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FACTORIZATIONS OF NONNEGATIVE SYMMETRIC OPERATORS

YURY ARLINSKĬI AND YURY KOVALEV

Dedicated to F. S. Rofe-Beketov on the occasion of his 80-th birthday

Abstract. We prove that each closed densely defined and nonnegative symmetric
operator Ȧ having disjoint nonnegative self-adjoint extensions admits infinitely many
factorizations of the form Ȧ = LL0, where L0 is a closed nonnegative symmetric
operator and L its nonnegative self-adjoint extension. The same factorizations are

also established for a non-densely defined nonnegative closed symmetric operator
with infinite deficiency indices while for operator with finite deficiency indices we
prove impossibility of such a kind factorization. A construction of pairs L0 ⊂ L (L0

is closed and densely defined, L = L∗ ≥ 0) having the property dom (LL0) = {0}

(and, in particular, dom (L2
0) = {0}) is given.

1. Introduction

Notations.

We use the symbols dom (T ), ran (T ), ker (T ) for the domain, the range, and the
null-subspace of a linear operator T . The closures of dom (T ), ran (T ) are denoted by
dom (T ), ran (T ), respectively. The identity operator in a Hilbert space H is denoted by
I and sometimes by IH. If L is a subspace, i.e., a closed linear subset of H, the orthogonal
projection in H onto L is denoted by PL. The notation T ↾N means the restriction of a
linear operator T to the set N ⊂ dom (T ). The linear space of bounded operators acting
between Hilbert spaces H and K is denoted by L(H,K) and the Banach algebra L(H,H)
by L(H). A linear operator A in a Hilbert space is called nonnegative if (Af, f) ≥ 0 for
all f ∈ dom (A). If M1 and M2 are linear operators acting from H1 into H2 and from H2

into H3, respectively, then the product M2M1 we understand as follows:

dom (M2M1) = {ϕ ∈ dom (M1) :M1ϕ ∈ dom (M2)} ,

(M2M1)ϕ :=M2(M1ϕ), ϕ ∈ dom (M2M1).

Let L0 and L1 be closed linear operators in a Hilbert space H taking values in a
Hilbert space H and possessing the condition

(1.1) L0 ⊂ L1.

The operators L∗
0L0 and L∗

1L1 are self-adjoint and nonnegative in H. Since L∗
1 ⊂ L∗

0,
the following relations are valid:

dom (L∗
1L0) = dom (L∗

0L0) ∩ dom (L∗
1L1) = dom (L0) ∩ dom (L∗

1L1).

If

(1.2) dom (L∗
0L0) ∩ dom (L∗

1L1) 6= {0},
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then the operator Ȧ defined as follows

(1.3) dom (Ȧ) := dom (L∗
1L0), Ȧf := L∗

1L0f, f ∈ dom (Ȧ)

is closed, symmetric. Since (Ȧf, f) = ||L0f ||
2 ≥ 0 for all f ∈ dom (Ȧ), the operator Ȧ is

nonnegative. Such kind of operators Ȧ we call operators in divergence form.
Observe that both operators L∗

0L0 and L∗
1L1 are nonnegative self-adjoint extensions

of Ȧ. In accordance with the first representation theorem [20] they are associated with
the closed sesquilinear forms

τ0[ϕ,ψ] = (L0ϕ,L0ψ)H, ϕ, ψ ∈ dom (L0),

τ1[u, v] = (L1u, L1v)H, u, v ∈ dom (L1),

respectively, and due to (1.1) the form τ0 is a closed restriction of the form τ1.

It is well known that if a linear manifold D is dense in a Banach space B and B̃ is

a subspace of B with finite co-dimension, then the linear manifold D ∩ B̃ is dense in B̃.
Hence, if the condition

dim (dom (L1)/dom (L0)) <∞

is fulfilled, then (1.2) holds. Moreover, [7], [12], since dom (L∗
1L0) is dense in dom (L0)

w.r.t. the graph norm in dom (L0) we obtain that

(1) the operator Ȧ = L∗
1L0 has dense domain,

(2) the operator L∗
0L0 is the Friedrichs extension of Ȧ.

Recall that a densely defined nonnegative symmetric operator has at least one non-
negative self-adjoint extensions, the Friedrichs extension. M. G. Krĕın established [21],

[22] that the set of all nonnegative self-adjoint extensions of Ȧ forms the operator interval
[AK , AF ] in the sense of quadratic forms [20], where the ”minimal” operator AK is
discovered by Krĕın. The operator AK is called the Krĕın-von Neumann extension (it is
often called the Krĕın extension).

Recall also that two self-adjoint extensions A0 and A1 of a closed densely defined
symmetric operator Ȧ with equal deficiency indices are called disjoint (or relatively
prime) if

dom (A0) ∩ dom (A1) = dom (Ȧ)

and transversal if, in addition,

dom (A0) + dom (A1) = dom (Ȧ∗).

Due to (1.3) the operators A0 = L∗
0L0 and A1 = L∗

1L1 are disjoint nonnegative self-

adjoint extensions of Ȧ. Now observe that
if a closed operator Ȧ is given by (1.3), where L0 and L1 satisfy (1.1), then Ȧ admits

the factorization
Ȧ = LL0,

where L0 is a closed densely defined symmetric and nonnegative operator in H and L is
its nonnegative self-adjoint extension.

Actually, define

dom (L) := dom (L1), Lu := (L∗
1L1)

1/2u, u ∈ dom (L1),

dom (L0) := dom (L0), L0ϕ := (L∗
1L1)

1/2ϕ, ϕ ∈ dom (L0).

One of the aim of this paper is to prove the following statement.

