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ON CONTACT INTERACTIONS AS LIMITS OF SHORT-RANGE

POTENTIALS

GERHARD BRÄUNLICH, CHRISTIAN HAINZL, AND ROBERT SEIRINGER

Abstract. We reconsider the norm resolvent limit of −∆+ Vℓ with Vℓ tending to a
point interaction in three dimensions. We are mainly interested in potentials Vℓ mo-

delling short range interactions of cold atomic gases. In order to ensure stability the
interaction Vℓ is required to have a strong repulsive core, such that limℓ→0

∫
Vℓ > 0.

This situation is not covered in the previous literature.

1. Introduction

Quantummechanical systems with contact interaction, or point interaction, are treated
extensively in the physics literature, in connection with problems in atomic, nuclear and
solid state physics. In two and three dimensions such point interaction Hamiltonians
have to be defined carefully for the simple reason that the Dirac δ-function is not rela-
tively form-bounded with respect to the kinetic energy described by the Laplacian −∆.
Mathematically this can be overcome by removing the point of interaction from the
configuration space and extending −∆ to a self-adjoint operator. This leads to a one-
parameter family of extensions in two and three dimensions. One way to pick out the
physically relevant extension is by approximating the contact interaction by a sequence
of corresponding short range potentials Vℓ(x) such that the range ℓ converges to zero,
but the scattering length a(Vℓ) has a finite limit a ∈ R. The corresponding self-adjoint
extension is then uniquely determined by this a.

The mathematical analysis of such problems is extensively studied in the book of
Albeverio, Gesztesy, Hoegh-Krohn and Holden [1]. Among other things the authors
show that −∆ + Vℓ converges in norm resolvent sense to an appropriate self-adjoint
extension of the Laplacian determined by a. As one of their implicit assumptions the
L1-norm of Vℓ goes to zero in the limit ℓ→ 0. This assumption can be too restrictive for
applications, however, as explained in [3].

Indeed, one major area of physics where contact interactions play a significant role
are cold atomic gases, see e.g. [11, 12, 3]. The corresponding BCS gap equation has a
particularly simple form in this case. However, in order to prevent such a Fermi gas from
collapsing and to ensure stability of matter, the contact interaction has to arise from
potentials Vℓ which have a large repulsive core (such that limℓ→0

∫
Vℓ > 0) in addition

to an attractive tail. The strength of the attractive tail depends on the system under
consideration, ranging from a weakly interacting superfluid (where −∆+ Vℓ ≥ 0) [10, 8]
to a strongly interacting gas of tightly bound fermion pairs (where −∆+Vℓ typically has
one negative eigenvalue) [12, 7, 6].

Having such systems in mind, the present paper is dedicated to the study of contact
interactions arising as a limit of short range potentials Vℓ with large positive core and,
in particular, a non-vanishing and positive integral

∫
Vℓ in the limit ℓ→ 0. The simplest
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form of such a Vℓ we can think of is depicted in Figure 1. We shall generalize a result of
[2, 1] and show that for ℑ(k) > 0

1

−∆+ Vℓ − k2
ℓ→0−→ 1

−∆− k2
− 4π

a−1 + ik
|gk〉〈gk|

in norm, where gk(x) =
1
4π

eik|x|

|x| , and a = limℓ→0 a(Vℓ) is the limiting scattering length.

The main mathematical obstacle we have to overcome is the fact that the corresponding
Birman-Schwinger operators are “very” non-self-adjoint, which requires a refined analysis
to get a hand on the corresponding norms. One important ingredient of our analysis is
a useful formula for the scattering length a(Vℓ) which was recently derived in [9].

Throughout the paper, we adopt physics notation and use 〈 · | · 〉 for the inner product
in L2(R3), |f〉〈f | for the rank-one projection in the direction of f , etc.

2. Main Results

In the following, we shall consider a family (Vℓ)ℓ>0 of real-valued functions in L1(R3)∩
L3/2(R3). We use the notation V 1/2(x) = sgn(x)|V (x)|1/2 and write V ±

ℓ for the positive
and negative part of the potential Vℓ in the decomposition

Vℓ = V +
ℓ − V −

ℓ , supp(V +
ℓ ) ∩ supp(V −

ℓ ) = ∅.
Further we will abbreviate

Jℓ =
{ 1, Vℓ ≥ 0,
−1, Vℓ < 0,

i.e. Jℓ(x) = sgn
(
Vℓ(x)

)
,

Xℓ = |Vℓ|1/2
1

p2
|Vℓ|1/2, X−

ℓ = (V −
ℓ )1/2

1

p2
(V −

ℓ )1/2,

so that the Birman-Schwinger operator reads

(2.1) Bℓ := V
1/2
ℓ

1

p2
|Vℓ|1/2 = JℓXℓ .

For a given real-valued potential V ∈ L1(R3) ∩ L3/2(R3), it was shown in [9] that the
scattering length can be expressed via

(2.2) a(V ) =
1

4π

〈

|V |1/2
∣
∣
∣

1

1 + V 1/2 1
p2 |V |1/2V

1/2
〉

.

