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INDEFINITE MOMENT PROBLEM AS AN ABSTRACT

INTERPOLATION PROBLEM

EVGEN NEIMAN

Abstract. Indefinite moment problem was considered by M. G. Krein and H. Langer
in 1979. In the present paper the general indefinite moment problem is associated

with an abstract interpolation problem in generalized Nevanlinna classes. To prove
the equivalence of these two problems we investigate the structure of de Branges
space H(m) associated with a generalized Nevanlinna function m.

A general formula for description of the set of solutions of indefinite moment
problem is found. It is shown that the Kein-Langer description can be derived from
this formula by a special choice of biorthogonal system of polynomials.

1. Introduction

The classical moment problem consists in finding a measure σ on the real line R with
given moments sk ∈ R,

(1.1)

∫ ∞

−∞

tkdσ(t) = sk (k = 0, 1, . . .).

This problem was studied by T. Stieltjes, H. Hamburger, M. Riesz, R. Nevanlinna and
others. As is known the necessary condition for the solvability of the moment prob-
lem (1.1) is the nonnegativity of Hankel matrices Dn := (sj+k)

n−1
j,k=0 for every n ∈ N∪{0}.

A connection of this problem to some multiple interpolation problem at ∞ was found
by Hamburger in 1920 where it was shown that σ is a solution to the classical moment
problem (1.1) if and only if its associated function

(1.2) m(λ) =

∫

R

dσ(t)

t− λ

admits the following asymptotic expansion:

(1.3) m(λ) ∼ −
s0
λ

−
s1
λ2

−
s2
λ3

− · · · , λ→̂∞.

The notation λ→̂∞ means that λ tends to ∞ nontangentially remaining inside a sector
δ < arg λ < π − δ (δ > 0).

The function m in (1.2) belongs to the class N of functions holomorphic in the upper
half-plane C+ and having there a nonnegative imaginary part. Let us say that a mero-
morphic function m with the domain of holomorphy h+m in C+ belongs to the class Nκ

(κ ∈ Z+) if the kernel

(1.4) N
m
µ (λ) =

m(λ)−m(µ)∗

λ− µ̄
(λ, µ ∈ h+m)
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INDEFINITE MOMENT PROBLEM 169

has κ negative squares in h+m, that is for arbitrary set µj ∈ h+m (j = 1, 2, . . . , n) the form

n∑

i,j=1

N
m
µj
(µi)ξjξi

has at most κ negative squares and for some choice of the set {µj}
n
j=1 it has exactly κ

negative squares ([3]).
Indefinite moment problem was considered in 1979 by M. G. Krein and H. Langer

[22]. It was formulated as an interpolation problem:
Problem MPκ(s). Given is a sequence of real numbers s = {sj}

∞
j=0. Find a function

m ∈ Nκ, such that (1.3) holds.
Denote by Hκ the class of real sequences s = {sj}

∞
j=0, such that the Hankel matrices

Dn have exactly κ negative eigenvalues for all n large enough. As was shown in [22] the
problem MPκ(s) is solvable for every s ∈ Hκ. This problem is called determinate, if it
has a unique solution and indeterminate, otherwise. In what follows we suppose that

(I) the problem MPκ(s) is indeterminate.

The set of solutions of indeterminate moment problem was described in [22] by the
methods of extension theory. In the present paper we will consider an abstract interpo-
lation problem (AIPκ), associated with the problem MPκ(s) and derive the description
of solutions of AIPκ. The problem AIPκ in generalized Nevanlinna classes was studied
in [25] (see [10] for Nevanlinna classes case). The solution of this problem is based on
the ideas of AIP in Schur classes developed in [17]. We will apply methods of AIPκ to
the MPκ(s).

Define a sesquilinear formK(·, ·) on the set X = C[λ] of polynomials h(λ) =
∑n

j=0 hjλ
j

(n = 0, 1, 2, . . .) by the formula

(1.5) K(h, h) =

n∑

j,k=0

sj+khjhk.

Since the sequence of numbers {sj}
∞
0 belongs to the class Hκ then the form K(·, ·) has

κ negative squares. A standard procedure of closure of the space X with respect to the
inner product (1.5) leads to a Pontryagin space H (see [5] for the definition of Pontryagin
space).

Let {fk}
∞
k=0 be the basis in the space C[x]. The basis {gk}

∞
k=0 is called biorthogonal

to {fk}
∞
k=0 with respect to the form K(·, ·), if

(1.6) K(fj , gk) = δjk (j, k = 0, 1, . . .).

The system of adjacent polynomial {g̃k(λ)}
∞
k=0 is defined by equalities

(1.7) g̃k(λ) = K

(
gk(t)− gk(λ)

t− λ
,1

)
(k = 0, 1, . . .).

Define the matrix value function Θ(λ) =

[
θ11(λ) θ12(λ)
θ21(λ) θ22(λ)

]
∈ C

2×2 by the formula

(1.8)

θ11(λ) = 1 + λ

∞∑

k=0

f̃k(λ)gk(0)
∗
, θ12(λ) = λ

∞∑

k=0

f̃k(λ)g̃k(0)
∗
,

θ21(λ) = −λ

∞∑

k=0

fk(λ)gk(0)
∗
, θ22(λ) = 1− λ

∞∑

k=0

fk(λ)g̃k(0)
∗
.

Now we can describe the set of solutions of the problem MPκ(s).
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Theorem 1.1. Let the sequence s = {sj}
∞
j=0 belongs to Hκ. Define the inner product

K(·, ·) on the set C[x] by the formula (1.5). Let {fk(λ)}
∞
k=0 and {gk(λ)}

∞
k=0 be biorthogo-

nal bases with respect to the form K and let the matrix function Θ(λ) be defined by (1.8).
Then the formula

(1.9) m(λ) =
(
θ11(λ)ϕ(λ) + θ12(λ)

)(
θ21(λ)ϕ(λ) + θ22(λ)

)−1

establishes a one-to-one correspondence between the set of all solutions m(λ) of the prob-

lem MPκ(s) and the set of ϕ ∈ Ñ = N ∪ {∞}.

The matrix valued function Θ(λ) mentioned above turns out to be a resolvent matrix
(up to a J-inner factor) of some symmetric operator constructed by the data of AIPκ.
An explicit formula for the resolvent matrix of a symmetric operator in a Pontryagin
space can be found in [9] (see also [14] for the Hilbert space case).

We show that the set of solutions of MPκ(s) coincides with the set of solutions of an
abstract interpolation problem AIPκ, associated with MPκ(s). We have used methods
of reproducing kernel Pontryagin spaces. In particular, a general form of the space H(m)
with the reproducing kernel Nm

µ (λ) of the form (1.4) for the functionm ∈ Nκ is found (see
Theorem 3.3). This representation of the space H(m) is used in order to reformulate the
asymptotic formula (1.3) form ∈ Nκ in terms of the space H(m) (see Lemma 3.4). In [18]
the classical and truncated moment problem were studied by the method of transformed
Potapov’s fundamental matrix inequality (see also [17]).

