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LOGARITHMIC SOBOLEV INEQUALITY FOR A CLASS OF
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Dedicated to Yuri Kondratiev on occasion of his 60th Birthday.

Abstract. We study a class of measures on the space ΓX of locally finite confi-

gurations in X = Rd, obtained as images of “lattice” Gibbs measures on X
Z
d
with

respect to an embedding Zd
⊂ Rd. For these measures, we prove the integration by

parts formula and log-Sobolev inequality.

1. Introduction

Let X = Rd be a d-dimensional Euclidean space, and consider the space

ΓX := {γ ⊂ X : |γ ∩K| < ∞ for any compact K ⊂ X}

of all locally finite subsets (configurations) in X. Here |A| denotes the cardinality of the
set A. Observe that ΓX can be embedded into the space of all Radon measures M(X)
on X via the map γ 7→

∑
x∈γ δ(x), where δ(x) is the Dirac measure at x ∈ X. We

will denote by Γ̈X the space of all integer-valued Radon measures on X, which can be
interpreted as the space of locally finite configurations with finite multiplicities, so that
we have the inclusions

ΓX ⊂ Γ̈X ⊂ M(X).

Configuration spaces ΓX and Γ̈X are endowed with the topology induced by the weak
topology on M(X) and is called the vague topology, which makes them Polish spaces,

see e.g. [12]. We denote by B(ΓX) and B(Γ̈X) the corresponding Borel σ-algebras.
Interest to stochastic analysis on ΓX has been growing in recent times due to rich

applications in the study of multi-component stochastic systems, which arise in mathe-
matical physics, mathematical biology and other sciences, see e.g. [7], [8], [9] and re-
ferences therein. An important task in the development of such analysis is construction
and study of probability measures on ΓX (also called point processes in X) that satisfy
certain analytic properties, like finiteness of moments and integration by parts formulae.
These measures can in turn be used in various constructions on ΓX , including Laplace-
type operators and stochastic dynamics. Most studies in this respect are concerned with
Poisson and Gibbs measures on ΓX , see e.g. [2], [3] and references given there. Cluster
point processes in X have been considered from this point of view in [5].

In the present work we explore another class of measures on ΓX , obtained as push-

forwards of “lattice” Gibbs measures in XZ
d

with respect to a special embedding Zd ⊂
Rd, where Zd is the d-dimensional integer lattice. These measures present interesting
properties, including the log-Sobolev inequality, which is not typical for measures on ΓX

(note that neither Poisson nor Gibbs measures on ΓX satisfy this inequality).
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The construction is as follows. Consider the infinite Cartesian product

XZ
d

= ×
k∈Zd

Xk, Xk = X,

of identical copies of X, endowed with the product topology and the corresponding Borel

structure. For any x = (xk)k∈Zd ∈ XZ
d

define a map p : XZ
d

→ M(X) by setting

p(x) =
∑

k∈Zd

δ(xk + α(k)),

where α is a “correctly rescaled” embedding Zd ⊂ Rd (which should satisfy the condition∑
k∈Zd |α(k)|

−2
< ∞). To be more concrete, we set

(1) α(k) := |k|d−1k, |k| :=

d∑

m=1

|km|,

k = (k1, . . . , kd) ∈ Zd.

In general, p(x) is not locally finite and therefore belongs neither to ΓX nor to Γ̈X .

However, it is possible to construct a dense Borel subset H− ⊂ XZ
d

, which consists of

“tempered” sequences, and such that (i) p(H−) ⊂ Γ̈X , and (ii) H− supports a wide class

of probability measures θ on XZ
d

.
Next, given such measure θ, we can define the push-forward measure νθ = p∗ θ on Γ̈X

by the formula

νθ(A) = θ
(
p−1(A)

)
, A ∈ B(Γ̈X).

If we assume in addition that θ has “off-diagonal” support, the measure νθ will live on
the space of proper configurations ΓX . The main example of θ (and thus νθ) is given by

a Gibbs measure on XZ
d

. It turns out that νθ inherits many important properties of the
underlaying measure θ, including finiteness of moments, the integration by parts formula
and log-Sobolev inequality.

