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SCHRÖDINGER OPERATORS WITH NONLOCAL POTENTIALS

SERGIO ALBEVERIO AND LEONID NIZHNIK

Dedicated to Professor F. S. Rofe-Beketov on the occasion of his 80th birthday

Abstract. We describe selfadjoint nonlocal boundary-value conditions for new exact
solvable models of Schrödinger operators with nonlocal potentials. We also solve
the direct and the inverse spectral problems on a bounded line segment, as well as

the scattering problem on the whole axis for first order operators with a nonlocal
potential.

1. Introduction

Exact solvable models have been used for modeling complex problems in quantum me-
chanics for a long time, with a wide use of point interaction models [1, 2]. Such models
can be applied in the case of short-range potentials, replacing them with zero-range po-
tentials. In the simplest case, such a potential has support in a single point x0, and is re-
garded as a distribution with point support, for example, a multiple of Dirac’s δ-function
at the point x0. Another approach to Schrödinger operators with point interaction goes
back to [6] and is based on selfadjoint extensions of a minimal symmetric operator Lmin

defined on functions that are zero in neighborhoods of the point interactions. Point
interaction models are exactly solvable [1, 2].

Solvable models also include Schrödinger operators of the form Lψ ≡ −∆ψ +
∫

K(x, s)ψ(s) ds that describe nonlocal interactions, where the Hermitian integral ope-
rator K is finite dimensional. In particular, the operator

Lψ = −d
2ψ

dx2
+ v1(x)(ψ, v2) + v2(x)(ψ, v1)

is of such a kind. Setting v1(x) = v(x) ∈ L2 and v2(x) = δ(x − x0) we get Schrödinger
operators with nonlocal potentials [5].

Operators with nonlocal potentials are self-adjoint extensions of a symmetric ope-
rator Asym whose domain is not dense and the operator is a restriction of the opera-
tor Lmin to functions that are orthogonal to the nonlocal potentials. Hence, the class of
Schrödinger operators with nonlocal potentials is an extension of the class of Schrödinger
operators with point interactions. Such models, together with numerical parameters (co-
upling constants), also contain functional parameters (nonlocal potentials). Examples of
one-dimensional and three dimensional Schrödinger operators with nonlocal potentials
were considered in [5]. Exact solvable models for operators with nonlocal potentials per-
mitted to obtain a number of exact results in [5], in particular, an explicit representation
of the resolvent and the scattering operator was obtained in terms of the nonlocal po-
tentials for a one-dimensional Schrödinger operator. A solution of the direct and the
inverse problems on a bounded line segment for a one-dimensional Schrödinger operator
with nonlocal potential is given in [3]. Let us also remark that the algorithm for finding
the nonlocal potentials from the set of all eigenvalues, when solving the inverse problem,
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does not contain the Gelfand–Levitan–Marchenko integral equation. The characteristic
function χ(λ) can be explicitly constructed from the set of all eigenvalues as an infinite
product. Its values χ(λ) in the points of the unperturbed spectrum (if the nonlocal po-
tential is absent) directly give the Fourier coefficients of the nonlocal potential when the
potential is expanded in eigenfunctions of the accompanying selfadjoint operator with
point interaction. The results obtained in [3] are generalized to encompass other cases
in [12, 13, 14, 15].

Sections 2, 3, 4 describe nonlocal selfadjoint boundary-value conditions for first order
differential one-dimensional Schrödinger operators and Dirac operators with nonlocal
potentials.

A solution of the direct and the inverse problems on bounded line segments is given
in Section 5 for first order differential operators with various nonlocal interactions.

In Section 6, we give an explicit expression for the scattering operator for first or-
der differential operators on the whole axis in terms of nonlocal potentials; the inverse
scattering problem is also discussed.

The scattering problem on the half-axis for Schrödinger equation with nonlocal po-
tentials is studied in Section 7.

Section 8 discusses a possibility to use nonlocal potentials for modeling the usual
short-range potentials.

2. First order differential operators

On the Hilbert space L2(R
1), consider selfadjoint operators A generated by the dif-

ferential expression i d
dx

with nonlocal potentials v1, v2 ∈ L2(R
1). The selfadjoint operator

A will be called an operator with nonlocal potentials v1, v2 corresponding to a point x =
x0 if the operator A is defined on all the functions ϕ ∈ W 1

2 (R
1 \ {x0}) that are zero

in x = x0, if Aϕ = iϕ′ for all functions ϕ that are orthogonal to v1 and v2. We denote

such a restriction by Asym =
(

i d
dx

)

sym
. Hence, A is a selfadjoint extension of Asym.

