INDEFINITE MOMENT PROBLEM AS AN ABSTRACT INTERPOLATION PROBLEM

EVGEN NEIMAN

Abstract

Indefinite moment problem was considered by M. G. Krein and H. Langer in 1979. In the present paper the general indefinite moment problem is associated with an abstract interpolation problem in generalized Nevanlinna classes. To prove the equivalence of these two problems we investigate the structure of de Branges space $\mathcal{H}(m)$ associated with a generalized Nevanlinna function m.

A general formula for description of the set of solutions of indefinite moment problem is found. It is shown that the Kein-Langer description can be derived from this formula by a special choice of biorthogonal system of polynomials.

1. Introduction

The classical moment problem consists in finding a measure σ on the real line \mathbb{R} with given moments $s_{k} \in \mathbb{R}$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} t^{k} d \sigma(t)=s_{k} \quad(k=0,1, \ldots) \tag{1.1}
\end{equation*}
$$

This problem was studied by T. Stieltjes, H. Hamburger, M. Riesz, R. Nevanlinna and others. As is known the necessary condition for the solvability of the moment problem (1.1) is the nonnegativity of Hankel matrices $D_{n}:=\left(s_{j+k}\right)_{j, k=0}^{n-1}$ for every $n \in \mathbb{N} \cup\{0\}$. A connection of this problem to some multiple interpolation problem at ∞ was found by Hamburger in 1920 where it was shown that σ is a solution to the classical moment problem (1.1) if and only if its associated function

$$
\begin{equation*}
m(\lambda)=\int_{\mathbb{R}} \frac{d \sigma(t)}{t-\lambda} \tag{1.2}
\end{equation*}
$$

admits the following asymptotic expansion:

$$
\begin{equation*}
m(\lambda) \sim-\frac{s_{0}}{\lambda}-\frac{s_{1}}{\lambda^{2}}-\frac{s_{2}}{\lambda^{3}}-\cdots, \quad \lambda \overleftrightarrow{\rightarrow} \infty \tag{1.3}
\end{equation*}
$$

The notation $\lambda \overleftrightarrow{\rightarrow} \infty$ means that λ tends to ∞ nontangentially remaining inside a sector $\delta<\arg \lambda<\pi-\delta(\delta>0)$.

The function m in (1.2) belongs to the class N of functions holomorphic in the upper half-plane \mathbb{C}_{+}and having there a nonnegative imaginary part. Let us say that a meromorphic function m with the domain of holomorphy \mathfrak{h}_{m}^{+}in \mathbb{C}_{+}belongs to the class N_{κ} $\left(\kappa \in \mathbb{Z}_{+}\right)$if the kernel

$$
\begin{equation*}
\mathrm{N}_{\mu}^{m}(\lambda)=\frac{m(\lambda)-m(\mu)^{*}}{\lambda-\bar{\mu}} \quad\left(\lambda, \mu \in \mathfrak{h}_{m}^{+}\right) \tag{1.4}
\end{equation*}
$$

[^0]has κ negative squares in \mathfrak{h}_{m}^{+}, that is for arbitrary set $\mu_{j} \in \mathfrak{h}_{m}^{+}(j=1,2, \ldots, n)$ the form
$$
\sum_{i, j=1}^{n} \mathrm{~N}_{\mu_{j}}^{m}\left(\mu_{i}\right) \xi_{j} \bar{\xi}_{i}
$$
has at most κ negative squares and for some choice of the set $\left\{\mu_{j}\right\}_{j=1}^{n}$ it has exactly κ negative squares ([3]).

Indefinite moment problem was considered in 1979 by M. G. Krein and H. Langer [22]. It was formulated as an interpolation problem:

Problem $M P_{\kappa}(\mathbf{s})$. Given is a sequence of real numbers $\mathbf{s}=\left\{s_{j}\right\}_{j=0}^{\infty}$. Find a function $m \in N_{\kappa}$, such that (1.3) holds.

Denote by H_{κ} the class of real sequences $\mathbf{s}=\left\{s_{j}\right\}_{j=0}^{\infty}$, such that the Hankel matrices D_{n} have exactly κ negative eigenvalues for all n large enough. As was shown in [22] the problem $M P_{\kappa}(\mathbf{s})$ is solvable for every $\mathbf{s} \in H_{\kappa}$. This problem is called determinate, if it has a unique solution and indeterminate, otherwise. In what follows we suppose that
(I) the problem $M P_{\kappa}(\mathbf{s})$ is indeterminate.

The set of solutions of indeterminate moment problem was described in [22] by the methods of extension theory. In the present paper we will consider an abstract interpolation problem $\left(A I P_{\kappa}\right)$, associated with the problem $M P_{\kappa}(\mathbf{s})$ and derive the description of solutions of $A I P_{\kappa}$. The problem $A I P_{\kappa}$ in generalized Nevanlinna classes was studied in [25] (see [10] for Nevanlinna classes case). The solution of this problem is based on the ideas of $A I P$ in Schur classes developed in [17]. We will apply methods of $A I P_{\kappa}$ to the $M P_{\kappa}(\mathbf{s})$.

Define a sesquilinear form $K(\cdot, \cdot)$ on the set $\mathcal{X}=\mathbb{C}[\lambda]$ of polynomials $h(\lambda)=\sum_{j=0}^{n} h_{j} \lambda^{j}$ ($n=0,1,2, \ldots$) by the formula

$$
\begin{equation*}
K(h, h)=\sum_{j, k=0}^{n} s_{j+k} h_{j} \bar{h}_{k} \tag{1.5}
\end{equation*}
$$

Since the sequence of numbers $\left\{s_{j}\right\}_{0}^{\infty}$ belongs to the class H_{κ} then the form $K(\cdot, \cdot)$ has κ negative squares. A standard procedure of closure of the space \mathcal{X} with respect to the inner product (1.5) leads to a Pontryagin space \mathcal{H} (see [5] for the definition of Pontryagin space).

Let $\left\{f_{k}\right\}_{k=0}^{\infty}$ be the basis in the space $\mathbb{C}[x]$. The basis $\left\{g_{k}\right\}_{k=0}^{\infty}$ is called biorthogonal to $\left\{f_{k}\right\}_{k=0}^{\infty}$ with respect to the form $K(\cdot, \cdot)$, if

$$
\begin{equation*}
K\left(f_{j}, g_{k}\right)=\delta_{j k} \quad(j, k=0,1, \ldots) \tag{1.6}
\end{equation*}
$$

The system of adjacent polynomial $\left\{\widetilde{g}_{k}(\lambda)\right\}_{k=0}^{\infty}$ is defined by equalities

$$
\begin{equation*}
\widetilde{g}_{k}(\lambda)=K\left(\frac{g_{k}(t)-g_{k}(\lambda)}{t-\lambda}, \mathbf{1}\right) \quad(k=0,1, \ldots) \tag{1.7}
\end{equation*}
$$

Define the matrix value function $\Theta(\lambda)=\left[\begin{array}{ll}\theta_{11}(\lambda) & \theta_{12}(\lambda) \\ \theta_{21}(\lambda) & \theta_{22}(\lambda)\end{array}\right] \in \mathbb{C}^{2 \times 2}$ by the formula

$$
\begin{array}{ll}
\theta_{11}(\lambda)=1+\lambda \sum_{k=0}^{\infty} \widetilde{f}_{k}(\lambda) g_{k}(0)^{*}, & \theta_{12}(\lambda)=\lambda \sum_{k=0}^{\infty} \widetilde{f}_{k}(\lambda) \widetilde{g}_{k}(0)^{*} \\
\theta_{21}(\lambda)=-\lambda \sum_{k=0}^{\infty} f_{k}(\lambda) g_{k}(0)^{*}, & \theta_{22}(\lambda)=1-\lambda \sum_{k=0}^{\infty} f_{k}(\lambda) \widetilde{g}_{k}(0)^{*} \tag{1.8}
\end{array}
$$

Now we can describe the set of solutions of the problem $M P_{\kappa}(\mathbf{s})$.

Theorem 1.1. Let the sequence $\mathbf{s}=\left\{s_{j}\right\}_{j=0}^{\infty}$ belongs to H_{κ}. Define the inner product $K(\cdot, \cdot)$ on the set $\mathbb{C}[x]$ by the formula (1.5). Let $\left\{f_{k}(\lambda)\right\}_{k=0}^{\infty}$ and $\left\{g_{k}(\lambda)\right\}_{k=0}^{\infty}$ be biorthogonal bases with respect to the form K and let the matrix function $\Theta(\lambda)$ be defined by (1.8). Then the formula

$$
\begin{equation*}
m(\lambda)=\left(\theta_{11}(\lambda) \varphi(\lambda)+\theta_{12}(\lambda)\right)\left(\theta_{21}(\lambda) \varphi(\lambda)+\theta_{22}(\lambda)\right)^{-1} \tag{1.9}
\end{equation*}
$$

establishes a one-to-one correspondence between the set of all solutions $m(\lambda)$ of the problem $M P_{\kappa}(\mathbf{s})$ and the set of $\varphi \in \widetilde{N}=N \cup\{\infty\}$.

The matrix valued function $\Theta(\lambda)$ mentioned above turns out to be a resolvent matrix (up to a J-inner factor) of some symmetric operator constructed by the data of $A I P_{\kappa}$. An explicit formula for the resolvent matrix of a symmetric operator in a Pontryagin space can be found in [9] (see also [14] for the Hilbert space case).

We show that the set of solutions of $M P_{\kappa}(\mathbf{s})$ coincides with the set of solutions of an abstract interpolation problem $A I P_{\kappa}$, associated with $M P_{\kappa}(\mathbf{s})$. We have used methods of reproducing kernel Pontryagin spaces. In particular, a general form of the space $\mathcal{H}(m)$ with the reproducing kernel $\mathrm{N}_{\mu}^{m}(\lambda)$ of the form (1.4) for the function $m \in N_{\kappa}$ is found (see Theorem 3.3). This representation of the space $\mathcal{H}(m)$ is used in order to reformulate the asymptotic formula (1.3) for $m \in N_{\kappa}$ in terms of the space $\mathcal{H}(m)$ (see Lemma 3.4). In [18] the classical and truncated moment problem were studied by the method of transformed Potapov's fundamental matrix inequality (see also [17]).

The paper is organized as follows. In Section 2 we recall the main results of the theory of generalized Nevanlinna functions and also present a description of the set of solutions of an abstract interpolation problem. In Section 3 we describe the space $\mathcal{H}(m)$. In Section 4 the problem $A I P_{\kappa}$ corresponding to the problem $M P_{\kappa}(\mathbf{s})$ is constructed. In Sections 5 the equivalence of these problems is shown. In Section 6 the main result of this paper (Theorem 1.1) is proved. Also a specific algorithm for constructing biorthogonal bases with respect to the form $K(\cdot, \cdot)$ is presented. In Appendix an auxiliary statement (Lemma 3.4) is proved.

2. Preliminaries

2.1. Abstract interpolation problem. We present a scalar analogue of an abstract interpolation problem (AIP) which was considered by the author in [25].

Let \mathcal{X} be a complex linear space, let B_{1}, B_{2} be linear operators in \mathcal{X}, let C_{1}, C_{2} be linear operators from \mathcal{X} to \mathbb{C} and let K be a nondegenerate sesquilinear form on \mathcal{X}. Denote by $\nu_{-}(K)$ the number of negative squares of K. Define the Pontryagin space \mathcal{H} as the completion of \mathcal{X} endowed with the inner product

$$
\begin{equation*}
\langle h, g\rangle_{\mathcal{H}}=K(h, g), \quad h, g \in \mathcal{X} \tag{2.1}
\end{equation*}
$$

We identify the linear operators $B_{1}, B_{2}: \mathcal{X} \rightarrow \mathcal{X}$ with the linear operators B_{1}, B_{2} : $\mathcal{X} \rightarrow \mathcal{H}$.