2. Gelfand triple associated with XZ
d

Let XZ
d

0 ⊂ XZ
d

be the set of all finite sequences of elements of X. Define inner

products (·, ·)+, (·, ·)0 and (·, ·)
−

on XZ
d

0 by the formulae

(u,v)+ :=
∑

k∈Zd

uk vk(1 + |k|d)2,

(u , v)0 :=
∑

k∈Zd

uk vk,

(u,v)− :=
∑

k∈Zd

uk vk(1 + |k|d)−2,

u = (uk)k∈Zd , v = (vk)k∈Zd ∈ XZ
d

0 , and introduce Hilbert spaces H+, H0 and H− as

the completions of XZ
d

0 in the corresponding norms ‖ · ‖+, ‖ · ‖0 and ‖ · ‖−, respectively.
Thus we have the following chain of spaces:

XZ
d

0 ⊂ H+ ⊂ H0 ⊂ H− ⊂ XZ
d

.

Observe that the inner product (·, ·)0 establishes the duality within the pairs of spaces(
XZ

d

0 , XZ
d
)
and (H+,H−). Also, the embeddings H+ ⊂ H0 and H0 ⊂ H− are Hilbert-

Schmidt, so that H+ ⊂ H0 ⊂ H− is a Gelfand triple.

The following technical results can be proved by direct (although quite lengthy) cal-
culations.
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Lemma 1. For any y ∈ H− and R ∈ R+, there exists N ∈ N such that for any
x ∈ BH

−

(y, 1
4 ) and k ∈ Zd with |k| > N we have

|xk + α(k)| > R,

where α(k) is defined by formula (1) and BH
−

(y, r) is the open ball in H− centered at y
and of radius r.

Lemma 2. Let µ be a probability measure on X such that
∫
X
|y|sµ(dy) < ∞ for all

s ∈ N. Then ∑

k∈Zd

µ(A− α(k))1/p(1 + |k|m)n < ∞

for any bounded Borel set A ⊂ X and all p,m, n ∈ N.

Recall that the vague topology on ΓX (resp. Γ̈X) is the weakest topology that makes
the mappings

γ 7→ 〈f, γ〉 :=
∑

x∈γ

f(x), f ∈ C0(X),

continuous.

Theorem 1. We have the inclusion

(2) p(H−) ⊂ Γ̈X ,

and the restriction of the map p to H− is continuous.

Proof. Formula (2) follows from Lemma 1 applied to arbitrary x = y ∈ H−. To prove
the continuity of the map p we fix a function f ∈ C0(X) and a sequence x(n) → x,
n → ∞ in H−. Since all x

(n) ∈ BH
−

(x, 1
4 ) for n big enough, Lemma 1 implies that there

exists N ∈ N such that f(p(x(k))) = 0 if |k| > N , which in turn implies that the map
H− ∋ x 7→ 〈p(x), f〉 is continuous, and the statement follows from the definition of the

topology of Γ̈X . �

We preserve the notation p for the corresponding (restricted) map

(3) p : H− → Γ̈X .

3. Push-forward measures on ΓX : definition, support and finiteness of

moments

Let θ be a Borel probability measure on H− satisfying the following conditions:

(1) the measure θ has off-diagonal support, that is, θ (Diag(H−)) = 0, where

(4) Diag(H−) := {x ∈ H− : ∃ k, j ∈ Zd s.t. xk − xj ∈ Zd};

(2) the measure θ is invariant with respect to the lattice shifts

(5) Sj : (xk)k∈Zd 7−→ (xk+j)k∈Zd , j ∈ Zd;

(3) all moments of the measure θ are finite, that is,

(6)

∫

H
−

|xk|
sθ(dx) < ∞ for all s ∈ N and k ∈ Zd.

Let us define the push-forward measure νθ := p∗θ on Γ̈X . That is, for any A ∈ B(Γ̈X)
we have

(7) νθ(A) = θ
(
p−1(A)

)
.