Let Av1,v2
be a two-dimensional selfadjoint operator on L2(R

1), taking values
in the subspace span {v1, v2}. Such an operator can be written as Av1,v2

ψ =
∑2

k,n=1 ak,nvk(ψ, vn), where the number matrix a = ||ak,n||2k,n=1 is selfadjoint. It
is clear that if the selfadjoint operator A is regarded with nonlocal potentials v1, v2,
then A + Av1,v2

will also be selfadjoint with the same nonlocal potentials, since (A +
Av1,v2

)sym = Asym. Hence, we can construct selfadjoint operators A with nonlocal po-
tentials up to the operator of the type Av1,v2

.
Instead of considering the operators A as selfadjoint extensions of the

operator
(

i d
dx

)

sym
on L2(R

1), one can consider selfadjoint restrictions of the maximal

operator Amax, which is defined on L2(R
1), to the set of functions from the Sobolev

space W 1
2 (R

1 \ {x0}) via the identity

(2.1) Amaxψ(x) = i
dψ

dx
+ v1(x)ψ(x0 − 0) + v2(x)ψ(x0 + 0) + iAv1,v2

, x 6= x0

for one special choice of the rank-two selfadjoint operator Av1,v2
.

Theorem 2.1. For the operator Amax of form (2.1) to have a selfadjoint restriction A
on L2(R

1), it is necessary and sufficient that the operator Amax should have the form

(2.2) Amaxψ(x) = i
dψ(x)

dx
+ v1(x)

[

ψ(x0 − 0) +
i

2
(ψ, v1)] + v2(x)[ψ(x0 + 0)− i

2
(ψ, v2)

]

,

and its domain should consist of all the functions ψ ∈ W 1
2 (R

1 \ {x0}) that satisfy the
nonlocal boundary-value condition

(2.3) ψ(x0 + 0)− i(ψ, v2) = eiθ[ψ(x0 − 0) + i(ψ, v1)]
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for some real θ. Also, the selfadjoint operator A corresponds to the nonlocal poten-
tials v1, v2 in the point x = x0.

Proof. Operators of the form (2.2) satisfy the Lagrange formula

(2.4) (Amaxψ(x), ϕ)− (ψ(x), Amaxϕ) = i[Γ1ψ · Γ2ϕ− Γ2ψ · Γ1ϕ],

where Γ1ψ = ψ(x0 − 0) + i(ψ, v1) and Γ2ψ = ψ(x0 + 0) − i(ψ, v2) are nonlocal bo-
undary data functions ψ that span the Euclidean space E2. Hence, (2.3) gives a general
form of selfadjoint nonlocal boundary-value conditions [9]. The operator A, with the
domain defined by condition (2.3), is a selfadjoint restriction of the operator Amax of
form (2.2). The operator of the form (2.2) itself can be obtained from (2.1) by set-
ting Av1,v2

ψ = 1
2v1(ψ, v1) − 1

2v2(ψ, v2). Any other operator Av1,v2
will give a skew-

symmetric perturbation of A and can not yield a selfadjoint restriction of an operator of
type (2.1). �

An important particular case of selfadjoint boundary-value conditions (2.3) is
where v1 = v2 ≡ 1

2v, and θ = 0, as well as v2 = −v1 ≡ v and θ = π. In these cases, the
operator with nonlocal potential v has the form

(2.5) Aψ ≡ iψ′(x) + v(x)ψr(x0), ψs(x0)− i(ψ, v) = 0,

(2.6) Aψ ≡ iψ′(x) + v(x)ψs(x0), ψr(x0)− i(ψ, v) = 0,

where ψr(x0) =
1
2 [ψ(x0 + 0) + ψ(x0 − 0)], ψs(x0) = ψ(x0 + 0)− ψ(x0 − 0).

Remark 2.1. To every selfadjoint operator A of the form (2.1)–(2.3) there corresponds

an unperturbed operator Ãθ related to the case v1 ≡ v2 ≡ 0. The operator Ãθ defines a
point interaction in the point x = x0 for the operator i d

dx
with the boundary-value condi-

tions ψ(x0+0) = eiθψ(x0−0). For an operator A that corresponds to the problems (2.5)

and (2.6) there are also accompanying selfadjoint operators Â with point interaction in
the point x = x0; this corresponds to the conditions ψr(x0) = 0 (for problem (2.5))
or ψs(x0) = 0 (for problem (2.6)).

3. One–dimensional Schrödinger operator

Selfadjoint boundary-value conditions for one–dimensional Schrödinger operators with
nonlocal potentials v1, v2 ∈ L2(R

1) are given in [5]. Similarly to Section 2 one can
also consider a wider class of nonlocal potentials v(x) = (v1(x), v2(x), v3(x), v4(x))
with vk(x) ∈ L2(R

1) for k = 1, . . . , 4. The maximal operator Amax on the
space L2(R

1), having nonlocal potentials v(x), is defined on all functions from the Sobolev
space W 1

2 (R
1 \ {0}) by

(3.1) Amaxψ(x) = −d
2ψ(x)

dx2
+ v(x)~ψ(0) + v(x)a(ψ, v+), x 6= 0,

where ~ψ(0) = col (ψ(−0), ψ′(−0), ψ(+0), ψ′(+0)), v+(x) = col (v1, v2, v3, v4), (ψ, v
+) =

col ((ψ, v1), (ψ, v2), . . . , (ψ, v4)), and a is a numeric skew-symmetric 4× 4-matrix.

