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SPECTRAL FUNCTIONS OF THE SIMPLEST EVEN ORDER

ORDINARY DIFFERENTIAL OPERATOR

ANTON LUNYOV

Dedicated with deep respect to Professor Ya. V. Mykytyuk on the occasion of his 60th birthday

Abstract. We consider the minimal differential operator A generated in L2(0,∞)

by the differential expression l(y) = (−1)ny(2n). Using the technique of boundary
triplets and the corresponding Weyl functions, we find explicit form of the charac-
teristic matrix and the corresponding spectral function for the Friedrichs and Krein

extensions of the operator A.

1. Introduction

Let P be the minimal symmetric operator, generated in L2(0,∞) by a differential
expression

(1)
n∑

k=0

(−1)k
(
pn−k(x)y

(k)
)(k)

.

Assume that its deficiency indices are n±(P) = n. It is well-known [8, Theorem VI.21.2],

[5, Theorem II.9.1] that any its proper self-adjoint extension P̃ is unitary equivalent to the
multiplication operator Λσ in the space L2

σ(R), where Λσ : f(x) → xf(x), f ∈ L2
σ(R),

and σ(·) is a non-decreasing left-continuous self-adjoint n × n matrix-function. The

matrix-function σ(·) is called a spectral function of the operator P̃ and coincides with

the spectral function of the characteristic matrix of P̃, which, in turn, can be found by

the Green function of the operator P̃ (see [8, VI.21.4]).
The purpose of this paper is to find an explicit form of the spectral function for the

Friedrichs extension (so-called “hard” extension) AF and for the Krein extension AK

(see [1, § 109] for precise definitions) of the minimal symmetric operator A generated in
L2(0,∞) by the differential expression

(2) l(y) := (−1)ny(2n)(·).
Explicit form of the spectral function of some selfadjoint extension Ã of A plays an

important role when the general selfadjoint differential operator is treated as a perturba-

tion of Ã. It is well-known that the Friedrichs extension AF of the operator A is defined
by the boundary conditions y(0) = y′(0) = · · · = y(n−1) = 0 and we show that the Krein
extension AK is defined by the boundary conditions y(n)(0) = · · · = y(2n−1) = 0.

We will exploit the technique of boundary triplets and the corresponding Weyl func-
tions (see Section 2 for precise definitions) to find the spectral function. This new ap-
proach to extension theory of symmetric operators has been appeared and elaborated
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during the last three decades (see [4, 2, 3] and references therein). It is well-known [3]

that the characteristic matrix of the selfadjoint extension Ã of A coincides with the Weyl
function of the corresponding boundary triplet. This allows us to find the characteristic
matrix and its spectral function easier than by classical method.

Let us formulate the main results of the paper.

Theorem 1. The characteristic matrix (the Weyl function) of the Friedrichs extension
AF of the operator A is given by

(3) MF (λ) =

( −Cj · Ck

sin((j + k + 1)α)
·
(

2n
√
−λ
)j+k+1

)n−1

j,k=0

, Imλ > 0.

where

(4) C0 := 1, Ck :=

k∏

p=1

ctg(pα), α =
π

2n
, k ∈ {1, . . . , n− 1},

and

(5)
2n
√
−λ := 2n

√
r · e

i(ϕ−π)
2n , λ = reiϕ, 0 < ϕ < π.

The corresponding spectral function is

σF (t) =
2n

π

(
Cj · Ck

2n+ 1 + j + k
· t 2n+1+j+k

2n

)n−1

j,k=0

, t > 0,(6)

σF (t) = 0, t < 0.(7)

Theorem 2. The Krein extension AK of the operator A is defined by the boundary
conditions

(8) y(n)(0) = y(n+1)(0) = · · · = y(2n−1) = 0.

Its characteristic matrix is

(9) MK(λ) =

(
−Cj · Ck

sin((j + k + 1)α)
·
( −1

2n
√
−λ

)j+k+1
)n−1

j,k=0

, Imλ > 0.