Theorem 1 implies that p : H− → Γ̈X is measurable, so that νθ is a Borel probability

measure on Γ̈X . Moreover, it follows from condition (4) that νθ is supported on the space
of configurations without multiple points, that is, νθ(ΓX) = 1.
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We say that a measure ν on ΓX has finite n-th moments if
∫

ΓX

|〈f, γ〉|
n
ν(dγ) < ∞ for any f ∈ C0(X).

The class of all such measures will be denoted by Mn(ΓX).

Theorem 2. We have the inclusion νθ ∈ Mn(ΓX) for any n ∈ N.

Proof. The result follows from Lemma 2 applied to the projection θk of the measure θ onto
Xk = X (which is independent of k ∈ Zd) and multiple Cauchy-Schwarz inequality. �

4. Integration by parts formula on XZ
d

In this section, we first recall main definitions related to the integration by parts (IBP)

formula on the space XZ
d

(following [1]). Next, we prove the IBP formula for a special
class of vector fields (needed in the next section).

Let us denote by FC(XZ
d

) the set of functions f : XZ
d

→ R of the form

f(x) = fN (xm1
, . . . , xmN

) , x = (xk)k∈Zd ∈ XZ
d

,

for some N ∈ N, m1, . . . ,mN ∈ Zd, and fN is a bounded smooth function on RN (which

may depend on f). For f ∈ FC(XZ
d

) define the gradient ∇f(x) by the formula

XZ
d

∋ x 7−→ ∇f(x) = (∇kf(x))k∈Zd ∈ XZ
d

0 ,

where

∇kf(x) =
∂

∂xk
fN (xm1

, . . . , xmN
).

We assume that the measure θ satisfies the IBP formula

(8)

∫

H
−

(∇f(x), φ)0 θ(dx) = −

∫

H
−

f(x)βφ
θ (x)θ(dx)

for any φ ∈ XZ
d

0 and f ∈ FC(XZ
d

), where βφ
θ ∈ L1(H−, θ) is the logarithmic derivative

of the measure θ in the direction of φ. It has the form βφ
θ (x) = (βθ(x), φ)0, where

βθ : H− → H− is the vector logarithmic derivative of θ. We assume that it satisfies the
condition

(9)

∫

H
−

‖βθ(x)‖
4
−θ(dx) < ∞.

It is known that IBP formula (8) can be extended to non-constant vector fields V ∈
C1

b (H−,H+) (see e.g. [6]; here C1
b stands as usual for “bounded continuously differen-

tiable”). The logarithmic derivative takes the form

βV
θ (x) = (βθ(x), V (x))0 + divV (x),

where

divV (x) := TrV ′(x) =
∑

k∈Zd

divkVk(x),

and divkVk is the divergence of the k-th component Vk of V with respect to xk.
In what follows we would like to establish the IBP formula for a special class of vector

fields on H−. Let v ∈ C∞
0 (X) and define a map v̂ : XZ

d

→ XZ
d

by setting

v̂k(x) = v(xk + α(k))k∈Zd ,

where α(k) = |k|d−1k. It is clear that v̂ /∈ C1
b (H−,H+). However, it possesses the

following regularity properties.
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Proposition 1. We have the following:

(i) v̂ : H− → XZ
d

0 and
∫
H

−

‖v̂(x)‖2+ θ(dx) < ∞,

(ii) divv̂ (x) < ∞, x ∈ H−, and
∫
H

−

|divv̂(x)| θ(dx) < ∞.

Let us introduce the Sobolev space H1,2(H−, θ) as a completion of the space FC(XZ
d

)
in the norm ‖ · ‖1,2 given by the formula

‖h‖21,2 =

∫

H
−

|h(x)|2 θ(dx) +

∫

H
−

‖∇h(x)‖20 θ(dx).

