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DECOMPOSITION OF A UNITARY SCALAR OPERATOR

INTO A PRODUCT OF ROOTS OF THE IDENTITY

D. YU. YAKYMENKO

Abstract. We prove that for all m1,m2,m3 ∈ N, 1
m1

+ 1
m2

+ 1
m3

≤ 1, every unitary

scalar operator γI on a complex infinite-dimensional Hilbert space is a product γI =

U1U2U3 where Ui is a unitary operator such that U
mi

i
= I.

1. Introduction

Let H be a complex Hilbert space, for i = 1, n, let Ai be a self-adjoint operator with
finite spectrum σ(Ai). Let I denote the identity operator on H. Consider the following
equation:

(1) A1 +A2 + · · ·+An = λI, λ ∈ C.

In [6], [5] and related works the following problems were studied.
1) Describe the set of all possible values of λ if σ(Ai) are given.
2) Classify unitary nonequivalent tuples of operators (Ai)

n
i=1 that satisfy equation (1)

if λ and σ(Ai) are given.
In this work we continue to study the multiplicative analog of the mentioned problems.

It was known that every unitary operator on an infinite-dimensional Hilbert space H is
a product of four symmetries (see [2]), that is,

∀U ∈ Uni(H) ∃Ui ∈ Uni(H) : U = U1U2U3U4, U2
i = I,

(here Uni(H) denotes the set of all unitary operators on H), and every U ∈ Uni(H) is
a product of three n-th roots of the identity if n ≥ 3 (see [3]), that is,

∀n ≥ 3 ∀U ∈ Uni(H) ∃Ui ∈ Uni(H) : U = U1U2U3, Un
i = I.

In recent papers we have proved that if 1

m1
+ 1

m2
+ 1

m3
≤ 1 and two numbers from

{m1,m2,m3} are even then every unitary scalar operator is a product of three mi-th
roots of I (see [9]), moreover, every unitary operator is a product of three mi-th roots
(see [10]). In the present paper using a technique different from [9] and [10] we prove the
existence of decomposition of a scalar unitary operator without the condition on parity
of mi (see Theorem 1).

2. Statements and proofs

The main result of this work is the following theorem.

Theorem 1. For all m1,m2,m3 ∈ N, 1

m1
+ 1

m2
+ 1

m3
≤ 1, every unitary scalar operator

γI on a complex infinite-dimensional Hilbert space is a product γI = U1U2U3 where Ui

is a unitary operator such that Umi

i = I.
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Proof. From now on we suppose that 1

m1
+ 1

m2
+ 1

m3
≤ 1 so we will omit this condition

in the statements.
Consider the following central extension of an ordinary triangle group

E = 〈x, y, z, q|xm1 = ym2 = zm3 = 1, xyz = q, xq = qx, yq = qy, zq = qz〉.

This group is infinite since an ordinary triangle group is infinite [7].
It is clear that if γI = U1U2U3, Umi

i = I on H then π : E → H with π(q) =
γI, π(x) = U1, π(y) = U2, π(z) = U3 is a unitary representation of the group E.
Also, every irreducible unitary representation of E gives us a solution to γI = U1U2U3,
Umi

i = I.
If every γI is a product of three mi-th roots of I then the element q from E is an

element of infinite order. Our proof of Theorem 1 consists of two steps: to prove that
the element q is an element of infinite order in E and to deduce Theorem 1 from it. Let
us start with the easiest one.

Proposition 1. If q is an element of infinite order in E then for every γ ∈ C, |γ| = 1,
the operator γI on the infinite-dimensional Hilbert space H is the product γI = U1U2U3

where UiU
∗
i = I, Umi

i = I.

Proof. Since q is an element of infinite order in E, the normal subgroup Q = 〈q〉 of E is
an infinite cyclic group and E/Q is an ordinary triangle group. Let γ ∈ C, |γ| = 1 and
π(q) = γ be a 1-dimensional unitary representation of Q. Consider the induced unitary
representation τ = IndEQπ that acts on an infinite-dimensional Hilbert space H since

E/Q is infinite. The element q belongs to the center of E, therefore τ(q) = γI. We have
τ(q) = τ(x)τ(y)τ(z) hence γI = τ(x)τ(y)τ(z) gives the decomposition we are looking
for. �

Proposition 2. The element q is an element of infinite order in E.