This assumes that 1 + V 1/2 1
p2 |V |1/2 is invertible, otherwise a(V ) is infinite.

Throughout the paper we will use the notation

f = O(g) ⇔ 0 ≤ lim sup
ℓ→0

∣
∣
∣
∣

f(ℓ)

g(ℓ)

∣
∣
∣
∣
<∞.

For our main theorem we will need to make the following assumptions.

Assumptions 1. (A1) (Vℓ)ℓ>0 ∈ L3/2(R3) ∩ L1
(
R

3, (1 + |x|2)dx
)
.

(A2) There are sequences eℓ, e
−
ℓ ∈ R such that eℓ 6= 0, limℓ→0 eℓ = 0, e−ℓ = O(eℓ) and

−∆+ λVℓ and −∆− λ−V −
ℓ

have non-degenerate zero-energy resonances for λ = (1 − eℓ)
−1 and λ− = (1 −

e−ℓ )
−1, respectively. All other λ, λ− ∈ R for which −∆ + λVℓ and −∆ − λ−V −

ℓ

have zero-energy resonances are separated from 1 by a gap of order 1.
(A3) ‖Vℓ‖L1 is uniformly bounded in ℓ and ‖V −

ℓ ‖L1 = O(eℓ),

(A4)

∫

R3

|Vℓ(x)| |x|2 d3x = O(e2ℓ) and

∫

R3

|V −
ℓ (x)| |x|2 d3x = O(e3ℓ),
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Figure 1. Example of a sequence of potentials Vℓ.

(A5) the limit

(2.3) a = lim
ℓ→0

a(Vℓ) =
1

4π
lim
ℓ→0

〈
|Vℓ|1/2

∣
∣(1 +Bℓ)

−1V
1/2
ℓ

〉

exists and is finite.

Remark 1. Assumption (A2) can be reformulated in terms of the corresponding Birman-
Schwinger operators. Recall that −∆ + 1

1−eV has a zero-energy resonance if and only

if 1 + V 1/2 1
p2 |V |1/2 has an eigenvalue e. Therefore (A2) is equivalent to the following

assumption:

(A2)’ The lowest eigenvalues eℓ and e
−
ℓ of the operators 1 + JℓXℓ and 1−X−

ℓ , respec-

tively, are non-degenerate, converge to 0 as ℓ → 0, with e−ℓ = O(eℓ), and all
other eigenvalues are isolated from 0 by a gap of order 1.

The fact that eℓ 6= 0 means that 1+Bℓ is invertible. For simplicity, we also assume that
the limit in (2.3) is finite. We expect our result to be true also for a = ∞, but the proof
has to be suitably modified in this case.

We are now ready to state our main theorem.

Theorem 1. Let (Vℓ)ℓ>0 be a family of real-valued functions satisfying Assumptions 1.
Then, as ℓ→ 0,

(2.4)
1

−∆+ Vℓ − k2
→ 1

−∆− k2
− 4π

a−1 + ik
|gk〉〈gk|, ℑ k > 0, k 6= i/a

in norm, where gk(x) =
1
4π

eik|x|

|x| .

Remark 2. The simplest example of potentials satisfying Assumptions 1 is shown in
Figure 1.

By simple calculations it is immediate to see that (A1), (A3) and (A4) hold, with
eℓ = O(ℓ). By fine tuning the strength of the negative part of Vℓ, it is possible to meet
a resonance condition such that (A2) holds. The corresponding scattering length can
be calculated explicitly in this case, verifying (A5). (See [3, Appendix] for such explicit
calculations in the case where ǫℓ ≪ ℓ.)

Remark 3. In case a = 0, the fraction (a−1 + ik)−1 has to be interpreted as 0.

Remark 4. One consequence of Theorem 1 is that in the case 0 < a < ∞ the smallest

eigenvalue of −∆+ Vℓ converges to − 1
a2 , with the eigenfunction tending to

√
2π
a gi/a(x)

in L2. Moreover, all other eigenvalues necessarily tend to 0.
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Remark 5. The resolvent on the right side of (2.4) belongs to a Hamiltonian of a special
point interaction centered at the origin. More precisely, for θ ∈ [0, 2π) let

(
Hθ, D(Hθ)

)

be the self-adjoint extension of the kinetic energy Hamiltonian

−∆|H2,2
0

(R3\{0})

with the domain

D(Hθ) = H2,2
0 (R3 \ {0})⊕ 〈ψ+ + eiθψ−〉, ψ±(x) =

ei
√
±i|x|

4π|x| ,

x ∈ R
3 \ {0}, ℑ(

√
±i) > 0,

such that Hθ(ψ+ + eiθψ−) = iψ+ − ieiθψ−. Then, if θ is chosen such that

−a−1 = cos(π/4)
(
tan(θ/2)− 1

)
,

we have by [1, Theorem 1.1.2.] that

(2.5)
1

Hθ − k2
=

1

p2 − k2
− 4π

a−1 + ik
|gk〉〈gk|.

Hence Theorem 1 implies that the operator −∆+ Vℓ converges to (Hθ, D(Hθ)) in norm
resolvent sense.