Theorem 1.1. Let Ȧ be a densely defined closed nonnegative symmetric operator in
a Hilbert space H having disjoint nonnegative self-adjoint extensions. Then Ȧ admits
infinitely many factorizations of the form

Ȧ = LL0,
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where L0 is a densely defined closed nonnegative symmetric operator in H and L is
nonnegative self-adjoint extension of L0. Moreover,

(1) if the deficiency indices of Ȧ are finite, then it is necessary that the operator

L∗
0L0 coincides with the Friedrichs extension AF of Ȧ;

(2) if the deficiency indices of Ȧ are infinite, then the operator L0 can be chosen such

that L∗
0L0 coincides or does not coincide with the Friedrichs extension of Ȧ;

(3) if Ȧ admits transversal nonnegative self-adjoint extensions and if L2 is transver-
sal to AF (in particular, if L2 coincides with the Krĕın-von Neumann extensions

of Ȧ), then it is necessary that L∗
0L0 is the Friedrichs extension of Ȧ.

If a closed symmetric operator Ȧ is non-densely defined, then its adjoint Ȧ∗ = {〈x, x′〉}
is a linear relation (a subspace in H ⊕H) defined as follows:

(Ȧϕ, x) = (ϕ, x′) for all ϕ ∈ dom (Ȧ).

The Friedrichs extension of a non-densely defined closed nonnegative operator is not a
linear operator. It is a linear relation [30], [32]. But it is possible that the minimal
extension (the Krĕın-von Neumann extension) is an operator [3]. For a non-densely
defined case we prove the following analog of Theorem 1.1.

Theorem 1.2. 1) A non-densely defined closed nonnegative symmetric operator with
finite deficiency indices does not admit representation in divergence form.

2) A non-densely defined closed nonnegative symmetric operator Ȧ with infinite defi-
ciency indices and having disjoint nonnegative self-adjoint extensions (operators) admits
infinitely many factorizations

Ȧ = LL0,

where L0 is a densely defined closed nonnegative symmetric operator and L is nonnegative
self-adjoint extension of L0.

In the proves of Theorem 1.1 and Theorem 1.2 we essentially use M. Krĕın’s approach
[21], [22], [23] completed by Ando and Nishio [3] in the theory of nonnegative self-adjoint

extensions of nonnegative symmetric operator. Notice that the inclusion Ȧ ⊆ L∗
1L0

for some special L0 and L1 provided conditions (1.1) and AF = L∗
0L0, AK = L∗

1L1

are established for densely defined nonnegative Ȧ in [29], [34], [11] and for nonnegative

linear relations Ȧ in [18]. In [7] and [12] some properties of extensions of the operators in
divergence form are established and applications to boundary value problems are given.

M. A. Năımark in [26], [27] found an example of a densely defined closed symmetric
operator T whose square T 2 is zero defined, i.e., dom (T 2) = {0}. A more concrete
nonnegative symmetric operator with the same property is constructed in [14]. The
results related to the powers of symmetric operators are obtained in [33]. In particular
it is established [33, Theorem 5.2] that for each unbounded self-adjoint operator T there
exist closed symmetric restrictions T1 and T2 of T such that

dom (T1) ∩ dom (T2) = {0} and dom (T 2
1 ) = dom (T 2

2 ) = {0}.

In [13] it is shown that the above result remains true for a closed symmetric non-self-
adjoint T .

In the present paper we give
an example of a densely defined closed nonnegative symmetric operator L0 and its nonneg-
ative self-adjoint extension L such that dom (LL0) = {0}. In particular, dom (L2

0) = {0}.
For this purpose we construct two nonnegative unbounded self-adjoint operators A0

and A in H such that

dom (A0) ∩ dom (A) = {0},

dom (A
1/2
0 ) ⊂ dom (A1/2), ||A

1/2
0 ϕ|| = ||A1/2ϕ||, ϕ ∈ dom (A

1/2
0 ).
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Our construction is also based on the results in [21] related to the special kind of operators
which are called nowadays the Krĕın shorted operators.

It turns out that in our example the product L0L is densely defined.

2. The Krĕın shorted operator

For every nonnegative bounded operator B in the Hilbert space H and every subspace
K ⊂ H M. G. Krĕın [21] defined the operator BK by the relation

BK = max {Z ∈ L(H) : 0 ≤ Z ≤ B, ran (Z) ⊆ K} .

The equivalent definition is

(2.1) (BKf, f) = inf
ϕ∈K⊥

{(B(f + ϕ), f + ϕ)} , f ∈ H.

Here K⊥ := H⊖K. The operator BK is called the shorted operator (see [1, 2]). Let the
subspace Ω be defined as follows:

Ω = { f ∈ ran (B) : B1/2f ∈ K } = ran (B)⊖B1/2K⊥.

It is proved in [21] that BK takes the form BK = B1/2PΩB
1/2. Hence, (see [21])

(2.2) ran (B
1/2
K

) = ran (B1/2) ∩ K.

It follows that

(2.3) BK = 0 ⇐⇒ ran (B1/2) ∩ K = {0}.

Let a bounded self-adjoint operator B is given by the block operator matrix

B =

(
B11 B12

B∗
12 B22

)
:

K
⊕
K⊥

→
K
⊕
K⊥

,

where B11 ∈ L(K), B22 ∈ L(K⊥), B12 ∈ L(K⊥,K). It is well known (see [23]) that
the operator B is nonnegative if and only if

B22 ≥ 0, ran (B∗
12) ⊂ ran (B

1/2
22 ), B11 ≥

(
B

[−1/2]
22 B∗

12

)∗ (
B

[−1/2]
22 B∗

12

)

and the operator BK is given by the block matrix

BK =

(
B11 −

(
B

[−1/2]
22 B∗

12

)∗ (
B

[−1/2]
22 B∗

12

)
0

0 0

)
,

where B−[1/2] is the Moore-Penrose pseudo-inverse.