Theorem 3. (i) For the vector field v̂, the following IBP formula holds:

(10)

∫

H
−

(∇f(x), v̂(x))0 θ(dx) = −

∫

H
−

f(x)βv̂
θ (x)θ(dx), f ∈ FC∞

b (XZ
d

),

where the logarithmic derivative βv̂
θ (x) of the measure θ in the direction of v̂ has the form

βv̂
θ (x) = (βθ(x), v̂(x))0 + divv̂(x).

Moreover, βv̂
θ ∈ L2(H−, θ).

(ii) IBP formula (10) can be extended to any f ∈ H1,2(H−, θ).

Proof. The first statement can be verified using the approximation of v̂ by cut-off vector

fields v̂(N) ∈ C1
b (H−,H+) given by v̂

(N)
k = v̂k, |k| ≤ N , and v̂

(N)
k = 0 otherwise. The

second statement is standard. �

5. Integration by parts formula on ΓX

The aim of this section is to prove an IBP formula for the measure νθ on ΓX . First
we need to introduce certain classes of functions on ΓX . For γ ∈ ΓX and x ∈ γ, denote
by Oγ,x an open neighborhood of x in X such that Oγ,x ∩ γ = x. For any measurable
function F : ΓX → R, define the function Fx(γ, �) : Oγ,x → R by

Fx(γ, y) := F ((γ�x) ∪ y)

and set

∇xF (γ) := ∇Fx(γ, y)|y=x , x ∈ X,

provided Fx(γ, �) is differentiable at x. Here ∇ means usual gradient on X = Rd.
Denote by FC(ΓX) the class of functions on ΓX of the form

F (γ) = f
(
〈φ1, γ〉, . . . , 〈φk, γ〉

)
, γ ∈ ΓX ,

where k ∈ N, f ∈ C∞
b (Rk), and φ1, . . . , φk ∈ C∞

0 (X).
For F : ΓX → R, define the function IF := F ◦ p, that is

(11) IF (x) = F (p(x)), x ∈ H−,

where p : H− → ΓX is the map defined by the formula (3). Clearly, IF is a function on
H−. It is immediate that the operator I is an isometry from L2(ΓX , νθ) to L2(H−, θ).

Remark 1. The operator I is not an isomorphism. Indeed, the function IF (x) is
symmetric with respect to permutations of the components of x = (xk)k∈Zd , which implies

that I : L2(ΓX , νθ) → L2(XZ
d

, θ) is not surjective.

A direct check shows that the following result holds.

Lemma 3. Let F ∈ FC(ΓX). Then we have IF ∈ H1,2(H−, θ).

Let I∗ : L2(XZ
d

, θ) → L2(ΓX , νθ) be the adjoint operator of the isometry I. We are
now in a position to state the main result of this section.
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Theorem 4. Let v ∈ Vect0(X) and F ∈ FC(ΓX). Then the measure νθ on ΓX given
by (7) satisfies the IBP formula

(12)

∫

ΓX

∑

x∈γ

∇xF (γ) � v(x)νθ(dγ) =

∫

ΓX

F (γ)βv
νθ
(γ)νθ(dγ),

where

βv
νθ

:= I∗βv̂
θ ∈ L2(ΓX , νθ).

Proof. The result follows from Theorem 3 applied to the function IF . �

6. Logarithmic Sobolev inequality

Let us introduce a pre-Dirichlet form Eνθ
associated with the measure νθ, defined on

functions F ∈ FC(ΓX) ⊂ L2(ΓX , νθ) by the expression

Eνθ
(F, F ) =

∫

ΓX

∑

x∈γ

|∇xF (γ)|
2
νθ(dγ).

It follows from the general theory of (pre-)Dirichlet forms associated with measures from
the class M2(ΓX) (see [3], [13]) that satisfy IBP formula (12) that:

• the pre-Dirichlet form Eνθ
is well-defined, i.e. Eνθ

(F, F ) < ∞ for all F ∈ FC(ΓX);

• Eνθ
is closable and its closure is a quasi-regular local Dirichlet form on Γ̈X ;

• there exists a conservative diffusion process X = (Xt, t > 0) on Γ̈X , properly
associated with the Dirichlet form Eνθ

.