Remark 6. Let us explain one of the main difficulties arising from potentials with large
L1-core compared to the situation treated in [1], where the L3/2-norm of Vℓ is uniformly
bounded and hence the L1-norm tends to zero. One of the necessary tasks in the proof
of Theorem 1 is to bound the inverse of operator 1 +Bℓ, where Bℓ denotes the Birman-
Schwinger operator defined in (2.1). One way to bound the norm of this non-self-adjoint
operator is to use the identity

1

1 +Bℓ
= 1− JℓX

1/2
ℓ

1

1 +X
1/2
ℓ JℓX

1/2
ℓ

X
1/2
ℓ ,

which implies for its norm
∥
∥
∥
∥

1

1 +Bℓ

∥
∥
∥
∥
≤ 1 + ‖Xℓ‖

∥
∥
∥
∥
∥

1

1 +X
1/2
ℓ JℓX

1/2
ℓ

∥
∥
∥
∥
∥
.

The Hardy-Littlewood-Sobolev inequality implies that ‖Xℓ‖ can be bounded by a con-

stant times ‖Vℓ‖L3/2 , and with X
1/2
ℓ JℓX

1/2
ℓ being isospectral to Bℓ = JℓXℓ we obtain

that

(2.6)

∥
∥
∥
∥

1

1 +Bℓ

∥
∥
∥
∥
≤ 1 + C

1

|eℓ|
‖Vℓ‖L3/2 .

This shows that
∥
∥(1 +Bℓ)

−1
∥
∥ ≤ O(|eℓ|−1) for sequences Vℓ used in [1], which turns out

to be sufficient. However, in our present situation we are dealing with potentials Vℓ
with strong repulsive core satisfying Assumptions 1, where the corresponding L3/2 norm
diverges and typically is of the order of O(1/|eℓ|). Hence the inequality (2.6) only implies
a bound of the form ∥

∥
∥
∥

1

1 +Bℓ

∥
∥
∥
∥
≤ O

(
|eℓ|−2

)
,

which is not good enough for our purpose. To this aim we have to perform a more refined
analysis.

Remark 7. For related work on two-scale limits in one-dimensional systems, see, e.g.,
[4, 5].

The following lemma turns out to be very useful in the proof of Theorem 1.
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Lemma 1. Let V = V+ − V−, where V−, V+ ≥ 0 have disjoint support. Denote

J =
{

1, V ≥ 0
−1, V < 0

, X = |V |1/2 1
p2 |V |1/2 and X± = V

1/2
±

1
p2V

1/2
± . Then for any

φ ∈ L2(R3), we have

(2.7)
√
2 ‖φ‖L2‖(J +X)φ‖L2 ≥ 〈φ|(X+ + 1−X−)φ〉.

Proof of Lemma 1. Decompose φ = φ+ + φ−, such that supp(φ−) ⊆ supp(V−) and
supp(φ+) ∩ supp(V−) = ∅. By applying twice the Cauchy-Schwarz inequality,

‖(J +X)φ‖L2‖φ+‖L2 ≥ ℜ〈φ+|(J +X)φ〉
= 〈φ+|(1 +X+)φ+〉+ ℜ〈φ+|V 1/2

+
1
p2V

1/2
− φ−〉,

‖(J +X)φ‖L2‖φ−‖L2 ≥ ℜ〈(J +X)φ| − φ−〉
= 〈φ−|(1−X−)φ−〉 − ℜ〈φ+|V 1/2

+
1
p2V

1/2
− φ−〉.

We add the two inequalities to get rid of the cross terms

(2.8)
‖(J +X)φ‖L2

(
‖φ+‖L2 + ‖φ−‖L2

)

≥ 〈φ+|(1 +X+)φ+〉+ 〈φ−|(1−X−)φ−〉 = 〈φ|(X+ + 1−X−)φ〉.
Finally, we use that ‖φ+‖L2 + ‖φ−‖L2 ≤

√
2‖φ‖L2 , which finishes the proof. �

One difficulty in proving Theorem 1 is that the operator 1 + Bℓ is not self-adjoint
and the norm of its inverse cannot be controlled by the spectrum. One consequence of
Lemma 1 and our assumptions is that the norm of (1 + Bℓ)

−1 diverges like 1
eℓ
. The

following statement identifies the divergent term in terms of the projection onto the
eigenvector to the lowest eigenvalue of the Birman Schwinger operator.

Consequence 1. Let (Vℓ)ℓ>0 satisfy (A1)–(A4) in Assumptions 1. Then the operator

(1 +Bℓ)
−1(1− Pℓ)

is uniformly bounded in ℓ, where

(2.9) Pℓ =
1

〈Jℓφℓ|φℓ〉
|φℓ〉〈Jℓφℓ|

with φℓ the eigenvector to the eigenvalue eℓ of 1 +Bℓ.

Another consequence of Lemma 1 is the following set of relations, which the proof of
Theorem 1 heavily relies on.