The paper is organized as follows. In Section 2 we recall the main results of the
theory of generalized Nevanlinna functions and also present a description of the set of
solutions of an abstract interpolation problem. In Section 3 we describe the space H(m).
In Section 4 the problem AIPκ corresponding to the problem MPκ(s) is constructed. In
Sections 5 the equivalence of these problems is shown. In Section 6 the main result of this
paper (Theorem 1.1) is proved. Also a specific algorithm for constructing biorthogonal
bases with respect to the form K(·, ·) is presented. In Appendix an auxiliary statement
(Lemma 3.4) is proved.

2. Preliminaries

2.1. Abstract interpolation problem. We present a scalar analogue of an abstract
interpolation problem (AIP) which was considered by the author in [25].

Let X be a complex linear space, let B1, B2 be linear operators in X , let C1, C2 be
linear operators from X to C and let K be a nondegenerate sesquilinear form on X .
Denote by ν−(K) the number of negative squares of K. Define the Pontryagin space H
as the completion of X endowed with the inner product

(2.1) 〈h, g〉H = K(h, g), h, g ∈ X .

We identify the linear operators B1, B2 : X → X with the linear operators B1, B2 :
X → H.

Let H(m) be the reproducing kernel Pontryagin space (RKPS) with the reproducing
kernel Nm

µ (λ) defined by (1.4) (see [6], [4]). This space is characterized by the properties

(1) N
m
µ (·) ∈ H(m) for all µ ∈ h+m;

(2) for every f ∈ H(m) the following identity holds

(2.2)
〈
f(·),Nm

µ (·)
〉
H(m)

= f(µ) (µ ∈ h+m).

Problem AIPκ(B1, B2, C1, C2,K). Let the data set (B1, B2, C1, C2,K) satisfy the
assumptions

(A1) K(B2h,B1g)−K(B1h,B2g) = (C1h,C2g)C − (C2h,C1g)C ∀h, g ∈ X ;
(A2) kerK = {0}, where kerK = {h ∈ X : K(h, g) = 0 ∀g ∈ X};
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(A3) B2 = IX and the operators B1 : X ⊆ H → H, C1, C2 : X ⊆ H → L are bounded;
(A4) for some choice of λj ∈ C+ (j = 1, . . . , κ) the following condition holds:

ker
[
C∗

2 (1− λ1B
∗
1)

−1C∗
2 (1− λ2B

∗
1)

−1C∗
2 · · · (1− λκB

∗
1)

−1C∗
2

]
= {0}.

Find a functionm(λ) from the class Nκ such that for some linear mapping F : X → H(m)
the following conditions hold:

(C1) (FB2h)(λ)− λ(FB1h)(λ) =
[
1 −m(λ)

] [ C1h
C2h

]
for all h ∈ X ;

(C2) 〈Fh, Fh〉H(m) ≤ K(h, h) for all h ∈ X .

Note that the condition ν−(K) ≤ κ is necessary for the solvability of AIPκ (see [25,
Remark 3.1]). Define the 2× 2 matrix function Θ(λ) by the formula

(2.3) Θ(λ) =

[
θ11(λ) θ12(λ)
θ21(λ) θ22(λ)

]
= IC⊕C − λ

[
C1

C2

]
(1− λB1)

−1
[
−C∗

2 C∗
1

]
.

The main result of the paper [25] is the following description of all solutions of the
AIPκ.

Theorem 2.1. Let the data set (B1, B2, C1, C2,K) satisfy the assumptions (A1)–(A4),
κ = ν−(K), and let Θ(λ) be defined by (2.3). Then the formula

(2.4) m(λ) =
(
θ11(λ)ϕ(λ) + θ12(λ)

)(
θ21(λ)ϕ(λ) + θ22(λ)

)−1
,

establishes a one-to-one correspondence between the set of all solutions m(λ) of the prob-

lem AIPκ(B1, B2, C1, C2,K) and the set of ϕ ∈ Ñ = N ∪{∞}, such that the function m
defined by the formula (2.4) belongs to the class Nκ.

Remark 2.2. Let the data set (B1, B2, C1, C2,K) satisfy the assumptions (A1)–(A4).
Then the mapping F : X → H(m) in (C1) is uniquely defined by the formula

(2.5) (Fh)(λ) =
[
1−m(λ)

]
G(λ)h (λ ∈ O, h ∈ X ),

where O is a nonempty neighborhood of the point 0 and

(2.6) G(λ) =

[
C1

C2

]
(1− λB1)

−1 (λ ∈ O).

Remark 2.3. It follows from (A1) that the linear relation

(2.7) A :

[
B1h
C1h

]
→

[
B2h
C2h

]
(h ∈ X )

is symmetric inH⊕C. The statement of Theorem 2.1 was obtained in [25] by the methods
of extension theory of isometric operators. Namely, the problem of describing the set of
solutions of AIPκ(B1, B2, C1, C2,K) was reduced to the description of all C-resolvents
of a symmetric linear relation A. The formula (2.3) for the solution matrix was derived
from the results of works [14], [15] and [9], where the formula for the C-resolvent matrix
was obtained in terms of the boundary triplet for the symmetric lineal relation.

2.2. Classes of Nevanlinna functions. As is known (see [2, §69, Theorem 2]) every
function from the class N admits the integral representation

(2.8) m(λ) = a+ bλ+

∫ ∞

−∞

(
1

t− λ
−

t

1 + t2

)
dσ(t),

where a, b are real constants such that b ≥ 0 and σ(t) is a right continuous non-decreasing
function such that

(2.9)

∫ ∞

−∞

dσ(t)

1 + t2
<∞.
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Define a subclass N0 of functions m0 ∈ N , which admit the integral representation

(2.10) m0(λ) =

∫

R

dσ(t)

t− λ

with a bounded non-decreasing function σ(t). Note that each function m of the class N
satisfies the condition m(λ) = O(λ) for λ→̂∞. As is known (see [2, §69 Theorem 3]) the
function m0 ∈ N belongs to the class N0, if and only if m0(λ) = O( 1

λ
) for λ→̂∞.

It follows from Hamburger-Nevanlinna Theorem (see [1, Theorem 3.2.1]) that the
function m0 ∈ N0 of the form (2.10) admits an asymptotic expansion

(2.11) m0(λ) = −
s00
λ

−
s01
λ2

−
s02
λ3

− · · · , λ→̂∞,

where s0j ∈ R, if and only if the next relations hold

(2.12)

∫ ∞

−∞

tjdσ(t) = s0j (j = 0, 1, . . .).

Remark 2.4. It follows from the relations (2.12) that any polynomial belongs to the space
L2(dσ).

3. Description of the space H(m)

Recall the known de Branges result about description of the space H(m0), where
m0 ∈ N .