Proof. To prove this fact we need the notion of a finite complete rewriting system [1], [4].
Let A = {a1, . . . , an} be a finite set. The set A is called an alphabet and the elements of
A are called letters. The ordered sets of letters from A are called words. The empty word
is denoted by 1. The set of all words including the empty word with the concatenation
operation form the free monoid A∗. Given a word W ∈ A∗, we will denote its length by
|W |, defined as the numbers of letters in W .

A rewriting system R over A is a set of rules U → V , U, V ∈ A∗, that is, R ⊂ A∗×A∗.
A word W1 ∈ A∗ is said to be rewritten to another word W2 ∈ A∗ by a one-step
reduction induced by R, if W1 = Z1XZ2,W2 = Z1Y Z2 for some rule X → Y in R. In
this situation we write W1 →R W2. The reflexive transitive closure and the reflexive
symmetric transitive closure of →R are denoted by →∗

R and ↔∗
R, respectively. The

relation ↔∗
R is defined to be a congruence on A∗ generated by R.

Let Left(R) = {X ∈ A∗ : X → Y ∈ R} and Irr(R) = A∗ \ A∗Left(R)A∗. That is,
Irr(R) is the set of all words from A∗ that can not be reduced by any rule from R. A
word W ∈ A∗ is called an irreducible word if W ∈ Irr(R). From now on we suppose
that 1 6∈ Left(R) hence 1 ∈ Irr(R).

We say R is Noetherian if there is no infinite reduction sequence

W1 →R W2 →R W3 →R · · · .

System R is said to be confluent if whenever U →∗
R V and U →∗

R W , then there is
an X ∈ A∗ such that V →∗

R X and W →∗
R X. If R is both Noetherian and confluent,

we say that R is a complete rewriting system. R is a finite complete rewriting system if
additionally R is a finite set.

The following fact is well known.
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Proposition 3. Suppose R is a complete rewriting system for A. Then for each W ∈ A∗

there is a unique W ′ ∈ Irr(R) such that W →∗
R W ′. The word W ′ is denoted by irr(W ).

It is clear that if R is a complete rewriting system and W ∈ A∗, then to find irr(W )
we just need to apply rules from R to W in an arbitrary order till we stop. If R is a finite
system then this algorithm is computable and it computes irr(W ) in a finite number of
steps.

Finite complete rewriting systems make a useful tool in solving word problem for
groups. Suppose we have a finitely presented group

G = 〈A = {a1, . . . , an} | S = {s1, . . . , sm} ⊂ A±〉,

here A is a set of generators, A± is the set of all words from the alphabet {a1, . . . , an, a
−1
1 ,

. . . , a−1
n } and S is a set of relations, that is S ⊂ A±. Words from S determine relations

si = 1 in G.
For a word W ∈ A± we denote by W−1 the word constructed from W by reversing

the order of the letters and changing the sign of every letter to the opposite. The
word W k denotes the concatenation of k words W . Note that words from A± with the
concatenation and the inverse operation form a free group Fn.

Proposition 4. Let R be a finite complete rewriting system on A± and suppose that
1) 1 ∈ Irr(R);
2) rules aia

−1
i → 1, a−1

i ai → 1 belong to R, i = 1, n;
3) if U → V ∈ R then U = V in group G;
4) if U ∈ S then U →∗

R 1, U−1 →∗
R 1.

Then W = 1 in G if and only if W →∗
R 1 (that is irr(W ) = 1).

Such a system R is called a finite complete rewriting system for a group G. To check
if W = 1 in G we just need to find irr(W ) using R.