Consequence 2. Let (Vℓ)ℓ>0 be a family of real-valued functions which satisfy (A1)–
(A4) in Assumptions 1. Then

(i)
∫

R3 |x| |Vℓ(x)| d3x = O(eℓ),
(ii) 〈Jℓφℓ|φℓ〉 = −1 +O(eℓ),
(iii) 〈|Vℓ|1/2||φℓ|〉 = O(|eℓ|1/2),
(iv)

∫

R3 |x| |Vℓ(x)|1/2 |φℓ(x)| d3x = O(|eℓ|3/2).
The proof of these facts will be given Section 4.

3. Proof of Theorem 1

Let k ∈ C with ℑ k > 0. Following the strategy in [1] our starting point is the identity

(3.1)
1

p2 + Vℓ − k2
=

1

p2 − k2
− 1

p2 − k2
|Vℓ|1/2

︸ ︷︷ ︸

1©

1

1 + V
1/2
ℓ

1
p2−k2 |Vℓ|1/2

︸ ︷︷ ︸

2©

V
1/2
ℓ

1

p2 − k2
︸ ︷︷ ︸

3©

.
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Note that the operators 1© and 3© are uniformly bounded in ℓ. In fact,
∥
∥
∥

1

p2 − k2
|Vℓ|1/2

∥
∥
∥ ≤

∥
∥
∥

1

p2 − k2
|Vℓ|1/2

∥
∥
∥
2
=
∥
∥

1

p2 − k2
∥
∥
L2‖V 1/2

ℓ ‖L2 ,

which is uniformly bounded due to our assumptions on Vℓ. We will first show in Lemma 2
that 1

p2−k2 |Vℓ|1/2 is, up to small errors of O(|eℓ|1/2), equal to the rank one operator

|gk〉〈|Vℓ|1/2|. Together with the formula (2.2) for the scattering length this will lead us
finally to (2.4).

Lemma 2.
∥
∥
∥

( 1

p2 − k2
|Vℓ|1/2 − |gk〉

〈
|Vℓ|1/2

∣
∣

) 1

1 +Bℓ
|V 1/2

ℓ 〉
∥
∥
∥
L2

= O(|eℓ|1/2),(3.2a)

∥
∥
∥

( 1

p2 − k2
|Vℓ|1/2 − |gk〉

〈
|Vℓ|1/2

∣
∣

) 1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2

∥
∥
∥ = O(|eℓ|1/2).(3.2b)

Proof. We make use of the decomposition

(3.3)
1

1 +Bℓ
=

1

eℓ
Pℓ +

1

1 +Bℓ
(1− Pℓ),

where we first treat the contribution of the second summand to (3.2a) and (3.2b). This
is the easier one thanks to Consequence 1, which tells us that 1

1+Bℓ
(1− Pℓ) is uniformly

bounded in ℓ. Note that the integral kernel of the operator 1
p2−k2 |Vℓ|1/2 − |gk〉

〈
|Vℓ|1/2|

in (3.2a) and (3.2b) is given by the expression
(
gk(x− y)− gk(x)

)
|Vℓ|1/2(y) .

An explicit computation shows that

Fk(y) :=

∫

R3

eik|x|

|x|
e−ik̄|x−y|

|x− y| d3x =
2π

ℑ(k)e
−ℑ(k)|y| sin(ℜ(k)|y|)

ℜ(k)|y| .

From this one easily obtains the bound

(3.4)

∫

R3

∣
∣gk(x− y)− gk(x)

∣
∣
2
d3x =

2

(4π)2
(Fk(0)− Fk(y)) ≤

1

4π

(

1 +
|ℜ(k)|
2|ℑ(k)|

)

|y| .

Hence we infer from Consequence 2(i) that the Hilbert-Schmidt norm of this operator is
bounded as

(3.5)

∥
∥
∥

1

p2 − k2
|Vℓ|1/2 − |gk〉

〈
|Vℓ|1/2

∣
∣

∥
∥
∥
2

≤
[
1

4π

(

1 +
|ℜ(k)|
2|ℑ(k)|

)∫

R3

|Vℓ(x)||x| d3x
]1/2

= O(|eℓ|1/2).

Thus the contribution of the last term in (3.3) to (3.2a) gives a term of order |eℓ|1/2.
With V

1/2
ℓ

1
p2−k2 being a uniformly bounded operator we also infer that the same holds

true for (3.2b).
It remains to estimate the contribution coming from the first term on the right side

of (3.3). With Pℓ defined in (2.9), the norm of the corresponding vector in (3.2a) is

1

|eℓ|
∥
∥
∥

( 1

p2 − k2
|Vℓ|1/2 − |gk〉

〈
|Vℓ|1/2

∣
∣

)

Pℓ|V 1/2
ℓ 〉

∥
∥
∥
L2

=

∣
∣
∣
∣

〈|Vℓ|1/2|φℓ〉
eℓ〈Jℓφℓ|φℓ〉

∣
∣
∣
∣

(
∫

R3

∣
∣
∣
∣

∫

R3

|Vℓ|1/2(z)φℓ(z)
(
gk(z − x)− gk(x)

)
d3z

∣
∣
∣
∣

2

d3x

)1/2

=

∣
∣
∣
∣

〈|Vℓ|1/2|φℓ〉
4πeℓ〈Jℓφℓ|φℓ〉

∣
∣
∣
∣

(∫

R6

Ωk(z, w)|Vℓ|1/2(z)φℓ(z)|Vℓ|1/2(w)φℓ(w) d3z d3w
)1/2

,

(3.6)
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where

Ωk(z, w) = (4π)2
∫

R3

[gk̄(x− z)− gk̄(x)][gk(x− w)− gk(x)] d
3x

= Fk(w − z) + Fk(0)− Fk(w)− Fk(z) .