Theorem 3.1. ([6, Theorem 5]). Let the function m0 belong to N and admit the integral
representation (2.8). Then

(i) the space H(m0) coincides with the set of functions

H(m0) =

{
c+

∫ ∞

−∞

f(t)

t− λ
dσ(t), c ∈ C, f(t) ∈ L2(dσ)

}
.

(ii) If, in addition, the function m0 belongs to N0 and admits the integral represen-
tation (2.10), then

(3.1) H(m0) =

{∫ ∞

−∞

f(t)

t− λ
dσ(t), f(t) ∈ L2(dσ)

}
.

Let p(λ) = p0λ
n + p1λ

n−1 + · · · + pn−1λ + pn be a polynomial of degree n. Define
p#(λ) by

p#(λ) := p(λ)
∗
= p0λ

n + p1λ
n−1 + · · ·+ pn−1λ+ pn.

Theorem 3.2. ([16], [11]). Any function m ∈ Nκ admits a factorization

(3.2) m(λ) =
p(λ)p#(λ)

q(λ)q#(λ)
m0(λ),

where p and q are uniquely defined coprime monic polynomials and m0 ∈ N . In this case

max
{
deg(p), deg(q)

}
= κ.

Let a rational function r be defined by

(3.3) r(λ) :=
p(λ)

q(λ)
, r#(λ) :=

p#(λ)

q#(λ)
.

Then the formula (3.2) can be rewritten as

(3.4) m(λ) = r(λ)m0(λ)r
#(λ).
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Let p, q be polynomials, let κ = max{deg p, deg q} and let the coefficients bij be defined
by the expansion

p(x)q(y)− p(y)q(x)

x− y
=

κ−1∑

i,j=0

bijx
iyj .

The matrix Bp,q :=
(
bij

)κ−1

i,j=0
is called the bezutiant of polynomials p and q (see [23]).

The bezutiant Bp,q is an invertible matrix, if p and q are coprime polynomials.
Denote the vector-functions

Λ := Λκ = (1, λ, λ2, . . . , λκ−1), M :=Mκ = (1, µ, µ2, . . . , µκ−1).

LetH(m) be a reproducing kernel Pontryagin space with the reproducing kernel Nm
µ (λ)

where m ∈ Nκ. Next we will describe the space H(m) (compare with [11, Proposi-
tion 3.1]).

Theorem 3.3. Let m ∈ Nκ have the factorization (3.2). Then the space H(m) coincides
with the space H of functions

(3.5) f(λ) = r(λ)f0(λ) +
1

q(λ)
ϕ1(λ) +

r(λ)

q#(λ)
m0(λ)ϕ2(λ),

where f0 ∈ H(m0) and ϕ1, ϕ2 are arbitrary polynomials of formal degree κ− 1.

Proof. Every function f of the form (3.5) can be represented as

(3.6) f(λ) =

[
r(λ) 1

q(λ)
Λ

r(λ)

q#(λ)
m0(λ)Λ

]

f0
f (1)

f (2)


 ,

where f0 ∈ H(m0) and f
(1), f (2) ∈ C

κ. Let the inner product in H be defined by

(3.7) 〈f, f〉H = (f0, f0)H(m0) + F∗B−1F ,

where

F =

[
f (1)

f (2)

]
∈ C

2κ, B =

[
0 Bp,q

B∗
p,q 0

]
.

In particular, the function N
m
µ (λ) takes the form for every µ ∈ h+m

N
m
µ (λ) =

[
r(λ) 1

q(λ)
Λ

r(λ)

q#(λ)
m0(λ)Λ

]

1 0 0
0 0 Bpq

0 B∗
pq 0







r#(µ)Nm0

µ (λ)
1

q#(µ)
M∗

r#(µ)m0(µ)
q(µ)

M∗


 .

Clearly, H is a Pontryagin space with negative index κ. Moreover, H is RKPS with the
kernel Nm

µ (λ), since for every function f of the form (3.6) one gets

〈
f(·),Nm

µ (·)
〉
H

=
(
f0(·),N

m0

µ (·)r#(µ)
)
H(m0)

+

[
1

q(µ)
M m∗

0(µ)
r(µ)

q#(µ)
M

]
B∗B−1F

= r(µ)f0(µ) +
1

q(µ)
ϕ1(µ) +m0(µ)

r(µ)

q#(µ)
ϕ2(µ),

where ϕj(µ) = Mf (j) (j = 1, 2). This proves the reproducing kernel property for the
space H. Therefore, H coincides with H(m). �
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3.1. Some properties of the space H(m).

Lemma 3.4. Let j ∈ Z+ then a function m ∈ Nκ satisfies the condition

(3.8) m(λ) = −
s0
λ

−
s1
λ2

−
s2
λ3

− · · · −
sj−1

λj
+O

( 1

λj+1

)
(λ→̂∞)

if and only if

(3.9) λjm(λ) + s0λ
j−1 + s1λ

j−2 + · · ·+ sj−1 ∈ H(m).

Proof. A proof of Lemma 3.4 is in Appendix. �

Corollary 3.5. Let a function m ∈ Nκ satisfies m(λ) = O(1/λ) for λ→̂∞. Define a
kernel Km

µ (λ) by the formula

(3.10) K
m
µ (λ) =

λm(λ)− µm(µ)

λ− µ
(λ, µ ∈ hm).

Then

(3.11) K
m
µ (λ) ∈ H(m).

Proof. The relation (3.11) is implied by the identity

(3.12) K
m
µ (λ) = m(λ) + µNm

µ (λ).

The inclusionm ∈ H(m) is proved in Lemma 3.4 and the inclusion N
m
µ ∈ H(m) follows

from the definition of RKPS. �

4. Problem AIPκ associated with MPκ(s)

Let X = C[x] be the space of polynomials h(x) =
∑n

j=0 hjx
j(n = 0, 1, 2, . . .). Let a se-

quence s = {sj}
∞
0 ∈ Hκ be given. Define a sesquilinear form K(·, ·) by the formula (1.5).

Define the operators B1, B2 and C1, C2 by the equalities (cf. [19], [10])

(4.1)

B1, B2 : X → X , B1h =
h(x)− h(0)

x
, B2h = h,

C1, C2 : X → C, C1h =

n∑

j=1

sj−1hj , C2h = −h(0).

We will show that the data set (B1, B2, C2, C2,K) satisfies the assumptions (A1)–(A4)
but first we state some useful properties.

Proposition 4.1. The definition (4.1) of C1 can be rewritten as

(4.2) C1h = h̃(0),

where the adjacent polynomial h̃ is defined by

(4.3) h̃(λ) = K

(
h(x)− h(λ)

x− λ
,1

)
.

Proof. Indeed, since

h(x)− h(0)

x
=

n∑

j=1

hjx
j−1,

then

h̃(0) = K
( n∑

j=1

hjx
j−1,1

)
=

n∑

j=1

sj−1hj = C1h.

