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ON KONDRATIEV SPACES OF TEST FUNCTIONS IN THE

NON-GAUSSIAN INFINITE-DIMENSIONAL ANALYSIS

N. A. KACHANOVSKY

The paper is dedicated to Professor Yu. G. Kondratiev to his sixtieth anniversary

Abstract. A blanket version of the non-Gaussian analysis under the so-called bior-
thogonal approach uses the Kondratiev spaces of test functions with orthogonal bases

given by a generating function Q × H ∋ (x, λ) 7→ h(x;λ) ∈ C, where Q is a metric
space, H is some complex Hilbert space, h satisfies certain assumptions (in particular,
h(·;λ) is a continuous function, h(x; ·) is a holomorphic at zero function). In this

paper we consider the construction of the Kondratiev spaces of test functions with
orthogonal bases given by a generating function γ(λ)h(x;α(λ)), where γ : H → C

and α : H → H are holomorphic at zero functions, and study some properties of
these spaces. The results of the paper give a possibility to extend an area of possible

applications of the above mentioned theory.

Introduction

The theory of generalized functions of infinitely many variables with special spaces of
test and generalized functions and with the pairing generated by the Gaussian measure
was developed by Yu. G. Kondratiev [26, 25, 24], see also [28, 27, 29] (afterwords the
said spaces were called the Kondratiev spaces), and independently by T. Hida [15, 16]
(the corresponding spaces are called the Hida spaces). On the other hand, at the same
time Yu. M. Berezansky with colleagues has developed a general theory of generalized
functions of infinitely many variables, this theory is less detailed than the Kondratiev’s
or Hida’s one, but with the pairing generated by a non-Gaussian measure, generally
speaking (see, e.g., [9, 33, 6]). In this connection a natural wish to develop a detailed
(as far as possible) theory with a general (again, as far as possible) pairing has arisen.
Among the first works in this direction were the papers of Y. Ito and I. Kubo [17, 18], in
which some results of the Gaussian theory were extended to the case when the pairing
between test and generalized functions is generated by the Poisson measure.

A consequent development of a non-Gaussian theory of generalized functions occurred
in different directions. One of these directions is based on the idea of Yu. G. Kon-
dratiev to use as orthogonal bases in spaces of test and generalized functions so-called
biorthogonal systems (generalized Appell polynomials and dual to them functions) that
were introduced by Yu. L. Daletsky [13]. This idea is realized by Yu. G. Kondratiev and
his colleagues first for so-called smooth twice analytic measures (that generate the pair-
ing between test and generalized functions instead of the Gaussian measure) [2, 31, 1],
afterwords in a more general case of analytic non-degenerate measures [32, 30]. Later
on different investigations in the framework of the ”biorthogonal analysis” were exe-
cuted by many specialists, in particular, by G. F. Us [36], by Yu. M. Berezansky and
Yu. G. Kondratiev [7], by Yu. M. Berezansky [3, 5, 4], by the author [19, 21, 20], by
Yu. M. Berezansky and V. A. Tesko [12, 11], by V. A. Tesko [35], by E. Yablonsky [37]
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and by others. Note that Yu. M. Berezansky offers to generalize appreciably the initial
biorthogonal systems: instead of generalized Appell polynomials he uses as orthogonal
bases in the spaces of test functions some special functions given by a generating function
Q × H ∋ (x, λ) 7→ h(x;λ) ∈ C, where Q is a metric space, H is some complex Hilbert
or nuclear space, h satisfies certain assumptions (in particular, h(·;λ) is a continuous
function, h(x; ·) is a holomorphic at zero function). The sequent natural step consists
in using of a generating function γ(λ)h(x;α(λ)), where γ : H → C and α : H → H

are holomorphic at zero functions, by analogy with the case of generalized Appell-like
polynomials [30, 19]. The possibility to realize this idea was declared by the author in
the short paper [22], but without a detailed presentation.

In this paper we consider the construction of the Kondratiev spaces of test functions
with orthogonal bases given by a generating function γ(λ)h(x;α(λ)), where h satisfies
assumptions accepted in [12] (this case essentially differs from the case described in [22]),
and study some properties of these spaces. The results of the paper give a possibility to
extend an area of possible applications of results [12].