Let’s go back to our group E. Note that E has equal presentation

E = 〈x, y, q|xm1 = ym2 = 1, (xy)m3 = qm3 , xq = qx, yq = qy〉,

which can be obtained using Tits transformations.
For simplicity we construct a finite complete rewriting system for the subgroup E′

generated by 〈x, y, qm3〉 and which has the presentation

E′ = 〈x, y, q|xm1 = ym2 = 1, (xy)m3 = q, xq = qx, yq = qy〉.

It is clear that |q| = ∞ in E if and only if |q| = ∞ in E′.
Our finite complete rewriting system R for E′ depends on parity of the numbers

m1,m2,m3.
For simplicity we denote the letter x−1 as X and the letter y−1 as Y .

Finite complete rewriting system for E′ (alphabet {x, y, q,X, Y, q−1}):

Case 1: (m1,m2,m3) ≡ (0, 0, 0) mod 2
Rules:
{xX → 1, Xx → 1, yY → 1, Y y → 1, qq−1 → 1, q−1q → 1,
xq → qx, yq → qy, Xq → qX, Y q → qY,
xq−1 → q−1x, yq−1 → q−1y, Xq−1 → q−1X, Y q−1 → q−1Y,
x

m1
2

+1 → X
m1
2

−1, X
m1
2 → x

m1
2 ,

y
m2
2

+1 → Y
m2
2

−1, Y
m1
2 → y

m1
2 ,

(xy)
m3
2 x → q(Y X)

m3
2

−1Y, (yx)
m3
2 y → q(XY )

m3
2

−1X,

(Y X)
m3
2 → q−1(xy)

m3
2 , (XY )

m3
2 → q−1(yx)

m3
2 ,

(Y X)
m3
2

−1Y x
m1
2 → q−1(xy)

m3
2 X

m1
2

−1,

X
m1
2

−1(yx)
m3
2 → q−1x

m1
2 (Y X)

m3
2

−1Y,
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(XY )
m3
2

−1Xy
m2
2 → q−1(yx)

m3
2 Y

m2
2

−1,

Y
m1
2

−1(xy)
m3
2 → qy

m2
2 (XY )

m3
2

−1X}.
Case 2: (m1,m2,m3) ≡ (0, 0, 1) mod 2
Rules:
{xX → 1, Xx → 1, yY → 1, Y y → 1, qq−1 → 1, q−1q → 1,
xq → qx, yq → qy, Xq → qX, Y q → qY,
xq−1 → q−1x, yq−1 → q−1y, Xq−1 → q−1X, Y q−1 → q−1Y,
x

m1
2

+1 → X
m1
2

−1, X
m1
2 → x

m1
2 ,

y
m2
2

+1 → Y
m2
2

−1, Y
m1
2 → y

m1
2 ,

(xy)
m3+1

2 → q(Y X)
m3−1

2 , (yx)
m3+1

2 → q(XY )
m3−1

2 ,

(Y X)
m3−1

2 Y → q−1(xy)
m3−1

2 x, (XY )
m3−1

2 X → q−1(yx)
m3−1

2 y,

X
m1
2

−1y(xy)
m3−1

2 → q−1x
m1
2 (Y X)

m3−1

2 ,

(XY )
m3−1

2 x
m1
2 → q−1(yx)

m3−1

2 yX
m1
2

−1,

Y
m1
2

−1x(yx)
m3−1

2 → qy
m2
2 (XY )

m3−1

2 ,

(Y X)
m3−1

2 y
m2
2 → q−1(xy)

m3−1

2 xY
m2
2

−1}.
Case 3: (m1,m2,m3) ≡ (1, 1, 0) mod 2
Rules:
{xX → 1, Xx → 1, yY → 1, Y y → 1, qq−1 → 1, q−1q → 1,
xq → qx, yq → qy, Xq → qX, Y q → qY,
xq−1 → q−1x, yq−1 → q−1y, Xq−1 → q−1X, Y q−1 → q−1Y,

x
m1+1

2 → X
m1−1

2 , X
m1+1

2 → x
m1−1

2 ,

y
m2+1

2 → Y
m2−1

2 , Y
m1+1

2 → y
m1−1

2 ,
(xy)