The bound (3.4) implies that

|Ωk(z, w)| ≤
1

2π

(

1 +
|ℜ(k)|
2|ℑ(k)|

)

(|z|+ |w|).

Together with Consequence 2(iii) and (iv) we are thus able to estimate (3.6) by
O(|eℓ|1/2). This implies (3.2a). In order to get (3.2b) we make use of (3.5) and Conse-
quence 2(iii) and evaluate

∥
∥
∥

1

p2 − k2
|Vℓ|1/2|φℓ〉

∥
∥
∥
L2

≤ ‖|gk〉〈|Vℓ|1/2|φℓ〉‖L2 +
∥
∥
∥

( 1

p2 − k2
|Vℓ|1/2 − |gk〉〈|Vℓ|1/2|

)

|φℓ〉
∥
∥
∥
L2

= |〈|Vℓ|
∣
∣φℓ〉|+O(|eℓ|1/2) = O(|eℓ|1/2).

This completes the proof. �

Since the norm of 2© diverges in the limit of small ℓ we need to keep track of precise
error bounds. In order to do that, we start by rewriting the term 2© in a particularly
useful way, which is presented in the following lemma.

Lemma 3.

(3.7)
1

1 + V
1/2
ℓ

1
p2−k2 |Vℓ|1/2

=
(

1− 1
4π
ik + 4πa(Vℓ)

1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|
) 1

1 +Qℓ

1

1 +Bℓ
,

where

Qℓ =
1

1 +Bℓ
Rℓ

(

1− 1
4π
ik + 4πa(Vℓ)

1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|
)

(3.8)

and where Rℓ is the operator with integral kernel

(3.9) Rℓ(x, y) = − ik

4π
V

1/2
ℓ (x)r(ik|x− y|)|Vℓ|1/2(y)

with r(z) =
ez − 1− z

z
.

Moreover, Qℓ satisfies

‖Qℓ‖ = O(|eℓ|1/2),(3.10a)
∥
∥
∥
∥
Qℓ

1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2

∥
∥
∥
∥
= O(|eℓ|1/2).(3.10b)

Proof. The integral kernel of the operator (p2 − k2)−1 is given by gk(x− y). We expand
this function as

gk(x) =
1

4π

eik|x|

|x| =
1

4π

1

|x| +
ik

4π
− ik

4π
r(ik|x|),

where r(z) = ez−1−z
z . We insert this expansion in the expression for 2© and thus obtain

the identity

1 + V
1/2
ℓ

1

p2 − k2
|Vℓ|1/2 = 1 +Bℓ +

ik

4π
|V 1/2

ℓ 〉〈|Vℓ|1/2|+Rℓ
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with Rℓ defined in (3.9). We further rewrite this expression as

(1 +Bℓ)

(

1 +
1

1 +Bℓ

(
ik

4π
|V 1/2

ℓ 〉〈|Vℓ|1/2|+Rℓ

))

= (1 +Bℓ)

(

1 +
1

1 +Bℓ
Rℓ

1

1+ ik
4π

1
1+Bℓ

|V 1/2
ℓ 〉〈|Vℓ|1/2|

)(

1 +
ik

4π

1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|
)

.

The inverse of the operator in the last parenthesis can be calculated explicitly, and is
given by

(

1 +
ik

4π

1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|
)−1

= 1− 1
4π
ik + 4πa(Vℓ)

1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|,

at least whenever a(Vℓ) 6= i/k, which we can assume for small enough ℓ. Hence (3.7)
holds, with Qℓ defined in (3.8).

We will now prove (3.10a) and (3.10b). We have

‖Qℓ‖ ≤
∥
∥
∥
∥

1

1 +Bℓ
Rℓ

∥
∥
∥
∥
+

1
∣
∣ 4π
ik + 4πa(Vℓ)

∣
∣

∥
∥
∥
∥

1

1 +Bℓ
Rℓ

1

1 +Bℓ
|V 1/2

ℓ 〉
∥
∥
∥
∥
L2

‖Vℓ‖1/2L1 ,

∥
∥
∥
∥
Qℓ

1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2

∥
∥
∥
∥
≤
∥
∥
∥
∥

1

1 +Bℓ
Rℓ

1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2

∥
∥
∥
∥

+
1

∣
∣ 4π
ik + 4πa(Vℓ)

∣
∣

∥
∥
∥
∥

1

1 +Bℓ
Rℓ

1

1 +Bℓ
|V 1/2

ℓ 〉
∥
∥
∥
∥
L2

∥
∥
∥
∥

1

p2 − k̄2
|Vℓ|1/2

1

1 +Bℓ
|V 1/2

ℓ 〉
∥
∥
∥
∥
L2

.

