DECOMPOSITION OF A UNITARY SCALAR OPERATOR INTO A PRODUCT OF ROOTS OF THE IDENTITY

D. YU. YAKYMENKO

Abstract. We prove that for all $m_{1}, m_{2}, m_{3} \in \mathbb{N}, \frac{1}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}} \leq 1$, every unitary scalar operator γI on a complex infinite-dimensional Hilbert space is a product $\gamma I=$ $U_{1} U_{2} U_{3}$ where U_{i} is a unitary operator such that $U_{i}^{m_{i}}=I$.

1. Introduction

Let H be a complex Hilbert space, for $i=\overline{1, n}$, let A_{i} be a self-adjoint operator with finite spectrum $\sigma\left(A_{i}\right)$. Let I denote the identity operator on H. Consider the following equation:

$$
\begin{equation*}
A_{1}+A_{2}+\cdots+A_{n}=\lambda I, \quad \lambda \in \mathbb{C} \tag{1}
\end{equation*}
$$

In [6], [5] and related works the following problems were studied.

1) Describe the set of all possible values of λ if $\sigma\left(A_{i}\right)$ are given.
2) Classify unitary nonequivalent tuples of operators $\left(A_{i}\right)_{i=1}^{n}$ that satisfy equation (1) if λ and $\sigma\left(A_{i}\right)$ are given.

In this work we continue to study the multiplicative analog of the mentioned problems. It was known that every unitary operator on an infinite-dimensional Hilbert space H is a product of four symmetries (see [2]), that is,

$$
\forall U \in U n i(H) \exists U_{i} \in U n i(H): U=U_{1} U_{2} U_{3} U_{4}, \quad U_{i}^{2}=I
$$

(here $U n i(H)$ denotes the set of all unitary operators on H), and every $U \in U n i(H)$ is a product of three n-th roots of the identity if $n \geq 3$ (see [3]), that is,

$$
\forall n \geq 3 \forall U \in U n i(H) \exists U_{i} \in U n i(H): U=U_{1} U_{2} U_{3}, \quad U_{i}^{n}=I
$$

In recent papers we have proved that if $\frac{1}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}} \leq 1$ and two numbers from $\left\{m_{1}, m_{2}, m_{3}\right\}$ are even then every unitary scalar operator is a product of three m_{i}-th roots of I (see [9]), moreover, every unitary operator is a product of three m_{i}-th roots (see [10]). In the present paper using a technique different from [9] and [10] we prove the existence of decomposition of a scalar unitary operator without the condition on parity of m_{i} (see Theorem 1).

2. Statements and proofs

The main result of this work is the following theorem.
Theorem 1. For all $m_{1}, m_{2}, m_{3} \in \mathbb{N}, \frac{1}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}} \leq 1$, every unitary scalar operator γI on a complex infinite-dimensional Hilbert space is a product $\gamma I=U_{1} U_{2} U_{3}$ where U_{i} is a unitary operator such that $U_{i}^{m_{i}}=I$.

[^0]Proof. From now on we suppose that $\frac{1}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}} \leq 1$ so we will omit this condition in the statements.

Consider the following central extension of an ordinary triangle group

$$
E=\left\langle x, y, z, q \mid x^{m_{1}}=y^{m_{2}}=z^{m_{3}}=1, x y z=q, x q=q x, y q=q y, z q=q z\right\rangle
$$

This group is infinite since an ordinary triangle group is infinite [7].
It is clear that if $\gamma I=U_{1} U_{2} U_{3}, U_{i}^{m_{i}}=I$ on H then $\pi: E \rightarrow H$ with $\pi(q)=$ $\gamma I, \pi(x)=U_{1}, \pi(y)=U_{2}, \pi(z)=U_{3}$ is a unitary representation of the group E. Also, every irreducible unitary representation of E gives us a solution to $\gamma I=U_{1} U_{2} U_{3}$, $U_{i}^{m_{i}}=I$.

If every γI is a product of three m_{i}-th roots of I then the element q from E is an element of infinite order. Our proof of Theorem 1 consists of two steps: to prove that the element q is an element of infinite order in E and to deduce Theorem 1 from it. Let us start with the easiest one.