�
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Proposition 4.2. Let operators B1, C1, C2 be defined by (4.1). Then the following
relations hold:

(4.4) (I − λB1)
−1h =

xh(x)− λh(λ)

x− λ
(h ∈ X ),

(4.5) C1(I − λB1)
−1h = h̃(λ), C2(I − λB1)

−1h = −h(λ),

where the adjacent polynomial h̃ is defined by (4.3).

Proof. Let f ∈ X . Then

(4.6) (I − λB1)f(x) = f(x)− λ
f(x)− f(0)

x
=: h(x).

Substituting x = λ in equation (4.6), one obtains f(0) = h(λ). It follows from (4.6) that

(4.7) f(x) =
xh(x)− λh(λ)

x− λ
.

This proves the equation (4.4).
Formulas (4.5) and (4.1) yield

C2(1− λB1)
−1h = C2f = −f(0) = −h(λ).

Similarly, formulas (4.5) and (4.2) yield

C1(1− λB1)
−1h = C1f = f̃(0)

= K
(f(x)− f(0)

x
,1

)
= K

(h(x)− h(λ)

x− λ
,1

)
= h̃(λ).

�

Proposition 4.3. The data set (B1, B2, C1, C2,K) satisfies the assumptions (A1)–(A4).

Proof. The assumption (A1) is checked by straightforward calculations.
(A2). We will prove (A2) by contradiction. Assume that kerK 6= 0. Then there is a

polynomial h(x) of degree n such that K(h, u) = 0 for any polynomial u ∈ C[x]. Hence
the Hankel matrix Dn := {sj+k}

n
j,k=0 is degenerate (detDn = 0). Since the problem

MPκ (1.3) is solvable, then by [13, Theorem 1.3] the solution to this problem is unique.
But this contradicts to the assumption (I). So kerK = {0}.

(A3). Let H be the completion of the space X endowed with the inner product K(·, ·).
Let M0 be a multiplication operator in X and let the operator M be the closure of M0

in H. As follows from [22, Proposition 1.1] the operator M is an entire π-symmetric
operator in H with the scale L = C.

Let B̃1 be the closure of the graph of B1

B̃−1
1 = {{h,Mh+ u} : h ∈ domM, u ∈ C}.

Since the operator M is entire with the scale L = C, then 0 ∈ ρ(M,C) and

ran B̃−1
1 = ranM+̇C = H, ker B̃−1

1 = ranM ∩ C = {0}.

Hence B̃1 is the graph of a bounded operator in H.
The boundedness of the operator C1 follows from the already proved boundedness of

the operator B1 and Proposition 4.1. Indeed

C1h = K(
h(x)− h(0)

x
,1) = 〈B1h,1〉H.

The operator C2 is bounded since 0 ∈ ρ(M,C) and

C2h = −PM,C(0)h,

where PM,C(0) is a skew projection on the space C in the decomposition H = ranM+̇C.
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(A4). Now we show that the data set (B1, B2, C1, C2) satisfies the condition (A4). It
is sufficient to show that the next formula holds for different points λj ∈ C+ (j = 1, . . . , κ)

(4.8) ran




C2

C2(1− λ1B1)
−1

...

C2(1− λκB1)
−1


 = C

κ+1.

As follows from the relation (4.5)




C2

C2(1− λ1B1)
−1

...

C2(1− λκB1)
−1


 f =




−f(0)

−f(λ1)
...

−f(λκ)


 .

Since the polynomial f(x) is arbitrary we have gotten condition (4.8). �

The abstract interpolation problem AIPκ associated with MPκ(s) can be formulated
as follows.

Problem AIPκ(B1, B2, C1, C2,K). Let a sequence of real numbers s = {sj}
∞
j=0

belong to Hκ and let the property (I) hold. Let the data set B1, B2, C1, C2,K be defined
by (4.1) and let F be defined by (2.5). Find an Nκ function m(λ), such that

(C1) Fh ∈ H(m) for any h ∈ X ;
(C2) 〈Fh, Fh〉H(m) ≤ K(h, h) for any h ∈ X .

Proposition 4.4. Let s = {sj}
∞
j=0 ∈ Hκ and let the data set (B1, B2, C1, C2,K) be

defined by (4.1). Then the function m defined by (2.4) belongs to Nκ.

Proof. Let ϕ ∈ Ñ = N ∪{∞} and let m ∈ Nκ′ (κ′ ≤ κ, the case κ′ > κ is impossible) be

defined by (2.4). By [25, Theorems 4.13, 4.14] there is a selfadjoint extension Ã of the
linear relation A (in (2.7)), such that

(Fh)(λ) = PL(Ã− λ)−1h ∈ H(m) (h ∈ X )

and the mapping F : X → H(m) satisfies the identity (C1). On the other hand by
Remark 2.2 the mapping F takes the form (2.5), where G(λ) is defined by (2.6)

(Fh)(λ) =
[
1−m(λ)

] [C1

C2

]
(1− λB1)

−1h (h ∈ X ).

It follows from (4.1) and (4.4) that for h = xj

G(λ)h =

[
C1

C2

]
(xj + xj−1λ+ · · ·+ λj) =

[
s0λ

j−1 + s1λ
j−2 + · · ·+ sj−1

−λj

]
,

therefore

(4.9) (Fh)(λ) = λjm(λ) + s0λ
j−1 + s1λ

j−2 + · · ·+ sj−1 ∈ H(m) (h = xj).

It follows from Lemma 3.4 that the function m satisfies the decomposition (1.3). So from
[22, Proposition 1.3] one obtains, that m ∈ Nκ′ (κ′ ≥ κ). Therefore, m belongs to the
class Nκ. �
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5. Equivalence of problems AIPκ and MPκ(s)

Theorem 5.1. Let {sj} ∈ Hκ, let the data set (B1, B2, C1, C2,K) be defined by (4.1).
Then a function m is a solution of the problem AIPκ(B1, B2, C1, C2,K) if and only if
the function m is a solution of the problem MPκ(s).

Proof. Necessity. Let m ∈ Nκ be a solution of AIPκ(B1, B2, C1, C2,K). It follows
from Remark 2.2 that the mapping F corresponding to the function m is unique. This
mapping takes the form (2.5) and satisfies (4.9). It follows from Lemma 3.4 that the
function m has the asymptotic expansion (3.8) for every j ∈ Z+ and hence the function
m is a solution of MPκ(s).

Sufficiency. Let m ∈ Nκ be a solution of MPκ(s). Define a mapping F by the
formula (2.5).

Step 1. Let us show that F satisfies (C1). One gets from (4.9) and Lemma 3.4 that

Fh ∈ H(m) (h = xj , j ∈ Z+),

hence Fh ∈ H(m) for every h ∈ X .

Step 2. Let us show that the F satisfies (C2). Let Ã be a selfadjoint operator in
H(m) (see [24])

(5.1) Ã =
{
{f, f ′} ∈ H(ϕ,ψ)2 : f ′(λ)− λf(λ) ≡ const ∈ C

}
.