The norm ‖Vℓ‖L1 is uniformly bounded by assumption, and it follows from Lemma 2

that also
∥
∥
∥

1
p2−k̄2 |Vℓ|1/2 1

1+Bℓ
|V 1/2

ℓ 〉
∥
∥
∥
L2

is uniformly bounded. Hence it suffices to bound

the following expressions:

‖ 1

1 +Bℓ
Rℓ‖,(3.11a)

∥
∥
∥
∥

1

1 +Bℓ
Rℓ

1

1 +Bℓ
|V 1/2

ℓ 〉
∥
∥
∥
∥
L2

,(3.11b)

∥
∥
∥
∥

1

1 +Bℓ
Rℓ

1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2

∥
∥
∥
∥
.(3.11c)

To this aim we again use the decomposition (3.3). For (3.11a) note that

‖Rℓ‖22 =
|k|2
(4π)2

∫

R6

|Vℓ(x)||r(ik|x− y|)|2|Vℓ(y)| d3x d3y

≤ c2|k|2
(4π)2

∫

R6

|Vℓ(x)||x− y|2|Vℓ(y)| d3x d3y

≤ 4c2|k|2
(4π)2

‖Vℓ‖L1

∫

R3

|Vℓ(x)| |x|2 d3x = O(e2ℓ),

(3.12)

using |r(z)| ≤ c|z| for ℜz < 0 and some c > 0, as well as Assumptions (A3) and (A4).
Since the last term in (3.3) is uniformly bounded by Consequence 1, ‖ 1

1+Bℓ
(1−Pℓ)Rℓ‖2 =

O(eℓ) and ‖Rℓ
1

1+Bℓ
(1− Pℓ)‖2 = O(eℓ). On the other hand

‖PℓRℓ‖ =
‖R∗

ℓJℓφℓ‖L2

|〈Jℓφℓ|φℓ〉|
,

where

(R∗
ℓJℓφℓ)(x) =

ik̄

4π

∫

R3

|Vℓ(x)|1/2r(−ik̄|x− y|)|Vℓ(y)|1/2φℓ(y) d3y.
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Using again the above pointwise bound on r, it follows from Consequence 2 that

(3.13) ‖PℓRℓ‖ = O(|eℓ|3/2) .
Thus (3.11a) = O(|eℓ|1/2).

Finally, we estimate (3.11b) and (3.11c). Proceeding as above one also shows that
‖Rℓ

1
1+Bℓ

‖ = O(|eℓ|1/2). Hence, in the decomposition (3.3) for the vector

1

1 +Bℓ
Rℓ

1

1 +Bℓ
|V 1/2

ℓ 〉

and the operator
1

1 +Bℓ
Rℓ

1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2
,

we see that the only parts left to estimate are

1

e2ℓ
PℓRℓPℓ|V 1/2

ℓ 〉 = 1

e2ℓ
〈Jℓφℓ|Rℓφℓ〉

〈
|Vℓ|1/2

∣
∣φℓ
〉

|〈Jℓφℓ|φℓ〉|2
|φℓ〉,(3.14a)

1

e2ℓ
PℓRℓPℓV

1/2
ℓ

1

p2 − k2
=

1

e2ℓ
〈Jℓφℓ|Rℓφℓ〉

|φℓ〉〈φℓ||Vℓ|1/2 1
p2−k2

|〈Jℓφℓ|φℓ〉|2
.(3.14b)

Using again Consequence 2 and the pointwise bound on r we obtain |〈Jℓφℓ|Rℓφℓ〉| =
O(e2ℓ). In particular, we conclude that the L2-norm of the vector in (3.14a) is of order

O(|eℓ|1/2). The same argument applies to the operator in (3.14b) after using (3.5). This
shows that (3.11b) and (3.11c) are of order O(|eℓ|1/2), and completes the proof. �

The estimates (3.10a) and (3.10b) suggest that for small ℓ we may drop Qℓ in 2© in
(3.1). With the help of the identity (3.7) and the expansion 1

1+Qℓ
= 1 − 1

1+Qℓ
Qℓ the

second summand on the right side of (3.1) decomposes into two parts, namely

− 1

p2 − k2
|Vℓ|1/2

1

1 + V
1/2
ℓ

1
p2−k2 |Vℓ|1/2

V
1/2
ℓ

1

p2 − k2
= Iℓ + IIℓ,

with

Iℓ = − 1

p2 − k2
|Vℓ|1/2

(

1− 1
4π
ik + 4πa(Vℓ)

1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|
) 1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2
,

IIℓ =
1

p2 − k2
|Vℓ|1/2

(

1− 1
4π
ik + 4πa(Vℓ)

1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|
)

× 1

1 +Qℓ
Qℓ

1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2
.

The term Iℓ contains the main part, whereas IIℓ vanishes in operator norm for small ℓ.
This is the content of the following lemma, which immediately implies the statement of
Theorem 1. Its proof relies heavily on Lemmas 2 and 3.