Proposition 1. If q is an element of infinite order in E then for every $\gamma \in \mathbb{C},|\gamma|=1$, the operator γI on the infinite-dimensional Hilbert space H is the product $\gamma I=U_{1} U_{2} U_{3}$ where $U_{i} U_{i}^{*}=I, U_{i}^{m_{i}}=I$.

Proof. Since q is an element of infinite order in E, the normal subgroup $Q=\langle q\rangle$ of E is an infinite cyclic group and E / Q is an ordinary triangle group. Let $\gamma \in \mathbb{C},|\gamma|=1$ and $\pi(q)=\gamma$ be a 1-dimensional unitary representation of Q. Consider the induced unitary representation $\tau=\operatorname{Ind} d_{Q}^{E} \pi$ that acts on an infinite-dimensional Hilbert space H since E / Q is infinite. The element q belongs to the center of E, therefore $\tau(q)=\gamma I$. We have $\tau(q)=\tau(x) \tau(y) \tau(z)$ hence $\gamma I=\tau(x) \tau(y) \tau(z)$ gives the decomposition we are looking for.

Proposition 2. The element q is an element of infinite order in E.
Proof. To prove this fact we need the notion of a finite complete rewriting system [1], [4]. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a finite set. The set A is called an alphabet and the elements of A are called letters. The ordered sets of letters from A are called words. The empty word is denoted by 1. The set of all words including the empty word with the concatenation operation form the free monoid A^{*}. Given a word $W \in A^{*}$, we will denote its length by $|W|$, defined as the numbers of letters in W.

A rewriting system R over A is a set of rules $U \rightarrow V, U, V \in A^{*}$, that is, $R \subset A^{*} \times A^{*}$. A word $W_{1} \in A^{*}$ is said to be rewritten to another word $W_{2} \in A^{*}$ by a one-step reduction induced by R, if $W_{1}=Z_{1} X Z_{2}, W_{2}=Z_{1} Y Z_{2}$ for some rule $X \rightarrow Y$ in R. In this situation we write $W_{1} \rightarrow_{R} W_{2}$. The reflexive transitive closure and the reflexive symmetric transitive closure of \rightarrow_{R} are denoted by \rightarrow_{R}^{*} and \leftrightarrow_{R}^{*}, respectively. The relation \leftrightarrow_{R}^{*} is defined to be a congruence on A^{*} generated by R.

Let $\operatorname{Left}(R)=\left\{X \in A^{*}: X \rightarrow Y \in R\right\}$ and $\operatorname{Irr}(R)=A^{*} \backslash A^{*} \operatorname{Left}(R) A^{*}$. That is, $\operatorname{Irr}(R)$ is the set of all words from A^{*} that can not be reduced by any rule from R. A word $W \in A^{*}$ is called an irreducible word if $W \in \operatorname{Irr}(R)$. From now on we suppose that $1 \notin \operatorname{Left}(R)$ hence $1 \in \operatorname{Irr}(R)$.

We say R is Noetherian if there is no infinite reduction sequence

$$
W_{1} \rightarrow_{R} W_{2} \rightarrow_{R} W_{3} \rightarrow_{R} \cdots
$$

System R is said to be confluent if whenever $U \rightarrow_{R}^{*} V$ and $U \rightarrow_{R}^{*} W$, then there is an $X \in A^{*}$ such that $V \rightarrow_{R}^{*} X$ and $W \rightarrow_{R}^{*} X$. If R is both Noetherian and confluent, we say that R is a complete rewriting system. R is a finite complete rewriting system if additionally R is a finite set.

The following fact is well known.

Proposition 3. Suppose R is a complete rewriting system for A. Then for each $W \in A^{*}$ there is a unique $W^{\prime} \in \operatorname{Irr}(R)$ such that $W \rightarrow_{R}^{*} W^{\prime}$. The word W^{\prime} is denoted by $\operatorname{irr}(W)$.

It is clear that if R is a complete rewriting system and $W \in A^{*}$, then to find $\operatorname{irr}(W)$ we just need to apply rules from R to W in an arbitrary order till we stop. If R is a finite system then this algorithm is computable and it computes $\operatorname{irr}(W)$ in a finite number of steps.