Let $\mathcal{H}(m)$ be the reproducing kernel Pontryagin space (RKPS) with the reproducing kernel $\mathrm{N}_{\mu}^{m}(\lambda)$ defined by (1.4) (see [6], [4]). This space is characterized by the properties
(1) $\mathrm{N}_{\mu}^{m}(\cdot) \in \mathcal{H}(m)$ for all $\mu \in \mathfrak{h}_{m}^{+}$;
(2) for every $f \in \mathcal{H}(m)$ the following identity holds

$$
\begin{equation*}
\left\langle f(\cdot), \mathbf{N}_{\mu}^{m}(\cdot)\right\rangle_{\mathcal{H}(m)}=f(\mu) \quad\left(\mu \in \mathfrak{h}_{m}^{+}\right) . \tag{2.2}
\end{equation*}
$$

Problem $A I P_{\kappa}\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$. Let the data set $\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ satisfy the assumptions
(A1) $K\left(B_{2} h, B_{1} g\right)-K\left(B_{1} h, B_{2} g\right)=\left(C_{1} h, C_{2} g\right)_{\mathbb{C}}-\left(C_{2} h, C_{1} g\right)_{\mathbb{C}} \forall h, g \in \mathcal{X}$;
(A2) $\operatorname{ker} K=\{0\}$, where $\operatorname{ker} K=\{h \in \mathcal{X}: K(h, g)=0 \forall g \in \mathcal{X}\}$;
(A3) $B_{2}=I_{\mathcal{X}}$ and the operators $B_{1}: \mathcal{X} \subseteq \mathcal{H} \rightarrow \mathcal{H}, C_{1}, C_{2}: \mathcal{X} \subseteq \mathcal{H} \rightarrow \mathcal{L}$ are bounded;
(A4) for some choice of $\lambda_{j} \in \mathbb{C}_{+}(j=1, \ldots, \kappa)$ the following condition holds:

$$
\operatorname{ker}\left[\begin{array}{lllll}
C_{2}^{*} & \left(1-\lambda_{1} B_{1}^{*}\right)^{-1} C_{2}^{*} & \left(1-\lambda_{2} B_{1}^{*}\right)^{-1} C_{2}^{*} & \cdots & \left(1-\lambda_{\kappa} B_{1}^{*}\right)^{-1} C_{2}^{*}
\end{array}\right]=\{0\}
$$

Find a function $m(\lambda)$ from the class N_{κ} such that for some linear mapping $F: \mathcal{X} \rightarrow \mathcal{H}(m)$ the following conditions hold:

$$
\left(F B_{2} h\right)(\lambda)-\lambda\left(F B_{1} h\right)(\lambda)=\left[\begin{array}{ll}
\mathbf{1} & -m(\lambda)
\end{array}\right]\left[\begin{array}{l}
C_{1} h \tag{C1}\\
C_{2} h
\end{array}\right] \text { for all } h \in \mathcal{X}
$$

(C2) $\langle F h, F h\rangle_{\mathcal{H}(m)} \leq K(h, h)$ for all $h \in \mathcal{X}$.
Note that the condition $\nu_{-}(K) \leq \kappa$ is necessary for the solvability of $A I P_{\kappa}$ (see [25, Remark 3.1]). Define the 2×2 matrix function $\Theta(\lambda)$ by the formula

$$
\Theta(\lambda)=\left[\begin{array}{ll}
\theta_{11}(\lambda) & \theta_{12}(\lambda) \tag{2.3}\\
\theta_{21}(\lambda) & \theta_{22}(\lambda)
\end{array}\right]=I_{\mathbb{C} \oplus \mathbb{C}}-\lambda\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]\left(\mathbf{1}-\lambda B_{1}\right)^{-1}\left[\begin{array}{ll}
-C_{2}^{*} & C_{1}^{*}
\end{array}\right]
$$

The main result of the paper [25] is the following description of all solutions of the $A I P_{\kappa}$.

Theorem 2.1. Let the data set $\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ satisfy the assumptions (A1)-(A4), $\kappa=\nu_{-}(K)$, and let $\Theta(\lambda)$ be defined by (2.3). Then the formula

$$
\begin{equation*}
m(\lambda)=\left(\theta_{11}(\lambda) \varphi(\lambda)+\theta_{12}(\lambda)\right)\left(\theta_{21}(\lambda) \varphi(\lambda)+\theta_{22}(\lambda)\right)^{-1} \tag{2.4}
\end{equation*}
$$

establishes a one-to-one correspondence between the set of all solutions $m(\lambda)$ of the problem $A I P_{\kappa}\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ and the set of $\varphi \in \widetilde{N}=N \cup\{\infty\}$, such that the function m defined by the formula (2.4) belongs to the class N_{κ}.
Remark 2.2. Let the data set $\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ satisfy the assumptions (A1)-(A4). Then the mapping $F: \mathcal{X} \rightarrow \mathcal{H}(m)$ in (C1) is uniquely defined by the formula

$$
\begin{equation*}
(F h)(\lambda)=[\mathbf{1}-m(\lambda)] G(\lambda) h \quad(\lambda \in \mathcal{O}, \quad h \in \mathcal{X}), \tag{2.5}
\end{equation*}
$$

where \mathcal{O} is a nonempty neighborhood of the point 0 and

$$
G(\lambda)=\left[\begin{array}{l}
C_{1} \tag{2.6}\\
C_{2}
\end{array}\right]\left(\mathbf{1}-\lambda B_{1}\right)^{-1} \quad(\lambda \in \mathcal{O})
$$

Remark 2.3. It follows from (A1) that the linear relation

$$
A:\left[\begin{array}{l}
B_{1} h \tag{2.7}\\
C_{1} h
\end{array}\right] \rightarrow\left[\begin{array}{l}
B_{2} h \\
C_{2} h
\end{array}\right] \quad(h \in \mathcal{X})
$$

is symmetric in $\mathcal{H} \oplus \mathbb{C}$. The statement of Theorem 2.1 was obtained in [25] by the methods of extension theory of isometric operators. Namely, the problem of describing the set of solutions of $A I P_{\kappa}\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ was reduced to the description of all \mathbb{C}-resolvents of a symmetric linear relation A. The formula (2.3) for the solution matrix was derived from the results of works [14], [15] and [9], where the formula for the \mathbb{C}-resolvent matrix was obtained in terms of the boundary triplet for the symmetric lineal relation.
2.2. Classes of Nevanlinna functions. As is known (see [2, §69, Theorem 2]) every function from the class N admits the integral representation

$$
\begin{equation*}
m(\lambda)=a+b \lambda+\int_{-\infty}^{\infty}\left(\frac{1}{t-\lambda}-\frac{t}{1+t^{2}}\right) d \sigma(t) \tag{2.8}
\end{equation*}
$$

where a, b are real constants such that $b \geq 0$ and $\sigma(t)$ is a right continuous non-decreasing function such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d \sigma(t)}{1+t^{2}}<\infty \tag{2.9}
\end{equation*}
$$

Define a subclass N^{0} of functions $m_{0} \in N$, which admit the integral representation

$$
\begin{equation*}
m_{0}(\lambda)=\int_{\mathbb{R}} \frac{d \sigma(t)}{t-\lambda} \tag{2.10}
\end{equation*}
$$

with a bounded non-decreasing function $\sigma(t)$. Note that each function m of the class N satisfies the condition $m(\lambda)=O(\lambda)$ for $\lambda \widehat{\rightarrow} \infty$. As is known (see [2, §69 Theorem 3]) the function $m_{0} \in N$ belongs to the class N^{0}, if and only if $m_{0}(\lambda)=O\left(\frac{1}{\lambda}\right)$ for $\lambda \rightarrow \rightarrow \infty$.

It follows from Hamburger-Nevanlinna Theorem (see [1, Theorem 3.2.1]) that the function $m_{0} \in N^{0}$ of the form (2.10) admits an asymptotic expansion

$$
\begin{equation*}
m_{0}(\lambda)=-\frac{s_{0}^{0}}{\lambda}-\frac{s_{1}^{0}}{\lambda^{2}}-\frac{s_{2}^{0}}{\lambda^{3}}-\cdots, \quad \lambda \widehat{\rightarrow} \infty \tag{2.11}
\end{equation*}
$$

where $s_{j}^{0} \in \mathbb{R}$, if and only if the next relations hold

$$
\begin{equation*}
\int_{-\infty}^{\infty} t^{j} d \sigma(t)=s_{j}^{0} \quad(j=0,1, \ldots) \tag{2.12}
\end{equation*}
$$

Remark 2.4. It follows from the relations (2.12) that any polynomial belongs to the space $L_{2}(d \sigma)$.

3. Description of the space $\mathcal{H}(m)$

Recall the known de Branges result about description of the space $\mathcal{H}\left(m_{0}\right)$, where $m_{0} \in N$.

Theorem 3.1. ([6, Theorem 5]). Let the function m_{0} belong to N and admit the integral representation (2.8). Then
(i) the space $\mathcal{H}\left(m_{0}\right)$ coincides with the set of functions

$$
\mathcal{H}\left(m_{0}\right)=\left\{c+\int_{-\infty}^{\infty} \frac{f(t)}{t-\lambda} d \sigma(t), \quad c \in \mathbb{C}, \quad f(t) \in L_{2}(d \sigma)\right\} .
$$

(ii) If, in addition, the function m_{0} belongs to N^{0} and admits the integral representation (2.10), then

$$
\begin{equation*}
\mathcal{H}\left(m_{0}\right)=\left\{\int_{-\infty}^{\infty} \frac{f(t)}{t-\lambda} d \sigma(t), \quad f(t) \in L_{2}(d \sigma)\right\} \tag{3.1}
\end{equation*}
$$

Let $p(\lambda)=p_{0} \lambda^{n}+p_{1} \lambda^{n-1}+\cdots+p_{n-1} \lambda+p_{n}$ be a polynomial of degree n. Define $p^{\#}(\lambda)$ by

$$
p^{\#}(\lambda):=p(\bar{\lambda})^{*}=\bar{p}_{0} \lambda^{n}+\bar{p}_{1} \lambda^{n-1}+\cdots+\bar{p}_{n-1} \lambda+\bar{p}_{n}
$$

Theorem 3.2. ([16], [11]). Any function $m \in N_{\kappa}$ admits a factorization

$$
\begin{equation*}
m(\lambda)=\frac{p(\lambda) p^{\#}(\lambda)}{q(\lambda) q^{\#}(\lambda)} m_{0}(\lambda) \tag{3.2}
\end{equation*}
$$

where p and q are uniquely defined coprime monic polynomials and $m_{0} \in N$. In this case

$$
\max \{\operatorname{deg}(p), \operatorname{deg}(q)\}=\kappa
$$

Let a rational function r be defined by

$$
\begin{equation*}
r(\lambda):=\frac{p(\lambda)}{q(\lambda)}, \quad r^{\#}(\lambda):=\frac{p^{\#}(\lambda)}{q^{\#}(\lambda)} \tag{3.3}
\end{equation*}
$$

Then the formula (3.2) can be rewritten as

$$
\begin{equation*}
m(\lambda)=r(\lambda) m_{0}(\lambda) r^{\#}(\lambda) \tag{3.4}
\end{equation*}
$$

Let p, q be polynomials, let $\kappa=\max \{\operatorname{deg} p, \operatorname{deg} q\}$ and let the coefficients $b_{i j}$ be defined by the expansion

$$
\frac{p(x) q(y)-p(y) q(x)}{x-y}=\sum_{i, j=0}^{\kappa-1} b_{i j} x^{i} y^{j}
$$

The matrix $B_{p, q}:=\left(b_{i j}\right)_{i, j=0}^{\kappa-1}$ is called the bezutiant of polynomials p and q (see [23]). The bezutiant $B_{p, q}$ is an invertible matrix, if p and q are coprime polynomials.