Define the functions

fj(λ) := λjm(λ) + λj−1s0 + λj−2s1 + · · ·+ sj−1 (j = 0, 1, . . .).

If follows from Lemma 3.4 that fj ∈ H(m) (j = 0, 1, . . .). Also the functions fj for
j = 0, 1, . . . satisfy the relation

fj+1(λ)− λfj(λ) ≡ sj = const.

So {fj , fj+1} ∈ Ã that is

(5.2) Ãfj = fj+1.

It follows from definition of RKPS H(m) and Corollary 3.5 that

N
m
µ (·) ∈ H(m) and K

m
µ (·) ∈ H(m).

Moreover, it follows from the identity (3.12) that
{
N

m
µ (·), Km

µ (·)
}
=

{m(λ)−m(µ)

λ− µ
, λ
m(λ)−m(µ)

λ− µ
+m(µ)

}
∈ Ã

and hence {
N

m
µ (·), m(·)

}
=

{
N

m
µ (·),Km

µ (·)− µNm
µ (·)

}
∈ Ã− µ.

This implies

(Ã− µ)−1m(·) = (Ã− µ)−1f0(·) = N
m
µ (·).

Then by the reproducing kernel property in H(m)
〈
(Ã− µ)−1f0(·), f0(·)

〉
H(m)

=
〈
N

m
µ (·),m(·)

〉
H(m)

= m(µ).(5.3)

Since m admits the asymptotic expansion (1.3) then f0 ∈ dom (Ãj) for every j ∈ N (see
[20, Satz 1.10], see also [12]) and

(5.4) 〈Ãjf0, f0〉H(m) = sj (j = 0, 1, . . .).

Since Ãjf0 = fj then

(5.5) 〈fj , fi〉H(m) = 〈Ãi+jf0, f0〉H(m) = si+j (i, j = 0, 1, 2, . . .).
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Hence one obtains for every h =
∑n

j=0 hjx
j ∈ X that Fh =

∑n

j=0 hjfj and by (5.5)

〈Fh, Fh〉H(m) =
〈 n∑

j=0

hjfj ,
n∑

j=0

hjfj

〉
H(m)

=

n∑

i,j=0

〈hifi, hjfj〉H(m) =

n∑

i,j=0

hihjsi+j = K(h, h).

�

Remark 5.2. Note that in the course of the proof of Theorem 5.1 we have shown the
Parseval equality

(5.6) 〈Fh, Fh〉H(m) = K(h, h) (∀h ∈ X ).

In the case κ = 0 the equality (5.6) was proved in [19].

6. Description of solutions of MPκ

We need the notion of biorthogonal bases to determine the matrix function Θ(λ) ∈
C

2×2 defined by (2.3). The bases {fk}
∞
k=0 and {gk}

∞
k=0 in C[x] are called biorthogonal

with respect to the form K(·, ·), if

K(fj , gk) = δjk (j, k = 0, 1, . . .),

where δjk = 0 for k 6= j and δjj = 1 (k, j = 0, 1, . . .). If the form K(·, ·) is nonnegative
then any orthonormal basis of polynomials is biorthogonal to itself. Construction of
biorthogonal bases in general will be given below.

Proposition 6.1. Let the bases {fk}
∞
k=0 and {gk}

∞
k=0 be biorthogonal with respect to the

form K(·, ·). Then the following relations hold for u ∈ C:

(6.1) C∗
1u =

∞∑

k=0

fk(·)g̃k(0)
∗
u, C∗

2u = −
∞∑

k=0

fk(·)gk(0)
∗
u.

Proof. Indeed, if follows from the expansion with basis {fk} of functions C∗
1 and C∗

2 and
the formulas (4.2), (4.1) that

(C∗
11)(λ) =

∞∑

k=0

fk(λ)
〈
C∗

11, gk(·)
〉
H

=

∞∑

k=0

fk(λ)
(
1, C1gk(·)

)
C
=

∞∑

k=0

fk(λ)g̃k(0)
∗
,

(C∗
21)(λ) =

∞∑

k=0

fk(λ)
〈
C∗

21, gk(·)
〉
H

=

∞∑

k=0

fk(λ)
(
1, C2gk(·)

)
C
= −

∞∑

k=0

fk(λ)gk(0)
∗
.

�

6.1. Proof of Theorem 1.1. Let the matrix valued function Θ(λ) be defined by (2.3).
It follows from (4.5) and (6.1) that

θ11(λ) = 1 + λC1(I − λB1)
−1

∞∑

k=0

fk(λ)gk(0)
∗
= 1 + λ

∞∑

k=0

f̃k(λ)gk(0)
∗
,

θ12(λ) = λC1(I − λB1)
−1

∞∑

k=0

fk(λ)g̃k(0)
∗
= λ

∞∑

k=0

f̃k(λ)g̃k(0)
∗
,

θ21(λ) = λC2(I − λB1)
−1

∞∑

k=0

fk(·)gk(0)
∗
= −λ

∞∑

k=0

fk(λ)gk(0)
∗
,

θ22(λ) = 1 + λC2(I − λB1)
−1

∞∑

k=0

fk(λ)g̃k(0)
∗
= 1− λ

∞∑

k=0

fk(λ)g̃k(0)
∗
,

(6.2)

and hence Θ(λ) coincides with the matrix valued function in (1.8).
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Let m be a solution of MPκ(s). Then by Theorem 5.1 the function m is a solution of

AIPκ(B1, B2, C1, C2,K) and hence it admits the representation (2.4) with ϕ ∈ Ñ .

Conversely let ϕ ∈ Ñ . Then the functionm defined by (2.4) belongs to Nκ by Proposi-
tion 4.4. Hence, by Theorem 2.1 the function m is a solution of AIPκ(B1, B2, C1, C2,K)
and by Theorem 5.1 the function m is also a solution of MPκ(s). �

In the case of κ = 0 the formulas (6.2) are identical to those in [1].

6.2. Description of solutions of MPκ(s) in the form of Krein-Langer. The set of
polynomials {gk}

∞
k=0 is called an almost-orthogonal system ([21, §7.1], see also [22, §3.1])

with respect to the form K(·, ·), if for each gk there exists gk′ with the properties

(i) K(gk, gj) = 0 for all j (j 6= k′);
(ii) K(gk, gk′) = ±1.

Put εk := K(gk, gk′) for k = 0, 1, . . .
It follows from [21, Behauptung 7.1]) that there exists an almost-orthogonal system

{gk}
∞
k=0 to the form K(·, ·) such that g0 ≡ 1 and gk is a real polynomial of degree k.