The corresponding spectral function is

σK(t) =
2n

π

(
(−1)j+k Cj · Ck

2n− 1− j − k
· t 2n−1−j−k

2n

)n−1

j,k=0

, t > 0,(10)

σK(t) = 0, t < 0.(11)

2. Preliminaries

2.1. R-functions. Let F (z) be an n×n matrix-function defined in C+ := {λ : Imλ > 0}.
It is calledR-function (or Nevanlinna function) if it is holomorphic in C+ and ImF (z) > 0,
z ∈ C+. Each R-function admits the following integral representation

(12) F (z) = A+ zB +

∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dσ(t), z ∈ C+,

where A,B ∈ C
n×n are selfadjoint matrices, B > 0 and σ(t) is a non-decreasing left-

continuous selfadjoint n× n matrix-function such that the matrix integral

(13)

∫ +∞

−∞

dσ(t)

1 + t2
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converges. The matrix-function σ(·) is called the spectral function of F (·). Note that
the spectral function σ(·) of F (·) can be obtained by the Stieltjes inversion formula,

(14)
1

2
(σ(t+ 0) + σ(t))− 1

2
(σ(s+ 0) + σ(s)) =

1

π
lim
y↓0

∫ t

s

Im(F (x+ iy))dx, s, t ∈ R.

2.2. Boundary triplets and Weyl functions. Let A be a closed symmetric operator
in a Hilbert space H with equal deficiency indices n+(A) = n−(A).

Definition 3. ([4]). A triplet Π = {H,Γ0,Γ1} consisting of an auxiliary Hilbert space
H and linear mappings

(15) Γj : dom(A∗) −→ H, j ∈ {0, 1},
is called a boundary triplet for the adjoint operator A∗ of A if the following two conditions
are satisfied:

(i) The second Green’s formula

(16) (A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ dom(A∗),

takes place and
(ii) the mapping

(17) Γ : dom(A∗) −→ H⊕H, Γf := {Γ0f,Γ1f},
is surjective.

It is easily seen that for each self-adjoint extension Ã of A there exists a (non-unique)
boundary triplet Π = {H,Γ0,Γ1} such that

dom(Ã) = ker(Γ0).

We say in this case that the triplet Π corresponds to Ã.

Definition 4. ([2, 3]). Let {H,Γ0,Γ1} be a boundary triplet for the operator A∗ and
A0 := A∗ ↾ ker(Γ0). The Weyl function of A corresponding to the boundary triplet
{H,Γ0,Γ1} is the unique mapping M(·) : ρ(A0) −→ [H] satisfying

(18) Γ1fz = M(z)Γ0fz, fz ∈ Nz := ker(A∗ − zI), z ∈ ρ(A0).

It is well known (see [2]) that the above implicit definition of the Weyl function is
correct and the Weyl functionM(·) is an R-function obeying 0 ∈ ρ(Im(M(i))). Therefore,
if dimH < ∞, it admits the integral representation (12), where σM (·) can be found
by (14).

3. Proofs of the main results

Lemma 5. Let Imλ > 0 and λ = reiϕ, 0 < ϕ < π. Then

(19) Nλ = span{yk(·, λ)}n−1
k=0 , yk(x, λ) := eωkρx,

where ρ := i
2n
√
λ := 2n

√
r · e (πn+ϕ)i

2n and ωk := e
iπk
n .

Proof. The system {yk(·, λ)}2n−1
k=0 forms a fundamental system of solutions of the equation

(−1)ny(2n) = λy for λ 6= 0. For k ∈ {0, 1, . . . , n− 1} we have

(20) Re(ωkρ) =
2n
√
r cos

(
π

2
+

ϕ

2n
+

πk

n

)
< 0.

Hence yk(·, λ) ∈ Nλ, k ∈ {0, 1, . . . , n− 1}. Since dimNλ = n, we are done. �
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Let x0, . . . , xn−1 ∈ C. Put

(21) Vand(x0, . . . , xn−1) := (xn−1−j
k )n−1

j,k=0 =




xn−1
0 xn−1

1 · · · xn−1
n−1

...
... · · ·

...
x0 x1 · · · xn−1

1 1 · · · 1


 .

The determinant of this matrix coincides with the Vandermonde determinant:

(22) det(Vand(x0, . . . , xn−1)) = det
(
(xn−1−j

k )n−1
j,k=0

)
=

∏

06j<k<n

(xj − xk).

Next put

(23) codiag(x0, x1, . . . , xn) = codiag(xj)
n−1
j=0 =




0 0 · · · 0 x0

0 0 · · · x1 0
...