Lemma 4.
∥
∥
∥Iℓ +

4π

a(Vℓ)−1 + ik
|gk〉〈gk|

∥
∥
∥ = O(|eℓ|1/2),(3.15a)

‖IIℓ‖ = O(|eℓ|1/2).(3.15b)

Proof. We first show (3.15a). We can write

Iℓ = − 1

p2 − k2
|Vℓ|1/2

1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2

+
1

4π
ik + 4πa(Vℓ)

1

p2 − k2
|Vℓ|1/2

1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|
1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2
.
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It turns out that both summands converge in operator norm to the projector |gk〉〈gk|,
multiplied by numbers which add up to − −4π

a−1+ik . More precisely, we are going derive to
the following asymptotic behavior

∥
∥
∥

1

p2 − k2
|Vℓ|1/2

1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2
− 4πa(Vℓ)|gk〉〈gk|

∥
∥
∥

=
∥
∥
∥

1

p2 − k2
|Vℓ|1/2

1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2
− |gk〉

〈
|Vℓ|1/2

∣
∣

1

1 +Bℓ

∣
∣V

1/2
ℓ

〉
〈gk|

∥
∥
∥

≤
∥
∥
∥

( 1

p2 − k2
|Vℓ|1/2 − |gk〉

〈
|Vℓ|1/2

∣
∣

) 1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2

∥
∥
∥

+
∥
∥
∥|gk〉

〈
|Vℓ|1/2

∣
∣

1

1 +Bℓ

(

V
1/2
ℓ

1

p2 − k2
−
∣
∣V

1/2
ℓ

〉
〈gk|

)∥
∥
∥

= O(|eℓ|1/2)

(3.16a)

and

∥
∥
∥

1

p2 − k2
|Vℓ|1/2

1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|
1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2
−
(
4πa(Vℓ)

)2|gk〉〈gk|
∥
∥
∥

≤
∥
∥
∥

( 1

p2 − k2
|Vℓ|1/2 − |gk〉

〈
|Vℓ|1/2

∣
∣

) 1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|
1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2

∥
∥
∥

+ 4π|a(Vℓ)|
∥
∥
∥|gk〉〈|Vℓ|1/2|

1

1 +Bℓ

(

V
1/2
ℓ

1

p2 − k2
−
∣
∣V

1/2
ℓ

〉
〈gk|

)∥
∥
∥

= O(|eℓ|1/2),

(3.16b)

where we made use of the expression a(Vℓ) = 1
4π

〈
|Vℓ|1/2

∣
∣ 1
1+Bℓ

∣
∣V

1/2
ℓ

〉
for the scattering

length. The bounds (3.16a) and (3.16b) are in fact simple consequences of Lemma 2.
Eq. (3.16a) follows immediately from (3.2a) and (3.2b). To see (3.16b) we apply (3.2a)
twice, once to the first vector in the first term on the right side, and once to the second.

In order to show (3.15b) we simply bound IIℓ by

‖IIℓ‖ ≤
∥
∥
∥

1

p2 − k2
|Vℓ|1/2

(

1− 1
4π
ik + 4πa(Vℓ)

1

1 +Bℓ
|V 1/2

ℓ 〉〈|Vℓ|1/2|
) 1

1 +Qℓ

∥
∥
∥

×
∥
∥
∥Qℓ

1

1 +Bℓ
V

1/2
ℓ

1

p2 − k2

∥
∥
∥ ≤ O(|eℓ|1/2) ,

where we used that the first term is uniformly bounded because of (3.2a), whereas the
second term vanishes like O(|eℓ|1/2) thanks to (3.10b). �

4. Proof of Consequences 1 and 2

Proof of Consequence 1. We pick some ψ ∈ L2(R3) and set

(4.1) ϕ =
1

1 + JℓXℓ
(1− Pℓ)ψ =

1

Jℓ +Xℓ
Jℓ(1− Pℓ)ψ .

Below, we are going to show that there exists a constant c > 0 such that for small
enough ℓ

(4.2) 〈ϕ|(1−X−
ℓ )ϕ〉 ≥ c‖ϕ‖2L2 .

In combination with Lemma 1 this inequality yields
√
2‖ϕ‖‖(Jℓ +Xℓ)ϕ‖ ≥ 〈ϕ|(1−X−

ℓ )ϕ〉 ≥ c‖ϕ‖2,
which further implies that

‖ψ‖ ≥ ‖Jℓ(1− Pℓ)ψ‖ = ‖(Jℓ +Xℓ)ϕ‖ ≥ c√
2
‖ϕ‖ =

c√
2
‖(1 +Bℓ)

−1(1− Pℓ)ψ‖ ,
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proving the statement.
It remains to show the inequality (4.2). To this aim we denote by φ−ℓ the eigenvector

corresponding to the smallest eigenvalue e−ℓ of 1−X−
ℓ and by Pφ−

ℓ
the orthogonal pro-

jection onto φ−ℓ . By assumption, the Birman-Schwinger operator X−
ℓ corresponding to

the potential V −
ℓ has only one eigenvalue close to 1. All other eigenvalues are separated

from 1 by a gap of order one. Hence there exists c1 > 0 such that

(1−X−
ℓ )(1− Pφ−

ℓ
) ≥ c1

and, therefore,

〈ϕ|(1−X−
ℓ )ϕ〉 ≥ c1〈ϕ|(1− Pφ−

ℓ
)ϕ〉+ e−ℓ 〈ϕ|Pφ−

ℓ
ϕ〉

= c1‖ϕ‖2L2 + (e−ℓ − c1)〈ϕ|Pφ−
ℓ
ϕ〉.