Therefore the basis {gk}
∞
k=0 and {εk′gk′}∞k=0 are biorthogonal with respect to the form

K(·, ·). So one obtains from the formula (1.8) that

θ11(λ) = 1 + λ

∞∑

k=0

εkg̃k(λ)gk′(0), θ12(λ) = λ

∞∑

k=0

εkg̃k(λ)g̃k′(0)

θ21(λ) = −λ

∞∑

k=0

εkgk(λ)gk′(0), θ22(λ) = 1− λ

∞∑

k=0

εkgk(λ)g̃k′(0),

where {g̃k(λ)}
∞
k=0 is the system of adjacent polynomial defined by the formula (1.7).

This description of solution of the problem MPκ(s) coincides with [22, Theorem 1.4]
(see also [21, Satz 7.5]).

6.3. Description of solutions of MPκ(s) in the form of Derevyagin-Derkach.

Another description of solutions of the problemMPκ(s) was given in [8]. This description
also can be derived from Theorem 1.1 at the expense of a choice of another biorthogonal
system {fk}

∞
k=0 and {gk}

∞
k=0.

It follows from {sj}
∞
0 ∈ Hκ that there exists a number M such that κ = ν−(DM ) =

ν−(DM+1) = ν−(DM+2) = · · · , where ν−(Dn) is a number of negative eigenvalues of the
Hankel matrix Dn := {sj+k}

n−1
j,k=0. An index n is called normal, if detDn 6= 0. Let n0 = 0

and n1 < n2 < · · · be a sequence of all normal indices of {sj}
∞
j=0. Let kj = nj+1 − nj

(j ∈ Z+). Define the polynomials Pnj
by

(6.3) Pnj
(λ) = cj det




s0 s1 . . . snj

s1 s2 . . . snj−1

...
. . .

...
1 λ . . . λnj


 (j ∈ Z+),

where normalizing coefficients cj are determined by the conditions

K
(
Pnj

(λ), λkj−1Pnj
(λ)

)
= εj , |εj | = 1 (j ∈ Z+).

Next define missing polynomials Pn(λ) (n 6= nj) by

Pnj+k(λ) = λkPnj
(λ), k = 1, 2, . . . , kj − 1 (j ∈ Z+).

Then the Gram matrix

G = (Gjk)
∞
j,k=0, Gjk = K(Pj , Pk)
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of the system {Pj}
∞
j=0 takes the block matrix from (see [7])

G = diag(G(0), G(1), . . .),

where Gj are an nj−1 × nj−1 nondegenerate matrices and Gj = 1 for j ≥M . As follows
from [7] the spaceH is isometrically isomorphic to the space

(
l2, 〈G·, ·〉l2

)
via the mapping

V : Pj 7→ ej (j ∈ N ∪ {0}),

where {ej}
∞
j=1 is the standard basis in space l2.

Let π(λ) =
(
P0(λ), P1(λ), . . .

)
. It follows from condition (I) that π(λ) ∈ l2. Let

fk(λ) = Pk(λ), gk(λ) =
(
G−1π(λ), ek

)
l2

(k ∈ Z+).

The system {gk}
∞
k=0 is biorthogonal to {fk}

∞
k=0 with respect to the form K(·, ·) since

K(fj , gk) = (GV fj , V gk)l2 = (Gej , G
−1ek)l2 = (ej , ek)l2 = δjk.

Proposition 6.2. Let a polynomial Pnj
(j ∈ Z+) be defined by (6.3) and let Qnj

be the
adjacent polynomial

Qnj
(λ) := P̃nj

(λ) = K
(Pnj

(λ)− Pnj
(t)

λ− t
, 1
)
.

Let

Qnj+k(λ) := λkPnj
(λ) (k = 1, 2, . . . , kj − 1).

Then

(6.4) Qnj+k(λ) = P̃nj+k(λ) (k = 1, 2, . . . , kj − 1).

Proof. For every j ∈ N, k = 1, 2, . . . , kj − 1 one obtains

P̃nj+k(λ) = K
(λkPnj

(λ)− tkPnj
(t)

λ− t
, 1
)

= λkK
(Pnj

(λ)− Pnj
(t)

λ− t
, 1
)
+K

(
Pnj

(t),
λ

k
− tk

λ− t

)
.

(6.5)

Now (6.4) follows from (6.5) since the latter term is equal to 0. �

So the formula (1.8) coincides with the result [8, Corollary 3.17] for this choice of
biorthogonal systems {fk}

∞
k=0 and {gk}

∞
k=0.

Appendix A. Proof of Lemma 3.4

We will need an auxiliary result proved in [10, Lemma 2.12] in a more general case.

Lemma A.1. ([10]). Let m0 ∈ N , then

(i) f(λ) = O(1) (λ→̂∞) for all f ∈ H(m0);
(ii) If, additionally, m0 ∈ N0 then f(λ) = O( 1

λ
) (λ→̂∞) for all f ∈ H(m0).

A.1. Proof of Lemma 3.4. Sufficiency. Assume that the function m ∈ Nκ satisfies
(3.9). Let us show that the condition (3.8) holds. Let polynomials p, q and a function
m0 ∈ N be determined by the factorization (3.2) for the function m ∈ Nκ.

Case 1. Let κ = n = deg q > deg p = k. Then r(λ) = O(1/λ) as λ→̂∞. Since
m0 ∈ N , then

(A.1) m0(λ) = O(λ) (λ→̂∞).

It follows from Lemma A.1 that

(A.2) f0(λ) = O(1) (λ→̂∞)
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for all f0 ∈ H(m0). One obtains from the formula (3.5) that for all f ∈ H(m)

(A.3) f(λ) = O(1/λ) (λ→̂∞).

So it follows from (3.9) that

m(λ) +
s0
λ

+
s1
λ2

+ · · ·+
sj−1

λj
= O

( 1

λj+1

)
(λ→̂∞).

Case 2. Let κ = deg q = deg p. Then r(λ) = O(1/λ) as λ→̂∞. The rate of growth at
infinity of m0(λ) is given by (A.1) and (A.2). Then it follows from (3.5) for all f ∈ H(m)
that

(A.4) f(λ) = O(1) (λ→̂∞).

One obtains from (3.9) that

m(λ) = O(1/λ) (λ→̂∞).

Therefore, it follows from the assumption deg q = deg p and the factorization (3.2) that

(A.5) m0(λ) = O(1/λ) (λ→̂∞).

One obtains from Lemma A.1

(A.6) f0(λ) = O(1/λ) (λ→̂∞)

for all f0 ∈ H(m0). Now (3.5), (A.5) and (A.6) yields (A.3). The end of the proof is
similar to that in Case 1.

Case 3. Let n = deg q < deg p = k = κ. Then r(λ) = O(λk−n) as λ→̂∞. It follows
from (3.5) and relations (A.1), (A.2) that for all f ∈ H(m)

(A.7) f(λ) = O(λ2k−2n) (λ→̂∞).

One obtains from (3.9) that

m(λ) = O(λ2k−2n−1) (λ→̂∞).

Therefore the relation (A.5) follows from the factorization (3.2). By Lemma A.1 one
obtains the relation (A.6). Again the relations (3.5), (A.5) and (A.6) yield

f(λ) = O(λ2k−2n−2) (λ→̂∞).