Denote the vector-functions

$$
\Lambda:=\Lambda_{\kappa}=\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{\kappa-1}\right), \quad M:=M_{\kappa}=\left(1, \mu, \mu^{2}, \ldots, \mu^{\kappa-1}\right)
$$

Let $\mathcal{H}(m)$ be a reproducing kernel Pontryagin space with the reproducing kernel $\mathrm{N}_{\mu}^{m}(\lambda)$ where $m \in N_{\kappa}$. Next we will describe the space $\mathcal{H}(m)$ (compare with [11, Proposition 3.1]).

Theorem 3.3. Let $m \in N_{\kappa}$ have the factorization (3.2). Then the space $\mathcal{H}(m)$ coincides with the space \mathcal{H} of functions

$$
\begin{equation*}
f(\lambda)=r(\lambda) f_{0}(\lambda)+\frac{1}{q(\lambda)} \varphi_{1}(\lambda)+\frac{r(\lambda)}{q^{\#}(\lambda)} m_{0}(\lambda) \varphi_{2}(\lambda) \tag{3.5}
\end{equation*}
$$

where $f_{0} \in \mathcal{H}\left(m_{0}\right)$ and φ_{1}, φ_{2} are arbitrary polynomials of formal degree $\kappa-1$.
Proof. Every function f of the form (3.5) can be represented as

$$
f(\lambda)=\left[\begin{array}{lll}
r(\lambda) & \frac{1}{q(\lambda)} \Lambda \quad \frac{r(\lambda)}{q^{\#}(\lambda)} m_{0}(\lambda) \Lambda
\end{array}\right]\left[\begin{array}{c}
f_{0} \tag{3.6}\\
f^{(1)} \\
f^{(2)}
\end{array}\right]
$$

where $f_{0} \in \mathcal{H}\left(m_{0}\right)$ and $f^{(1)}, f^{(2)} \in \mathbb{C}^{\kappa}$. Let the inner product in \mathcal{H} be defined by

$$
\begin{equation*}
\langle f, f\rangle_{\mathcal{H}}=\left(f_{0}, f_{0}\right)_{\mathcal{H}\left(m_{0}\right)}+\mathcal{F}^{*} \mathcal{B}^{-1} \mathcal{F} \tag{3.7}
\end{equation*}
$$

where

$$
\mathcal{F}=\left[\begin{array}{l}
f^{(1)} \\
f^{(2)}
\end{array}\right] \in \mathbb{C}^{2 \kappa}, \quad \mathcal{B}=\left[\begin{array}{cc}
0 & B_{p, q} \\
B_{p, q}^{*} & 0
\end{array}\right]
$$

In particular, the function $\mathbf{N}_{\mu}^{m}(\lambda)$ takes the form for every $\mu \in \mathfrak{h}_{m}^{+}$

$$
\mathbf{N}_{\mu}^{m}(\lambda)=\left[\begin{array}{lll}
r(\lambda) & \frac{1}{q(\lambda)} \Lambda & \frac{r(\lambda)}{q^{\#}(\lambda)} m_{0}(\lambda) \Lambda
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{1} & 0 & 0 \\
0 & 0 & B_{p q} \\
0 & B_{p q}^{*} & 0
\end{array}\right]\left[\begin{array}{c}
r^{\#}(\bar{\mu}) \mathrm{N}_{\mu}^{m_{0}}(\lambda) \\
\frac{1}{q^{\#}(\bar{\mu})} M^{*} \\
\frac{r^{\#}(\bar{\mu}) m_{0}(\bar{\mu})}{q(\bar{\mu})} M^{*}
\end{array}\right]
$$

Clearly, \mathcal{H} is a Pontryagin space with negative index κ. Moreover, \mathcal{H} is RKPS with the kernel $\mathrm{N}_{\mu}^{m}(\lambda)$, since for every function f of the form (3.6) one gets

$$
\begin{aligned}
\left\langle f(\cdot), \mathrm{N}_{\mu}^{m}(\cdot)\right\rangle_{\mathcal{H}} & =\left(f_{0}(\cdot), \mathrm{N}_{\mu}^{m_{0}}(\cdot) r^{\#}(\bar{\mu})\right)_{\mathcal{H}\left(m_{0}\right)}+\left[\frac{1}{q(\mu)} M \quad m_{0}^{*}(\bar{\mu}) \frac{r(\mu)}{q^{\#}(\mu)} M\right] \mathcal{B}^{*} \mathcal{B}^{-1} \mathcal{F} \\
& =r(\mu) f_{0}(\mu)+\frac{1}{q(\mu)} \varphi_{1}(\mu)+m_{0}(\mu) \frac{r(\mu)}{q^{\#}(\mu)} \varphi_{2}(\mu)
\end{aligned}
$$

where $\varphi_{j}(\mu)=M f^{(j)}(j=1,2)$. This proves the reproducing kernel property for the space \mathcal{H}. Therefore, \mathcal{H} coincides with $\mathcal{H}(m)$.
3.1. Some properties of the space $\mathcal{H}(m)$.

Lemma 3.4. Let $j \in \mathbb{Z}_{+}$then a function $m \in N_{\kappa}$ satisfies the condition

$$
\begin{equation*}
m(\lambda)=-\frac{s_{0}}{\lambda}-\frac{s_{1}}{\lambda^{2}}-\frac{s_{2}}{\lambda^{3}}-\cdots-\frac{s_{j-1}}{\lambda^{j}}+O\left(\frac{1}{\lambda^{j+1}}\right) \quad(\lambda \widehat{\rightarrow} \infty) \tag{3.8}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lambda^{j} m(\lambda)+s_{0} \lambda^{j-1}+s_{1} \lambda^{j-2}+\cdots+s_{j-1} \in \mathcal{H}(m) \tag{3.9}
\end{equation*}
$$

Proof. A proof of Lemma 3.4 is in Appendix.
Corollary 3.5. Let a function $m \in N_{\kappa}$ satisfies $m(\lambda)=O(1 / \lambda)$ for $\lambda \widehat{\rightarrow} \infty$. Define a kernel $\mathrm{K}_{\mu}^{m}(\lambda)$ by the formula

$$
\begin{equation*}
\mathrm{K}_{\mu}^{m}(\lambda)=\frac{\lambda m(\lambda)-\bar{\mu} m(\bar{\mu})}{\lambda-\bar{\mu}} \quad\left(\lambda, \mu \in \mathfrak{h}_{m}\right) . \tag{3.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{K}_{\mu}^{m}(\lambda) \in \mathcal{H}(m) \tag{3.11}
\end{equation*}
$$

Proof. The relation (3.11) is implied by the identity

$$
\begin{equation*}
\mathrm{K}_{\mu}^{m}(\lambda)=m(\lambda)+\bar{\mu} \mathrm{N}_{\mu}^{m}(\lambda) . \tag{3.12}
\end{equation*}
$$

The inclusion $m \in \mathcal{H}(m)$ is proved in Lemma 3.4 and the inclusion $\mathrm{N}_{\mu}^{m} \in \mathcal{H}(m)$ follows from the definition of RKPS.

4. Problem $A I P_{\kappa}$ associated with $M P_{\kappa}(\mathbf{s})$

Let $\mathcal{X}=\mathbb{C}[x]$ be the space of polynomials $h(x)=\sum_{j=0}^{n} h_{j} x^{j}(n=0,1,2, \ldots)$. Let a sequence $\mathbf{s}=\left\{s_{j}\right\}_{0}^{\infty} \in H_{\kappa}$ be given. Define a sesquilinear form $K(\cdot, \cdot)$ by the formula (1.5).

Define the operators B_{1}, B_{2} and C_{1}, C_{2} by the equalities (cf. [19], [10])

$$
\begin{array}{lll}
B_{1}, B_{2}: \mathcal{X} \rightarrow \mathcal{X}, & B_{1} h=\frac{h(x)-h(0)}{x}, & B_{2} h=h \\
C_{1}, C_{2}: \mathcal{X} \rightarrow \mathbb{C}, & C_{1} h=\sum_{j=1}^{n} s_{j-1} h_{j}, & C_{2} h=-h(0) \tag{4.1}
\end{array}
$$

We will show that the data set $\left(B_{1}, B_{2}, C_{2}, C_{2}, K\right)$ satisfies the assumptions (A1)-(A4) but first we state some useful properties.

Proposition 4.1. The definition (4.1) of C_{1} can be rewritten as

$$
\begin{equation*}
C_{1} h=\widetilde{h}(0), \tag{4.2}
\end{equation*}
$$

where the adjacent polynomial \widetilde{h} is defined by

$$
\begin{equation*}
\widetilde{h}(\lambda)=K\left(\frac{h(x)-h(\lambda)}{x-\lambda}, \boldsymbol{1}\right) \tag{4.3}
\end{equation*}
$$

Proof. Indeed, since

$$
\frac{h(x)-h(0)}{x}=\sum_{j=1}^{n} h_{j} x^{j-1}
$$

then

$$
\widetilde{h}(0)=K\left(\sum_{j=1}^{n} h_{j} x^{j-1}, \mathbf{1}\right)=\sum_{j=1}^{n} s_{j-1} h_{j}=C_{1} h
$$

Proposition 4.2. Let operators B_{1}, C_{1}, C_{2} be defined by (4.1). Then the following relations hold:

$$
\begin{gather*}
\left(I-\lambda B_{1}\right)^{-1} h=\frac{x h(x)-\lambda h(\lambda)}{x-\lambda} \quad(h \in \mathcal{X}), \tag{4.4}\\
C_{1}\left(I-\lambda B_{1}\right)^{-1} h=\widetilde{h}(\lambda), \quad C_{2}\left(I-\lambda B_{1}\right)^{-1} h=-h(\lambda), \tag{4.5}
\end{gather*}
$$

where the adjacent polynomial \widetilde{h} is defined by (4.3).
Proof. Let $f \in \mathcal{X}$. Then

$$
\begin{equation*}
\left(I-\lambda B_{1}\right) f(x)=f(x)-\lambda \frac{f(x)-f(0)}{x}=: h(x) \tag{4.6}
\end{equation*}
$$

Substituting $x=\lambda$ in equation (4.6), one obtains $f(0)=h(\lambda)$. It follows from (4.6) that

$$
\begin{equation*}
f(x)=\frac{x h(x)-\lambda h(\lambda)}{x-\lambda} \tag{4.7}
\end{equation*}
$$

This proves the equation (4.4).
Formulas (4.5) and (4.1) yield

$$
C_{2}\left(1-\lambda B_{1}\right)^{-1} h=C_{2} f=-f(0)=-h(\lambda)
$$

Similarly, formulas (4.5) and (4.2) yield

$$
\begin{aligned}
C_{1}\left(1-\lambda B_{1}\right)^{-1} h & =C_{1} f=\widetilde{f}(0) \\
& =K\left(\frac{f(x)-f(0)}{x}, \mathbf{1}\right)=K\left(\frac{h(x)-h(\lambda)}{x-\lambda}, \mathbf{1}\right)=\widetilde{h}(\lambda)
\end{aligned}
$$

Proposition 4.3. The data set $\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ satisfies the assumptions (A1)-(A4).
Proof. The assumption (A1) is checked by straightforward calculations.
(A2). We will prove (A2) by contradiction. Assume that ker $K \neq 0$. Then there is a polynomial $h(x)$ of degree n such that $K(h, u)=0$ for any polynomial $u \in \mathbb{C}[x]$. Hence the Hankel matrix $D_{n}:=\left\{s_{j+k}\right\}_{j, k=0}^{n}$ is degenerate ($\operatorname{det} D_{n}=0$). Since the problem $M P_{\kappa}$ (1.3) is solvable, then by [13, Theorem 1.3] the solution to this problem is unique. But this contradicts to the assumption (I). So ker $K=\{0\}$.
(A3). Let \mathcal{H} be the completion of the space \mathcal{X} endowed with the inner product $K(\cdot, \cdot)$. Let M_{0} be a multiplication operator in \mathcal{X} and let the operator M be the closure of M_{0} in \mathcal{H}. As follows from [22, Proposition 1.1] the operator M is an entire π-symmetric operator in \mathcal{H} with the scale $\mathcal{L}=\mathbb{C}$.

