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ℓ1-MUNN IDEAL AMENABILITY OF CERTAIN SEMIGROUP

ALGEBRAS

M. SHADAB

Abstract. In this paper we investigate ideal amenability of ℓ1(Gp), where Gp is a

maximal subgroup of inverse semigroup S with uniformly locally finite idempotent.
Also we find some conditions for ideal amenability of Rees matrix semigroup.

1. Introduction

The notion of amenability for ℓ1-Munn Banach algebra was studied by G. H. Esslam-
zadeh in [4]. In [6] he characterized various types of ideals in ℓ1-Munn Banach algebras.

A Banach algebra A is ideally amenable if for every closed ideal I of A, the first coho-
mology group ofA with coefficients in I∗ is trivial. In [9] M. E. Gorji and T. Yazdanpanah
have characterized some properties of ideally amenable Banach algebras.

In this paper we study ideal amenability in the category of ℓ1-Munn Banach algebra.
We show that for an inverse semigroup S with uniformly locally finite idempotent, the
ideal amenability of ℓ1(S) implies ideal amenability of ℓ1(Gp) where Gp is a maximal
subgroup of S. In a particular case, we characterized ideal amenability of ℓ1(S) for a
Rees matrix semigroup S.

2. Preliminaries

Throughout we use notations of [4]. Let A be a Banach algebra. I and J be arbitrary
index sets and P be J×I matrix over A such that ‖P‖∞ = sup{‖Pji‖ : j ∈ J, i ∈ I} ≤ 1.
The set LM(A, P ) of all I×J matrices A over A such that ‖A‖1 =

∑

i∈I,j∈J ‖Aij‖ < ∞

with ℓ1-norm and product A ◦B = APB,A,B ∈ LM(A, P ) is a Banach algebra that we
call the ℓ1-Munn I×J matrix algebra over A with sandwich matrix P or briefly ℓ1-Munn
algebra. When A is unital and P is the identity J × J matrix over A,LM(A, P ) is the
algebra MJ (A).

Let G be a group, I and J be arbitrary nonempty sets and G0 = G∪{0} be the group
with zero arising from G by adjunction of a zero element 0. An I × J matrix A over G0

that has at most one nonzero entry a = A(i, j) is called a Rees I×J matrix over G0 and
is denoted by aǫij . Let P be a J × I matrix over G. The set S = G × I × J with the
composition (a, i, j) ◦ (b, l, k) = (aPjlb, i, k), (a, i, j), (b, k, l) ∈ S is a semigroup that we
denote by M(G,P ). Similarly if P is a J× I matrix over G0, then S = G× I×J ∪{0} is
a semigroup under the following composition operation which is denoted by M0(G,P ):

(a, i, j) ◦ (b, l, k) =

{

(aPjlb, i, k), Pjl 6= 0
0, Pjl = 0

,

(a, i, j) ◦ 0 = 0 ◦ (a, i, j) = 0 ◦ 0 = 0.
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M0(G,P ) is isomorphic to the semigroup of all Rees I ×J matrices over G0 with binary
operation A ◦ B = APB. M0(G,P ) [resp. M(G,P )] is called the Rees I × J matrix
semigroup over G0 [resp. G] with the sandwich matrix P .

For a Banach algebra A let X be a Banach A-bimodule. A derivation from A into X

is a continuous linear operator D such that

D(ab) = a.D(b) +D(a).b (a, b ∈ A).

We define a derivation δx(a) = a.x−x.a for each x ∈ X and a ∈ A from A into X, which
is called an inner derivation. Let J be a closed ideal of A, then A is said to be J-weakly
amenable if every derivation from A into J∗ is inner. We call A ideally amenable if A is
J-weakly amenable for every closed ideal J of A.

Let I be a non-empty set. We denote by MI(A), the set I × I matrices (aij) with
entries in A such that

‖(aij)‖ =
∑

i.j∈I

‖aij‖ < ∞.

Then MI(A) with the usual matrix multiplication is a Banach algebra that belongs to the
class of ℓ1-Munn algebras. It is an easy verification that the map θ : MI(A) → MI(C)⊗̂A
defined by

θ((aij)) =
∑

i,j∈I

Eij ⊗ aij ((aij)) ∈ MI(A))

is an isometric isomorphism of Banach algebras, where (Eij) are the matrix units in
MI(C).

Let {Aα : α ∈ I} be a collection of Banach algebras. Then the ℓ1-direct sum of {Aα}
is denoted by

ℓ1 −⊕{Aα : α ∈ I},

which is a Banach algebra with componentwise operations.
Now we give some definitions and properties of semigroups for further details, see [10].

Let S be a semigroup and E(S) = {p ∈ S : p2 = p}. We say that S is a semilattice if S
is commutative and E(S) = S. The canonical partial order on E(S) is given by

(2.1) s ≤ t ⇔ s = st = ts (s, t ∈ E(S)).

The semigroup S is an inverse semigroup if for each s ∈ S there exists a unique element
s∗ ∈ S with ss∗s = s and s∗ss∗ = s∗. By [10, Proposition 5.2.1], for any inverse
semigroup S, there is a partial order on S defined by

(2.2) s ≤ t ⇔ s = ss∗t (s, t ∈ S).