Theorem 3.1. For the operator Amax of form (3.1) to admit a selfadjoint restriction A
on L2(R

1), it is necessary and sufficient that the operator Amax would have the form

(3.2)
Amaxψ(x) =− d2ψ(x)

dx2
+ v1(x)

[

ψ(−0)− 1

2
(ψ, v2)

]

+ v2(x)
[

ψ′(−0) +
1

2
(ψ, v1)

]

+ v3(x)
[

ψ(+0) +
1

2
(ψ, v4)

]

+ v4(x)
[

ψ′(+0)− 1

2
(ψ, v3)

]

,
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and its domain D(A) would consist of all the functions ψ ∈ W 2
2 (R

1 \ {0}) satisfying the
nonlocal selfadjoint boundary-value conditions

(3.3) Γ1ψ + iΓ2ψ = U(Γ1ψ − iΓ2ψ),

where the two-dimensional vectors Γ1ψ and Γ2ψ from the Euclidean space E2 define the
nonlocal boundary data for the function ψ

(3.4)
Γ1ψ = col (ψ′(+0)− (ψ, v3),−ψ′(−0)− (ψ, v1)),

Γ2ψ = col (ψ(+0) + (ψ, v4), ψ(−0)− (ψ, v2))

and U is a unitary matrix on E2.

Proof. It is similar to the proof of Theorem 2.1. We prove only sufficiency. Let us
show that a restriction of the operator Amax of form (3.2) to functions ψ ∈ W 2

2 (R
1 \

{0}) satisfying the boundary-value conditions (3.3) for any unitary matrix U defines a
selfadjoint operator AU,v on the space L2(R

1), which are Schrödinger operators with
nonlocal potentials v. Indeed, the operator Amax satisfies the Lagrange formula. For
any ψ,ϕ ∈W 2

2 (R
1 \ {x0})

(Amaxψ,ϕ)− (ψ,Amaxϕ) = ω(Γψ,Γϕ),

where the bilinear form ω is defined on the Euclidean space E4 of boundary-value data
for the functions ψ and ϕ

(3.5) ω(Γψ,Γϕ) =< Γ1ψ,Γ2ϕ >E2 − < Γ2ψ,Γ1ϕ >E2 .

Since the boundary-value data Γψ = {Γ1ψ,Γ2ψ} span the whole Euclidean space E4

for ψ ∈ W 2
2 (R

1 \ {0}), see [5, Lemma 1], selfadjoint restrictions of the operator Amax

correspond to selfadjoint boundary-value conditions that are uniquely determined by the
form ω with Lagrangian planes in E4, which, in turn, are parameterized with unitary
matrices U on the space E2. Hence, (3.3) defines general nonlocal selfadjoint boundary-
value conditions for a Schrödinger operator of the form (3.2). �

Let us look closely at some interesting particular cases of Schrödinger operators of
the form (3.2)–(3.3). If the matrix U in the boundary-value conditions (3.3) is diagonal,
the nonlocal potentials v3(x) and v4(x) are zero for x < 0, and v1(x), v2(x) are zero
for x > 0, then the operator AU,v admits a representation as a direct sum of operators
that are selfadjoint on L2(0,∞) and L2(−∞, 0), AU,v = A+

U,v ⊕A−

U,v.We also have that,

if v3(x) ≡ v(x) sin θ and v4(x) ≡ v(x) cos θ, then the operator A+
U,v on the space L2(0,∞)

acts as

(3.6) A+
U,vψ(x) = −d

2ψ(x)

dx2
+ v(x)[sin θψ(0) + cos θψ′(0)],

and its domain consists of all functions from the space W 2
2 (0,∞) that satisfy the

boundary-value conditions

(3.7) ψ′(0) sin θ − ψ(0) cos θ = (ψ, v)L2(0,∞).

Representations (3.2)–(3.3) also give the following particular cases:

the operators: selfadjoint boundary conditions:

(3.8)
−ψ′′(x)+v1(x)ψs(0)+v2(x)ψ

′
s(0); ψ′

r− (ψ, v1) = 0, ψr+(ψ, v2) = 0.

(3.9)
−ψ′′(x)+v1(x)ψr(0)+v2(x)ψ

′
r(0); ψ′

s−(ψ, v1) = 0, ψs+(ψ, v2) = 0.