Let \widetilde{B}_{1} be the closure of the graph of B_{1}

$$
\widetilde{B}_{1}^{-1}=\{\{h, M h+u\}: h \in \operatorname{dom} M, u \in \mathbb{C}\}
$$

Since the operator M is entire with the scale $\mathcal{L}=\mathbb{C}$, then $0 \in \rho(M, \mathbb{C})$ and

$$
\operatorname{ran} \widetilde{B}_{1}^{-1}=\operatorname{ran} M \dot{+} \mathbb{C}=\mathcal{H}, \quad \text { ker } \widetilde{B}_{1}^{-1}=\operatorname{ran} M \cap \mathbb{C}=\{0\}
$$

Hence \widetilde{B}_{1} is the graph of a bounded operator in \mathcal{H}.
The boundedness of the operator C_{1} follows from the already proved boundedness of the operator B_{1} and Proposition 4.1. Indeed

$$
C_{1} h=K\left(\frac{h(x)-h(0)}{x}, \mathbf{1}\right)=\left\langle B_{1} h, \mathbf{1}\right\rangle_{\mathcal{H}}
$$

The operator C_{2} is bounded since $0 \in \rho(M, \mathbb{C})$ and

$$
C_{2} h=-\mathcal{P}_{M, \mathbb{C}}(0) h,
$$

where $\mathcal{P}_{M, \mathbb{C}}(0)$ is a skew projection on the space \mathbb{C} in the decomposition $\mathcal{H}=\operatorname{ran} M \dot{+} \mathbb{C}$.
(A4). Now we show that the data set $\left(B_{1}, B_{2}, C_{1}, C_{2}\right)$ satisfies the condition (A4). It is sufficient to show that the next formula holds for different points $\lambda_{j} \in \mathbb{C}_{+}(j=1, \ldots, \kappa)$

$$
\operatorname{ran}\left[\begin{array}{c}
C_{2} \tag{4.8}\\
C_{2}\left(1-\bar{\lambda}_{1} B_{1}\right)^{-1} \\
\vdots \\
C_{2}\left(1-\bar{\lambda}_{\kappa} B_{1}\right)^{-1}
\end{array}\right]=\mathbb{C}^{\kappa+1}
$$

As follows from the relation (4.5)

$$
\left[\begin{array}{c}
C_{2} \\
C_{2}\left(1-\bar{\lambda}_{1} B_{1}\right)^{-1} \\
\vdots \\
C_{2}\left(1-\bar{\lambda}_{\kappa} B_{1}\right)^{-1}
\end{array}\right] f=\left[\begin{array}{c}
-f(0) \\
-f\left(\bar{\lambda}_{1}\right) \\
\vdots \\
-f\left(\bar{\lambda}_{\kappa}\right)
\end{array}\right] .
$$

Since the polynomial $f(x)$ is arbitrary we have gotten condition (4.8).

The abstract interpolation problem $A I P_{\kappa}$ associated with $M P_{\kappa}(\mathbf{s})$ can be formulated as follows.

Problem $A I P_{\kappa}\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$. Let a sequence of real numbers s $=\left\{s_{j}\right\}_{j=0}^{\infty}$ belong to H_{κ} and let the property (I) hold. Let the data set $B_{1}, B_{2}, C_{1}, C_{2}, K$ be defined by (4.1) and let F be defined by (2.5). Find an N_{κ} function $m(\lambda)$, such that
(C1) $F h \in \mathcal{H}(m)$ for any $h \in \mathcal{X}$;
(C2) $\langle F h, F h\rangle_{\mathcal{H}(m)} \leq K(h, h)$ for any $h \in \mathcal{X}$.
Proposition 4.4. Let $\mathbf{s}=\left\{s_{j}\right\}_{j=0}^{\infty} \in H_{\kappa}$ and let the data set $\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ be defined by (4.1). Then the function m defined by (2.4) belongs to N_{κ}.

Proof. Let $\varphi \in \widetilde{N}=N \cup\{\infty\}$ and let $m \in N_{\kappa^{\prime}}\left(\kappa^{\prime} \leq \kappa\right.$, the case $\kappa^{\prime}>\kappa$ is impossible) be defined by (2.4). By [25, Theorems 4.13, 4.14] there is a selfadjoint extension \widetilde{A} of the linear relation A (in (2.7)), such that

$$
(F h)(\lambda)=P_{\mathcal{L}}(\widetilde{A}-\lambda)^{-1} h \in \mathcal{H}(m) \quad(h \in \mathcal{X})
$$

and the mapping $F: \mathcal{X} \rightarrow \mathcal{H}(m)$ satisfies the identity $(C 1)$. On the other hand by Remark 2.2 the mapping F takes the form (2.5), where $G(\lambda)$ is defined by (2.6)

$$
(F h)(\lambda)=[\mathbf{1}-m(\lambda)]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]\left(\mathbf{1}-\lambda B_{1}\right)^{-1} h \quad(h \in \mathcal{X})
$$

It follows from (4.1) and (4.4) that for $h=x^{j}$

$$
G(\lambda) h=\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]\left(x^{j}+x^{j-1} \lambda+\cdots+\lambda^{j}\right)=\left[\begin{array}{c}
s_{0} \lambda^{j-1}+s_{1} \lambda^{j-2}+\cdots+s_{j-1} \\
-\lambda^{j}
\end{array}\right]
$$

therefore

$$
\begin{equation*}
(F h)(\lambda)=\lambda^{j} m(\lambda)+s_{0} \lambda^{j-1}+s_{1} \lambda^{j-2}+\cdots+s_{j-1} \in \mathcal{H}(m) \quad\left(h=x^{j}\right) \tag{4.9}
\end{equation*}
$$

It follows from Lemma 3.4 that the function m satisfies the decomposition (1.3). So from [22, Proposition 1.3] one obtains, that $m \in N_{\kappa^{\prime}}\left(\kappa^{\prime} \geq \kappa\right)$. Therefore, m belongs to the class N_{κ}.

5. Equivalence of problems $A I P_{\kappa}$ and $M P_{\kappa}(\mathbf{s})$

Theorem 5.1. Let $\left\{s_{j}\right\} \in H_{\kappa}$, let the data set $\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ be defined by (4.1). Then a function m is a solution of the problem $A I P_{\kappa}\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ if and only if the function m is a solution of the problem $M P_{\kappa}(\mathbf{s})$.

Proof. Necessity. Let $m \in N_{\kappa}$ be a solution of $A I P_{\kappa}\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$. It follows from Remark 2.2 that the mapping F corresponding to the function m is unique. This mapping takes the form (2.5) and satisfies (4.9). It follows from Lemma 3.4 that the function m has the asymptotic expansion (3.8) for every $j \in \mathbb{Z}_{+}$and hence the function m is a solution of $M P_{\kappa}(\mathbf{s})$.

Sufficiency. Let $m \in N_{\kappa}$ be a solution of $M P_{\kappa}(\mathbf{s})$. Define a mapping F by the formula (2.5).

Step 1. Let us show that F satisfies (C1). One gets from (4.9) and Lemma 3.4 that

$$
F h \in \mathcal{H}(m) \quad\left(h=x^{j}, \quad j \in \mathbb{Z}_{+}\right)
$$

hence $F h \in \mathcal{H}(m)$ for every $h \in \mathcal{X}$.
Step 2. Let us show that the F satisfies (C2). Let \widetilde{A} be a selfadjoint operator in $\mathcal{H}(m)$ (see [24])

$$
\begin{equation*}
\widetilde{A}=\left\{\left\{f, f^{\prime}\right\} \in \mathcal{H}(\varphi, \psi)^{2}: f^{\prime}(\lambda)-\lambda f(\lambda) \equiv \text { const } \in \mathbb{C}\right\} \tag{5.1}
\end{equation*}
$$

Define the functions

$$
f_{j}(\lambda):=\lambda^{j} m(\lambda)+\lambda^{j-1} s_{0}+\lambda^{j-2} s_{1}+\cdots+s_{j-1} \quad(j=0,1, \ldots)
$$

If follows from Lemma 3.4 that $f_{j} \in \mathcal{H}(m)(j=0,1, \ldots)$. Also the functions f_{j} for $j=0,1, \ldots$ satisfy the relation

$$
f_{j+1}(\lambda)-\lambda f_{j}(\lambda) \equiv s_{j}=\text { const. }
$$

So $\left\{f_{j}, f_{j+1}\right\} \in \widetilde{A}$ that is

$$
\begin{equation*}
\widetilde{A} f_{j}=f_{j+1} \tag{5.2}
\end{equation*}
$$

It follows from definition of RKPS $\mathcal{H}(m)$ and Corollary 3.5 that

$$
\mathrm{N}_{\mu}^{m}(\cdot) \in \mathcal{H}(m) \quad \text { and } \quad \mathrm{K}_{\frac{m}{\mu}}^{m}(\cdot) \in \mathcal{H}(m) .
$$

Moreover, it follows from the identity (3.12) that

$$
\left\{\mathrm{N}_{\bar{\mu}}^{m}(\cdot), \mathrm{K}_{\bar{\mu}}^{m}(\cdot)\right\}=\left\{\frac{m(\lambda)-m(\mu)}{\lambda-\mu}, \lambda \frac{m(\lambda)-m(\mu)}{\lambda-\mu}+m(\mu)\right\} \in \widetilde{A}
$$

and hence

$$
\left\{\mathrm{N}_{\bar{\mu}}^{m}(\cdot), m(\cdot)\right\}=\left\{\mathrm{N}_{\bar{\mu}}^{m}(\cdot), \mathrm{K}_{\bar{\mu}}^{m}(\cdot)-\mu \mathrm{N}_{\bar{\mu}}^{m}(\cdot)\right\} \in \widetilde{A}-\mu
$$

This implies

$$
(\widetilde{A}-\mu)^{-1} m(\cdot)=(\widetilde{A}-\mu)^{-1} f_{0}(\cdot)=\mathrm{N}_{\bar{\mu}}^{m}(\cdot)
$$

Then by the reproducing kernel property in $\mathcal{H}(m)$

$$
\begin{equation*}
\left\langle(\widetilde{A}-\mu)^{-1} f_{0}(\cdot), f_{0}(\cdot)\right\rangle_{\mathcal{H}(m)}=\left\langle\mathrm{N}_{\bar{\mu}}^{m}(\cdot), m(\cdot)\right\rangle_{\mathcal{H}(m)}=m(\mu) . \tag{5.3}
\end{equation*}
$$

Since m admits the asymptotic expansion (1.3) then $f_{0} \in \operatorname{dom}\left(\widetilde{A^{j}}\right)$ for every $j \in \mathbb{N}$ (see [20, Satz 1.10], see also [12]) and

$$
\begin{equation*}
\left\langle\widetilde{A}^{j} f_{0}, f_{0}\right\rangle_{\mathcal{H}(m)}=s_{j} \quad(j=0,1, \ldots) \tag{5.4}
\end{equation*}
$$

Since $\widetilde{A}^{j} f_{0}=f_{j}$ then

$$
\begin{equation*}
\left\langle f_{j}, f_{i}\right\rangle_{\mathcal{H}(m)}=\left\langle\widetilde{A}^{i+j} f_{0}, f_{0}\right\rangle_{\mathcal{H}(m)}=s_{i+j} \quad(i, j=0,1,2, \ldots) \tag{5.5}
\end{equation*}
$$

Hence one obtains for every $h=\sum_{j=0}^{n} h_{j} x^{j} \in \mathcal{X}$ that $F h=\sum_{j=0}^{n} h_{j} f_{j}$ and by (5.5)

$$
\begin{aligned}
\langle F h, F h\rangle_{\mathcal{H}(m)} & =\left\langle\sum_{j=0}^{n} h_{j} f_{j}, \sum_{j=0}^{n} h_{j} f_{j}\right\rangle_{\mathcal{H}(m)} \\
& =\sum_{i, j=0}^{n}\left\langle h_{i} f_{i}, h_{j} f_{j}\right\rangle_{\mathcal{H}(m)}=\sum_{i, j=0}^{n} h_{i} \bar{h}_{j} s_{i+j}=K(h, h) .
\end{aligned}
$$

Remark 5.2. Note that in the course of the proof of Theorem 5.1 we have shown the Parseval equality

$$
\begin{equation*}
\langle F h, F h\rangle_{\mathcal{H}(m)}=K(h, h) \quad(\forall h \in \mathcal{X}) \tag{5.6}
\end{equation*}
$$

In the case $\kappa=0$ the equality (5.6) was proved in [19].