m3
2 x → q(Y X)

m3
2

−1Y, (yx)
m3
2 y → q(XY )

m3
2

−1X,

(Y X)
m3
2 → q−1(xy)

m3
2 , (XY )

m3
2 → q−1(yx)

m3
2 ,

(xy)
m3
2 X

m1−1

2 → q(Y X)
m3
2

−1Y x
m1−1

2 , X
m1−1

2 (yx)
m3
2 → qx

m1−1

2 (Y X)
m3
2

−1Y,

(yx)
m3
2 Y

m2−1

2 → q(XY )
m3
2

−1Xy
m2−1

2 , Y
m2−1

2 (xy)
m3
2 → qy

m2−1

2 (XY )
m3
2

−1X,

X
m1−1

2 y(xy)
m3
2

−1X
m1−1

2 → qx
m1−1

2 (Y X)
m3
2

−1Y x
m1−1

2 ,

(xy)
m3
2 X

m1−3

2 (yx)
m3
2 → q2(Y X)

m3
2

−1Y x
m1−1

2 Y (XY )
m3
2

−1,

(Y X)
m3
2

−1Y x
m1−1

2 Y (XY )
m3
2

−1x
m1−1

2 → q−2(xy)
m3
2 X

m1−3

2 y(xy)
m3
2

−1X
m1−1

2 ,

X
m1−1

2 y(xy)
m3
2

−1X
m1−3

2 (yx)
m3
2 → q2x

m1−1

2 Y (XY )
m3
2

−1x
m1−1

2 Y (XY )
m3
2

−1,

Y
m2−1

2 x(yx)
m3
2

−1Y
m2−1

2 → qy
m2−1

2 (XY )
m3
2

−1Xy
m2−1

2 ,

(yx)
m3
2 Y

m2−3

2 (xy)
m3
2 → q2(XY )

m3
2

−1Xy
m2−1

2 X(Y X)
m3
2

−1,

(XY )
m3
2

−1Xy
m2−1

2 X(Y X)
m3
2

−1y
m2−1

2 → q−2(yx)
m3
2 Y

m2−3

2 x(yx)
m3
2

−1Y
m2−1

2 ,

Y
m2−1

2 x(yx)
m3
2

−1Y
m2−3

2 (xy)
m3
2 → q2y

m2−1

2 X(Y X)
m3
2

−1y
m2−1

2 X(Y X)
m3
2

−1.
Case 4: (m1,m2,m3) ≡ (1, 1, 1) mod 2
Rules:
{xX → 1, Xx → 1, yY → 1, Y y → 1, qq−1 → 1, q−1q → 1,
xq → qx, yq → qy, Xq → qX, Y q → qY,
xq−1 → q−1x, yq−1 → q−1y, Xq−1 → q−1X, Y q−1 → q−1Y,