(3.10)
−ψ′′(x)+v1(x)ψ(+0)+v2(x)ψ(−0); ψ′(+0)−(ψ, v1) = 0, ψ′(−0)+(ψ, v2) = 0.
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4. Dirac operator

A one-dimensional Dirac operator A with a matrix-valued potential v(x) is defined
on the space L2(R

1;En), which is the space of square integrable vector-valued func-
tions ψ(x) = col (ψ1(x), ψ2(x), . . . , ψn(x)), ψk(x) ∈ L2(R

1), k = 1, 2, . . . , n, by the dif-
ferential expression

(4.1) Aψ = B
dψ

dx
+ v(x)ψ,

where B is a constant skew-symmetric matrix on the Euclidean space En. Most impor-
tant are the cases n = 4, where B is a Dirac matrix, and the case n = 2, where B is a

Pauli matrix. If n = 2, one usually takes B =

(

0 1
−1 0

)

or B = i

(

1 0
0 −1

)

.

An analog of the Dirac operator with nonlocal matrix-valued potentials v1(x), v2(x),
with the components being in the space L2(R

1), is given by the following theorem.

Theorem 4.1. Let the operator

(4.2) Aψ = B
dψ

dx
+ v1(x)

[

ψ(−0)− 1

2
(Bψ, v2)

]

+ v2

[

ψ(+0) +
1

2
(Bψ, v1)

]

be defined on all vector-valued functions ψ(x) = col(ψ1(x), ψ2(x), . . . , ψn(x)), with the
component lying in the space ψk(x) ∈ W 1

2 (R
1 \ {0}). Let the functions in the domain of

the operator A satisfy the following nonlocal boundary-value conditions in the point x = 0:

(4.3) ψ(+0) + (Bψ, v1) = U [ψ(−0)− (Bψ, v2)],

where U is a nondegenerate matrix on En such that U∗BU = B. Then the operator A
on the space L2(R

1;En) is selfadjoint.

Proof. It is similar to the proof of Theorems 2.1 and 3.1. �

5. Spectral problem

Consider the following spectral problem with nonlocal potentials v ∈ L2(−π, π) for
the equation

(5.1) lψ ≡ iψ′(x) + v(x)ψs(0) = λψ(x), −π < x < π, ψs(0) = ψ(+0)− ψ(−0)

with the periodic boundary-value conditions

(5.2) ψ(−π) = ψ(π)

and the nonlocal conditions in the point x = 0

(5.3) ψr(0) ≡
1

2
[ψ(+0) + ψ(−0)] = i

∫ π

−π

ψ(x)v(x) dx.

The eigenvalue problem (5.1)–(5.3) is selfadjoint on the space L2(−π, π). The domain
of the corresponding operator A on the space L2(−π, π) consists of the functions ψ ∈
W 1

2 ((−π, π) \ {0}) satisfying the conditions (5.2)–(5.3), and the operator is given by the
left-hand side of equation (5.1)

(5.4) Aψ(x) = iψ′(x) + v(x)ψs(0), x 6= 0.

Theorem 5.1. The operator A is selfadjoint on the space L2(−π, π) and has purely
discrete spectrum. All eigenvalues of the operator A that are not integer are simple. The
number n ∈ Z is an eigenvalue if and only if

(5.5)

∫ π

−π

v(x)einx dx = i.
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Proof. We can apply the Lagrange formula to functions ψ,ϕ ∈ W 1
2 ((−π, π) \ 0) =

W 1
2 ((−π, π) \ {0}) ∩ {ψ : ψ(−π) = ψ(π)} in the space L2(−π, π)

(lψ, ϕ)− (ψ, lϕ) = ω(Γψ,Γϕ),

where the form ω(ξ, η) = i[(ξ1, η1)−(ξ2, η2)] is defined on two-dimensional vectors ξ = Γψ
η = Γϕ, which make boundary data Γψ = col (ψ(−0) + i

2 (ψ, v), ψ(+0) − i
2 (ψ, v))

for the functions ψ and ϕ. Since the boundary-value conditions (5.3) are selfadjoint,
see (2.6)), the operator A is selfadjoint on the space L2(−π, π). It is easy to see that
the selfadjoint operator A0 defined by the expression i d

dx
on functions from W 1

2 (−π, π)
satisfying periodic boundary-value conditions has eigenvalues λn = n with the cor-
responding eigenfunctions ψn = e−inx. The operators A0 and A are distinct selfad-
joint extensions of the symmetric operator Asym defined as i d

dx
on functions from the

space W 1
2 (−π, π) which are orthogonal to the function v and satisfying the boundary-

value conditions (5.2) and ψ(0) = 0. Since the deficiency indices of the operator Asym

are finite and equal to (2, 2), the spectrum of the operator A is discrete and the eigen-
values satisfy |λn| → ∞ as |n| → ∞. If the selfadjoint operator A would have a multiple

eigenvalue λ̃ /∈ Z, then there would be at least two linearly independent eigenfunctions
ψ1(x;λ) and ψ2(x;λ) corresponding to λ̃, and then there would exist their nontrivial
linear combination ψ = αψ1 + βψ2 6= 0 such that ψs(0) = 0. But then (5.1)–(5.2) would

yield that λ̃ is an integer, which contradicts the assumption.
Finally, a direct verification shows that if (5.5) holds then e−inx is an eigenfunction of

the operator A with the eigenvalue λ = n. If λ = n is an eigenvalue of the problem (5.1)–
(5.3), then e−inx is an eigenfunction with condition ψs(0) = 0 and (5.5) follows from (5.3).
If ψs(0) 6= 0 then (5.5) follows from (5.1)–(5.2). �

Expand the nonlocal potential v ∈ L2 in a Fourier series

(5.6) v(x) =

+∞
∑

n=−∞

vne
−inx, vn =

1

2π

∫ π

−π

v(x)einx dx.