1. The Kondratiev spaces of test functions

Let Hp, p ∈ Z+ := N ∪ {0} be a family of real separable Hilbert spaces such that

• for each p ∈ Z+ Hp+1 is densely and continuously embedded into Hp (it is
convenient to suppose that for each p ∈ Z+ ‖ · ‖Hp+1

≥ ‖ · ‖Hp
, the general case

can be reduced to this one [8]);
• the embeddings H2 →֒ H1 andH3 →֒ H2 are quasinuclear, i.e., the corresponding
embedding operators are of Hilbert-Schmidt type.

We consider a chain (a rigging of H0)

(1.1) N ′ ⊃ · · · ⊃ H−p ⊃ · · · ⊃ H0 ⊃ · · · ⊃ Hp ⊃ · · · ⊃ N ,

where N = pr limp∈Z+
Hp is the projective limit of the sequence of spaces {Hp}p∈Z+

(it
means that N = ∩p∈Z+

Hp with a topology of the projective limit—the weaker topology
such that for each p ∈ Z+ the embedding of N into Hp is continuous, see, e.g., [8, 10] for
details), H−p are Hilbert spaces dual of Hp with respect to H0, N

′ = ∪p∈Z+
H−p (often

it can be convenient to introduce on N ′ a topology of inductive limit—the strongest
topology such that for each p ∈ Z+ the embedding of H−p into N ′ is continuous, in this
case one writes N ′ = ind limp∈Z+

H−p). In some versions of the white noise analysis it
can be necessary to assume in addition that chain (1.1) is nuclear (or, which is the same,
that the space N is nuclear), it means that for each p ∈ Z+ there exists p′ ∈ N such
that the embedding Hp′ →֒ Hp is quasinuclear. But for study of Kondratiev spaces in
the context of the present paper we do not need this assumption—the premises accepted
above are sufficient.

Denote by a subscript C complexifications of spaces, by ⊗̂ the symmetric tensor pro-
duct. Let Q be a metric space (for example, in the Gaussian white noise analysis and
in some its generalizations one uses H−p as a space Q; also sometimes it is necessary to
accept some additional assumptions on Q, for example, to assume that Q is a separable
space, see [12, 35]). Denote by C(Q) a linear topological space of complex bounded on
balls in Q continuous functions on Q, the convergence in C(Q) by definition is uniform
on every ball in Q.

Let U0 be a neighborhood of zero in H1,C, and Q × U0 ∋ (x, λ) 7→ h(x;λ) ∈ C be a
function satisfying the assumptions:

• for each x ∈ Q the function h(x; ·) is holomorphic at 0 ∈ U0;
• for each λ ∈ U0 the function h(·;λ) ∈ C(Q);
• for an arbitrary ball U ⊂ Q and an arbitrary closed ball U ⊂ U0 there exists a
constant c = c(U , U) > 0 such that h(x, λ) < c if x ∈ U and λ ∈ U .
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Using properties of holomorphic functions (e.g.,[14]) and the kernel theorem (e.g., [8, 10])
it is shown in [12] that for each x ∈ Q there exists an expansion

(1.2)
h(x;λ) =

∞∑

n=0

1

n!
〈hn(x), λ

⊗n〉,

hn(x) ∈ H⊗̂n
−2,C, λ ∈ Bx := {λ ∈ H2,C ∩ U0 : |λ|2 < Rx, Rx > 0}, λ⊗0 := 1,

here and below we denote by 〈·, ·〉 the dual pairings in tensor powers of the complexi-

fication of chain (1.1), by | · |p the norms in tensor powers of Hp,C, p ∈ Z, H⊗̂0
p,C := C.

Note that series (1.2) converges uniformly in every closed ball from Bx. We assume in
addition that

• B := ∩x∈Q Bx is a nonempty open set.

LetK > 1 be some constant (the exact value ofK is not essential for the considerations
of the present paper, for example, one can assign K = 2), p ∈ N\{1}, q ∈ N.

Definition. A Hilbert space of formal series

(1.3)

(Hp)q :=
{
f(x) =

∞∑

n=0

〈hn(x), f
(n)〉, f (n) ∈ H⊗̂n

p,C, x ∈ Q :

‖f‖2(Hp)q
:=

∞∑

n=0

(n!)2Kqn|f (n)|2p < ∞
}

with the corresponding to ‖ · ‖(Hp)q scalar product is called the Kondratiev space of test
functions.

Together with the spaces (Hp)q one can consider the spaces of test functions (Hp) :=
pr limq∈N(Hp)q and (N ) := pr limq∈N,p∈N\{1}(Hp)q, these spaces also are called the Kon-
dratiev ones.

