjoint quasi-differential operator , Rocky Mountain J. Math. 5 (1975),
453–474.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka,

Kyiv, 01601, Ukraine

E-mail address: mikhailets@imath.kiev.ua

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka,

Kyiv, 01601, Ukraine

E-mail address: molyboga@imath.kiev.ua

Received 17/01/2013