Finite complete rewriting systems make a useful tool in solving word problem for groups. Suppose we have a finitely presented group

$$
G=\left\langle A=\left\{a_{1}, \ldots, a_{n}\right\} \mid S=\left\{s_{1}, \ldots, s_{m}\right\} \subset A^{ \pm}\right\rangle
$$

here A is a set of generators, $A^{ \pm}$is the set of all words from the alphabet $\left\{a_{1}, \ldots, a_{n}, a_{1}^{-1}\right.$, $\left.\ldots, a_{n}^{-1}\right\}$ and S is a set of relations, that is $S \subset A^{ \pm}$. Words from S determine relations $s_{i}=1$ in G.

For a word $W \in A^{ \pm}$we denote by W^{-1} the word constructed from W by reversing the order of the letters and changing the sign of every letter to the opposite. The word W^{k} denotes the concatenation of k words W. Note that words from $A^{ \pm}$with the concatenation and the inverse operation form a free group F_{n}.

Proposition 4. Let R be a finite complete rewriting system on $A^{ \pm}$and suppose that

1) $1 \in \operatorname{Irr}(R)$;
2) rules $a_{i} a_{i}^{-1} \rightarrow 1, a_{i}^{-1} a_{i} \rightarrow 1$ belong to $R, i=\overline{1, n}$;
3) if $U \rightarrow V \in R$ then $U=V$ in group G;
4) if $U \in S$ then $U \rightarrow_{R}^{*} 1, U^{-1} \rightarrow_{R}^{*} 1$.

Then $W=1$ in G if and only if $W \rightarrow_{R}^{*} 1$ (that $\operatorname{is} \operatorname{irr}(W)=1$).
Such a system R is called a finite complete rewriting system for a group G. To check if $W=1$ in G we just need to find $\operatorname{irr}(W)$ using R.

Let's go back to our group E. Note that E has equal presentation

$$
E=\left\langle x, y, q \mid x^{m_{1}}=y^{m_{2}}=1,(x y)^{m_{3}}=q^{m_{3}}, x q=q x, y q=q y\right\rangle
$$

which can be obtained using Tits transformations.
For simplicity we construct a finite complete rewriting system for the subgroup E^{\prime} generated by $\left\langle x, y, q^{m_{3}}\right\rangle$ and which has the presentation

$$
E^{\prime}=\left\langle x, y, q \mid x^{m_{1}}=y^{m_{2}}=1,(x y)^{m_{3}}=q, x q=q x, y q=q y\right\rangle .
$$

It is clear that $|q|=\infty$ in E if and only if $|q|=\infty$ in E^{\prime}.
Our finite complete rewriting system R for E^{\prime} depends on parity of the numbers m_{1}, m_{2}, m_{3}.

For simplicity we denote the letter x^{-1} as X and the letter y^{-1} as Y.
Finite complete rewriting system for E^{\prime} (alphabet $\left\{x, y, q, X, Y, q^{-1}\right\}$):
Case 1: $\left(m_{1}, m_{2}, m_{3}\right) \equiv(0,0,0) \bmod 2$

Rules:

$\left\{x X \rightarrow 1, X x \rightarrow 1, y Y \rightarrow 1, Y y \rightarrow 1, q q^{-1} \rightarrow 1, q^{-1} q \rightarrow 1\right.$,
$x q \rightarrow q x, y q \rightarrow q y, X q \rightarrow q X, Y q \rightarrow q Y$,
$x q^{-1} \rightarrow q^{-1} x, y q^{-1} \rightarrow q^{-1} y, X q^{-1} \rightarrow q^{-1} X, Y q^{-1} \rightarrow q^{-1} Y$,
$x^{\frac{m_{1}}{2}+1} \rightarrow X^{\frac{m_{1}}{2}-1}, X^{\frac{m_{1}}{2}} \rightarrow x^{\frac{m_{1}}{2}}$,
$y^{\frac{m_{2}}{2}+1} \rightarrow Y^{\frac{m_{2}}{2}-1}, Y^{\frac{m_{1}}{2}} \rightarrow y^{\frac{m_{1}}{2}}$,
$(x y)^{\frac{m_{3}}{2}} x \rightarrow q(Y X)^{\frac{m_{3}}{2}-1} Y,(y x)^{\frac{m_{3}}{2}} y \rightarrow q(X Y)^{\frac{m_{3}}{2}-1} X$,
$(Y X)^{\frac{m_{3}}{2}} \rightarrow q^{-1}(x y)^{\frac{m_{3}}{2}},(X Y)^{\frac{m_{3}}{2}} \rightarrow q^{-1}(y x)^{\frac{m_{3}}{2}}$,
$(Y X)^{\frac{m_{3}}{2}-1} Y x^{\frac{m_{1}}{2}} \rightarrow q^{-1}(x y)^{\frac{m_{3}}{2}} X^{\frac{m_{1}}{2}-1}$,
$X^{\frac{m_{1}}{2}-1}(y x)^{\frac{m_{3}}{2}} \rightarrow q^{-1} x^{\frac{m_{1}}{2}}(Y X)^{\frac{m_{3}}{2}-1} Y$,
$(X Y)^{\frac{m_{3}}{2}-1} X y^{\frac{m_{2}}{2}} \rightarrow q^{-1}(y x)^{\frac{m_{3}}{2}} Y^{\frac{m_{2}}{2}-1}$,
$\left.Y^{\frac{m_{1}}{2}-1}(x y)^{\frac{m_{3}}{2}} \rightarrow q y^{\frac{m_{2}}{2}}(X Y)^{\frac{m_{3}}{2}-1} X\right\}$.
Case 2: $\left(m_{1}, m_{2}, m_{3}\right) \equiv(0,0,1) \bmod 2$

Rules:

$\left\{x X \rightarrow 1, X x \rightarrow 1, y Y \rightarrow 1, Y y \rightarrow 1, q q^{-1} \rightarrow 1, q^{-1} q \rightarrow 1\right.$,
$x q \rightarrow q x, y q \rightarrow q y, X q \rightarrow q X, Y q \rightarrow q Y$,
$x q^{-1} \rightarrow q^{-1} x, y q^{-1} \rightarrow q^{-1} y, \underset{m_{1}}{X} q^{-1} \rightarrow q^{-1} X, Y q^{-1} \rightarrow q^{-1} Y$,
$x^{\frac{m_{1}}{2}+1} \rightarrow X^{\frac{m_{1}}{2}-1}, X^{\frac{m_{1}}{2}} \rightarrow x^{\frac{m_{1}}{2}}$,
$y^{\frac{m_{2}}{2}+1} \rightarrow Y^{\frac{m_{2}}{2}-1}, Y^{\frac{m_{1}}{2}} \rightarrow y^{\frac{m_{1}}{2}}$,
$(x y)^{\frac{m_{3}+1}{2}} \rightarrow q(Y X)^{\frac{m_{3}-1}{2}},(y x)^{\frac{m_{3}+1}{2}} \rightarrow q(X Y)^{\frac{m_{3}-1}{2}}$,
$(Y X)^{\frac{m_{3}-1}{2}} Y \rightarrow q^{-1}(x y)^{\frac{m_{3}-1}{2}} x,(X Y)^{\frac{m_{3}-1}{2}} X \rightarrow q^{-1}(y x)^{\frac{m_{3}-1}{2}} y$,
$X^{\frac{m_{1}}{2}-1} y(x y)^{\frac{m_{3}-1}{2}} \rightarrow q^{-1} x^{\frac{m_{1}}{2}}(Y X)^{\frac{m_{3}-1}{2}}$,
$(X Y)^{\frac{m_{3}-1}{2}} x^{\frac{m_{1}}{2}} \rightarrow q^{-1}(y x)^{\frac{m_{3}-1}{2}} y X^{\frac{m_{1}}{2}-1}$,
$Y^{\frac{m_{1}}{2}-1} x(y x)^{\frac{m_{3}-1}{2}} \rightarrow q y^{\frac{m_{2}}{2}}(X Y)^{\frac{m_{3}-1}{2}}$,
$\left.(Y X)^{\frac{m_{3}-1}{2}} y^{\frac{m_{2}}{2}} \rightarrow q^{-1}(x y)^{\frac{m_{3}-1}{2}} x Y^{\frac{m_{2}}{2}-1}\right\}$.
Case 3: $\left(m_{1}, m_{2}, m_{3}\right) \equiv(1,1,0) \bmod 2$

Rules:

$\left\{x X \rightarrow 1, X x \rightarrow 1, y Y \rightarrow 1, Y y \rightarrow 1, q q^{-1} \rightarrow 1, q^{-1} q \rightarrow 1\right.$,
$x q \rightarrow q x, y q \rightarrow q y, X q \rightarrow q X, Y q \rightarrow q Y$,
$x q^{-1} \rightarrow q^{-1} x, y q^{-1} \rightarrow q^{-1} y, X q^{-1} \rightarrow q^{-1} X, Y q^{-1} \rightarrow q^{-1} Y$,
$x^{\frac{m_{1}+1}{2}} \rightarrow X^{\frac{m_{1}-1}{2}}, \quad X^{\frac{m_{1}+1}{2}} \rightarrow x^{\frac{m_{1}-1}{2}}$,
$y^{\frac{m_{2}+1}{2}} \rightarrow Y^{\frac{m_{2}-1}{2}}, Y^{\frac{m_{1}+1}{2}} \rightarrow y^{\frac{m_{1}-1}{2}}$,
$(x y)^{\frac{m_{3}}{2}} x \rightarrow q(Y X)^{\frac{m_{3}}{2}-1} Y,(y x)^{\frac{m_{3}}{2}} y \rightarrow q(X Y)^{\frac{m_{3}}{2}-1} X$,
$(Y X)^{\frac{m_{3}}{2}} \rightarrow q^{-1}(x y)^{\frac{m_{3}}{2}},(X Y)^{\frac{m_{3}}{2}} \rightarrow q^{-1}(y x)^{\frac{m_{3}}{2}}$,
$(x y)^{\frac{m_{3}}{2}} X^{\frac{m_{1}-1}{2}} \rightarrow q(Y X)^{\frac{m_{3}}{2}-1} Y x^{\frac{m_{1}-1}{2}}, X^{\frac{m_{1}-1}{2}}(y x)^{\frac{m_{3}}{2}} \rightarrow q x^{\frac{m_{1}-1}{2}}(Y X)^{\frac{m_{3}}{2}-1} Y$,
$(y x)^{\frac{m_{3}}{2}} Y^{\frac{m_{2}-1}{2}} \rightarrow q(X Y)^{\frac{m_{3}}{2}-1} X y^{\frac{m_{2}-1}{2}}, Y^{\frac{m_{2}-1}{2}}(x y)^{\frac{m_{3}}{2}} \rightarrow q y^{\frac{m_{2}-1}{2}}(X Y)^{\frac{m_{3}}{2}-1} X$,
$X^{\frac{m_{1}-1}{2}} y(x y)^{\frac{m_{3}}{2}-1} X^{\frac{m_{1}-1}{2}} \rightarrow q x^{\frac{m_{1}-1}{2}}(Y X)^{\frac{m_{3}}{2}-1} Y x^{\frac{m_{1}-1}{2}}$,
$(x y)^{\frac{m_{3}}{2}} X^{\frac{m_{1}-3}{2}}(y x)^{\frac{m_{3}}{2}} \rightarrow q^{2}(Y X)^{\frac{m_{3}}{2}-1} Y x^{\frac{m_{1}-1}{2}} Y(X Y)^{\frac{m_{3}}{2}-1}$,
$(Y X)^{\frac{m_{3}}{2}-1} Y x^{\frac{m_{1}-1}{2}} Y(X Y)^{\frac{m_{3}}{2}-1} x^{\frac{m_{1}-1}{2}} \rightarrow q^{-2}(x y)^{\frac{m_{3}}{2}} X^{\frac{m_{1}-3}{2}} y(x y)^{\frac{m_{3}}{2}-1} X^{\frac{m_{1}-1}{2}}$,
$X^{\frac{m_{1}-1}{2}} y(x y)^{\frac{m_{3}}{2}-1} X^{\frac{m_{1}-3}{2}}(y x)^{\frac{m_{3}}{2}} \rightarrow q^{2} x^{\frac{m_{1}-1}{2}} Y(X Y)^{\frac{m_{3}}{2}-1} x^{\frac{m_{1}-1}{2}} Y(X Y)^{\frac{m_{3}}{2}-1}$,
$Y^{\frac{m_{2}-1}{2}} x(y x)^{\frac{m_{3}}{2}-1} Y^{\frac{m_{2}-1}{2}} \rightarrow q y^{\frac{m_{2}-1}{2}}(X Y)^{\frac{m_{3}}{2}-1} X y^{\frac{m_{2}-1}{2}}$,
$(y x)^{\frac{m_{3}}{2}} Y^{\frac{m_{2}-3}{2}}(x y)^{\frac{m_{3}}{2}} \rightarrow q^{2}(X Y)^{\frac{m_{3}}{2}-1} X y^{\frac{m_{2}-1}{2}} X(Y X)^{\frac{m_{3}}{2}-1}$,
$(X Y)^{\frac{m_{3}}{2}-1} X y^{\frac{m_{2}-1}{2}} X(Y X)^{\frac{m_{3}}{2}-1} y^{\frac{m_{2}-1}{2}} \rightarrow q^{-2}(y x)^{\frac{m_{3}}{2}} Y^{\frac{m_{2}-3}{2}} x(y x)^{\frac{m_{3}}{2}-1} Y^{\frac{m_{2}-1}{2}}$,
$Y^{\frac{m_{2}-1}{2}} x(y x)^{\frac{m_{3}}{2}-1} Y^{\frac{m_{2}-3}{2}}(x y)^{\frac{m_{3}}{2}} \rightarrow q^{2} y^{\frac{m_{2}-1}{2}} X(Y X)^{\frac{m_{3}}{2}-1} y^{\frac{m_{2}-1}{2}} X(Y X)^{\frac{m_{3}}{2}-1}$.
Case 4: $\left(m_{1}, m_{2}, m_{3}\right) \equiv(1,1,1) \bmod 2$