3. Nonnegative self-adjoint extensions of nonnegative symmetric

operator

Let H be a separable Hilbert space and let Ȧ be a densely defined closed, symmetric,
and nonnegative operator, i.e., (Ȧf, f) ≥ 0 for all f ∈ dom (Ȧ). The Friedrichs extension

AF of Ȧ is defined as follows [20]. Denote by Ȧ[·, ·] the closure of the sesquilinear for

Ȧ[f, g] = (Ȧf, g), f, g ∈ dom (Ȧ),

and let D[Ȧ] be the domain of this closure. According to the first representation theorem

[20] there exists a nonnegative self-adjoint operator AF associated with Ȧ[·, ·], i.e.,

(AFh, ψ) = Ȧ[h, ψ], ψ ∈ D[Ȧ], h ∈ dom (AF ).

Clearly Ȧ ⊂ AF ⊂ Ȧ∗, where Ȧ∗ is adjoint to Ȧ. It follows that

dom (AF ) = D[Ȧ] ∩ dom (Ȧ∗).
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By the second representation theorem the equalities

D[Ȧ] = dom (A
1/2
F ) and Ȧ[φ, ψ] = (A

1/2
F φ,A

1/2
F ψ), φ, ψ ∈ D[Ȧ]

hold. If A is a nonnegative self-adjoint operator, then

D[A] = dom (A1/2), A[u, v] = (A1/2u,A1/2v), A[u] = ||A1/2u||2.

If A is a linear relation, then

D[A] = dom (A1/2
op ), A[u, v] = (A1/2

op u,A
1/2
op v), A[u] = ||A1/2

op u||
2,

where Aop is the operator part of A [31].
In his fundamental paper [21] M. Krĕın reduced the problem of finding all nonneg-

ative self-adjoint extensions for a nonnegative symmetric operator to the problem of
self-adjoint contractive extensions (sc-extensions) for a given non-densely defined Her-
mitian contraction. He used the fact that the Cayley transform

S = (I −A)(I +A)−1, A = (I − S)(I + S)−1

gives a one-to-one correspondence between closed densely defined nonnegative symmetric
operators A in a Hilbert space H and non-densely defined closed symmetric contractions
S such that ker (S + I) = {0}. Moreover, the operator S is a self-adjoint if and only if A
is self-adjoint.

Let Ṡ be a closed non-densely defined symmetric contraction in H. M. Krĕın proved
that the set of all sc-extensions of Ṡ forms an operator interval [Sµ, SM ]. If

Ṡ = (I − Ȧ)(I + Ȧ)−1, dom (Ṡ) = ran (I + Ȧ),

where Ȧ is a densely defined closed and nonnegative symmetric (non-self-adjoint) ope-
rator, then, as it is shown by M. Krĕın, the Cayley transform

(3.1) AF = (I − Sµ)(I + Sµ)
−1

of the extremal extension (the ”rigid” extension of Ȧ in M. Krĕın terminology) coincides

with the Friedrichs extension of Ȧ. Another extremal nonnegative self-adjoint extension

(3.2) AK = (I − SM )(I + SM )−1

was called by M. Krĕın the ”soft” extension of Ȧ. It was proved in [21] that a nonnegative

self-adjoint operator A is an extension of Ȧ if and only if for some a > 0 (then for all
a > 0) hold the inequalities

(AF + aI)−1 ≤ (A+ aI)−1 ≤ (AK + aI)−1

or equivalently AK ≤ A ≤ AF in the sense of corresponding quadratic forms [20], [21],
i.e.,

(3.3)

D[Ȧ] ⊂ D[A] ⊆ D[AK ],

A[ϕ] = Ȧ[ϕ] for all ϕ ∈ D[Ȧ],

A[u] ≥ AK [u] for all u ∈ D[A].

When Ȧ is positive definite, i.e., the lower bound of Ȧ is a positive number, it is shown
in [21], [22] that

dom (AK) = dom (Ȧ)+̇ker (Ȧ∗).

Thus, in that case the Krĕın-von Neumann extension AK coincides with self-adjoint
extension constructed by J. von Neumann. Let Nz := H ⊖ ran (Ȧ − z̄I) be the defect

subspace of Ȧ. For densely defined Ȧ one has

Nz = ker (Ȧ∗ − zI).
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Let A be a nonnegative self-adjoint extension of densely defined Ȧ. It is established by
M.G. Krĕın [21] that the domain D[A] admits the decomposition

(3.4) D[A] = D[Ȧ]+̇(D[A] ∩N−a)

for arbitrary a > 0. The operator Ȧ has unique nonnegative self-adjoint extension (see

[21] for densely defined Ȧ and [5], [17] when Ȧ is a linear relation) if and only if for some
a > 0 (and then for all a > 0) holds the condition

sup
f∈dom (Ȧ)

|(f, ϕ−a)|
2

(Ȧf, f)
= ∞ for every ϕ−a ∈ N−a \ {0}.

This condition is equivalent to ran (A
1/2
F ) ∩N−a = {0}.

Let S be any sc-extension of Hermitian contraction Ṡ and let N = H ⊖ dom (Ṡ). The

subspace N coincides with defect subspace N−1 of the operator Ȧ. The operators Sµ
and SM can be defined by the relations [21]

(3.5) Sµ = S − (I + S)N, SM = S + (I − S)N.

Thus, extremal sc-extensions Sµ and SM of Ṡ possess the properties

(IH + Sµ)N = (IH − SM )
N
= 0.

The operator interval [Sµ, SM ] can be parametrized as follows (see [23])

(3.6) [Sµ, SM ] ∋ S ⇐⇒ S = Sµ + (SM − Sµ)
1/2X(SM − Sµ)

1/2,

where X is a nonnegative self-adjoint contraction in the subspace ran (SM − Sµ)(⊆ N).
Basic Krĕın’s results remain true for non-densely defined closed nonnegative symmetric

operators, for nonnegative linear relations, and for general case of sectorial operators and
linear relations [3], [5], [6], [15], [17]. As it has been mentioned above, the Friedrichs

extension of a non-densely defined nonnegative operator Ȧ is the linear relation [31]. It
takes the form

(3.7) AF = Gr((PH0
Ȧ)F )⊕ 〈0,B〉 ,

where H0 = dom (Ȧ), B = H⊖H0, and the operator (PH0
Ȧ)F is the Friedrichs extension

of the operator PH0
Ȧ in the Hilbert space H0. The linear relation AF is connected with

the minimal sc-extension Sµ of the contraction Ṡ by the Cayley transform (3.1)

AF = {〈(I + Sµ)h, (I − Sµ)h〉 , h ∈ H} .