To give an exact description of the eigenvalues λn of problem (5.1)–(5.3) it becomes
useful to consider the following special solutions of problem (5.1), (5.2):

(5.7) ϕ(x;λ) = ϕ0(x;λ) + 2i sinλπ
+∞
∑

n=−∞

vne
−inx

λ− n
,

(5.8) ϕ0(x;λ) = e−iλ(x−πsign x) =

{

e−iλ(x+π), x < 0,
e−iλ(x−π), x > 0.

By substituting the special solution ϕ(x;λ) into the boundary-value condition (5.3), we
obtain the following characteristic function χ(λ) ≡ ϕr(0;λ)− i(ϕ, v) :

(5.9) χ(λ) = cosλπ + 4π sinλπ

+∞
∑

n=−∞

αn

λ− n
,

where

(5.10) αn = |vn − i

2π
|2 − 1

4π2

and vn is a Fourier coefficient of the nonlocal potential v(x) in decomposition (5.6).

Theorem 5.2. A number λ is an eigenvalue of problem (5.1)–(5.3) if and only if λ is a
zero of the characteristic function χ(λ). Multiplicity of the eigenvalue λ coincides with
its multiplicity as a zero of the characteristic function.
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Proof. It is similar to the proof of Theorem 2 in [14].
Since the characteristic function χ(λ) of the form (5.9) is an entire analytic function,

it is uniquely defined by a two-sided sequence of its zeros λn = n− 1
2 sign (n) + εn, n ∈

Z \ {0}, ∑n |ε|2 < +∞ as an infinite product

(5.11) χ(z) =

∞
∏

k=1

(

k − 1

2

)−2

(λk − z)(z − λ−k).

On the other hand, it follows from (5.9) that

(5.12) χ(n) = (−1)n|2πvn − i|2.
Formulas (5.11)–(5.12) give an algorithm for solving the inverse spectral problem of
recovering the nonlocal potential in problem (5.1)–(5.3) from all of its eigenvalues, is
similar to the algorithms of [3, 12, 13, 14, 15]. One can as well describe all isospectral
nonlocal potentials.

The algorithm for solving the inverse spectral problem consists of the following three
steps.

Step 1. Use the spectrum {λn} to construct the characteristic function χ(λ) as the infinite
product (5.11).

Step 2. Calculating the values χ(n), n ∈ Z, by solving the equation (5.12), we find the
Fourier coefficients vn of the nonlocal potential v(x).

Step 3. The nonlocal potential is defined by its Fourier series (5.6). �

Let us briefly consider a spectral problem close to the one in (5.1)–(5.3), namely, to
find λ such that the equation

(5.13) iψ′(x) + v(x)ψr(0) = λψ(x), −π < x < π, v ∈ L2(−π, π)
has a nontrivial solution ψ(x) satisfying the boundary-value condition

(5.14) ψ(−π) = ψ(π)

and the nonlocal boundary-value conditions

(5.15) ψs(0)− i(ψ, v) = 0.

Replace the expansion of the nonlocal potential into a Fourier series (5.6) for prob-
lem (5.1)–(5.3) with the expansion in eigenfunctions of the following accompanying self-
adjoint problem:

(5.16) iψ′(x) = λψ(x), ψ(−π) = ψ(π), ψr(0) = 0.

The problem (5.16) is selfadjoint in the space L2(−π, π). Its eigenvalues are the num-
bers µn = 1

2 + n, n ∈ Z, and the corresponding eigenfunctions en = signxe−iµnx make a
complete orthogonal system in L2(−π, π). Hence,

(5.17) v(x) =

+∞
∑

n=−∞

vnen(x), vn =
1

2π

∫ π

−π

v(x)en(x) dx.

Since en(+0)+en(−0) = 0, a special solution of problem (5.13)–(5.15) can be represented
as

(5.18) ϕ(x, λ) = e−iλ(x−πsign x) + cosλπ

∞
∑

n=1

vnen(x)

λ− µn

,

where vn are the Fourier coefficients (5.17) of the nonlocal potential. By substituting
the solution ϕ(x, λ) into the boundary-value condition (5.15) we get the characteristic
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function χ(λ) = 1
2i [ϕs(0;λ)− (ϕ, v)]

(5.19) χ(λ) = sinλπ + cosλπ
∑

n∈Z

αn

λ− µn

,

where αn = π|vn|2 + i(vn − vn).
Zeros of the characteristic function χ(λ) determine spectrum of problem (5.13)–(5.15).