Rules:

$\left\{x X \rightarrow 1, X x \rightarrow 1, y Y \rightarrow 1, Y y \rightarrow 1, q q^{-1} \rightarrow 1, q^{-1} q \rightarrow 1\right.$,
$x q \rightarrow q x, y q \rightarrow q y, X q \rightarrow q X, Y q \rightarrow q Y$,
$x q^{-1} \rightarrow q^{-1} x, y q^{-1} \rightarrow q^{-1} y, X q^{-1} \rightarrow q^{-1} X, Y q^{-1} \rightarrow q^{-1} Y$,
$x^{\frac{m_{1}+1}{2}} \rightarrow X^{\frac{m_{1}-1}{2}}, X^{\frac{m_{1}+1}{2}} \rightarrow x^{\frac{m_{1}-1}{2}}$,
$y^{\frac{m_{2}+1}{2}} \rightarrow Y^{\frac{m_{2}-1}{2}}, Y^{\frac{m_{1}+1}{2}} \rightarrow y^{\frac{m_{1}-1}{2}}$,
$(x y)^{\frac{m_{3}+1}{2}} \rightarrow q(Y X)^{\frac{m_{3}-1}{2}},(y x)^{\frac{m_{3}+1}{2}} \rightarrow q(X Y)^{\frac{m_{3}-1}{2}}$,
$(Y X)^{\frac{m_{3}-1}{2}} Y \rightarrow q^{-1}(x y)^{\frac{m_{3}-1}{2}} x,(X Y)^{\frac{m_{3}-1}{2}} X \rightarrow q^{-1}(y x)^{\frac{m_{3}-1}{2}} y$,
$X^{\frac{m_{1}-1}{2}} y(x y)^{\frac{m_{3}-1}{2}} \rightarrow q x^{\frac{m_{1}-1}{2}}(Y X)^{\frac{m_{3}-1}{2}},(y x)^{\frac{m_{3}-1}{2}} y X^{\frac{m_{1}-1}{2}} \rightarrow q(X Y)^{\frac{m_{3}-1}{2}} x^{\frac{m_{1}-1}{2}}$,
$Y^{\frac{m_{2}-1}{2}} x(y x)^{\frac{m_{3}-1}{2}} \rightarrow q y^{\frac{m_{2}-1}{2}}(X Y)^{\frac{m_{3}-1}{2}},(x y)^{\frac{m_{3}-1}{2}} x Y^{\frac{m_{2}-1}{2}} \rightarrow q(Y X)^{\frac{m_{3}-1}{2}} y^{\frac{m_{2}-1}{2}}$,
$X^{\frac{m_{1}-1}{2}}(y x)^{\frac{m_{3}-1}{2}} Y^{\frac{m_{2}-1}{2}} \rightarrow q x^{\frac{m_{1}-1}{2}}(Y X)^{\frac{m_{3}-1}{2}} y^{\frac{m_{2}-1}{2}}$,