6. Description of solutions of $M P_{\kappa}$

We need the notion of biorthogonal bases to determine the matrix function $\Theta(\lambda) \in$ $\mathbb{C}^{2 \times 2}$ defined by (2.3). The bases $\left\{f_{k}\right\}_{k=0}^{\infty}$ and $\left\{g_{k}\right\}_{k=0}^{\infty}$ in $\mathbb{C}[x]$ are called biorthogonal with respect to the form $K(\cdot, \cdot)$, if

$$
K\left(f_{j}, g_{k}\right)=\delta_{j k} \quad(j, k=0,1, \ldots)
$$

where $\delta_{j k}=0$ for $k \neq j$ and $\delta_{j j}=1(k, j=0,1, \ldots)$. If the form $K(\cdot, \cdot)$ is nonnegative then any orthonormal basis of polynomials is biorthogonal to itself. Construction of biorthogonal bases in general will be given below.

Proposition 6.1. Let the bases $\left\{f_{k}\right\}_{k=0}^{\infty}$ and $\left\{g_{k}\right\}_{k=0}^{\infty}$ be biorthogonal with respect to the form $K(\cdot, \cdot)$. Then the following relations hold for $u \in \mathbb{C}$:

$$
\begin{equation*}
C_{1}^{*} u=\sum_{k=0}^{\infty} f_{k}(\cdot) \widetilde{g}_{k}(0)^{*} u, \quad C_{2}^{*} u=-\sum_{k=0}^{\infty} f_{k}(\cdot) g_{k}(0)^{*} u \tag{6.1}
\end{equation*}
$$

Proof. Indeed, if follows from the expansion with basis $\left\{f_{k}\right\}$ of functions C_{1}^{*} and C_{2}^{*} and the formulas (4.2), (4.1) that

$$
\begin{aligned}
& \left(C_{1}^{*} 1\right)(\lambda)=\sum_{k=0}^{\infty} f_{k}(\lambda)\left\langle C_{1}^{*} 1, g_{k}(\cdot)\right\rangle_{\mathcal{H}}=\sum_{k=0}^{\infty} f_{k}(\lambda)\left(1, C_{1} g_{k}(\cdot)\right)_{\mathbb{C}}=\sum_{k=0}^{\infty} f_{k}(\lambda) \widetilde{g}_{k}(0)^{*} \\
& \left(C_{2}^{*} 1\right)(\lambda)=\sum_{k=0}^{\infty} f_{k}(\lambda)\left\langle C_{2}^{*} 1, g_{k}(\cdot)\right\rangle_{\mathcal{H}}=\sum_{k=0}^{\infty} f_{k}(\lambda)\left(1, C_{2} g_{k}(\cdot)\right)_{\mathbb{C}}=-\sum_{k=0}^{\infty} f_{k}(\lambda) g_{k}(0)^{*}
\end{aligned}
$$

6.1. Proof of Theorem 1.1. Let the matrix valued function $\Theta(\lambda)$ be defined by (2.3). It follows from (4.5) and (6.1) that

$$
\begin{align*}
& \theta_{11}(\lambda)=1+\lambda C_{1}\left(I-\lambda B_{1}\right)^{-1} \sum_{k=0}^{\infty} f_{k}(\lambda) g_{k}(0)^{*}=1+\lambda \sum_{k=0}^{\infty} \widetilde{f}_{k}(\lambda) g_{k}(0)^{*} \\
& \theta_{12}(\lambda)=\lambda C_{1}\left(I-\lambda B_{1}\right)^{-1} \sum_{k=0}^{\infty} f_{k}(\lambda) \widetilde{g}_{k}(0)^{*}=\lambda \sum_{k=0}^{\infty} \widetilde{f}_{k}(\lambda) \widetilde{g}_{k}(0)^{*} \\
& \theta_{21}(\lambda)=\lambda C_{2}\left(I-\lambda B_{1}\right)^{-1} \sum_{k=0}^{\infty} f_{k}(\cdot) g_{k}(0)^{*}=-\lambda \sum_{k=0}^{\infty} f_{k}(\lambda) g_{k}(0)^{*} \tag{6.2}\\
& \theta_{22}(\lambda)=1+\lambda C_{2}\left(I-\lambda B_{1}\right)^{-1} \sum_{k=0}^{\infty} f_{k}(\lambda) \widetilde{g}_{k}(0)^{*}=1-\lambda \sum_{k=0}^{\infty} f_{k}(\lambda) \widetilde{g}_{k}(0)^{*}
\end{align*}
$$

and hence $\Theta(\lambda)$ coincides with the matrix valued function in (1.8).

Let m be a solution of $M P_{\kappa}(\mathbf{s})$. Then by Theorem 5.1 the function m is a solution of $A I P_{\kappa}\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ and hence it admits the representation (2.4) with $\varphi \in \widetilde{N}$.

Conversely let $\varphi \in \widetilde{N}$. Then the function m defined by (2.4) belongs to N_{κ} by Proposition 4.4. Hence, by Theorem 2.1 the function m is a solution of $A I P_{\kappa}\left(B_{1}, B_{2}, C_{1}, C_{2}, K\right)$ and by Theorem 5.1 the function m is also a solution of $M P_{\kappa}(\mathbf{s})$.

In the case of $\kappa=0$ the formulas (6.2) are identical to those in [1].
6.2. Description of solutions of $M P_{\kappa}(\mathbf{s})$ in the form of Krein-Langer. The set of polynomials $\left\{g_{k}\right\}_{k=0}^{\infty}$ is called an almost-orthogonal system ([21, §7.1], see also [22, §3.1]) with respect to the form $K(\cdot, \cdot)$, if for each g_{k} there exists $g_{k^{\prime}}$ with the properties
(i) $K\left(g_{k}, g_{j}\right)=0$ for all $j\left(j \neq k^{\prime}\right)$;
(ii) $K\left(g_{k}, g_{k^{\prime}}\right)= \pm 1$.

Put $\varepsilon_{k}:=K\left(g_{k}, g_{k^{\prime}}\right)$ for $k=0,1, \ldots$
It follows from [21, Behauptung 7.1]) that there exists an almost-orthogonal system $\left\{g_{k}\right\}_{k=0}^{\infty}$ to the form $K(\cdot, \cdot)$ such that $g_{0} \equiv 1$ and g_{k} is a real polynomial of degree k. Therefore the basis $\left\{g_{k}\right\}_{k=0}^{\infty}$ and $\left\{\varepsilon_{k^{\prime}} g_{k^{\prime}}\right\}_{k=0}^{\infty}$ are biorthogonal with respect to the form $K(\cdot, \cdot)$. So one obtains from the formula (1.8) that

$$
\begin{array}{ll}
\theta_{11}(\lambda)=1+\lambda \sum_{k=0}^{\infty} \varepsilon_{k} \widetilde{g}_{k}(\lambda) g_{k^{\prime}}(0), & \theta_{12}(\lambda)=\lambda \sum_{k=0}^{\infty} \varepsilon_{k} \widetilde{g}_{k}(\lambda) \widetilde{g}_{k^{\prime}}(0) \\
\theta_{21}(\lambda)=-\lambda \sum_{k=0}^{\infty} \varepsilon_{k} g_{k}(\lambda) g_{k^{\prime}}(0), & \theta_{22}(\lambda)=1-\lambda \sum_{k=0}^{\infty} \varepsilon_{k} g_{k}(\lambda) \widetilde{g}_{k^{\prime}}(0)
\end{array}
$$

where $\left\{\widetilde{g}_{k}(\lambda)\right\}_{k=0}^{\infty}$ is the system of adjacent polynomial defined by the formula (1.7).
This description of solution of the problem $M P_{\kappa}(\mathbf{s})$ coincides with [22, Theorem 1.4] (see also [21, Satz 7.5]).
6.3. Description of solutions of $M P_{\kappa}(s)$ in the form of Derevyagin-Derkach. Another description of solutions of the problem $M P_{\kappa}(\mathbf{s})$ was given in [8]. This description also can be derived from Theorem 1.1 at the expense of a choice of another biorthogonal system $\left\{f_{k}\right\}_{k=0}^{\infty}$ and $\left\{g_{k}\right\}_{k=0}^{\infty}$.

It follows from $\left\{s_{j}\right\}_{0}^{\infty} \in H_{\kappa}$ that there exists a number M such that $\kappa=\nu_{-}\left(D_{M}\right)=$ $\nu_{-}\left(D_{M+1}\right)=\nu_{-}\left(D_{M+2}\right)=\cdots$, where $\nu_{-}\left(D_{n}\right)$ is a number of negative eigenvalues of the Hankel matrix $D_{n}:=\left\{s_{j+k}\right\}_{j, k=0}^{n-1}$. An index n is called normal, if $\operatorname{det} D_{n} \neq 0$. Let $n_{0}=0$ and $n_{1}<n_{2}<\cdots$ be a sequence of all normal indices of $\left\{s_{j}\right\}_{j=0}^{\infty}$. Let $k_{j}=n_{j+1}-n_{j}$ $\left(j \in \mathbb{Z}_{+}\right)$. Define the polynomials $P_{n_{j}}$ by

$$
P_{n_{j}}(\lambda)=c_{j} \operatorname{det}\left[\begin{array}{cccc}
s_{0} & s_{1} & \ldots & s_{n_{j}} \tag{6.3}\\
s_{1} & s_{2} & \ldots & s_{n_{j}-1} \\
\vdots & & \ddots & \vdots \\
1 & \lambda & \ldots & \lambda^{n_{j}}
\end{array}\right] \quad\left(j \in \mathbb{Z}_{+}\right)
$$

where normalizing coefficients c_{j} are determined by the conditions

$$
K\left(P_{n_{j}}(\lambda), \lambda^{k_{j}-1} P_{n_{j}}(\lambda)\right)=\varepsilon_{j}, \quad\left|\varepsilon_{j}\right|=1 \quad\left(j \in \mathbb{Z}_{+}\right)
$$