Remark. One can also introduce and study the parametrized Kondratiev spaces of test
functions (Hp)

β
q (β ∈ [0, 1]) that are defined by analogy with (1.3), but with (n!)1+β

instead of (n!)2 in the definition of the norm; or even consider more general spaces of
test functions, by analogy with [34]. But the ”payment” for such generalizations consists
in an essential deteriorating of properties of mentioned spaces and of the corresponding
dual spaces in comparison with the case of the spaces (Hp)q. The detailed study of the
mentioned generalizations goes beyond of the present paper.

Important properties of the Kondratiev spaces of test functions are described in the
following statement.

Proposition. ([12]) There exists q0 = q0(h) ∈ N such that for arbitrary p ∈ N\{1, 2}
and q ≥ q0 the first series in (1.3) converges uniformly on every ball from Q to a function
from C(Q). Moreover, for each ball U ⊂ Q there exists a constant c = c(U) > 0 such
that

(1.4) |f(x)| ≤ c‖f‖(Hp)q , x ∈ U , f ∈ (Hp)q.

Nevertheless, now we can not assert that (Hp)q are function spaces because it is
possible, generally speaking, that f ∈ (Hp)q, for each x ∈ Q f(x) = 0, but ‖f‖(Hp)q > 0.
So, we accept the following additional assumption on h:

• the system
(
hn(x)

)∞
n=0

is minimal with respect to the spaces (Hp)q in the sense

that if f ∈ (Hp)q and for each x ∈ Q f(x) = 0 then f = 0 in (Hp)q (now
p ∈ N\{1, 2} and q ≥ q0).

Remark. It is easy to see that in order to verify the minimality of the system
(
hn(x)

)∞
n=0

it is sufficient to consider the case p = 3 and q = q0.
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Example. IfQ = H−p with some p ∈ N\{1, 2}, and h(x;λ) = χ(〈x, λ〉), where χ : C → C

is an entire function such that in the decomposition χ(u) =
∑∞

n=0
1
n!χnu

n χn 6= 0

for all n ∈ Z+, then the system
(
hn(x) = χnx

⊗n
)∞
n=0

is minimal with respect to the

corresponding spaces of test functions (see [23] for details).

From the proposition and the minimality condition the following statement follows.

Theorem. ([12]) The spaces (Hp)q, p ∈ N\{1, 2}, q ≥ q0, consist of continuous bounded
on balls from Q functions, i.e., (Hp)q ⊂ C(Q). Moreover, these embeddings are conti-
nuous.

Let γ : H1,C → C be a holomorphic at zero function, γ(0) 6= 0 (from the ”technical
point of view” it is convenient to accept the normalization γ(0) = 1). Then by analogy
with (1.2) we have the decomposition

γ(λ) =

∞∑

n=0

1

n!
〈γn, λ

⊗n〉,

γn ∈ H⊗̂n
−2,C, λ ∈ Bγ := {λ ∈ H2,C : |λ|2 < Rγ , Rγ > 0},

and the series converges uniformly in every closed ball from Bγ . By analogy

1

γ(λ)
=

∞∑

n=0

1

n!
〈γ−1

n , λ⊗n〉,

γ−1
n ∈ H⊗̂n

−2,C, λ ∈ B1/γ := {λ ∈ H2,C : |λ|2 < R1/γ , R1/γ > 0}.

Define hγ(x;λ) := γ(λ)h(x;λ). As is easy to see, for each x ∈ Q the function H1,C ⊃
U0 ∋ λ 7→ hγ(x;λ) ∈ C is holomorphic at 0 ∈ H1,C and admits the representation

hγ(x;λ) =

∞∑

n=0

1

n!
〈hγ

n(x), λ
⊗n〉, hγ

n(x) ∈ H⊗̂n
−2,C, λ ∈ Bx ∩Bγ .

As is easy to calculate, the kernels hγ
n(x) and hn(x) are connected as follows:

(1.5)

hγ
n(x) =

n∑

m=0

Cm
n hm(x)⊗̂γn−m,

hn(x) =

n∑

m=0

Cm
n hγ

m(x)⊗̂γ−1
n−m,

where Cm
n = n!

m!(n−m)! .

Now one can define the Kondratiev spaces of test functions (Hp)
γ
q by analogy with

the definition of the spaces (Hp)q, but using the kernels hγ
n(x) instead of hn(x). The

following statement is proved in [12], an alternative proof consists in direct calculation
with using of formulas (1.5), by analogy with [32, 19, 23].