It is easily verified that the partial order given in (2.2) coincides with that given in (2.1)
on E(S).

If (S,≤) is a partially order set, we set (x] = {y ∈ S : y ≤ x}. The partially ordered
set (S,≤) is called locally finite if (x] is finite for every x ∈ S and is called uniformly
locally finite if sup{|(x]| : x ∈ S} < ∞.

Notation: Let S be an inverse semigroup and let p ∈ E(S). The maximal subgroup of
S at p is denoted by Gp. It is easily checked that Gp = {s ∈ S : ss∗ = s∗s = p}.

3. ℓ1-Munn ideal amenability of certain semigroup algebras

In this section, we investigate ideal amenability of Banach algebra ℓ1(S) for an inverse
semigroup S with uniformly locally finite idempotent set. We find some conditions for
ideal amenability of ℓ1(G) in Brandt semigroup algebra.

Lemma 3.1. Let A be a Banach algebra and I be a non-empty set. If A = MI(A) is

ideally amenable, then A is ideally amenable.
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Proof. SupposeB is a closed ideal of A and d : A → B∗ be a continuous derivation. Define
D : A → B∗ by setting D(a)ij = (d(aji)), where B = MI(B). By [1, Theorem 2.7], D is
a continuous derivation. Since A is ideally amenable, there exists Λ = (λij) ∈ B∗ such
that

D(a) = a.Λ− Λ.a (a ∈ A).

Take a ∈ A and identify a with the matrix that has a in the (1,1)-th position and 0
elsewhere. Then λ1,1 ∈ B∗ and

d(a) = D(a)1,1 = (a.λ− λ.a)1,1 = a.λ1,1 − λ1,1.a (a ∈ A).

So A is ideally amenable. �

Theorem 3.2. Let S be an inverse semigroup such that (E(S),≤) is uniformly locally

finite. If ℓ1(S) is ideally amenable, then for each maximal subgroup Gp of S, ℓ1(Gp) is

ideally amenable.

Proof. Suppose ℓ1(S) is ideally amenable. Since (E(S),≤) is uniformly locally finite, by
[13, Proposition 2.14], (S,≤) is such. Thus we have

ℓ1(S) ∼= ℓ1 −⊕{ME(Dλ)(ℓ
1(Gpλ

)) : λ ∈ Λ}

as Banach algebras. Hence for each λ ∈ Λ, ME(Dλ)(ℓ
1(Gpλ

)) is a homomorphic image of

ℓ1(S). Now by [3, Theorem 4.1], ME(Dλ)(ℓ
1(Gpλ

)) is ideally amenable.

So by Lemma 3.1, ℓ1(Gpλ
) is ideally amenable. �

Let G be a group and let I be a non-empty set. Set

M0(G, I) = {(g)ij : g ∈ G, i, j ∈ I} ∪ {0},

where (g)ij denotes the I × I−matrix with entry g ∈ G in the (i, j) position and zero
elsewhere. Then M0(G, I) with the multiplication given by

(g)ij(h)kl =

{

(gh)il, j = k

0, j 6= k
(g, h, i, j, k, l ∈ I)

is an inverse semigroup with (g)∗ij = (g−1)ji, that is called the Brandt semigroup over G
with index set I.

Corollary 3.3. Let G be a group, I be a non-empty set and let S = M0(G, I) be the

Brandt semigroup over G with index set I. If ℓ1(S) is ideally amenable, then ℓ1(G) is

ideally amenable.

In the following we assume LM(A, P ) has a bounded approximate identity {Eγ}γ∈Γ.
Consequently A has a bounded approximate identity {eγ}γ∈Γ, the index sets I and J

are finite and P is invertible [4, Lemma 3.7].

Theorem 3.4. Let A be an ideally amenable Banach algebra. If I ′ is a closed ideal of

LM(A, P ) with a bounded approximate identity, then LM(A, P ) is I ′-weakly amenable.

Proof. Since I ′ is a closed ideal of LM(A, P ) then by [6 ,Theorem 3.1 (i)], there is a
closed ideal I of A such that I ′ = LM(I, P ), also by [(6), Theorem 3.1 (ii)], I has a
bounded approximate identity. On the other hand A is ideally amenable , so by [3,
Theorem 2.6], I is weakly amenable and by [15, Theorem 2.3] I ′ is weakly amenable.
Therefore by [3, Theorem 2.6] LM(A, P ) is I ′-weakly amenable. �

Corollary 3.5. Let S be a Rees matrix semigroup and I is a closed ideal of ℓ1(S) with

a bounded approximate identity. If ℓ1(G) is ideally amenable, then ℓ1(S) is I-weakly

amenable.
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Proof. Suppose S = M0(G,P ). Then by [4, Proposition 5.6],
ℓ1(S)

ℓ1(0)
is isomorphic to

LM(ℓ1(G), P ). Since ℓ1(G) is ideally amenable then by Theorem 3.4, LM(ℓ1(G), P )

is I-weakly amenable. So
ℓ1(S)

ℓ1(0)
is I-weakly amenable, and hence by [3, Theorem 4.4],

ℓ1(S) is I-weakly amenable. �
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