Here, the value of the characteristic function in the point µn = 1
2 + n is explicitly

connected with values of the Fourier coefficients vn in the expansion (5.17)

(5.20) χ(µn) = (−1)n|1 + iπvn|2.
Formulas (5.19)–(5.20) give a description of spectrum of problem (5.13)–(5.15) and a
solution of the inverse spectral problem similar to the ones above for the problem (5.1)–
(5.3) and close problems in [14].

Remark 5.1. The approach to the problems (5.1)–(5.3) and (5.13)–(5.15) can
be explained using the abstract perturbation theory for operators on a Hilbert
space [4], [7], [8], [9], [10], [11], [16]. Let A0 and A1 be two selfadjoint operators on
a Hilbert space H. Let Amin = A0 ∧ A1 be the maximal common part of the ope-
rators A0 and A1. Let Amin be a densely defined symmetric operator with deficiency
indices (1, 1). The operators A0 and A1 are distinct selfadjoint extensions of the ope-
rator Amin. If in H there is a element v ∈ H, then the operator Amin can be restricted
to elements orthogonal to v. Then one can consider the operator Asym = Amin ↾D,
D ≡ D(Amin)

h = {x : x ∈ D(Amin), x⊥h}, which is not densely defined. The element v
will be called a nonlocal potential. Selfadjoint extensions A of the operator Asym will be
called operators with nonlocal potentials.

In the abstract theory, the meanings of the nonperturbed operator A0 and the ac-
companying operator A1 are given, together with defining the element v. The selfad-
joint extension A of the operator Asym is subject to the condition D(A) ∩ D(A1) =
D(A ∧ A1), D(A) ∩ D(A0) = D(A0)

h, where D(A0)
h = {ψ : ψ ∈ D(A0), ψ⊥h}. These

conditions uniquely define the selfadjoint operator A in terms of A0, A1, and h. This
construction of the operator A with nonlocal potential, regarded as a selfadjoint exten-
sion of a Hermitian operator Asym that is not densely defined, as well as the form of the
resolvent of the operator A follow from [4].

6. Scattering problem for first order differential operators

On the whole axis −∞ < x < +∞, consider the scattering problem for first order
equation with nonlocal potential

(6.1) iψ′(x) + v(x)ψs(0) = λψ(x), x ∈ R
1 \ {0},

where the nonlocal potential satisfies v ∈ L2(R
1) ∩ L1(R

1), ψs(0) = ψ(+0) − ψ(−0) is
the jump of the function ψ(x) in the point x = 0. A solution of equation (6.1) satisfies
the nonlocal boundary-value conditions (2.6) in the point x = 0,

(6.2) ψr(0) = i

∫ +∞

−∞

ψ(x)v(x) dx.

If λ is real, then there exists a nontrivial bounded solution of problem (6.1)–(6.2), it is
unique, and has the following asymptotic expansion as x→ ±∞:

(6.3) ψ(x;λ) = A±e
−iλx + o(1), x→ ±∞.

The coefficients A+ and A− are amplitudes of the incoming and the scattered waves, and
their ratio gives the scattering operator

(6.4) A− = −S(λ)A+.
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The minus sign in formula (6.4) is chosen so that the scattering operator would become
identity if v ≡ 0 and the solution is ψ(x;λ) = Ae−iλxsignx.

Theorem 6.1. Problem (6.1)–(6.2) has a bounded solution ψ(x;λ), for real λ,

(6.5) ψ(x;λ) = [A+ signx]e−iλx + i

∫ x

−∞

e−iλ(x−s)v(s) ds− i

∫ +∞

x

e−iλ(x−s)v(s) ds

and the constant A is uniquely defined by the nonlocal potential v as follows:

(6.6) A = iβ(λ)[1− iṽ∗(λ)]−1,

where

(6.7) β(λ) ≡ Jα =
1

π

∫

′ α(p)

λ− p
dp,

and the integral is understood in the principal value sense, α(λ) = |1 + iṽ(λ)|2 − 1,
ṽ(λ) =

∫∞

−∞
eiλxv(x) dx is the Fourier transform of the nonlocal potential v, ṽ∗(λ) is

the comlex conjugate function of ṽ(λ). Here, the scattering operator S(λ) is uniquely
defined by the function α(λ) as

(6.8) S(λ) =
1 + α(λ)− i(Jα)(λ)

1 + α(λ) + i(Jα)(λ)
.

Proof. The function ψ(x;λ) in (6.5) satisfies equation (6.1). This function can be repre-
sented in the form:

(6.9) ψ(x;λ) = [A+ signx]e−iλx +
1

π

∫

′ e−ipxṽ(p)

λ− p
dp.