If Ȧ is bounded and non-densely defined with dom (Ȧ) = H0 ⊂ H, then it admits
bounded nonnegative self-adjoint extensions if and only if (see [35])

sup
ϕ∈H0

||Ȧϕ||2

(Ȧϕ, ϕ)
<∞.

If Ȧ is non-densely defined, then in general the Krĕın-von Neumann nonnegative self-
adjoint extension AK is a linear relation. The relationship between AK and SM is given
by the Cayley transform (3.2). AK is the operator if and only if Ȧ is positively closable
[3], i.e.,

if {ϕn} ⊂ dom (Ȧ) and lim
n→∞

Ȧϕn = g, lim
n→∞

(Ȧϕn, ϕn) = 0, then g = 0.
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The domain D[AK ] can be characterized as follows [3]:

D[AK ] =

{
u ∈ H : sup

ϕ∈dom (Ȧ)

|(Ȧϕ, u)|2

(Ȧϕ, ϕ)
<∞

}
,

AK [u] = sup
ϕ∈dom (Ȧ)

|(Ȧϕ, u)|2

(Ȧϕ, ϕ)
, u ∈ D[AK ].

For a non-densely defined Ȧ the decomposition (3.4) remains true for any arbitrary
nonnegative self-adjoint extension A (possibly a linear relation) [5].

We will need the following proposition (see [9], [10]).

Proposition 3.1. (1) Let B be a non-negative self-adjoint operator and let

S = (I −B)(I +B)−1

be its Cayley transform. Then

D[B] = ran ((I + S)1/2),

B[u, v] = −(u, v) + 2
(
(I + S)−1/2u, (I + S)−1/2v

)
, u, v ∈ D[B].

(2) Let Ȧ be a closed non-negative symmetric operator and let A be its non-negative

self-adjoint extension (a linear relation, in general). If Ṡ = (I − Ȧ)(I + Ȧ)−1, S =
(I −A)(I +A)−1, then

D[A] = D[Ȧ]∔ ran ((S − Sµ)
1/2).

4. Disjointness and transversality of non-negative self-adjoint

extensions

The disjointness of self-adjoint extensions A0 and A1 of a symmetric linear relation Ȧ
means that A0∩A1 = Ȧ, while A0 and A1 are transversal if the equality A0+A1 = Ȧ∗ is
valid. Clearly, A0 and A1 are transversal implies A0 and A1 are disjoint. The following
equivalences for two self-adjoint extensions A1 and A0 of Ȧ holds true :

(4.1)
A1, A0 are disjoint ⇐⇒ ran

(
(A1 − λI)−1 − (A0 − λI)−1

)
= Nλ,

A1, A0 are transversal ⇐⇒ ran
(
(A1 − λI)−1 − (A0 − λI)−1

)
= Nλ

for at least one (then for all) λ ∈ ρ(A1) ∩ ρ(A0). If the deficiency indices of Ȧ are finite

(and equal), then two self-adjoint extensions of Ȧ are transversal if and only they are
disjoint. The equivalences of statements in the next proposition can be found in [5], [6],
[8], [18], [25].

Proposition 4.1. Let Ȧ be a non-negative closed symmetric relation.

(1) The following statements are equivalent:

(a) Ȧ has two disjoint nonnegative self-adjoint extensions,
(b) the Friedrichs and Krĕın - von Neumann extensions AF and AK are disjoint,
(c) Nz ∩ D[AK ] is dense in Nz at least for one (then for all) z ∈ C \ [0,∞),

(d) ker (SM − Sµ) = dom (Ṡ)(= ran (Ȧ+ I)),

(e) from limn→∞(I + ȦȦ∗)−1/2Ȧϕn = g and limn→∞(Ȧϕn, ϕn) = 0 follows

g = 0 (for densely defined Ȧ).
(2) The conditions

(a) Ȧ has two transversal nonnegative self-adjoint extensions,
(b) the Friedrichs and Krĕın extensions AF and AK are transversal,
(c) dom (A∗) ⊂ D[AK ],
(d) Nz ⊂ D[AK ] at least for one (then for all) z ∈ C \ [0,∞),
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(e) ran (SM − Sµ) = N(= N−1),

(f) sup
f∈dom (Ȧ)

||(I + ȦȦ∗)−1/2Ȧf ||2

(Ȧf, f)
<∞ (for densely defined Ȧ)

are equivalent.

Now we get the following statement.

Proposition 4.2. ([18]). If a non-densely defined nonnegative symmetric operator Ȧ ad-
mits disjoint nonnegative self-adjoint extensions, then the Krĕın-von Neumann extension
AK of Ȧ is an operator.

5. Nonnegative symmetric operator L0 and its nonnegative self-adjoint

extension L such that dom (LL0) = {0}.

Let H be a separable infinite-dimensional complex Hilbert space and let M be an
infinite-dimensional subspace of H with infinite-dimensional orthogonal complement
M⊥ = H ⊖ M. It is well known, see e.g. [28], [19], that there exist unbounded self-
adjoint operators B1 and B2 on M such that

dom (B1) = dom (B2) = M, dom (B1) ∩ dom (B2) = {0}.