Next define missing polynomials $P_{n}(\lambda)\left(n \neq n_{j}\right)$ by

$$
P_{n_{j}+k}(\lambda)=\lambda^{k} P_{n_{j}}(\lambda), \quad k=1,2, \ldots, k_{j}-1 \quad\left(j \in \mathbb{Z}_{+}\right)
$$

Then the Gram matrix

$$
G=\left(G_{j k}\right)_{j, k=0}^{\infty}, \quad G_{j k}=K\left(P_{j}, P_{k}\right)
$$

of the system $\left\{P_{j}\right\}_{j=0}^{\infty}$ takes the block matrix from (see [7])

$$
G=\operatorname{diag}\left(G^{(0)}, G^{(1)}, \ldots\right)
$$

where G^{j} are an $n_{j-1} \times n_{j-1}$ nondegenerate matrices and $G_{j}=1$ for $j \geq M$. As follows from [7] the space \mathcal{H} is isometrically isomorphic to the space $\left(\mathbf{l}_{2},\langle G \cdot, \cdot\rangle_{\mathbf{l}_{2}}\right)$ via the mapping

$$
V: P_{j} \mapsto e_{j} \quad(j \in \mathbb{N} \cup\{0\})
$$

where $\left\{e_{j}\right\}_{j=1}^{\infty}$ is the standard basis in space \mathbf{l}_{2}.
Let $\pi(\lambda)=\left(P_{0}(\lambda), P_{1}(\lambda), \ldots\right)$. It follows from condition (I) that $\pi(\lambda) \in \mathbf{l}_{2}$. Let

$$
f_{k}(\lambda)=P_{k}(\lambda), \quad g_{k}(\lambda)=\left(G^{-1} \pi(\lambda), e_{k}\right)_{\mathbf{l}_{2}} \quad\left(k \in \mathbb{Z}_{+}\right)
$$

The system $\left\{g_{k}\right\}_{k=0}^{\infty}$ is biorthogonal to $\left\{f_{k}\right\}_{k=0}^{\infty}$ with respect to the form $K(\cdot, \cdot)$ since

$$
K\left(f_{j}, g_{k}\right)=\left(G V f_{j}, V g_{k}\right)_{\mathbf{l}_{2}}=\left(G e_{j}, G^{-1} e_{k}\right)_{\mathbf{l}_{2}}=\left(e_{j}, e_{k}\right)_{\mathbf{l}_{2}}=\delta_{j k}
$$

Proposition 6.2. Let a polynomial $P_{n_{j}}\left(j \in \mathbb{Z}_{+}\right)$be defined by (6.3) and let $Q_{n_{j}}$ be the adjacent polynomial

$$
Q_{n_{j}}(\lambda):=\widetilde{P}_{n_{j}}(\lambda)=K\left(\frac{P_{n_{j}}(\lambda)-P_{n_{j}}(t)}{\lambda-t}, 1\right)
$$

Let

$$
Q_{n_{j}+k}(\lambda):=\lambda^{k} P_{n_{j}}(\lambda) \quad\left(k=1,2, \ldots, k_{j}-1\right) .
$$

Then

$$
\begin{equation*}
Q_{n_{j}+k}(\lambda)=\widetilde{P}_{n_{j}+k}(\lambda) \quad\left(k=1,2, \ldots, k_{j}-1\right) \tag{6.4}
\end{equation*}
$$

Proof. For every $j \in \mathbb{N}, k=1,2, \ldots, k_{j}-1$ one obtains

$$
\begin{align*}
\widetilde{P}_{n_{j}+k}(\lambda) & =K\left(\frac{\lambda^{k} P_{n_{j}}(\lambda)-t^{k} P_{n_{j}}(t)}{\lambda-t}, 1\right) \\
& =\lambda^{k} K\left(\frac{P_{n_{j}}(\lambda)-P_{n_{j}}(t)}{\lambda-t}, 1\right)+K\left(P_{n_{j}}(t), \frac{\bar{\lambda}^{k}-t^{k}}{\bar{\lambda}-t}\right) \tag{6.5}
\end{align*}
$$

Now (6.4) follows from (6.5) since the latter term is equal to 0 .
So the formula (1.8) coincides with the result [8, Corollary 3.17] for this choice of biorthogonal systems $\left\{f_{k}\right\}_{k=0}^{\infty}$ and $\left\{g_{k}\right\}_{k=0}^{\infty}$.

Appendix A. Proof of Lemma 3.4

We will need an auxiliary result proved in [10, Lemma 2.12] in a more general case.
Lemma A.1. ([10]). Let $m_{0} \in N$, then
(i) $f(\lambda)=O(1)(\lambda \rightarrow \infty)$ for all $f \in \mathcal{H}\left(m_{0}\right)$;
(ii) If, additionally, $m_{0} \in N^{0}$ then $f(\lambda)=O\left(\frac{1}{\lambda}\right)(\lambda \widehat{\rightarrow} \infty)$ for all $f \in \mathcal{H}\left(m_{0}\right)$.
A.1. Proof of Lemma 3.4. Sufficiency. Assume that the function $m \in N_{\kappa}$ satisfies (3.9). Let us show that the condition (3.8) holds. Let polynomials p, q and a function $m_{0} \in N$ be determined by the factorization (3.2) for the function $m \in N_{\kappa}$.

Case 1. Let $\kappa=n=\operatorname{deg} q>\operatorname{deg} p=k$. Then $r(\lambda)=O(1 / \lambda)$ as $\lambda \widehat{\rightarrow} \infty$. Since $m_{0} \in N$, then

$$
\begin{equation*}
m_{0}(\lambda)=O(\lambda) \quad(\lambda \widehat{\rightarrow} \infty) \tag{A.1}
\end{equation*}
$$

It follows from Lemma A. 1 that

$$
\begin{equation*}
f_{0}(\lambda)=O(1) \quad(\lambda \widehat{\rightarrow} \infty) \tag{A.2}
\end{equation*}
$$

for all $f_{0} \in \mathcal{H}\left(m_{0}\right)$. One obtains from the formula (3.5) that for all $f \in \mathcal{H}(m)$

$$
\begin{equation*}
f(\lambda)=O(1 / \lambda) \quad(\lambda \widehat{\rightarrow} \infty) \tag{A.3}
\end{equation*}
$$

So it follows from (3.9) that

$$
m(\lambda)+\frac{s_{0}}{\lambda}+\frac{s_{1}}{\lambda^{2}}+\cdots+\frac{s_{j-1}}{\lambda^{j}}=O\left(\frac{1}{\lambda^{j+1}}\right) \quad(\lambda \rightarrow \infty)
$$

Case 2. Let $\kappa=\operatorname{deg} q=\operatorname{deg} p$. Then $r(\lambda)=O(1 / \lambda)$ as $\lambda \widehat{\rightarrow}$. The rate of growth at infinity of $m_{0}(\lambda)$ is given by (A.1) and (A.2). Then it follows from (3.5) for all $f \in \mathcal{H}(m)$ that

$$
\begin{equation*}
f(\lambda)=O(1) \quad(\lambda \widehat{\rightarrow} \infty) \tag{A.4}
\end{equation*}
$$

One obtains from (3.9) that

$$
m(\lambda)=O(1 / \lambda) \quad(\lambda \widehat{\rightarrow} \infty)
$$

Therefore, it follows from the assumption $\operatorname{deg} q=\operatorname{deg} p$ and the factorization (3.2) that

$$
\begin{equation*}
m_{0}(\lambda)=O(1 / \lambda) \quad(\lambda \widehat{\rightarrow} \infty) \tag{A.5}
\end{equation*}
$$

One obtains from Lemma A. 1

$$
\begin{equation*}
f_{0}(\lambda)=O(1 / \lambda) \quad(\lambda \widehat{\rightarrow} \infty) \tag{A.6}
\end{equation*}
$$

for all $f_{0} \in \mathcal{H}\left(m_{0}\right)$. Now (3.5), (A.5) and (A.6) yields (A.3). The end of the proof is similar to that in Case 1.

Case 3. Let $n=\operatorname{deg} q<\operatorname{deg} p=k=\kappa$. Then $r(\lambda)=O\left(\lambda^{k-n}\right)$ as $\lambda \widehat{\rightarrow}$. It follows from (3.5) and relations (A.1), (A.2) that for all $f \in \mathcal{H}(m)$

$$
\begin{equation*}
f(\lambda)=O\left(\lambda^{2 k-2 n}\right) \quad(\lambda \widehat{\rightarrow} \infty) \tag{A.7}
\end{equation*}
$$

One obtains from (3.9) that

$$
m(\lambda)=O\left(\lambda^{2 k-2 n-1}\right) \quad(\lambda \widehat{\rightarrow} \infty)
$$

Therefore the relation (A.5) follows from the factorization (3.2). By Lemma A. 1 one obtains the relation (A.6). Again the relations (3.5), (A.5) and (A.6) yield

$$
f(\lambda)=O\left(\lambda^{2 k-2 n-2}\right) \quad(\lambda \widehat{\rightarrow} \infty)
$$

Now one obtains from (3.9) that

$$
m(\lambda)=O\left(\lambda^{2 k-2 n-2}\right) \quad(\lambda \widehat{\rightarrow} \infty)
$$

So it follows from the factorization (3.2) that

$$
\begin{equation*}
m_{0}(\lambda)=O\left(\lambda^{-2}\right) \quad(\lambda \widehat{\rightarrow} \infty) \tag{A.8}
\end{equation*}
$$

The relation (A.8) contradicts the condition $m_{0} \in N$. Therefore, the inequality $\operatorname{deg} q<$ $\operatorname{deg} p$ never occurs for function m, which satisfies the condition (3.9).
A.2. Some auxiliary statements. We start with some algebraic statements concerning formal power series

$$
\begin{equation*}
p(\lambda)=p_{0} \lambda^{n}+p_{1} \lambda^{n-1}+\cdots \tag{A.9}
\end{equation*}
$$

and the corresponding matrices $T_{k}(p) \in \mathbb{C}^{k \times k}$ of their k leading coefficients

$$
T_{k}(p):=\left[\begin{array}{ccccc}
p_{0} & p_{1} & p_{2} & \cdots & p_{k-1} \tag{A.10}\\
0 & p_{0} & p_{1} & \cdots & p_{k-2} \\
0 & 0 & p_{0} & \cdots & p_{k-3} \\
\vdots & & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & p_{0}
\end{array}\right]
$$

E. NEIMAN

Proposition A.2. Let p and q be formal series with a leading degree k and n, respectively

$$
p(\lambda)=p_{0} \lambda^{k}+p_{1} \lambda^{k-1}+\cdots, \quad q(\lambda)=q_{0} \lambda^{n}+q_{1} \lambda^{n-1}+\cdots \quad\left(p_{0}, q_{0} \neq 0\right)
$$

Let $T_{j}(p)$ and $T_{j}(q)$ be matrices of j leading coefficients of series p and q. Then

$$
\begin{equation*}
T_{j}(p q)=T_{j}(p) T_{j}(q) \tag{A.11}
\end{equation*}
$$

Proof. The product $T_{j}(p) T_{j}(q)$ is equal to
$T_{j}(p) T_{j}(q)=\left[\begin{array}{ccccc}p_{0} q_{0} & p_{0} q_{1}+p_{1} q_{0} & p_{0} q_{2}+p_{1} q_{1}+p_{2} q_{0} & \cdots & p_{0} q_{j-1}+p_{1} q_{j-2}+\cdots+p_{j-1} q_{0} \\ 0 & p_{0} q_{0} & p_{0} q_{1}+p_{1} q_{0} & \cdots & p_{0} q_{j-2}+p_{1} q_{j-3}+\cdots+p_{j-2} q_{0} \\ 0 & 0 & p_{0} q_{0} & \cdots & p_{0} q_{j-3}+p_{1} q_{j-4}+\cdots+p_{j-3} q_{0} \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & p_{0}\end{array}\right]$.