x
m1+1

2 → X
m1−1

2 , X
m1+1

2 → x
m1−1

2 ,

y
m2+1

2 → Y
m2−1

2 , Y
m1+1

2 → y
m1−1

2 ,

(xy)
m3+1

2 → q(Y X)
m3−1

2 , (yx)
m3+1

2 → q(XY )
m3−1

2 ,

(Y X)
m3−1

2 Y → q−1(xy)
m3−1

2 x, (XY )
m3−1

2 X → q−1(yx)
m3−1

2 y,

X
m1−1

2 y(xy)
m3−1

2 → qx
m1−1

2 (Y X)
m3−1

2 , (yx)
m3−1

2 yX
m1−1

2 → q(XY )
m3−1

2 x
m1−1

2 ,

Y
m2−1

2 x(yx)
m3−1

2 → qy
m2−1

2 (XY )
m3−1

2 , (xy)
m3−1

2 xY
m2−1

2 → q(Y X)
m3−1

2 y
m2−1

2 ,

X
m1−1

2 (yx)
m3−1

2 Y
m2−1

2 → qx
m1−1

2 (Y X)
m3−1

2 y
m2−1

2 ,
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Y
m2−1

2 (xy)
m3−1

2 X
m1−1

2 → qy
m2−1

2 (XY )
m3−1

2 x
m1−1

2 ,

y(xy)
m3−1

2 X
m1−3

2 y(xy)
m3−1

2 → q2(XY )
m3−1

2 x
m1−1

2 (Y X)
m3−1

2 ,

x(yx)
m3−1

2 Y
m2−3

2 x(yx)
m3−1

2 → q2(Y X)
m3−1

2 y
m2−1

2 (XY )
m3−1

2 ,

X
m1−1

2 (yx)
m3−1

2 Y
m2−3

2 (xy)
m3−1

2 x → q2x
m1−1

2 (Y X)
m3−1

2 y
m2−1

2 (XY )
m3−1

2 ,

(XY )
m3−1

2 x
m1−1

2 (Y X)
m3−1

2 y
m2−1

2 → q−2(yx)
m3−1

2 yX
m1−3

2 (yx)
m3−1

2 Y
m2−1

2 ,

Y
m2−1

2 (xy)
m3−1

2 X
m1−3

2 (yx)
m3−1

2 y → q2y
m2−1

2 (XY )
m3−1

2 x
m1−1

2 (Y X)
m3−1

2 ,

(Y X)
m3−1

2 y
m2−1

2 (XY )
m3−1

2 x
m1−1

2 → q−2(xy)
m3−1

2 xY
m1−3

2 (xy)
m3−1

2 X
m1−1

2 }.
This system is constructed by a modification of the finite complete rewriting system

R′ for an ordinary triangle group 〈x, y|xm1 = ym2 = 1, (xy)m3 = 1〉 (see [8]). If we
substitute every letter q and q−1 in the rules of R by an empty word then we obtain R′

exactly.

Proposition 5. The constructed system R is a finite complete rewriting system for the
group E′.

Proof. It is suffice to prove the following:
a) the system R is Noetherian;
b) the system R is confluent;
c) the system R is corresponding to the group E′, that is, the requirements of the

proposition 4 are satisfied.

Let us impose, on the words from {x, y, q}±, the following partial order. Let x < y <
X < Y . On the words from {x, y}± we set the shortlex order. That is, W1 < W2 if |W1| <
|W2| and t1W1 < t2W2 for any words W1,W2 with |W1| = |W2| and any letters t1, t2
with t1 < t2. Let eraseQ is a function from {x, y, q}± to {x, y}± that erases all entries
of the letters q and q−1 from the word. Set W1 < W2 if eraseQ(W1) < eraseQ(W2).
If eraseQ(W1) = eraseQ(W2) we set W1 < W2 if W2 can be obtained from W1 using
rules xq → qx, yq → qy, Xq → qX, Y q → qY, xq−1 → q−1x, yq−1 → q−1y, Xq−1 →
q−1X, Y q−1 → q−1Y, qq−1 → 1, q−1q → 1. This set of rules is equivalent to shifting
the letters q, q−1 to the left and the erasing entries of qq−1, q−1q.

It is not hard to see that the constructed binary relation < is actually a partial order
on words from {x, y, q}± and there is no infinite descending chains with respect to this
order.

It can be easily verified that if (W1 → W2) ∈ R then W2 < W1. Therefore if W1 →R

W2 then W2 < W1. Hence R is Noetherian.
Checking the requirements of Proposition 4 is also a simple, straightforward task.
The hardest part is to prove the confluence of R. This can be done using critical pairs

analysis as in the Knuth-Bendix algorithm. This analysis for R is essentially the same
as for R′. There are different implementations of the Knuth-Bendix algorithm such as
kbmag in the computer algebra system GAP which can be used to complete this task.

So R is a finite complete rewriting system for the group E′. �

It is not hard to see that ∀k ∈ N : qk ∈ Irr(R), hence q has infinite order in E. End
of proof of Proposition 2. Theorem 1 is a direct consequence of Propositions 1 and 2. �

The author is grateful to Yu. S. Samoilenko for setting the problem and useful discus-
sions and remarks.
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