... · · ·
...

...
0 xn−2 · · · 0 0

xn−1 0 · · · 0 0




.

It is clear that

codiag(xj)
n−1
j=0 · (aj,k)n−1

j,k=0 = (xjan−1−j,k)
n−1
j,k=0,(24)

(aj,k)
n−1
j,k=0 · codiag(xk)

n−1
k=0 = (aj,n−1−kxn−1−k)

n−1
j,k=0.(25)

Proof of Theorem 1. The triplet Π = {Cn,Γ0,Γ1} with

Γ0y := col(y(n−1)(0), . . . , y′(0), y(0)),(26)

Γ1y := col(y(n)(0),−y(n+1)(0), . . . , (−1)n−1y(2n−1)(0))(27)

is a boundary triplet for the adjoint operator A∗ (see [2]). Clearly it corresponds to AF .
Hence the characteristic matrix of AF coincides with the Weyl function MF (λ) of A that
corresponds to the triplet Π.

It follows from y
(j)
k (0, λ) = (ρ · ωk)

j that

N0(λ) :=
(
Γ0y0 . . . Γ0yn−1

)
=
(
(ρ · ωk)

n−1−j
)n−1

j,k=0
,(28)

N1(λ) :=
(
Γ1y0 . . . Γ1yn−1

)
=
(
(−1)j(ρ · ωk)

n+j
)n−1

j,k=0
.(29)

Put

(30) V := (vjk)
n−1
j,k=0 := (ωn−1−j

k )n−1
j,k=0 = Vand(ω0, . . . , ωn−1).

Since numbers ω0, . . . , ωn−1 are distinct, it follows from (22) that V is non-singular
matrix. Put V −1 =: (ṽjk)

n−1
j,k=0. Then by Lemma 5, for the Weyl function MF (λ) we

have

MF (λ) = N1(λ) ·N−1
0 (λ) =

(
(−1)j(ρ · ωp)

n+j
)n−1

j,p=0
·
(
ρk+1−n · ṽpk

)n−1

p,k=0

=
(
(−1)jρj+k+1

n−1∑

p=0

ωn+j
p · ṽpk

)n−1

j,k=0
.(31)

Let Vjk be the cofactor of the element vjk of the matrix V . Combining Cramer’s rule
with the expansion of the determinant according to the k-th row yields

(32)

n−1∑

p=0

ωn+j
p · ṽpk =

1

det(V )

n−1∑

p=0

ωn+j
p Vkp =

det
(
V

(k)
j

)

det(V )
,
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where the matrix V
(k)
j is obtained from the matrix V by replacing the row (ωn−1−k

p )n−1
p=0

by the row (ωn+j
p )n−1

p=0 . Since ωq
p = e

πipq
n = ωp

q , then V
(k)
j is symmetric to the matrix

Vand(ω0, . . . , ωn−k−2, ωn+j , ωn−k, . . . , ωn−1) with respect to the off-diagonal. Hence

(33) det
(
V

(k)
j

)
= det (Vand(ω0, . . . , ωn−k−2, ωn+j , ωn−k, . . . , ωn−1)) .

Combining (22) with (33) yields

det
(
V

(k)
j

)

det(V )
=

n−1∏

p=0
p6=n−1−k

ωn+j − ωp

ωn−1−k − ωp
.

Since ωq − ωp = 2iεp+q sin((q − p)α), where α = π
2n and ε = eiα, then

(34)

det
(
V

(k)
j

)

det(V )
= ε(j+k+1)(n−1) ·

n−1∏

p=0
p6=n−1−k

sin((n+ j − p)α)

sin((n− 1− k − p)α)

=
ε(j+k+1)(n−1)

sin((j + k + 1)α)
·

∏n−1
p=0 cos((j − p)α)

∏n−1−k
p=1 sin pα ·∏k

p=1(− sin pα)

=
(−1)kε(j+k+1)(n−1)

sin((j + k + 1)α)
·
∏j

p=1 cos pα ·∏n−1−j
p=1 cos pα

∏k
p=1 sin pα ·

∏n−1−k
p=1 sin pα

=
(−1)kε(j+k+1)(n−1)

sin((j + k + 1)α)
·

k∏

p=1

ctg pα ·
j∏

p=1

ctg pα.