Substituting ψ(x;λ) (6.9) into the boundary-value condition (6.2) we get identity (6.5).
The solution ψ(x;λ) has the following asymptotics as x→ ±∞:

ψ(x;λ) = [A± 1∓ iṽ]e−iλx + o(1), x→ ±∞.

Hence, by definition (6.4) of the scattering operator we get

(6.10) S(λ) =
1 + iṽ −A

1 + iṽ +A
.

Using relation (6.6), we get an explicit formula for the scattering operator in terms of
the potential (6.8). �

Remark 6.1. Since, by (6.8), the scattering operator S(λ) can be explicitly expressed in
terms of |1 + ṽ(λ)|2, two different nonlocal potentials v1 and v2 such that

(6.11) |1 + ṽ1(λ)|2 = |1 + ṽ2(λ)|2

give the same scattering operator. This shows that the inverse scattering problem for
recovering the nonlocal potential from a known scattering operator has a non-unique
solution in the class of L2-potentials. However, one can single out a sufficiently broad
classes (P) of potentials for which the identity (6.11) leads to v1 ≡ v2 and, consequently,
the inverse scattering problem would have a unique solution in the class (P).

7. Scattering problem for Schrödinger operators on the half-axis

Consider a selfadjoint problem of the form (3.6)–(3.7) for Schrödinger operators with
a nonlocal potential v ∈ L2(0,∞),

(7.1) −ψ′′(x) + v(x)ψ(0) = λ2ψ(x), 0 < x < +∞, ψ′(0) = (ψ, v)L2(0,∞).

For real λ, a bounded solution of problem (7.1), the Jost solution, has the form

(7.2) ψ(x;λ) = e−iλx + S(λ)eiλx − ψ(0)

∫ +∞

x

sinλ(x− s)

λ
v(s) ds,
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where S(λ) is the reflection coefficient. The value ψ(0) is determined by (7.2), assuming
x = 0

(7.3) ψ(0) = (1 + S)(1− 1

λ
ṽs)

−1,

where ṽs(λ) =
∫ +∞

0
sinλs v(s) ds is the sin-Fourier transform of the nonlocal potential.

Substituting (7.2) into (7.1) and a use of (7.3) leads to an explicit expression for S(λ) in
terms of the nonlocal potential. If v is a real-valued nonlocal potential, then .

(7.4) S(λ) = [λ− ṽs − iβ] · [λ− ṽs + iβ]−1,

where β = 1
2π

∫ +∞

0

′

α(p)
p2−λ2 dp, and the integral is understood in the principal value sense,

and α(p) = |ṽs(p)− p|2 − p2, can be explicitly found from the potential v.
To the problem (7.1), one can connect a selfadjoint operator A on L2(0,∞). Its

action is defined by the left-hand side of identity (7.1), Aψ = −ψ′′(x) + v(x)ψ(0). The
domain D(A) consists of all functions from the Sobolev space W 2

2 (0,∞) satisfying the
nonlocal boundary-value condition ψ(0) = (ψ, v). The positive half-axis [0,∞) is the
continuous part of spectrum of the operator A. The operator A can also have eigenvalues.
This is the case for the potential v(x) = −2e−x. Here, the number λ2 = −3 is an
eigenvalue of A with the eigenfunction e−x.

If ψ(0) and ψ′(0) are interchanged in problem (7.1), that is the problem becomes

(7.5)
−ψ′′(x) + v(x)ψ′(0) = λ2ψ(x), 0 < x < +∞, ψ(0) + (ψ, v)L2(0,∞) = 0,

ψ(x) = e−iλx − S(λ)eiλx + o(1), x→ ∞,

then the scattering operator S can be expressed in terms of ṽc(λ) =
∫ +∞

0
cosλs v(s) ds,

which is the cos-Fourier transform, similarly to (7.4) as

(7.6) S(λ) = [1 + ṽc + iβ] · [1 + ṽc − iβ]−1,

where β(λ) = λ
2π

∫ +∞

0

′

α(p)
p2−λ2 dp, and the integral is taken as the principal value,

where α(p) = |ṽc(p)− 1|2 − 1.

8. Nonlocal potentials as models for short-range potentials

Consider the one-dimensional Schrödinger equation

(8.1) −ψ′′(x) + v(x)ψ(x) = λ2ψ(x),

where the potential v has support in a small neighborhood of the point x = 0,
that is, supp v(x) ⊂ (−ε, ε). The product v(x)ψ(x), for x < 0, can be approxi-
mated with v1(x)ψ(−0) + v2(x)ψ

′(−0) and, for x > 0, with v3(x)ψ(+0) + v4(x)ψ
′(+0),

where v1(x) = θ(−x)v(x), v2(x) = xθ(−x)v(x), v3(x) = θ(x)v(x), v4(x) = xθ(x)v(x),
and θ(x) is the Heaviside step function. Then we have a Schrödinger operator with non-
local potential of the form (3.2)–(3.3), which can be regarded as a solvable model for the
initial operator.