Let Dk = (B∗
kBk)

1/2, k = 0, 1. Since dom (Dk) = dom (Bk), k = 1, 2, we get that
dom (D1) ∩ dom (D2) = {0}. Consequently, the operators

F = (IM +D1)
−1, V = (IM +D2)

−1

possess the properties

ran (F ) = ran (V ) = M, ran (F ) ∩ ran (V ) = {0},

0 ≤ F ≤ IM, ker (F ) = {0}, 0 ≤ V ≤ IM, ker (V ) = {0}.

Replace V with U = V Φ, where Φ is a unitary operator from M⊥ onto M. Let a
self-adjoint bounded operator G in H be given by the operator matrix

G =

[
IM U
U∗ U∗U

]
:

M

⊕
M⊥

→
M

⊕
M⊥

.

Clearly

ker (G) =

{[
−Uh
h

]
: h ∈ M

}
.

Define

X =

[
F 0
0 IM⊥

]
G

[
F 0
0 IM⊥

]
=

[
F 2 FU
U∗F U∗U

]
.

Let us show that

(5.1) ker {X} = {0}, XM = 0, XM⊥ = 0.

Set f =

[
f1
f2

]
, where f1 ∈ M, f2 ∈ M⊥. Then

(5.2) (Xf, f) = ||Ff1 + Uf2||
2.

It follows that

Xf = 0 ⇐⇒ Ff1 + Uf2 = 0.

Since ran (F )∩ ran (U) = {0}, ker (F ) = {0}, ker (U) = {0}, we get f1 = 0, f2 = 0. From
(5.2) and relations ran (F ) = ran (U) = M we get the equalities

inf
ϕ∈M⊥

(X(f − ϕ), f − ϕ) = 0, inf
ψ∈M

(X(f − ψ), f − ψ) = 0.
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Equality (2.1) now implies XM = 0 and XM⊥ = 0. Applying (2.3) we obtain

(5.3) M ∩ ran (X1/2) = {0}, M
⊥ ∩ ran (X1/2) = {0}.

Define in H = M⊕M⊥ the operator

(5.4) X0 = X1/2PMX
1/2.

Then
X −X0 = X1/2PM⊥X1/2.

Equalities (5.1) yield

ker (X0) = {0}, ker (X −X0) = {0}.

Notice that

(5.5) ran (X) ∩ ran (X0) = {0}.

Actually, if Xf = X0h, then X
1/2f = PMX

1/2h and (5.3) yields f = h = 0.
Set

A = X−1, A0 = X−1
0 .

The operators A0 and A are nonnegative and self-adjoint in H. Relation (5.5) implies

dom (A0) ∩ dom (A) = {0}.

In addition

dom (A
1/2
0 ) = dom

(
X

−1/2
0

)
, dom (A1/2) = dom

(
X−1/2

)
.

From (5.4) we get ran (X
1/2
0 ) ⊂ ran (X1/2) and

X
1/2
0 = X1/2W0,

where W0 is unitary operator from H onto M. It follows that

X−1/2g =W0X
−1/2
0 g, g ∈ ran (X

1/2
0 ).

Hence, the pair 〈A0, A〉 possess the property

dom (A
1/2
0 ) ⊂ dom (A1/2) and ||A

1/2
0 ϕ|| = ||A1/2ϕ|| for all ϕ ∈ dom (A

1/2
0 ).

Now define
dom (L) = dom (A1/2), Lh = A1/2h, h ∈ dom (L),

dom (L0) = dom (A
1/2
0 ), L0g = A1/2g, g ∈ dom (L0).

The operator L is self-adjoint and nonnegative, the operator L0 is densely defined, sym-
metric and nonnegative, and is a restriction of L, i.e., L0 ⊂ L. The sesquilinear form

τ0[ϕ,ψ] = (L0ϕ,L0ψ) = (A1/2ϕ,A1/2ψ) = (A
1/2
0 ϕ,A

1/2
0 ψ), ϕ, ψ ∈ dom (A

1/2
0 )

is closed. This implies that L0 is closed operator and the operator L∗
0L0 = A0 is associ-

ated with the form τ0. In addition L2 = A. Since dom (L∗
0L0) ∩ dom (L2) = {0}, we get

that
dom (LL0) = {0}.

In particular, dom (L2
0) = {0}.

Remark 5.1. The operators L and L0 are positive definite. It follows that

dom (L0L) = L−1dom (L0), (L0L)(L
−1ϕ) = L0ϕ, ϕ ∈ dom (L0).

This yields, that dom (L0L) is dense in dom (L) w.r.t. the graph norm in dom (L). Hence,
the operator L0L is densely defined in H and, moreover, (L0L)F = L2.

Clearly, the equality ker ((L0L)
∗) = ker (L∗

0) holds true. Therefore, relations

dom (L∗
0) = dom (L)+̇ker (L∗

0), dom ((L0L)
∗) = dom (L2)+̇ker ((L0L)

∗)
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lead to the equality (L0L)
∗ = LL∗

0. Since ran (L) = H, we get (L0L)K = L0L
∗
0 (see [12,

Theorem 3.1]).

Remark 5.2. We have constructed an example of two unbounded nonnegative self-
adjoint operators A0 and A such that

(1) dom (A0) ∩ dom (A) = {0},
(2) A0 ≥ A and the form A0[·, ·] is a closed restriction of the form A[·, ·].

Remark 5.3. It is proved in [33] that for any closed unbounded densely defined operator
B in H there exists a subspace L such that

L ∩ dom (B) = L
⊥ ∩ dom (B) = {0}.

Hence it follows that for any bounded nonnegative self-adjoint operator F with dense
range ran (F) in H there exists a subspace L such that

L ∩ ran (F1/2) = L
⊥ ∩ ran (F1/2) = {0}.

For any subspace M, with dim (M) = dim (M⊥) = ∞, we have constructed above a
bounded nonnegative self-adjoint operatorX with dense range such thatM∩ran (X1/2) =
M⊥ ∩ ran (X1/2) = {0}.