The last step is implied by the identity

(35)

j∏

p=1

cos pα ·
n−1−j∏

p=1

sin pα =

n−1∏

p=1

cos pα =

n−1∏

p=1

sin pα, j ∈ {0, 1, . . . , n− 1}.

Inserting formulas (32), (34) into (31) and taking into account the identity −εn−1ρ =
2n
√
r · e i(ϕ−π)

2n we get the desired formula (3) for MF (λ).
Now let’s prove formulas (6)–(7). SinceMF (λ) is continuous function of λ in the closed

upper half-plane, Stieltjes inversion formula (14) and Lebesgue limit theorem yields

(36) σF (t) =
1

π

∫ t

0

Im

(
lim
y↓0

MF (x+ iy)

)
dx, t ∈ R.

Note that if λ = x+ iy with x ∈ R, y > 0, then (5) implies

(37) lim
y↓0

2n
√
−λ =

{
2n
√
x · e−iα, x > 0,

2n
√
−x, x < 0.

Combining (3) with (37) yields

(38) lim
y↓0

MF (x+ iy) =





(
−Cj · Ck · x j+k+1

2n · e−i(j+k+1)α

sin((j+k+1)α)

)n−1

j,k=0
, x > 0,

(
−Cj · Ck · (−x)

j+k+1
2n · 1

sin((j+k+1)α)

)n−1

j,k=0
, x < 0.

Hence

(39) Im

(
lim
y↓0

MF (x+ iy)

)
=





(
Cj · Ck · x j+k+1

2n

)n−1

j,k=0
, x > 0,

0, x < 0.

Combining (36) with (39) yields (6)–(7). �
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Remark 6. Calculation similar to (31)–(34) was made in the proof of Theorem 1
and Corollary 1 in [7] in connection with sharp constants in inequalities for interme-
diate derivatives. Moreover, it is curious to note that these constants are connected
with diagonal entries of the Weyl functions MF (λ) and MK(λ). Namely, if An,j, j ∈
{0, 1, . . . , n− 1}, is the sharp constant in the following inequality

(40) |f j(0)| 6 An,j ·
(
‖f‖22 + ‖f (n)‖22

)1/2
, f ∈ Wn,2[0,∞),

then formula (1.4) from [7] and formulas (38), (58) imply

(41) A2
n,j = [MK(−1)]jj = − [MF (−1)]jj .

Remark 7. Formula (3) could be also proved using explicit formula for the inverse
matrix V −1 from [6] and some auxiliary trigonometric identity from [6]. But this way is
quite cumbersome.

Example 8. For n = 1 the Weyl function MF (λ) and its spectral function σF (t) are
well-known (see [1, § 132], [8]) and given by

(42) MF (λ) = i
√
λ, σF (t) =

2

3π
t3/2, t > 0,

which coincides with formulas (3), (6) for n = 1. For n = 2 these formulas turn into

(43) MF (λ) =

(
(i− 1)λ1/4 iλ1/2

iλ1/2 (i+ 1)λ3/4

)
, σF (t) =

1

π

(
4
5 t

5/4 2
3 t

3/2

2
3 t

3/2 4
7 t

7/4

)
, t > 0,

while for n = 3 we have

MF (λ) =




(
i−

√
3
)
λ1/6

(
−1 + i

√
3
)
λ1/3 iλ1/2

(
−1 + i

√
3
)
λ1/3 3iλ1/2

(
1 + i

√
3
)
λ2/3

iλ1/2
(
1 + i

√
3
)
λ2/3

(
i+

√
3
)
λ5/6


 ,(44)

σF (t) =
1

π




6
7 t

7/6 3
√
3

4 t4/3 2
3 t

3/2

3
√
3

4 t4/3 2t3/2 3
√
3

5 t5/3

2
3 t

3/2 3
√
3

5 t5/3 6
11 t

11/6


 , t > 0.(45)

Proof of Theorem 2. By [2, Proposition 5], dom(AK) = ker(Γ1 − MF (0)Γ0), where
MF (0) = s- limx↑0 MF (x) and Γ0, Γ1 are given by (26)–(27). In view of (3), MF (0) = 0.
Hence dom(AK) = ker(Γ1) and the boundary triplet Π′ := {Cn,Γ′

0,Γ
′
1} := {Cn,Γ1,−Γ0}

corresponds to AK . Definition of Γ1 (see (27)) implies that AK is defined by the boundary
conditions (8). Also note that

(46) MK(λ) = −N0(λ)N
−1
1 (λ) = −M−1

F (λ).