The product of series $p(\lambda) q(\lambda)$ takes the form

$$
\begin{align*}
p(\lambda) q(\lambda) & =p_{0} q_{0} \lambda^{k+n}+\left(p_{0} q_{1}+p_{1} q_{0}\right) \lambda^{k+n-1}+\left(p_{0} q_{2}+p_{1} q_{1}+p_{2} q_{0}\right) \lambda^{k+n-2} \tag{A.13}\\
& +\cdots+\left(p_{0} q_{j-1}+p_{1} q_{j-2}+p_{j-2} q_{1}+p_{j-1} q_{0}\right) \lambda^{k+n-j+1}+o\left(\lambda^{k+n-j+1}\right)
\end{align*}
$$

Therefore, the formula (A.11) holds.
Remark A.3. Since the products $p(\lambda) q(\lambda)$ and $q(\lambda) p(\lambda)$ of formal series coincide, then the matrices $T_{j}(p)$ and $T_{j}(q)$ commute

$$
T_{j}(p) T_{j}(q)=T_{j}(q) T_{j}(p)
$$

Corollary A.4. Let $q(\lambda)=q_{0} \lambda^{n}+q_{1} \lambda^{n-1}+\cdots$ be a formal series $\left(q_{0} \neq 0\right)$. Then j leading coefficients of series

$$
\frac{1}{q(\lambda)}=\frac{q_{0}^{\prime}}{\lambda^{n}}+\frac{q_{1}^{\prime}}{\lambda^{n+1}}+\frac{q_{2}^{\prime}}{\lambda^{n+2}}+\cdots
$$

generate a matrix $T_{j}(1 / q)$, which is connected with $T_{j}(q)$ by $T_{j}(1 / q)=\left(T_{j}(q)\right)^{-1}$.
Proposition A.5. Let $c(\lambda)=\lambda^{j}+c_{1} \lambda^{j-1}+c d o t s+c_{j}$ be a polynomial of a degree j. Let a function $m_{0} \in N^{0}$ have an integral representation (2.10) and admit the expansion in a series (2.11). Then the function

$$
d(\lambda)=\int_{-\infty}^{\infty} \frac{c(t)-c(\lambda)}{t-\lambda} d \sigma(t)
$$

is a polynomial in λ of degree $j-1$ and

$$
\begin{equation*}
T_{j}(d)=T_{j}(c) T_{j}\left(s^{0}\right) \tag{A.14}
\end{equation*}
$$

where $T_{j}(c)$ and $T_{j}\left(s^{0}\right)$ are matrices of j leading coefficients of polynomials $c(\lambda)$ and

$$
s^{0}(\lambda)=s_{0}^{0} \lambda^{j-1}+s_{1}^{0} \lambda^{j-2}+\cdots+s_{j}^{0} .
$$

Proof. Denote $c_{0}=1$. Then the function $d(\lambda)$ take the form

$$
\begin{align*}
d(\lambda) & =\int_{-\infty}^{\infty}\left(\frac{t^{j}-\lambda^{j}}{t-\lambda} c_{0}+\frac{t^{j-1}-\lambda^{j-1}}{t-\lambda} c_{1}+\cdots+\frac{t-\lambda}{t-\lambda} c_{j-1}\right) d \sigma(t) \tag{A.15}\\
& =\int_{-\infty}^{\infty}\left(c_{0}\left(t^{j-1}+t^{j-2} \lambda+\cdots+\lambda^{j-1}\right)+c_{1}\left(t^{j-2}+\cdots+\lambda^{j-2}\right)+\cdots+c_{j-1}\right) d \sigma(t)
\end{align*}
$$

It follows from equations (2.12) and (A.15) that

$$
\begin{aligned}
d(\lambda) & =c_{0}\left(s_{j-1}^{0}+s_{j-2}^{0} \lambda+\cdots+\lambda^{j-1}\right)+c_{1}\left(s_{j-2}^{0}+s_{j-3}^{0} \lambda+\cdots+\lambda^{j-2}\right)+\cdots+c_{j-1} s_{0}^{0} \\
& =c_{0} s_{0} \lambda^{j-1}+\left(c_{0} s_{1}^{0}+c_{1} s_{0}^{0}\right) \lambda^{j-2}+\cdots+\left(c_{0} s_{j-1}^{0}+c_{1} s_{j-2}^{0}+\cdots+c_{j-1} s_{0}^{0}\right)
\end{aligned}
$$

In view of (A.12) this proves (A.14).
A.3. Proof of Lemma 3.4. Necessity. Let a function $m \in N_{\kappa}$ satisfy the condition (3.8). Define a polynomial $s(\lambda)$ of a formal degree $j-1$ by the formula

$$
\begin{equation*}
s(\lambda):=s_{0} \lambda^{j-1}+s_{1} \lambda^{j-2}+\cdots+s_{j-1} . \tag{A.16}
\end{equation*}
$$

Let p and q be monic polynomials of degrees k and n, respectively

$$
\begin{align*}
& p(\lambda)=\lambda^{k}+p_{1} \lambda^{k-1}+\cdots+p_{k-1} \lambda+p_{k}, \tag{A.17}\\
& q(\lambda)=\lambda^{n}+q_{1} \lambda^{n-1}+\cdots+q_{n-1} \lambda+q_{n},
\end{align*}
$$

and let a function $m_{0} \in N$ be defined by the factorization (3.2).
Define by \mathcal{P}_{n} the set of polynomials of a formal degree n.
Case 1: $\kappa=k=\operatorname{deg} p=\operatorname{deg} q=n$.
It follows from the condition (3.8) that $m_{0}=O(1 / \lambda)$, moreover the function m_{0} belongs to N^{0} and admits the integral representation (2.10).

Let c be some monic polynomial of degree $j\left(c_{i} \in \mathbb{C}\right.$ for $\left.i=1,2, \ldots, j\right)$

$$
\begin{equation*}
c(\lambda):=\lambda^{j}+c_{1} \lambda^{j-1}+c_{2} \lambda^{j-2}+\cdots+c_{j} . \tag{A.18}
\end{equation*}
$$

Consider the next decomposition of $\lambda^{j} m(\lambda)+s(\lambda)$

$$
\begin{equation*}
\lambda^{j} m(\lambda)+s(\lambda)=\frac{p(\lambda)}{q(\lambda)} f(\lambda)+\frac{p(\lambda)}{q(\lambda) q^{\#}(\lambda)} m_{0}(\lambda) \varphi_{2}(\lambda)+\frac{1}{q(\lambda)} \varphi_{1}(\lambda) \tag{A.19}
\end{equation*}
$$

where

$$
\begin{gather*}
f(\lambda):=\int_{-\infty}^{\infty} \frac{c(t)}{t-\lambda} d \sigma(t) \tag{A.20}\\
\varphi_{1}(\lambda):=q(\lambda) s(\lambda)+p(\lambda) m_{0}(\lambda) c(\lambda)-p(\lambda) \int_{-\infty}^{\infty} \frac{c(t)}{t-\lambda} d \sigma(t), \tag{A.21}\\
\varphi_{2}(\lambda):=p^{\#}(\lambda) \lambda^{j}-q^{\#}(\lambda) c(\lambda) \tag{A.22}
\end{gather*}
$$

We will show that there is a choice of c such that

$$
\begin{equation*}
f(\cdot) \in \mathcal{H}\left(m_{0}\right), \quad \varphi_{1}(\cdot), \varphi_{2}(\cdot) \in \mathcal{P}_{\kappa-1} \tag{A.23}
\end{equation*}
$$

Then it will imply by Theorem 3.3 that the relation (3.9) holds.
The inclusion $f(\cdot) \in \mathcal{H}\left(m_{0}\right)$ follows from Remark 2.4 and Theorem 3.1.
Let $P_{i}=T_{i}(p), Q_{i}=T_{i}(q), S_{i}=T_{i}(s), C_{i}=T_{i}(c), S_{i}^{0}=T_{i}\left(s^{0}\right)$ be matrices of i leading coefficients of the polynomials $p(\lambda), q(\lambda), s(\lambda), c(\lambda), s^{0}(\lambda)$, respectively, and let \bar{P}_{i}, \bar{Q}_{i} be matrices with complex adjoint elements of the matrices P_{i} and Q_{i}. Note that $\bar{P}_{i}=T_{i}\left(p^{\#}\right), \bar{Q}_{i}=T_{i}\left(q^{\#}\right)$.

The function φ_{2} is a polynomial of formal degree $\kappa+j$. Define a polynomial $c(\lambda)$ so that $\varphi_{2}(\cdot) \in \mathcal{P}_{\kappa-1}$. This condition is equivalent to

$$
\bar{P}_{i}-\bar{Q}_{i} C_{i}=0 \quad(i=1,2, \ldots, j+1)
$$

so

$$
\begin{equation*}
C_{i}=\left(\bar{Q}_{i}\right)^{-1} \bar{P}_{i}=\bar{P}_{i}\left(\bar{Q}_{i}\right)^{-1} \quad(i=1,2, \ldots, j+1) \tag{A.24}
\end{equation*}
$$

Note that the matrix \bar{Q}_{j+1} is invertible and the coefficients $c_{1}, c_{2}, \ldots, c_{j}$ are uniquely defined.

Next the inclusion $\varphi_{1}(\cdot) \in \mathcal{P}_{\kappa-1}$ is showed. It follows from the factorization (3.2) that

$$
\begin{equation*}
-S_{j}=P_{j} \bar{P}_{j} Q_{j}^{-1}\left(\bar{Q}_{j}\right)^{-1}\left(-S_{j}^{0}\right) \tag{A.25}
\end{equation*}
$$

By the integral representation (2.10)

$$
\varphi_{1}(\lambda)=q(\lambda) s(\lambda)-p(\lambda) \int_{-\infty}^{\infty} \frac{c(t)-c(\lambda)}{t-\lambda} d \sigma(t)
$$

It follows from Proposition A. 5 that $\varphi_{1}(\lambda)$ is a polynomial of formal degree $\kappa+j-1$ and

$$
\begin{equation*}
T_{j}\left(\varphi_{1}\right)=Q_{j} S_{j}-P_{j} C_{j} S_{j}^{0} \tag{A.26}
\end{equation*}
$$

Using the formula (A.24) for $i=j$ and the relation (A.25) one obtains

$$
T_{j}\left(\varphi_{1}\right)=Q_{j} P_{j} \bar{P}_{j} Q_{j}^{-1}\left(\bar{Q}_{j}\right)^{-1} S_{j}^{0}-P_{j}\left(\bar{Q}_{j}\right)^{-1} \bar{P}_{j} S_{j}^{0}=0
$$

So the relation (A.23) is held.
Case 2: $k=\operatorname{deg} p<\operatorname{deg} q=n=\kappa$. Denote $d:=n-k(>0)$. It follows from the decomposition (2.8) for the function $m_{0} \in N$ that

$$
\begin{equation*}
m_{0}(\lambda)=a \lambda+b+m_{00}(\lambda) \tag{A.27}
\end{equation*}
$$

One obtains from the factorization (3.2) for $m \in N_{\kappa}$ and the conditions (1.3) that $m_{00}(\lambda)=O(1 / \lambda)$ so $m_{00} \in N^{0}$. Therefore the function m_{00} admits the integral representation similar (2.10).