6. Proves of Theorems 1.1 and 1.2

6.1. Auxiliary statements. We start with two propositions.

Proposition 6.1. For nonnegative self-adjoint unbounded operators A0 and A1 and their
Cayley transformations Sk = (I − Ak)(I + Ak)

−1, k = 0, 1 the following statements are
equivalent:

(i) the pair 〈A0, A1〉 possess the property

(6.1)
dom (A

1/2
0 ) ⊂ dom (A

1/2
1 ) and

||A
1/2
0 ϕ|| = ||A

1/2
1 ϕ|| for all ϕ ∈ dom (A

1/2
0 );

(ii) the pair 〈S0, S1〉 possess the property

(6.2)
S1 ≥ S0 and
ran

(
(I + S0)

1/2
)
∩ ran

(
(S1 − S0)

1/2
)
= {0};

(iii) the pair 〈S0, S1〉 possess the property

(6.3) I + S0 = (I + S1)
1/2P (I + S1)

1/2,

where P is an orthogonal projection in H.

If in addition A0 and A1 both are extensions of a densely defined closed symmetric non-
negative operator Ȧ, then each of the conditions (i), (ii), and (iii) is equivalent to the
condition

(6.4)
S1 ≥ S0 and
ran

(
(S0 − Sµ)

1/2
)
∩ ran

(
(S1 − S0)

1/2
)
= {0},

where Sµ = (I −AF )(I +AF )
−1 and AF is the Friedrichs extension of Ȧ.

Proof. (i)⇒(ii) and (i)⇒(iii). From Proposition 3.1 follows that

||(I + S1)
−1/2ϕ|| = ||(I + S0)

−1/2ϕ|| for all ϕ ∈ ran
(
(I + S0)

1/2
)
.

Hence
(I + S1)

−1/2ϕ = V(I + S0)
−1/2ϕ, ϕ ∈ ran

(
(I + S0)

1/2
)
,

where V is a isometry in H, ran (V) = (I + S1)
−1/2ran

(
(I + S0)

1/2
)
. Then

(I + S0)
1/2 = (I + S1)

1/2V
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and

I + S0 = (I + S1)
1/2VV∗(I + S1)

1/2 = (I + S1)
1/2Pran (V)(I + S1)

1/2,

where Pran (V) is the orthogonal projection in H onto ran (V), i.e., (6.3) holds. It follows
that

S1 − S0 = (I + S1)− (I + S0) = (I + S1)
1/2(I − Pran (V))(I + S1)

1/2.

We recall that if bounded self-adjoint nonnegative operators X and Y are connected by
the relation X = Y 1/2ZY 1/2, where Z ∈ L(ran (Y )) is a nonnegative operator, then
(see [16])

ran (X1/2) = Y 1/2ran (Z1/2).

Therefore, ran ((S1 − S0)
1/2) = (I + S1)

1/2(H ⊖ ran (V)) and (6.2) holds.
Clearly, (iii)⇒(ii).
Let us show (ii)⇒(iii) and (ii)⇒(i). Since I + S1 ≥ I + S0, the equality

I + S0 = (I + S1)
1/2P (I + S1)

1/2

is valid with 0 ≤ P ≤ I. The equality S1 − S0 = (I + S1)− (I + S0) yields

S1 − S0 = (I + S1)
1/2(I − P )(I + S1)

1/2.

Due to (6.2) we get now

ran
(
(I − P )1/2

)
∩ ran (P 1/2) = {0}.

Finally, since

ran
(
(I − P )1/2

)
∩ ran (P 1/2) = ran

(
(P − P 2)1/2

)
,

we get that P 2 = P , i.e., P is an orthogonal projection in H. Thus, (6.3) holds. From
(6.3) we obtain

(I + S0)
1/2h = (I + S1)

1/2Uh, h ∈ H,

where U is unitary operator from H onto ran (P ). Hence

(I + S1)
−1/2g = U(I + S0)

−1/2g for all g ∈ ran
(
(I + S0)

1/2
)
.

Thus

(6.5) ||(I + S1)
−1/2g||2 = ||(I + S0)

−1/2g||2, g ∈ ran
(
(I + S0)

1/2
)
.

Now (6.1) follows from Proposition 3.1 and (6.5).
Suppose A0 and A1 both are extensions of a densely defined closed symmetric non-

negative operator Ȧ. Let Ṡ = (I − Ȧ)(I + Ȧ)−1 and let N = H ⊖ dom (Ṡ). Applying
(3.5) and (2.2) we get

N ∩ ran
(
(I + S0)

1/2
)
= ran

(
(S0 − Sµ)

1/2
)
.

This yields the equivalence of (6.4) and (6.2). �

Remark 6.2. Relation (6.4) is equivalent to the statement: S0 is an extremal point of
the operator interval [Sµ, S1] (see [10] and references therein).

Let Ṡ be a non-densely defined closed symmetric contraction. For simplicity we denote

C := SM − Sµ.
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Using (3.6), one can get that if Sk = Sµ+C1/2XkC
1/2, k = 0, 1 are two sc-extensions of

Ṡ, where Xk, k = 0, 1 are nonnegative self-adjoint contractions in ran (C), then

(6.6)

S0 ≤ S1 ⇐⇒ X0 ≤ X1,

ran
(
(S0 − Sµ)

1/2
)
∩ ran

(
(S1 − S0)

1/2
)
= {0}

⇐⇒ ran (X
1/2
0 ) ∩ ran ((X1 −X0)

1/2) = {0}

⇐⇒ X0 = X
1/2
1 PX

1/2
1 ,

where P is an orthogonal projection in ran (C).