$$
\begin{aligned}
& Y^{\frac{m_{2}-1}{2}}(x y)^{\frac{m_{3}-1}{2}} X^{\frac{m_{1}-1}{2}} \rightarrow q y^{\frac{m_{2}-1}{2}}(X Y)^{\frac{m_{3}-1}{2}} x^{\frac{m_{1}-1}{2}}, \\
& y(x y)^{\frac{m_{3}-1}{2}} X^{\frac{m_{1}-3}{2}} y(x y)^{\frac{m_{3}-1}{2}} \rightarrow q^{2}(X Y)^{\frac{m_{3}-1}{2}} x^{\frac{m_{1}-1}{2}}(Y X)^{\frac{m_{3}-1}{2}}, \\
& x(y x)^{\frac{m_{3}-1}{2}} Y^{\frac{m_{2}-3}{2}} x(y x)^{\frac{m_{3}-1}{2}} \rightarrow q^{2}(Y X)^{\frac{m_{3}-1}{2}} y^{\frac{m_{2}-1}{2}}(X Y)^{\frac{m_{3}-1}{2}}, \\
& X^{\frac{m_{1}-1}{2}}(y x)^{\frac{m_{3}-1}{2}} Y^{\frac{m_{2}-3}{2}}(x y)^{\frac{m_{3}-1}{2}} x \rightarrow q^{2} x^{\frac{m_{1}-1}{2}}(Y X)^{\frac{m_{3}-1}{2}} y^{\frac{m_{2}-1}{2}}(X Y)^{\frac{m_{3}-1}{2}}, \\
& (X Y)^{\frac{m_{3}-1}{2}} x^{\frac{m_{1}-1}{2}}(Y X)^{\frac{m_{3}-1}{2}} y^{\frac{m_{2}-1}{2}} \rightarrow q^{-2}(y x)^{\frac{m_{3}-1}{2}} y X^{\frac{m_{1}-3}{2}}(y x)^{\frac{m_{3}-1}{2}} Y^{\frac{m_{2}-1}{2}} \\
& Y^{\frac{m_{2}-1}{2}}(x y)^{\frac{m_{3}-1}{2}} X^{\frac{m_{1}-3}{2}}(y x)^{\frac{m_{3}-1}{2}} y \rightarrow q^{2} y^{\frac{m_{2}-1}{2}}(X Y)^{\frac{m_{3}-1}{2}} x^{\frac{m_{1}-1}{2}}(Y X)^{\frac{m_{3}-1}{2}}, \\
& \left.(Y X)^{\frac{m_{3}-1}{2}} y^{\frac{m_{2}-1}{2}}(X Y)^{\frac{m_{3}-1}{2}} x^{\frac{m_{1}-1}{2}} \rightarrow q^{-2}(x y)^{\frac{m_{3}-1}{2}} x Y^{\frac{m_{1}-3}{2}}(x y)^{\frac{m_{3}-1}{2}} X^{\frac{m_{1}-1}{2}}\right\} .
\end{aligned}
$$

This system is constructed by a modification of the finite complete rewriting system R^{\prime} for an ordinary triangle group $\left\langle x, y \mid x^{m_{1}}=y^{m_{2}}=1,(x y)^{m_{3}}=1\right\rangle$ (see [8]). If we substitute every letter q and q^{-1} in the rules of R by an empty word then we obtain R^{\prime} exactly.
Proposition 5. The constructed system R is a finite complete rewriting system for the group E^{\prime}.

Proof. It is suffice to prove the following:
a) the system R is Noetherian;
b) the system R is confluent;
c) the system R is corresponding to the group E^{\prime}, that is, the requirements of the proposition 4 are satisfied.