Now one obtains from (3.9) that

m(λ) = O(λ2k−2n−2) (λ→̂∞).

So it follows from the factorization (3.2) that

(A.8) m0(λ) = O(λ−2) (λ→̂∞).

The relation (A.8) contradicts the condition m0 ∈ N . Therefore, the inequality deg q <
deg p never occurs for function m, which satisfies the condition (3.9). �

A.2. Some auxiliary statements. We start with some algebraic statements concerning
formal power series

(A.9) p(λ) = p0λ
n + p1λ

n−1 + · · ·

and the corresponding matrices Tk(p) ∈ C
k×k of their k leading coefficients

(A.10) Tk(p) :=




p0 p1 p2 · · · pk−1

0 p0 p1 · · · pk−2

0 0 p0 · · · pk−3

...
. . .

...
0 0 0 · · · p0



.
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Proposition A.2. Let p and q be formal series with a leading degree k and n, respectively

p(λ) = p0λ
k + p1λ

k−1 + · · · , q(λ) = q0λ
n + q1λ

n−1 + · · · (p0, q0 6= 0).

Let Tj(p) and Tj(q) be matrices of j leading coefficients of series p and q. Then

(A.11) Tj(pq) = Tj(p)Tj(q).

Proof. The product Tj(p)Tj(q) is equal to

(A.12)

Tj(p)Tj(q) =















p0q0 p0q1 + p1q0 p0q2 + p1q1 + p2q0 · · · p0qj−1 + p1qj−2 + · · ·+ pj−1q0

0 p0q0 p0q1 + p1q0 · · · p0qj−2 + p1qj−3 + · · ·+ pj−2q0

0 0 p0q0 · · · p0qj−3 + p1qj−4 + · · ·+ pj−3q0
...

. . .
...

0 0 0 · · · p0q0















.

The product of series p(λ)q(λ) takes the form

p(λ)q(λ) = p0q0λ
k+n + (p0q1 + p1q0)λ

k+n−1 + (p0q2 + p1q1 + p2q0)λ
k+n−2

+ · · ·+ (p0qj−1 + p1qj−2 + pj−2q1 + pj−1q0)λ
k+n−j+1 + o(λk+n−j+1).

(A.13)

Therefore, the formula (A.11) holds. �

Remark A.3. Since the products p(λ)q(λ) and q(λ)p(λ) of formal series coincide, then
the matrices Tj(p) and Tj(q) commute

Tj(p)Tj(q) = Tj(q)Tj(p).

Corollary A.4. Let q(λ) = q0λ
n + q1λ

n−1 + · · · be a formal series (q0 6= 0). Then j
leading coefficients of series

1

q(λ)
=
q′0
λn

+
q′1
λn+1

+
q′2
λn+2

+ · · ·

generate a matrix Tj(1/q), which is connected with Tj(q) by Tj
(
1/q

)
=

(
Tj(q)

)−1
.

Proposition A.5. Let c(λ) = λj + c1λ
j−1 + cdots + cj be a polynomial of a degree j.

Let a function m0 ∈ N0 have an integral representation (2.10) and admit the expansion
in a series (2.11). Then the function

d(λ) =

∫ ∞

−∞

c(t)− c(λ)

t− λ
dσ(t)

is a polynomial in λ of degree j − 1 and

(A.14) Tj(d) = Tj(c)Tj(s
0),

where Tj(c) and Tj(s
0) are matrices of j leading coefficients of polynomials c(λ) and

s0(λ) = s00λ
j−1 + s01λ

j−2 + · · ·+ s0j .

Proof. Denote c0 = 1. Then the function d(λ) take the form

d(λ) =

∫ ∞

−∞

( tj − λj

t− λ
c0 +

tj−1 − λj−1

t− λ
c1 + · · ·+

t− λ

t− λ
cj−1

)
dσ(t)

=

∫ ∞

−∞

(
c0(t

j−1 + tj−2λ+ · · ·+ λj−1) + c1(t
j−2 + · · ·+ λj−2) + · · ·+ cj−1

)
dσ(t).

(A.15)
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It follows from equations (2.12) and (A.15) that

d(λ) = c0(s
0
j−1 + s0j−2λ+ · · ·+ λj−1) + c1(s

0
j−2 + s0j−3λ+ · · ·+ λj−2) + · · ·+ cj−1s

0
0

= c0s0λ
j−1 + (c0s

0
1 + c1s

0
0)λ

j−2 + · · ·+ (c0s
0
j−1 + c1s

0
j−2 + · · ·+ cj−1s

0
0).

In view of (A.12) this proves (A.14). �

A.3. Proof of Lemma 3.4. Necessity. Let a function m ∈ Nκ satisfy the condi-
tion (3.8). Define a polynomial s(λ) of a formal degree j − 1 by the formula

(A.16) s(λ) := s0λ
j−1 + s1λ

j−2 + · · ·+ sj−1.

Let p and q be monic polynomials of degrees k and n, respectively

p(λ) = λk + p1λ
k−1 + · · ·+ pk−1λ+ pk,

q(λ) = λn + q1λ
n−1 + · · ·+ qn−1λ+ qn,

(A.17)

and let a function m0 ∈ N be defined by the factorization (3.2).
Define by Pn the set of polynomials of a formal degree n.
Case 1: κ = k = deg p = deg q = n.
It follows from the condition (3.8) that m0 = O(1/λ), moreover the function m0

belongs to N0 and admits the integral representation (2.10).
Let c be some monic polynomial of degree j (ci ∈ C for i = 1, 2, . . . , j)

(A.18) c(λ) := λj + c1λ
j−1 + c2λ

j−2 + · · ·+ cj .

Consider the next decomposition of λjm(λ) + s(λ)

(A.19) λjm(λ) + s(λ) =
p(λ)

q(λ)
f(λ) +

p(λ)

q(λ)q#(λ)
m0(λ)ϕ2(λ) +

1

q(λ)
ϕ1(λ),

where

(A.20) f(λ) :=

∫ ∞

−∞

c(t)

t− λ
dσ(t),

(A.21) ϕ1(λ) := q(λ)s(λ) + p(λ)m0(λ)c(λ)− p(λ)

∫ ∞

−∞

c(t)

t− λ
dσ(t),

(A.22) ϕ2(λ) := p#(λ)λj − q#(λ)c(λ).

We will show that there is a choice of c such that

(A.23) f(·) ∈ H(m0), ϕ1(·), ϕ2(·) ∈ Pκ−1.

Then it will imply by Theorem 3.3 that the relation (3.9) holds.
The inclusion f(·) ∈ H(m0) follows from Remark 2.4 and Theorem 3.1.
Let Pi = Ti(p), Qi = Ti(q), Si = Ti(s), Ci = Ti(c), S

0
i = Ti(s

0) be matrices of i
leading coefficients of the polynomials p(λ), q(λ), s(λ), c(λ), s0(λ), respectively, and let
P i, Qi be matrices with complex adjoint elements of the matrices Pi and Qi. Note that
P i = Ti(p

#), Qi = Ti(q
#).