Proposition 6.3. Let Ȧ be a densely defined closed symmetric nonnegative operator
in H having disjoint nonnegative self-adjoint extensions. Then there is a one-to-one
correspondence between all factorizations of Ȧ in the form Ȧ = LL0, where L0 is a
nonnegative densely defined closed symmetric operator in H and L its nonnegative self-
adjoint extension, and all pairs 〈A0, A1〉 of disjoint nonnegative self-adjoint extensions

of Ȧ, satisfying condition (6.1). This correspondence is given by the relations

(6.7)
dom (L) = dom (A

1/2
1 ), Lu = A

1/2
1 u, u ∈ dom (L),

dom (L0) = dom (A
1/2
0 ), L0ϕ = A

1/2
1 ϕ, ϕ ∈ dom (L0).

Proof. Let Ȧ = LL0 be a factorization of Ȧ, where L0 is a nonnegative densely defined
closed symmetric operator in H and L its nonnegative self-adjoint extension. Then the
operators A0 = L∗

0L0, A1 = L2 are disjoint nonnegative self-adjoint extensions of Ȧ and
(6.1) holds. Therefore, (6.7) is valid.

Conversely, if a pair 〈A0, A1〉 of disjoint nonnegative self-adjoint extensions of Ȧ,
satisfying condition (6.1), is given, then define the pair 〈L0,L〉 by (6.7). Clearly, L2 = A1

and from (6.1) follows that L∗
0L0 = A0. In addition due to dom (A0) ∩ dom (A1) =

dom (Ȧ), we get Ȧ = LL0. �

6.2. Proof of Theorem 1.1. Let

Ṡ = (I − Ȧ)(I + Ȧ)−1,

Sµ = (I −AF )(I +AF )
−1, SM = (I −AK)(I +AK)−1

be the Cayley transforms of Ȧ, AF and AK , respectively. Since AF , and AK are disjoint,
we have ker (C) = dom (Ṡ).

Defect of Ȧ is finite. Then n := dim (N) < ∞ and ran (C) = N. Suppose Ȧ is

factorized as Ȧ = LL0, where L0 is closed densely defined nonnegative symmetric oper-
ator and L is its self-adjoint extension. Since A0 = L∗

0L0 and A1 = L2 are nonnegative

self-adjoint extensions of Ȧ and

dom (Ȧ) = dom (A0) ∩ dom (A1),

from (4.1), (3.4), and the relations

dom (L0) = dom (A
1/2
0 ) ⊂ dom (A

1/2
1 ) = dom (L)

it follows that the deficiency indices of L0 are 〈n, n〉 and A0 = L∗
0L0 is the Friedrichs

extension of Ȧ [7].
In order to construct a factorization let take an arbitrary A1 transversal to AF and let

A0 = AF . Then due to (3.3) the sesquilinear form AF [·, ·] = Ȧ[·, ·] is a closed restriction
of the form A1[·, ·]. Further we use (6.7).

Defect of Ȧ is infinite. In this case dim (N) = ∞. By Proposition 4.1 we have
ran (C) = N. Due to Propositions 6.1 and 6.3 we need to describe all pairs 〈S0, S1〉 of

sc-extensions of Ṡ, satisfying (6.4) and such that ker (S1 − S0) = dom (Ṡ).
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Let Sk = Sµ + C1/2XkC
1/2, k = 0, 1, and 0 ≤ X0 ≤ X1 ≤ IN. According to (6.6) the

operator X0 takes the form

X0 = X
1/2
1 PX

1/2
1 ,

where P is an orthogonal projection with ran (P ) ⊂ N. We need to find such P that

ker (S1 − S0) = dom (Ṡ). We have

S1 − S0 = C1/2(X1 −X0)C
1/2 = C1/2X

1/2
1 (IN − P )X

1/2
1 C1/2,

||(S1 − S0)
1/2h||2 = ||(IN − P )X

1/2
1 C1/2h||2, h ∈ H

and

N ∋ h ∈ ker (S1 − S0) ⇐⇒ X
1/2
1 C1/2h ∈ ran (P ).

Therefore

(6.8) ker (S1 − S0) = dom (Ṡ) ⇐⇒

{
ker (X1) ∩ ran (C1/2) = {0},

ran
(
X

1/2
1 C1/2

)
∩ ran (P ) = {0}.

The choice of X1 depends on the case: ran (C) = N or ran (C) 6= N. Recall that
ran (C) = N.

In the case ran (C) = N ( ⇐⇒ AF and AK are transversal) there is an equivalence

ker (X1) ∩ ran (C1/2) = {0} ⇐⇒ ker (X1) = {0}.

If ran (X1) = N, then it is only one possibility to satisfy conditions

ran (P ) ∩ ran (X
1/2
1 ) = {0}

is to choose P = 0. This means that X0 = 0, i.e., S0 = Sµ and A0 = AF . In particular,

X1 = IN ⇐⇒ S1 = SM ⇐⇒ A1 = AK ⇒ A0 = AF .

If ker (X1) = {0} and ran (X1) 6= N, then it is possible to choose a nontrivial subspace
M in N such that

M ∩ ran (X
1/2
1 ) = {0}

and X0 = X
1/2
1 PMX

1/2
1 . If we take M = {0}, then we get A0 = AF .

In the case ran (C) 6= N it is also possible to choose X1 satisfying conditions in (6.8).
For example, one can take X1 ∈ [0, IN] with ker (X1) = {0} and then take M ⊂ N such
that M ∩

(
X1/2ran (C1/2)

)
= {0}. In particular,

X1 = IN ⇐⇒ S1 = SM ⇐⇒ A1 = AK ⇒ S0 = Sµ + C1/2PMC
1/2,

where M is a subspace in N and M ∩ ran (C1/2) = {0}. The proof is complete.

Let us make a few remarks.
1) As it is follows from the proof, the operator L0 = L↾ dom (A

1/2
0 ) depends on the

choice of

• disjoint to AF a nonnegative self-adjoint extension operator A1(= L2),
• nonnegative self-adjoint extension A0, which is disjoint with A1 and possess

property (6.1).

The minimal domain dom (L0) of symmetric operators L0 coincides with D[Ȧ] =

dom (A
1/2
F ).