Theorem. There exists q′0 = q′0(h, γ) ∈ N such that for all p ∈ N\{1, 2} and q ≥ q′0
the spaces (Hp)

γ
q are function ones (in particular, the system

(
hγ
n(x)

)∞
n=0

is minimal

with respect to these spaces); and there exist q1 = q1(q), q2 = q2(q) ∈ N such that
(Hp)q ⊃ (Hp)

γ
q+q1 ⊃ (Hp)q+q1+q2 , where the embeddings are dense and continuous.

Let α : H2,C → H2,C ∩ U0 be a holomorphic at zero function, α(0) = 0. Then the
expansion

(1.6)
α(λ) =

∞∑

n=1

1

n!
d̂nα(0)(λ),

λ ∈ Uα := {λ ∈ H2,C : |λ|2 < rα, rα > 0}
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holds, here d̂nα(0)(λ) are n-homogeneous polynomials ([14]). Now our goal is to consider
the Kondratiev spaces of test functions constructed by the kernels with a generating
function

(1.7) hγ,α(x;λ) = γ(λ)h(x;α(λ)).

In order to obtain an intensional theory, we have to accept an additional assumption on
α (an analog of the local boundedness in the theory connected with generalized Appell
polynomials [30, 19, 23]):

• there exists ρ ∈ (0, rα) such that sup|λ′|2=ρ |α(λ
′)|3 < ∞.

Let ξn ∈ H⊗̂n
−3,C ⊗H3,C, ηn ∈ H⊗̂n

3,C, n ∈ N. We define a generalized pairing 〈ξn, ηn〉 ∈
H3,C by setting for all θ ∈ H−3,C

(1.8) 〈θ, 〈ξn, ηn〉〉 ≡ 〈ξn, ηn ⊗ θ〉.

Since |〈ξn, ηn⊗θ〉| ≤ ‖ξn‖H⊗̂n
−3,C⊗H3,C

‖ηn‖H⊗̂n
3,C

‖θ‖H−3,C
, an element 〈ξn, ηn〉 is well-definite

and ‖〈ξn, ηn〉‖H3,C
≤ ‖ξn‖H⊗̂n

−3,C⊗H3,C
‖ηn‖H⊗̂n

3,C

.

Proposition. Let α satisfy the assumptions accepted above. Then there exist kernels

αn ∈ H⊗̂n
−3,C ⊗H3,C, n ∈ N, such that

α(λ) =
∞∑

n=1

1

n!
〈αn, λ

⊗n〉, λ ∈ Bα :=
{
λ ∈ H3,C : |λ|3 <

ρ

e‖O3,2‖HS

}
,

and

(1.9) ‖αn‖H⊗̂n
−3,C⊗H3,C

≤ n!
( e
ρ
‖O3,2‖HS

)n

sup
|λ′|2=ρ

|α(λ′)|3,

where O3,2 : H3,C → H2,C is the embedding operator, ‖O3,2‖HS is its Hilbert-Schmidt
norm.

Proof. Let f0 ∈ H−2,C. Then the function

H2,C ∋ λ 7→ 〈f0, α(λ)〉 =
∞∑

n=1

1

n!
〈f0, d̂nα(0)(λ)〉 ∈ C

(see (1.6)) is holomorphic at zero, therefore by the Cauchy inequality [14] (see also
[32, 30])

∣∣∣ 1
n!
〈f0, d̂nα(0)(λ)〉

∣∣∣ ≤ 1

ρn
sup

|λ′|2=ρ

|〈f0, α(λ
′)〉||λ|n2 ≤

1

ρn
sup

|λ′|2=ρ

|α(λ′)|3|f0|−3|λ|
n
2 .

Denote by Bn the n-linear symmetric H2,C-valued function generated by the polynomial

d̂nα(0), i.e., Bn(λ, . . . , λ︸ ︷︷ ︸
n

) = d̂nα(0)(λ). By the polarization [14] we have

∣∣∣ 1
n!
〈f0, Bn(λ1, . . . , λn)〉

∣∣∣ ≤
( e
ρ

)n

sup
|λ′|2=ρ

|α(λ′)|3|f0|−3

n∏

k=1

|λk|2.

Now we need the following statement.

Lemma. Let a be an n + 1-linear symmetric by first n arguments continuous form
on H2,C ⊕ · · · ⊕ H2,C︸ ︷︷ ︸

n

⊕ H−3,C, so, there exists c > 0 such that for f1, . . . , fn ∈ H2,C,

f0 ∈ H−3,C, the estimate |a(f1, . . . , fn; f0)| ≤ c|f0|−3

∏n
k=1 |fk|2 is fulfilled. Then there

exists a kernel A ∈ H⊗̂n
−3,C ⊗H3,C such that for u1, . . . , un ∈ H3,C, f0 ∈ H−3,C

(1.10) a(u1, . . . , un; f0) = 〈A, u1⊗̂ · · · ⊗̂un ⊗ f0〉,
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and

(1.11) ‖A‖
H⊗̂n

−3,C⊗H3,C
≤ c‖O3,2‖

n
HS .