Let the coefficient a in (A.27) not equal 0 so $m_{0}(\lambda)=O(\lambda)$ for $\lambda \rightarrow \infty$ (cases when $m_{0}(\lambda)=O(1)$ and $m_{0}(\lambda)=m_{00}(\lambda)=O(1 / \lambda)$ for $\lambda \rightarrow \infty$ researched by analogical). It follows from the factorization (3.2) that $m(\lambda)=O\left(\frac{1}{\lambda^{2 d-1}}\right)$ for $\lambda \rightarrow \infty$ and

$$
\begin{equation*}
s_{0}=s_{1}=\cdots=s_{2 d-3}=0, \quad s_{2 d-2} \neq 0 \tag{A.28}
\end{equation*}
$$

$\left(s_{0}=\cdots=s_{2 d-2}=0, s_{2 d-1} \neq 0\right.$ for $a=0 ; s_{0}=\cdots=s_{2 d-1}=0, s_{2 d} \neq 0$ for $a=b=0$). Moreover the polynomial $s(\lambda)$ defined by (A.16) has the degree $j-2 d+1$

$$
s(\lambda)=s_{2 d-2} \lambda^{j-2 d+1}+s_{2 d-1} \lambda^{j-2 d}+\cdots+s_{j-1}
$$

Let $j \geq 2 d-1$. Consider the decomposition (A.19) of the function $\lambda^{j} m(\lambda)+s(\lambda)$. The difference from the considered case $d=0$ is next: the function $m_{0} \in N$ admits the representation (A.27); the measure $d \sigma$ is defined from the integral representation (2.10) for the function m_{00}; the polynomial c has a degree $j-d$

$$
\begin{equation*}
c(\lambda):=\lambda^{j-d}+c_{1} \lambda^{j-d-1}+c_{2} \lambda^{j-d-2}+\cdots+c_{j-d} \tag{A.29}
\end{equation*}
$$

We will show that conditions (A.23) are right too.
It follows from Remark 2.4 and Theorem 3.1 that the including $f(\cdot) \in \mathcal{H}\left(m_{0}\right)$. The condition $\varphi_{2}(\cdot) \in \mathcal{P}_{\kappa-1}$ is equivalent to (A.24) for $i=j-d+1$.

Next the inclusion $\varphi_{1}(\cdot) \in \mathcal{P}_{\kappa-1}$ is showed. It follows from the representations (A.27) and (2.10) that

$$
\begin{equation*}
\varphi_{1}(\lambda)=q(\lambda) s(\lambda)+p(\lambda) c(\lambda)(a \lambda+b)-p(\lambda) \int_{-\infty}^{\infty} \frac{c(t)-c(\lambda)}{t-\lambda} d \sigma(t) \tag{A.30}
\end{equation*}
$$

Let

$$
A_{j-2 d+2}=T_{j-2 d+2}(a \lambda+b):=\left[\begin{array}{ccccc}
a & b & 0 & \cdots & 0 \\
0 & a & b & \cdots & 0 \\
0 & 0 & a & \cdots & 0 \\
\vdots & & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right]
$$

(respectively $A=b I$ where I is the identity matrix for $a=0, b \neq 0$ and $A=0$ for $a=b=0$). Define the polynomial s^{0} with formal degree $\operatorname{deg} s^{0}=j-d+2$

$$
s^{0}(\lambda):=0 \cdot \lambda^{j-d+2}+0 \cdot \lambda^{j-d+1}+s_{0}^{0} \lambda^{j-d}+s_{1}^{0} \lambda^{j-d-1}+\cdots+s_{j-d}^{0}
$$

where $\left\{s_{i}^{0}\right\}_{i=0}^{j-d}$ is coefficients from decomposition (2.11) for $m_{00} \in N^{0}$. We have added to polynomial s^{0} zero-summands for the degrees of summands of φ_{1} are coincidence. Let

$$
S_{j-2 d+2}^{0}=T_{j-2 d+2}\left(s^{0}\right):=\left[\begin{array}{cccccc}
0 & 0 & s_{0}^{0} & s_{1}^{0} & \cdots & s_{j-2 d-1}^{0} \\
0 & 0 & 0 & s_{0}^{0} & \cdots & s_{j-2 d-2}^{0} \\
0 & 0 & 0 & 0 & \cdots & s_{j-2 d-3}^{0} \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

It follows from Proposition A. 5 that φ_{1} is a polynomial of formal degree $j+n-2 d+1$ and
$T_{j-2 d+2}\left(\varphi_{1}\right)=Q_{j-2 d+2} S_{j-2 d+2}+P_{j-2 d+2} C_{j-2 d+2} A_{j-2 d+2}-P_{j-2 d+2} C_{j-2 d+2} S_{j-2 d+2}^{0}$.
It follows from the factorization (3.2) and the representation (A.27) that

$$
\begin{equation*}
-S=P \bar{P} Q^{-1}(\bar{Q})^{-1}\left(A-S^{0}\right) \tag{A.31}
\end{equation*}
$$

where all matrices have the size $(j-2 d+2) \times(j-2 d+2)$.
One obtains from the formula (A.24) for $i=j-2 d+2$ and the relation (A.30) that

$$
T\left(\varphi_{1}\right)=Q P \bar{P} Q^{-1}(\bar{Q})^{-1}\left(-A+S^{0}\right)+P \bar{P}(\bar{Q})^{-1} A-P \bar{P}(\bar{Q})^{-1} S^{0}=0
$$

So $\varphi_{1} \in \mathcal{P}_{n-1}$ and the relation (A.23) is held.
Let $d \leq j<2 d-1$. One obtains from the conditions (A.28) that $s(\lambda) \equiv 0$. Consider the decomposition kind of (A.19) for the function $\lambda^{j} m(\lambda)$ where the polynomial c is defined by formula (A.29).

The inclusions $f(\cdot) \in \mathcal{H}\left(m_{0}\right)$ and $\varphi_{2}(\cdot) \in \mathcal{P}_{\kappa-1}$ are proved similarly. Consider the function

$$
\varphi_{1}(\lambda)=p(\lambda) c(\lambda)(a \lambda+b)-p(\lambda) \int_{-\infty}^{\infty} \frac{c(t)-c(\lambda)}{t-\lambda} d \sigma(t)
$$

One obtains from Proposition A. 5 and condition $j<2 d-1$ that φ_{1} is polynomial and

$$
\operatorname{deg} \varphi_{1}=j+k-d+1<d+k=n=\kappa
$$

So $\varphi_{1} \in \mathcal{P}_{n-1}$ and the relation (A.23) holds.
Let $j<d$. One obtains from the conditions (A.28) that $s(\lambda) \equiv 0$. Consider the degree of the polynomial $p(\lambda) \lambda^{j}$

$$
\operatorname{deg}\left(p(\lambda) \lambda^{j}\right)=k+j<k+d=n=\kappa
$$

It follows from Theorem 3.3 that $\lambda^{j} m(\lambda) \in \mathcal{H}(m)$.
Case 3: $\kappa=\operatorname{deg} p>\operatorname{deg} q$ is impossible from the condition (3.8).

References

1. N. I. Akhiezer, The Classical Moment Problem, State publishing house phys. and math. lit., Moscow, 1965; English transl. Oliver and Boyd, Edinburg, 1965.
2. N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space, Nauka, Moscow, 1961; English transl. Dover Publications, New York, 1993.
3. D. Alpay, A. Dijksma, J. Rovnyak, H. S. V. de Snoo, Schur Functions, Operator Colligations, and Reproducing Kernel Pontryagin Spaces, Oper. Theory: Adv. Appl., vol. 96, Birkhäuser Verlag, Basel, 1997.
4. D. Alpay, I. Gohberg, Pairs of selfadjoint operators and their invariants, St. Petersburg Math. J. 16 (2005), no. 1, 59-104.
5. T. Ya. Azizov, I. S. Iohvidov, Linear operators in Hilbert spaces with G-metrics, Uspekhi Mat. Nauk 26 (1971), no. 4, 43-92.
6. L. de Branges, Perturbation theory, J. Math. Anal. Appl. 57 (1977), 393-415.
7. M. Derevyagin, V. Derkach, Spectral problems for generalized Jacobi matrices, Linear Algebra Appl. 382 (2004), 1-24.
8. M. Derevyagin, V. Derkach, On the convergence of Pade approximations for generalized Nevanlinna functions, Trans. Moscow Math. Soc. 68 (2007), 1-44.
9. V. Derkach, On generalized resolvents of Hermitian relations in Kreĭn spaces, J. Math. Sci. 97 (1999), no. 5, 4420-4460.
10. V. Derkach, Abstract interpolation problem in Nevanlinna classes, Modern Analysis and Applications: Mark Krein Centenary Conference, Vol. 1: Operator Theory and Related Topics, Book Series: Operator Theory: Adv. Appl., vol. 190, 2009, pp. 197-236.
11. V. Derkach, S. Hassi, A reproducting kernel space model for N_{κ}-function, Proceedings of the American Mathematical Society 131 (2003), no. 12, 3795-3806.
12. V. A. Derkach, S. Hassi, H. De Snoo, Generalized Nevanlinna functions with polynomial asymptotic behaviour at infinity and regular perturbations, Oper. Theory: Adv. Appl. 122 (2001), 169-189.
13. V. Derkach, S. Hassi, H. De Snoo, Truncated moment problems in the class of generalized Nevanlinna functions, Math. Nachr. 285 (2012), no. 14-15, 1741-1769.
14. V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), 1-95.
15. V. A. Derkach, M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), no. 2, 141-242.
16. A. Dijksma, H. Langer, A. Luger, Yu. Shondin, A factorization result for generalized Nevanlinna functions of the class N_{κ}, Integr. Equat. Oper. Theory 36 (2000), no. 2, 121-125.
17. V. E. Katsnelson, A. Ya. Kheifets, and P. M. Yuditskii, The abstract interpolation problem and extension theory of isometric operators, Operators in Function Spaces and Problems in Function Theory, Naukova Dumka, Kiev, 1987, pp. 83-96. (Russian)
18. V. Katsnelson, On transformations of Potapovs fundamental matrix inequality, Operator Theory: Adv. Appl. 95 (1997), 253-281.
19. A. Kheifets, Hamburger moment problem: Parseval equality and A-singularity, J. Funct. Anal. 141 (1996), 374-420.
20. M. G. Kreĭn, H. Langer, Uber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Π_{κ} zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen, Math. Nachr. 77 (1977), 187-236.
21. M. G. Krĕ̆n, H. Langer, Uber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Π_{κ} zusammenhängen. II. Verallgemeinerte Resolventen, u Resolventen und ganze Operatoren, J. Funct. Anal. 30 (1978), no. 3, 390-447.
22. M. G. Kreı̆n, H. Langer, Indefinite analogues of the Hamburger and Stieltjes moment problems, Part 1, Belträge zur Analysis 14 (1979), 25-40; Part 2, 15 (1981), 27-45.
23. M. G. Kreĭn and M. A. Naimark, The method of symmetric and hermitian forms in theory of separation of roots algebraic equation, Research Institute for Mathematics and Mechanics at Kharkov State University, Kharkov, 1936. (Russian); English transl. Linear and Multilinear Alg. 10 (1981), 265-308.
24. E. Neiman, A functional model associated with a generalized Nevanlinna pair, Ukrainian Math. Bull. 7 (2010), no. 2, 197-211.
25. E. Neiman, Abstract interpolation problem in generalized Nevanlinna classes, Methods Funct. Anal. Topology 18 (2012), no. 3, 266-287.

Lyceum at Donetsk National University, 46 Schorsa, Donetsk, 83050, Ukraine
E-mail address: evg-sqrt@mail.ru

[^0]: 1991 Mathematics Subject Classification. Primary 47A57, 30E05; Secondary 30H15, 44A60, 47B32, 47B50.

 Key words and phrases. Moment problem, abstract interpolation problem, reproducing kernel space, de Branges space, generalized Nevanlinna function.

 The author thanks V. A. Derkach for many suggestions and observations.