2) Due to [12, Theorem 3.1] if Ȧ∗ = L∗
0L, then AF = L∗

0L0. In addition, in that case

the Friedrichs and Krĕın - von Neumann extensions of Ȧ are transversal. Therefore, if
the Friedrichs and Krĕın - von Neumann extensions of Ȧ are disjoint and not transversal,
then for each representation Ȧ = LL0 the adjoint operator Ȧ∗ is not equal to L∗

0L. On

the other hand if the Friedrichs and Krĕın - von Neumann extensions of Ȧ = LL0 are
transversal and AF 6= L∗

0L0, then also Ȧ∗ 6= L∗
0L.
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3) A nonnegative self-adjoint extension Ã of Ȧ is called extremal [4] if

inf
ϕ∈dom (Ȧ)

(Ã(f − ϕ), f − ϕ) = 0 for all f ∈ dom (Ã).

Extensions AF and AK are extremal. Suppose AF and AK are not transversal (but
disjoint). Then, if we select A1 = AK(= L2), a nonnegative self-adjoint extension A0(=
L∗
0L0) should be taken such that it is extremal and disjoint with AK . The Cayley

transform S0 = (I −A0)(I +A0)
−1 is of the form

S0 = Sµ + C1/2PMC
1/2,

where PM is the orthogonal projection onto a subspace M in N and M∩ran (C1/2) = {0}
(see the end of the proof of Theorem 1.1).

4) In [30, Corollary to Theorem X.25] it is stated without proof that if L0 is a sym-
metric operator whose square L2

0 is densely defined, then the Friedrichs extensions (L2
0)F

of L2
0 is the operator L∗

0L0. This result is true if one of the deficiency indices of L0 is
finite (this follows from [12, Proposition 3.3]). Another sufficient condition of the equal-
ity (L2

0)F = L∗
0L0 (for densely defined L2

0) is the relation (L2
0)

∗ = L∗2
0 (see [24]). On

the other hand as it is follows from [33, Theorem 4.5] for any unbounded self-adjoint
operator L there exists a closed densely defined symmetric restriction L0 such that L2

0

is densely defined but dom (L2
0) is not dense in dom (L0) w.r.t. the graph norm, i.e.,

(L2
0)F 6= L∗

0L0. Due to Theorem 1.1 if Ȧ = LL0 and the Friedrichs extensions of Ȧ does
not coincide with L∗

0L0, then from the assumption that L2
0 is densely defined follows:

L∗
0L0 does not coincide with the Friedrichs extension of L2

0.

6.3. Proof of Theorem 1.2. 1) Let Ȧ has finite deficiency indices 〈n, n〉. Then for two
nonnegative self-adjoint extensions A0 and A1 such that A0 ≥ A1 from (3.4) it follows

dim (D[A1]/D[A0]) ≤ n.

Suppose Ȧ = L∗
1L0, where L0 is closed and densely defined in H and L1 is a closed

extension of L0 in H. Put A0 = L∗
0L0, A1 = L∗

1L1. Then dim (dom (L1)/dom (L0)) ≤ n.
This yields that dom (L∗

1L0) is dense in H. Contradiction.

2) Let Ȧ has infinite defect numbers. Since Ȧ admits disjoint nonnegative self-adjoint

extensions (operators), we get ker (C) = dom (Ṡ) (see Proposition 4.2). Recall that
C = SM − Sµ. Note that the Krĕın-von Neumann extension AK is the operator. This
means that ker (I + SM ) = {0}. Let

S1 = Sµ + C1/2X1C
1/2, 0 ≤ X1 ≤ IN

be sc-extension of Ṡ. Using the equality I + S1 = (I + Sµ) + C1/2X1C
1/2 and (3.7) we

get that

ker (I + S1) = {0} ⇐⇒ ker (X1) ∩ C
1/2

B = {0},

where B = H ⊖ dom (Ȧ). It follows that if, in particular, ker (X1) = {0}, then ker (I +

S1) = {0}. Let P be an orthogonal projection in H, ran (P ) ⊂ N. Put X0 = X
1/2
1 PX

1/2
1

and let

S0 = Sµ + C1/2X0C
1/2 = Sµ + C1/2X

1/2
1 PX

1/2
1 C1/2.

We need to satisfy also the following conditions:

ker (S1 − S0) = {0}, ker (I + S0) = {0}.

Therefore, (see (6.8))
{

ker (X1) ∩ ran (C1/2) = {0},

ran
(
X

1/2
1 C1/2

)
∩ ran (P ) = {0}
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and

(N⊖ ran (P )) ∩X
1/2
1 C1/2

B = {0}.

So if we construct an operator X1 ∈ [0, IN] and a subspace M ⊂ N such that

ker (X1) = {0}, ran (X1) 6= N, ran (X
1/2
1 ) ∩M = ran (X

1/2
1 ) ∩ (N⊖M) = {0},

then we obtain nonnegative self-adjoint extensions

Ak = (I − Sk)(I + Sk)
−1, k = 0, 1

of the operator Ȧ, satisfying conditions in (6.1). For a construction of such X1 we can
repeat the construction in Section 5 or to use the result in [33] (see Remark 5.3). The
proof is complete.

In the case ran (C) 6= N we can take X1 = IN, that is equivalent to the selection
S1 = SM ⇐⇒ A1 = AK . Then we can find (see Remark 5.3) a subspace M ⊂ N such
that

M ∩ ran (C1/2) = {0}, (N⊖M) ∩ ran (C1/2) = {0}.

Hence, S0 = Sµ +C1/2PMC
1/2 and A0 = (I − S0)(I + S0)

−1 is extremal extension of Ȧ.

Notice that boundedness of Ȧ is possible. So, a bounded Ȧ having nonnegative self-
adjoint operator extension admits factorization Ȧ = LL0 with unbounded L0 and L.
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Basel, 2011.
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