With PJℓφℓ
= |Jℓφℓ〉〈Jℓφℓ| being the orthogonal projection onto Jℓφℓ we can write

ϕ = (1− PJℓφℓ
)ϕ,

simply for the reason that, because of (4.1) and the fact that Pℓ commutes with Bℓ,

PJℓφℓ
ϕ = PJℓφℓ

(1 +Bℓ)
−1(1− Pℓ)ψ = PJℓφℓ

(1− Pℓ)(1 +Bℓ)
−1ψ = 0 .

Consequently,

|〈ϕ|Pφ−
ℓ
ϕ〉| = |〈ϕ|(1− PJℓφℓ

)Pφ−
ℓ
ϕ〉| ≤ ‖ϕ‖2L2‖(1− PJℓφℓ

)Pφ−
ℓ
‖

= ‖ϕ‖2L2‖(1− PJℓφℓ
)φ−ℓ ‖2 = ‖ϕ‖2L2‖(1− Pφ−

ℓ
)Jℓφℓ‖2 .

To estimate ‖(1− Pφ−
ℓ
)Jℓφℓ‖, we apply Lemma 1 to φℓ and obtain

√
2 eℓ =

√
2 ‖(Jℓ +Xℓ)φℓ‖ ≥ 〈φℓ|(1−X−

ℓ )φℓ〉 = 〈Jℓφℓ|(1−X−
ℓ )Jℓφℓ〉

= e−ℓ |〈Jℓφℓ|φ−ℓ 〉|2 + 〈(1− Pφ−
ℓ
)Jℓφℓ|(1−X−

ℓ )(1− Pφ−
ℓ
)Jℓφℓ〉

≥ e−ℓ |〈Jℓφℓ|φ−ℓ 〉|2 + c1‖(1− Pφ−
ℓ
)Jℓφℓ‖2 .

This shows that ‖(1 − PJℓφℓ
)Pφ−

ℓ
‖ = O(|eℓ|1/2) and consequently (4.2) holds for small

enough ℓ. �

Proof of Consequence 2. (i) Simply bound |x| ≤ 1
2 (|eℓ|+ |x|2/|eℓ|) and use Assumptions

(A3) and (A4).
(ii) Lemma 1 applied to φℓ implies that

(4.3)

〈

φℓ
∣
∣(V +

ℓ )1/2
1

p2
(V +

ℓ )1/2φℓ

〉

≤
√
2|eℓ|+ |e−ℓ |,

〈

φℓ
∣
∣
(
1− (V −

ℓ )1/2
1

p2
(V −

ℓ )1/2
)
φℓ

〉

≤
√
2|eℓ| ,

where we used 1 − (V −
ℓ )1/2 1

p2 (V
−
ℓ )1/2 ≥ e−ℓ . Note, that by 1 |e−ℓ | = O(eℓ). Now (ii)

follows from the following argument. Because of (2.8) we know that
√
2|eℓ| =

√
2‖(Jℓ +Xℓ)φℓ‖L2 ≥ 〈φ+ℓ |(1 +X+

ℓ )φ+ℓ 〉+ 〈φ−ℓ |(1−X−
ℓ )φ−ℓ 〉

= ‖φ+ℓ ‖2L2 + 〈φ+ℓ |X+
ℓ φ

+
ℓ 〉+ 〈φ−ℓ |(1−X−

ℓ )φ−ℓ 〉,

where φℓ = φ+ℓ + φ−ℓ with supp(φ−ℓ ) ⊆ supp(V −
ℓ ) and supp(φ+ℓ ) ∩ supp(V −

ℓ ) = ∅. Using

that 1−X−
ℓ has e−ℓ = O(eℓ) as lowest eigenvalue, we conclude that

(4.4)
〈1 + Jℓ

2
φℓ
∣
∣φℓ

〉

= ‖φ+ℓ ‖2L2 = O(eℓ).
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(iii), (iv) For q = 0, 1 we evaluate
∫

R3

|x|q |Vℓ|1/2 |φℓ| d3x =
〈
|V +

ℓ |1/2| · |q
∣
∣|φℓ|

〉
+
〈
(V −

ℓ )1/2| · |q
∣
∣|φℓ|

〉

=
〈
|V +

ℓ |1/2| · |q
∣
∣
1

2
(1 + Jℓ)|φℓ|

〉
+
〈
(V −

ℓ )1/2| · |q
∣
∣|φℓ|

〉

≤ ‖V +
ℓ | · |2q‖1/2L1 〈φℓ|

1

2
(1 + Jℓ)φℓ〉1/2 + ‖| · |2qV −

ℓ ‖1/2L1 ,

which is O(|eℓ|1/2) for q = 0 and O(|eℓ|3/2) for q = 1 by Assumption (A4) and (4.4). �
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