Let us impose, on the words from $\{x, y, q\}^{ \pm}$, the following partial order. Let $x<y<$ $X<Y$. On the words from $\{x, y\}^{ \pm}$we set the shortlex order. That is, $W_{1}<W_{2}$ if $\left|W_{1}\right|<$ $\left|W_{2}\right|$ and $t_{1} W_{1}<t_{2} W_{2}$ for any words W_{1}, W_{2} with $\left|W_{1}\right|=\left|W_{2}\right|$ and any letters t_{1}, t_{2} with $t_{1}<t_{2}$. Let erase Q is a function from $\{x, y, q\}^{ \pm}$to $\{x, y\}^{ \pm}$that erases all entries of the letters q and q^{-1} from the word. Set $W_{1}<W_{2}$ if $\operatorname{erase} Q\left(W_{1}\right)<\operatorname{erase} Q\left(W_{2}\right)$. If $\operatorname{erase} Q\left(W_{1}\right)=\operatorname{erase} Q\left(W_{2}\right)$ we set $W_{1}<W_{2}$ if W_{2} can be obtained from W_{1} using rules $x q \rightarrow q x, y q \rightarrow q y, X q \rightarrow q X, Y q \rightarrow q Y, x q^{-1} \rightarrow q^{-1} x, y q^{-1} \rightarrow q^{-1} y, X q^{-1} \rightarrow$ $q^{-1} X, Y q^{-1} \rightarrow q^{-1} Y, q q^{-1} \rightarrow 1, q^{-1} q \rightarrow 1$. This set of rules is equivalent to shifting the letters q, q^{-1} to the left and the erasing entries of $q q^{-1}, q^{-1} q$.

It is not hard to see that the constructed binary relation $<$ is actually a partial order on words from $\{x, y, q\}^{ \pm}$and there is no infinite descending chains with respect to this order.

It can be easily verified that if $\left(W_{1} \rightarrow W_{2}\right) \in R$ then $W_{2}<W_{1}$. Therefore if $W_{1} \rightarrow_{R}$ W_{2} then $W_{2}<W_{1}$. Hence R is Noetherian.

Checking the requirements of Proposition 4 is also a simple, straightforward task.
The hardest part is to prove the confluence of R. This can be done using critical pairs analysis as in the Knuth-Bendix algorithm. This analysis for R is essentially the same as for R^{\prime}. There are different implementations of the Knuth-Bendix algorithm such as kbmag in the computer algebra system GAP which can be used to complete this task.

So R is a finite complete rewriting system for the group E^{\prime}.
It is not hard to see that $\forall k \in \mathbb{N}: q^{k} \in \operatorname{Irr}(R)$, hence q has infinite order in E. End of proof of Proposition 2. Theorem 1 is a direct consequence of Propositions 1 and 2.

The author is grateful to Yu. S. Samoilenko for setting the problem and useful discussions and remarks.

References

1. R. V. Book, F. Otto, String-Rewriting Systems, Springer-Verlag, New York, 1993.
2. P. R. Halmos, S. Kakutani, Products of symmetries, Bull. Amer. Math. Soc. 64 (1958), no. 3, Part 1, 77-78.
3. M. Hladnik, M. Omladic, and H. Radjavi, Products of roots of the identity, Proc. Amer. Math. Soc. 129 (2001), no. 2, 459-465.
4. M. Jantzen, Confluent String Rewriting, Birkhauser, 1988.
5. S. Kruglyak, S. Popovich, Yu. Samoilenko, The spectral problem and *-representations of algebras associated with Dynkin graphs, J. Algebra Appl., 4 (2005), no. 6, 761-776.
6. S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko, On sums of projections, Funct. Anal. Appl., 36 (2002), no. 3, 182-195.
7. W. Magnus, Noneuclidean Tesselations and Their Groups, Academic Press, New York, 1974.
8. M. Pfeiffer, Automata and Growth Functions for the Triangle Groups, Diploma Thesis in Computer Science, Lehrstuhl D fur Mathematik RWTH Aachen, Aachen, 2008.
9. Yu. S. Samoilenko, D. Yu. Yakymenko, Scalar operators equal to the product of unitary roots of the identity operator, Ukrainian Math. J. 64 (2012), no. 6, 938-947.
10. D. Yu. Yakymenko, On unitary operators which are product of roots of the identity, Reports of NAS of Ukraine, to appear.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

E-mail address: dandan.ua@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 47A62; Secondary 20F55, 20F10.
 Key words and phrases. Hilbert space, unitary operator, group representation, string rewriting.