Let θ be a probability measure on H− satisfying conditions (1)–(3) of Section 3, IBP
formula (8) and condition (9). Consider its pre-Dirichlet form Eθ defined by the formula

Eθ(f, f) =

∫

XZd

‖∇f(x)‖
2
0 θ(dx),

where f ∈ FC(XZ
d

). The form (Eθ,FC(XZ
d

)) is closable (see [1]). We denote its closure

by (Eθ, D(Eθ)). By the definition, D(Eθ) is the completion of FC(XZ
d

) in the norm ‖·‖Eθ

given by the formula

‖f‖2Eθ
:=

∫

H
−

f2(x)θ(dx) +

∫

H
−

‖∇f(x)‖20θ(dx)

= ‖f‖2H1,2(H
−
,θ),

and therefore

D(Eθ) = H1,2(H−, θ).

Theorem 5. For any F ∈ D(Eνθ
) we have IF ∈ D(Eθ) and

Eνθ
(F, F ) = Eθ(IF, IF ),

where IF is defined in (11).

Proof. The statement immediately follows from Lemma 3 and the definition of the forms
Eνθ

and Eθ. �

It is said the measure θ satisfies the log-Sobolev inequality if

(13) CLS Eθ(f, f) >

∫

H
−

|f(x)|2 log |f(x)|θ(dx)− ‖f‖2L2(H
−
,θ) log‖f‖L2(H

−
,θ)

for some constant CLS > 0 and any f ∈ D(Eθ). This is an important inequality which
has been extensively studied (see e.g. [10], [11] and references given there).
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Theorem 6. Let us assume that θ satisfies log-Sobolev inequality (13). Then the measure
νθ satisfies the log-Sobolev inequality with the same constant CLS, i.e.

CLS Eνθ
(F, F ) >

∫

ΓX

|F (γ)|2 log |F (γ)|νθ(dγ)− ‖F‖2L2(ΓX ,νθ)
log‖F‖L2(ΓX ,νθ),

for any F ∈ D(Eνθ
).

Proof. The result follows from Theorem 5 and LSI (13) applied to the function IF . �

7. Examples

Here we give some examples of measures θ on XZ
d

that satisfy conditions (4)–(6), (9)
and (13) and therefore give rise to push-forward measures νθ satisfying IBP formula (12)
and log-Sobolev inequality (6).

Example 1. Product Measures. Let µ be a probability measure on X that is absolutely
continuous with respect to the Lebesgue measure with density e−V and assume that the
function V : X → R has polynomial growth and its second derivative satisfies the bound
V ′′(x) ≥ C Id for some constant C > 0. Set θ :=

⊗
k∈Zd µk, µk = µ. Conditions (4)–

(6) and (9) can be verified by a direct calculation. The Bakry-Emery criterion implies
that µ satisfies the log-Sobolev inequality with CLS = C, which implies that θ satisfies
log-Sobolev inequality (13) with the same constant (see [10]).

Example 2. Gaussian Measures. Consider a bounded positive linear operator A in
H0 such that ASk = SkA for all k ∈ Zd. Let θ be the Gaussian measure with correlation
operator A−1 and zero mean. Conditions (4)–(6) can be checked by a direct calculation.
For the proof of the integration by parts formula (8) and condition (9) see [4] and [6].
Log-Sobolev inequality (13) holds due to [1] and [10].

Example 3. Gibbs Measures. Let V : X → R1 be a continuous function satisfying the
quadratic growth estimate V (x) ≥ a |x|

2
− b, a, b > 0, and define θ to be a Gibbs measure

with energy function E(x) = (Ax,x)0 + εV (x), x ∈ XZ
d

0 . Conditions of the existence
of θ are well-known (see [1] and references therein); in particular, they are fulfilled for ε
small enough. Once again, conditions (4)–(6) can be checked directly. The integration by
parts formula (8), condition (9) and log-Sobolev inequality (13) (for small ε) have been
proved in [1].
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