If λ is real and v ∈ L2(R
1)∩L1(R

1), problem (8.5) has a unique Jost solution, bounded
on the whole axis, with the asymptotics

(8.2) ψ(x;λ) = eiλx + o(1), x→ −∞; ψ(x;λ) = aeiλx + be−iλx + o(1), x→ +∞.

The coefficients a(λ), b(λ) in (8.2) have important physical meanings. The quantity a−1

gives the coefficient of transmission from the right, and ba−1 is the coefficient of reflection
from the right. We have |a|2−|b|2 = 1. These quantities are used to construct the unitary

2× 2- scattering matrix S(λ) = a−1

(

1 −b
b 1

)

.
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Let us also give expressions for the coefficients a and b in the Jost solution (8.2) for
a Schrödinger operator with point interaction in the point x = 0 and subject to the
boundary-value conditions

(8.3)

(

ψ′
s

ψs

)

=

(

α γ
γ −β

)(

ψr

−ψ′
r

)

for real α, β, γ. In this case

(8.4)
b =

[

γ +
i

2λ
(α+ λ2β)

]

·
[

1− 1

4
(γ2 + αβ)

]−1

,

a =
[

1 +
1

4
(γ2 + αβ)− i

2λ
(α− λ2β)

]

·
[

1− 1

4
(γ2 + αβ)

]−1

.

Consider the simplest case of Schrödinger operator with nonlocal potential of the
form (3.2)–(3.3),where v1(x) = θ(−x)v(x), v3(x) = θ(x)v(x), and v2(x) = v4(x) = 0.
For the sake of simplicity, we will assume that v(x) is an even function, v(x) = v(−x).
Then we consider the problem on the whole axis

(8.5)
−ψ′′(x) + v(x)ψr + v̂(x)ψs = λ2ψ(x), v̂(x) =

1

2
signx · v(x),

ψs = β̂[ψ′
r − (ψ, v̂)], ψ′

s = α̂ψr + (ψ, v)

for real α̂, β̂ in the boundary conditions.

Explicit expressions for the scattering matrix for problem (8.5) with α̂ = 0 and β̂ = 0
in terms of nonlocal potentials are obtained in [5]. If the function v(x) is real and even,
we have exact explicit expressions for the coefficients a and b in the Jost solution (8.2)

in terms of nonlocal potential v and the numbers α̂, β̂ from the boundary conditions

(8.6)

a =
1

2

[

ψ+E
−1 − ψ′

+ + ψ+ṽ+,c

iλ

]

, b =
1

2

[

ψ+E
−1 +

ψ′
+ + ψ+ṽ+,c

iλ

]

,

ψ+ =
[(

1 +
AB

4

)

E +B(iλ+ Eṽ+,c)
](

1− 1

4
AB

)−1

,

ψ′
+ =

[(

1 +
AB

4

)

(iλ+ Eṽ+,c) +AE
](

1− 1

4
AB

)−1

,

ṽ+,c =

∫ ∞

0

cosλxv(x) dx, ṽ+,s =

∫ ∞

0

sinλxv(x) dx,

k =

∫ ∞

0

v(x)
[

∫ ∞

0

sinλ(x− s)

λ
v(s) ds

]

dx,

E =
(

1− 1

λ
ṽ+,s

)−1

, A = (α̂+ 2ṽ+,c + 2k)E, B = β̂E−1
(

1 +
β̂

2
(ṽ+,c + k)

)−1

.

Let us compare these values with those obtained for a potential well, where v =
vh,ε(x) = −h for − ε

2 < x < ε
2 and = vh,ε(x) = 0 for |x| > ε

2 . In this case, the

Schrödinger equation −ψ′′(x) + vh,ε(x)ψ(x) = λ2ψ(x) admits an explicit solution of the
form (8.2) given by

(8.7)

a=e−iλε
[

cos ε
√

h+ λ2+
(−ih

2λ
+ iλ

) sin ε
√
h+ λ2

ε
√
h+ λ2

]

≈1− h2ε4

24
+
ihε

2λ

(

1− ε2h

6

)

,

b=
−ihε
2λ

· sin ε
√
h+ λ2

ε
√
h+ λ2

≈− ihε
2λ

(

1− ε2(h+ λ2)

6

)

.

Formulas (8.6), for v = vh,ε(x) and α̂ = hε, β̂ = 1
6hε

3 give

(8.8) a = 1− h2ε4

24
+
ihε

2λ

(

1− ε2h

6

)

, b = −h
2ε4

24
− ihε

2λ

(

1− ε2(h+ λ2)

6

)

.
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Comparing (8.4)–(8.7)–(8.8) we see that if the potential well has small width and
large depth, the scattering problem is better modeled with a Schrödinger operator with
nonlocal potential than with a point interaction.
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