Proof. We consider the chain

(1.12) H
(2)
−3,C ⊃ H2,C ⊃ H3,C.

By the kernel theorem [8, 10] there exists a kernel B ∈ H
(2)⊗̂n
−3,C ⊗ H−3,C such that for

u1, . . . , un ∈ H3,C, f0 ∈ H−3,C, a(u1, . . . , un; f0) = (B, u1⊗̂ · · · ⊗̂un ⊗ f0)H⊗̂n
2,C⊗H−3,C

, and

‖B‖
H

(2)⊗̂n

−3,C ⊗H−3,C
≤ c‖O3,2‖

n
HS , here (·, ·)

H⊗̂n
2,C⊗H−3,C

denotes the dual pairing generated

by the scalar product in H⊗̂n
2,C⊗H−3,C. Let I

(2), I be the canonical isomorphisms of chains

(1.12) and H−3,C ⊃ H0,C ⊃ H3,C respectively, and denote by 1 the identical operator.

Set A := (I−1⊗n ⊗ 1)(I(2)⊗n ⊗ I)B. Then, obviously, A satisfies equality (1.10) and
estimate (1.11). �

Applying the lemma to the forms 〈f0, Bn〉, n ∈ N, we obtain the representation

〈f0, α(λ)〉 =
∞∑

n=1

1

n!
〈αn, λ

⊗n ⊗ f0〉, λ ∈ Bα,

with αn ∈ H⊗̂n
−3,C ⊗H3,C and satisfying estimates (1.9), whence the result of the propo-

sition follows. �

Now by analogy with [30] it is easy to calculate that for m ∈ N

α(λ)⊗m =
∞∑

n=m

1

n!
〈Am

n , λ⊗n〉, λ ∈ Bα,

where

(1.13) Am
n = 1{n≥m}

∑

l1,...,lm∈N,

l1+···+lm=n

n!

l1! . . . lm!
αl1⊗ · · · ⊗αlm ∈ H⊗̂n

−3,C ⊗H⊗̂m
3,C ,

here 1E is the indicator of an event E; ⊗ denotes a tensor product symmetrized by the
generalized and test components, for example, for F1, F2 ∈ H−3,C and f1, f2 ∈ H3,C

(F1 ⊗ f1)⊗(F2 ⊗ f2) = (F1⊗̂F2) ⊗ (f1⊗̂f2); the generalized pairing 〈·, ·〉 is defined by
analogy with (1.8).

Consider now a function hα(x;λ) := h(x;α(λ)), x ∈ Q, λ ∈ H2,C. For each x this
function is holomorphic at zero, and, moreover, by virtue of the assumptions accepted
above the representation

hα(x;λ) =

∞∑

n=0

1

n!
〈hα

n(x), λ
⊗n〉,

hα
n(x) ∈ H⊗̂n

−3,C, λ ∈ Bα,x := {λ ∈ H3,C : |λ|3 < Rα,x, Rα,x > 0}

holds. By analogy with [30, 19, 23] one can calculate that for n ∈ N

(1.14) hα
n(x) =

n∑

m=1

1

m!
〈hm(x), Am

n 〉,

hα
0 (x) = h0(x). Similarly, for function (1.7) we have

hγ,α(x;λ) =

∞∑

n=0

1

n!
〈hγ,α

n (x), λ⊗n〉,

hγ,α
n (x) ∈ H⊗̂n

−3,C, λ ∈ Bγ,α,x := {λ ∈ H3,C : |λ|3 < Rγ,α,x, Rγ,α,x > 0},
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and, obviously, the kernels hγ,α
n (x) are connected with the kernels hα

n(x) by formulas
(1.5) with hγ,α

n (x), hα
n(x) instead of hγ

n(x), hn(x) respectively.
Now one can define the Kondratiev spaces of test functions (Hp)

γ,α
q by analogy with

the definition of the spaces (Hp)q, but using the kernels hγ,α
n (x) instead of hn(x). So,

elements of (Hp)
γ,α
q are formal series of the form

(1.15) f(x) =

∞∑

n=0

〈hγ,α
n (x), f (n)〉

such that

‖f‖2(Hp)
γ,α
q

=
∞∑

n=0

(n!)2Kqn|f (n)|2p < ∞.