It follows from (28) and (29) that

(47) N0(λ) = D0(λ)V, N1(λ) = D1(λ) · (ωj
k)

n−1
j,k=0 ·D,

where

D0(λ) := diag(ρn−1−j)n−1
j=0 , D1(λ) := diag((−1)jρn+j)n−1

j=0 ,(48)

D := diag(ωn
k )

n
k=0 = diag((−1)k)nk=0.(49)

Combining (24) with (30) yields

(ωj
k)

n−1
j,k=0 = R · V, R = codiag(1, . . . , 1).

Therefore,

(50) N1(λ) = D1(λ) ·R · V ·D.
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Combining (31) with (47) and (50) and taking into account that D = D−1 and R = R−1

we get

MF (λ) = N1(λ)N
−1
0 (λ) = D1(λ)R · V DV −1 ·D−1

0 (λ),(51)

MK(λ) = −M−1
F (λ) = −D0(λ) · V DV −1 ·RD−1

1 (λ).(52)

Expressing V DV −1 from (51) and inserting it to (52) we arrive at

(53) MK(λ) = −D0(λ)RD−1
1 (λ) ·MF (λ) ·D0(λ)RD−1

1 (λ).

Definition of D0(λ) and D1(λ) (see (48)) and formulas (24)–(25) implies

D0(λ)RD−1
1 (λ) = codiag(ρn−1−j)n−1

j=0 · diag((−1)jρ−n−j)n−1
j=0

= ρ−n codiag((−1)n−1−j)n−1
j=0 .(54)

Combining (53), (54), (24), (25) and (3) yields

(55)

MK(λ) =

(
ρ−2n(−1)n−1−j+k Cn−1−j · Cn−1−k

sin((2n− 1− j − k)α)

(
2n
√
−λ
)2n−1−j−k

)n−1

j,k=0

=

(
−λ · i

−2n

λ
· (−1)n · Cn−1−j · Cn−1−k

sin((j + k + 1)α)

( −1
2n
√
−λ

)j+k+1
)n−1

j,k=0

.

It follows from (35) that Cj = Cn−1−j , j ∈ {0, 1, . . . , n− 1}. In view of this, (55) implies
the desired formula (9) for MK(λ).

Now let’s prove formulas (10)–(11). It follows from (9) that for j, k ∈ {0, 1, . . . , n− 1}

(56)
∣∣[MK(x+ iy)]jk

∣∣ 6 C
(
|x|−1+ 1

2n + |x|− 1
2n

)
, x ∈ R \ {0}, y > 0,

for some C > 0. Hence Stieltjes inversion formula (14) and Lebesgue limit theorem yields

(57) σK(t) =
1

π

∫ t

0

Im

(
lim
y↓0

MK(x+ iy)

)
dx, t ∈ R.

Combining (9) with (37) we arrive at

(58) lim
y↓0

MK(x+ iy)=





(
(−1)j+k · Cj · Ck · x− j+k+1

2n · ei(j+k+1)α

sin((j+k+1)α)

)n−1

j,k=0
, x > 0,

(
(−1)j+k · Cj · Ck · (−x)−

j+k+1
2n · 1

sin((j+k+1)α)

)n−1

j,k=0
, x < 0.

Hence

(59) Im

(
lim
y↓0

MK(x+ iy)

)
=





(
(−1)j+kCj · Ck · x− j+k+1

2n

)n−1

j,k=0
, x > 0,

0, x < 0.

Combining (57) with (59) yields (10)–(11). �

Remark 9. Formulas (3), (9) and (46) lead to the following curious identity

(60)

n−1∑

p=0

(−1)p+k · Cj · C2
p · Ck

sin((j + p+ 1)α) sin((p+ k + 1)α)
= δjk, j, k ∈ {0, 1, . . . , n− 1}.

It seems non-trivial to prove it directly.
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