The function ϕ2 is a polynomial of formal degree κ + j. Define a polynomial c(λ) so
that ϕ2(·) ∈ Pκ−1. This condition is equivalent to

P i −QiCi = 0 (i = 1, 2, . . . , j + 1)

so

(A.24) Ci = (Qi)
−1P i = P i(Qi)

−1 (i = 1, 2, . . . , j + 1).

Note that the matrix Qj+1 is invertible and the coefficients c1, c2, . . . , cj are uniquely
defined.
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Next the inclusion ϕ1(·) ∈ Pκ−1 is showed. It follows from the factorization (3.2) that

(A.25) −Sj = PjP jQ
−1
j (Qj)

−1(−S0
j ).

By the integral representation (2.10)

ϕ1(λ) = q(λ)s(λ)− p(λ)

∫ ∞

−∞

c(t)− c(λ)

t− λ
dσ(t).

It follows from Proposition A.5 that ϕ1(λ) is a polynomial of formal degree κ+ j−1 and

(A.26) Tj(ϕ1) = QjSj − PjCjS
0
j .

Using the formula (A.24) for i = j and the relation (A.25) one obtains

Tj(ϕ1) =QjPjP jQ
−1
j (Qj)

−1S0
j − Pj(Qj)

−1P jS
0
j = 0.

So the relation (A.23) is held.
Case 2: k = deg p < deg q = n = κ. Denote d := n − k(> 0). It follows from the

decomposition (2.8) for the function m0 ∈ N that

(A.27) m0(λ) = aλ+ b+m00(λ).

One obtains from the factorization (3.2) for m ∈ Nκ and the conditions (1.3) that
m00(λ) = O(1/λ) so m00 ∈ N0. Therefore the function m00 admits the integral repre-
sentation similar (2.10).

Let the coefficient a in (A.27) not equal 0 so m0(λ) = O(λ) for λ→̂∞ (cases when
m0(λ) = O(1) and m0(λ) = m00(λ) = O(1/λ) for λ→̂∞ researched by analogical). It
follows from the factorization (3.2) that m(λ) = O( 1

λ2d−1 ) for λ→̂∞ and

(A.28) s0 = s1 = · · · = s2d−3 = 0, s2d−2 6= 0

(s0 = · · · = s2d−2 = 0, s2d−1 6= 0 for a = 0; s0 = · · · = s2d−1 = 0, s2d 6= 0 for a = b = 0).
Moreover the polynomial s(λ) defined by (A.16) has the degree j − 2d+ 1

s(λ) = s2d−2λ
j−2d+1 + s2d−1λ

j−2d + · · ·+ sj−1.

Let j ≥ 2d − 1. Consider the decomposition (A.19) of the function λjm(λ) + s(λ).
The difference from the considered case d = 0 is next: the function m0 ∈ N admits the
representation (A.27); the measure dσ is defined from the integral representation (2.10)
for the function m00; the polynomial c has a degree j − d

(A.29) c(λ) := λj−d + c1λ
j−d−1 + c2λ

j−d−2 + · · ·+ cj−d.

We will show that conditions (A.23) are right too.
It follows from Remark 2.4 and Theorem 3.1 that the including f(·) ∈ H(m0). The

condition ϕ2(·) ∈ Pκ−1 is equivalent to (A.24) for i = j − d+ 1.
Next the inclusion ϕ1(·) ∈ Pκ−1 is showed. It follows from the representations (A.27)

and (2.10) that

(A.30) ϕ1(λ) = q(λ)s(λ) + p(λ)c(λ)(aλ+ b)− p(λ)

∫ ∞

−∞

c(t)− c(λ)

t− λ
dσ(t).

Let

Aj−2d+2 = Tj−2d+2(aλ+ b) :=




a b 0 · · · 0
0 a b · · · 0
0 0 a · · · 0
...

. . .
...

0 0 0 · · · a




(respectively A = bI where I is the identity matrix for a = 0, b 6= 0 and A = 0 for
a = b = 0). Define the polynomial s0 with formal degree deg s0 = j − d+ 2

s0(λ) := 0 · λj−d+2 + 0 · λj−d+1 + s00λ
j−d + s01λ

j−d−1 + · · ·+ s0j−d,
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where {s0i }
j−d
i=0 is coefficients from decomposition (2.11) for m00 ∈ N0. We have added

to polynomial s0 zero-summands for the degrees of summands of ϕ1 are coincidence. Let

S0
j−2d+2 = Tj−2d+2(s

0) :=




0 0 s00 s01 · · · s0j−2d−1

0 0 0 s00 · · · s0j−2d−2

0 0 0 0 · · · s0j−2d−3
...

. . .
...

0 0 0 0 · · · 0



.

It follows from Proposition A.5 that ϕ1 is a polynomial of formal degree j + n− 2d+ 1
and

Tj−2d+2(ϕ1) = Qj−2d+2Sj−2d+2 + Pj−2d+2Cj−2d+2Aj−2d+2 − Pj−2d+2Cj−2d+2S
0
j−2d+2.

It follows from the factorization (3.2) and the representation (A.27) that

(A.31) −S = PPQ−1(Q)−1(A− S0),

where all matrices have the size (j − 2d+ 2)× (j − 2d+ 2).
One obtains from the formula (A.24) for i = j − 2d+ 2 and the relation (A.30) that

T (ϕ1) = QPPQ−1(Q)−1(−A+ S0) + PP (Q)−1A− PP (Q)−1S0 = 0.

So ϕ1 ∈ Pn−1 and the relation (A.23) is held.
Let d ≤ j < 2d− 1. One obtains from the conditions (A.28) that s(λ) ≡ 0. Consider

the decomposition kind of (A.19) for the function λjm(λ) where the polynomial c is
defined by formula (A.29).

The inclusions f(·) ∈ H(m0) and ϕ2(·) ∈ Pκ−1 are proved similarly. Consider the
function

ϕ1(λ) = p(λ)c(λ)(aλ+ b)− p(λ)

∫ ∞

−∞

c(t)− c(λ)

t− λ
dσ(t).

One obtains from Proposition A.5 and condition j < 2d− 1 that ϕ1 is polynomial and

degϕ1 = j + k − d+ 1 < d+ k = n = κ.

So ϕ1 ∈ Pn−1 and the relation (A.23) holds.
Let j < d. One obtains from the conditions (A.28) that s(λ) ≡ 0. Consider the degree

of the polynomial p(λ)λj

deg
(
p(λ)λj

)
= k + j < k + d = n = κ.

It follows from Theorem 3.3 that λjm(λ) ∈ H(m).
Case 3: κ = deg p > deg q is impossible from the condition (3.8). �
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