Using representations (1.5) with hγ,α
n (x), hα

n(x), (1.14), estimates (3.7), (5.7) from [12]
and (1.9), by analogy with [12] one can show that an estimate of type (1.4) holds true
for the spaces (Hp)

γ,α
q . More exactly, we have the following statement.

Proposition. There exists q′′0 = q′′0 (h, γ, α) ∈ N such that for arbitrary p ∈ N\{1, 2} and
q ≥ q′′0 series (1.15) converges uniformly on every ball from Q to a function from C(Q).
Moreover, for each ball U ⊂ Q there exists a constant c′ = c′(U) > 0 such that

|f(x)| ≤ c′‖f‖(Hp)
γ,α
q

, x ∈ U , f ∈ (Hp)
γ,α
q .

Furthermore, now for q ∈ N sufficiently large there exists q̃ = q̃(h, γ, α, q) ∈ N such
that for f ∈ (H3)

γ,α
q+q̃ the estimate ‖f‖(H3)q ≤ k‖f‖(H3)

γ,α

q+q̃
holds, here ‖f‖(H3)q is the

(H3)q-norm of the sum of series (1.15) for f , k = k(q, q̃) > 0 is some constant. Never-
theless, in contrast to the spaces (Hp)q, (Hp)

γ
q , the spaces (Hp)

γ,α
q can be not functional

ones because the system
(
hγ,α
n (x)

)∞
n=0

can be a not minimal one (with respect to these

spaces). But if we accept in addition that the system
(
hγ,α
n (x)

)∞
n=0

is minimal one with

respect to the spaces (Hp)
γ,α
q then these spaces will be function ones, (H3)

γ,α
q+q̃ will be

continuously embedded into (H3)q, and the interconnection between the spaces (Hp)
γ,α
q

and (Hp)
1,α
q (corresponding to γ ≡ 1) is quite analogous to the interconnection between

the spaces (Hp)
γ
q and (Hp)q. Finally, if

• the function α is invertible and its inverse function satisfies the assumptions
accepted for α

then by analogy with [23] we obtain the following statement.

Theorem. The system
(
hγ,α
n (x)

)∞
n=0

is minimal one with respect to the spaces (Hp)
γ,α
q ;

for p ∈ N\{1, 2} and q ≥ q′′0 these spaces are function ones; and for q̂ ∈ N sufficiently
large there exist q1 = q1(q̂), q2 = q2(q̂) ∈ N such that (H3)q̂ ⊃ (H3)

γ,α
q̂+q1

⊃ (H3)q̂+q1+q2 ,

where the embeddings are dense and continuous.

Corollary. The space (H3)
γ,α := pr limq∈N(H3)

γ,α
q does not depend on γ and α as a

topological one.

Note that now we have no similar results for the spaces (Hp)
γ,α
q with p > 3 because

the kernels Am
n (see (1.13)) do not belong to the spaces H⊗̂n

−p,C⊗H⊗̂m
p,C , generally speaking.

But it is possible to overcome this problem if one considers a function α : NC → NC

(α(0) = 0) that is invertible, holomorphic at zero and locally bounded, and the inverse
function has the same properties, by analogy with [30, 19, 23].

Remark. The results of [12] connected with the Kondratiev spaces of test functions
and the results of this paper can be easily generalized to the case p ∈ N\{1}; and,
actually, it is sufficient to assume that only the embedding operator O2,1 : H2 → H1 is a
quasinuclear one. In fact, the assumption that the embedding operator O3,2 : H3 → H2 is
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a quasinuclear one is used in [12] in order to obtain estimates for |hn(x)|−3 and |hγ
n(x)|−3,

but similar estimates for |hn(x)|−2 and |hγ
n(x)|−2 immediately follow from the kernel

theorem (cf. [32]).

Although, generally speaking, the function hγ,α(x;λ) does not satisfy all assumptions
accepted for h(x;λ), the spaces (Hp)

γ,α
q can be used in order to construct a version of a

non-Gaussian analysis by analogy with [12, 35], for study of pseudodifferential operators
(in particular, of generalized translation operators), operators of stochastic integration
and differentiation, etc.

Acknowledgments. I am very grateful to Professor Yu. G. Kondratiev and Professor
A. V. Zagorodnyuk for helpful discussions of a holomorphy on infinite-dimensional spaces.
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