SPECTRAL FUNCTIONS OF THE SIMPLEST EVEN ORDER ORDINARY DIFFERENTIAL OPERATOR

ANTON LUNYOV
Dedicated with deep respect to Professor Ya. V. Mykytyuk on the occasion of his 60th birthday

Abstract. We consider the minimal differential operator A generated in $L^{2}(0, \infty)$ by the differential expression $l(y)=(-1)^{n} y^{(2 n)}$. Using the technique of boundary triplets and the corresponding Weyl functions, we find explicit form of the characteristic matrix and the corresponding spectral function for the Friedrichs and Krein extensions of the operator A.

1. Introduction

Let \mathcal{P} be the minimal symmetric operator, generated in $L^{2}(0, \infty)$ by a differential expression

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\left(p_{n-k}(x) y^{(k)}\right)^{(k)} \tag{1}
\end{equation*}
$$

Assume that its deficiency indices are $n_{ \pm}(\mathcal{P})=n$. It is well-known [8, Theorem VI.21.2], [5, Theorem II.9.1] that any its proper self-adjoint extension $\widetilde{\mathcal{P}}$ is unitary equivalent to the multiplication operator Λ_{σ} in the space $L_{\sigma}^{2}(\mathbb{R})$, where $\Lambda_{\sigma}: f(x) \rightarrow x f(x), f \in L_{\sigma}^{2}(\mathbb{R})$, and $\sigma(\cdot)$ is a non-decreasing left-continuous self-adjoint $n \times n$ matrix-function. The matrix-function $\sigma(\cdot)$ is called a spectral function of the operator $\widetilde{\mathcal{P}}$ and coincides with the spectral function of the characteristic matrix of $\widetilde{\mathcal{P}}$, which, in turn, can be found by the Green function of the operator $\widetilde{\mathcal{P}}$ (see [8, VI.21.4]).

The purpose of this paper is to find an explicit form of the spectral function for the Friedrichs extension (so-called "hard" extension) A_{F} and for the Krein extension A_{K} (see [1, § 109] for precise definitions) of the minimal symmetric operator A generated in $L^{2}(0, \infty)$ by the differential expression

$$
\begin{equation*}
l(y):=(-1)^{n} y^{(2 n)}(\cdot) \tag{2}
\end{equation*}
$$

Explicit form of the spectral function of some selfadjoint extension \widetilde{A} of A plays an important role when the general selfadjoint differential operator is treated as a perturbation of \widetilde{A}. It is well-known that the Friedrichs extension A_{F} of the operator A is defined by the boundary conditions $y(0)=y^{\prime}(0)=\cdots=y^{(n-1)}=0$ and we show that the Krein extension A_{K} is defined by the boundary conditions $y^{(n)}(0)=\cdots=y^{(2 n-1)}=0$.

We will exploit the technique of boundary triplets and the corresponding Weyl functions (see Section 2 for precise definitions) to find the spectral function. This new approach to extension theory of symmetric operators has been appeared and elaborated

[^0]during the last three decades (see [4, 2, 3] and references therein). It is well-known [3] that the characteristic matrix of the selfadjoint extension \widetilde{A} of A coincides with the Weyl function of the corresponding boundary triplet. This allows us to find the characteristic matrix and its spectral function easier than by classical method.

Let us formulate the main results of the paper.
Theorem 1. The characteristic matrix (the Weyl function) of the Friedrichs extension A_{F} of the operator A is given by

$$
\begin{equation*}
M_{F}(\lambda)=\left(\frac{-C_{j} \cdot C_{k}}{\sin ((j+k+1) \alpha)} \cdot(\sqrt[2 n]{-\lambda})^{j+k+1}\right)_{j, k=0}^{n-1}, \quad \operatorname{Im} \lambda>0 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{0}:=1, \quad C_{k}:=\prod_{p=1}^{k} \operatorname{ctg}(p \alpha), \quad \alpha=\frac{\pi}{2 n}, \quad k \in\{1, \ldots, n-1\} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt[2 n]{-\lambda}:=\sqrt[2 n]{r} \cdot e^{\frac{i(\varphi-\pi)}{2 n}}, \quad \lambda=r e^{i \varphi}, \quad 0<\varphi<\pi \tag{5}
\end{equation*}
$$

The corresponding spectral function is

$$
\begin{align*}
\sigma_{F}(t) & =\frac{2 n}{\pi}\left(\frac{C_{j} \cdot C_{k}}{2 n+1+j+k} \cdot t^{\frac{2 n+1+j+k}{2 n}}\right)_{j, k=0}^{n-1}, \quad t \geqslant 0 \tag{6}\\
\sigma_{F}(t) & =0, \quad t<0 \tag{7}
\end{align*}
$$

Theorem 2. The Krein extension A_{K} of the operator A is defined by the boundary conditions

$$
\begin{equation*}
y^{(n)}(0)=y^{(n+1)}(0)=\cdots=y^{(2 n-1)}=0 \tag{8}
\end{equation*}
$$

Its characteristic matrix is

$$
\begin{equation*}
M_{K}(\lambda)=\left(\frac{-C_{j} \cdot C_{k}}{\sin ((j+k+1) \alpha)} \cdot\left(\frac{-1}{\sqrt[2 n]{-\lambda}}\right)^{j+k+1}\right)_{j, k=0}^{n-1}, \quad \operatorname{Im} \lambda>0 \tag{9}
\end{equation*}
$$

The corresponding spectral function is

$$
\begin{align*}
\sigma_{K}(t) & =\frac{2 n}{\pi}\left((-1)^{j+k} \frac{C_{j} \cdot C_{k}}{2 n-1-j-k} \cdot t^{\frac{2 n-1-j-k}{2 n}}\right)_{j, k=0}^{n-1}, \quad t \geqslant 0 \tag{10}\\
\sigma_{K}(t) & =0, \quad t<0 \tag{11}
\end{align*}
$$

2. Preliminaries

2.1. R-functions. Let $F(z)$ be an $n \times n$ matrix-function defined in $\mathbb{C}_{+}:=\{\lambda: \operatorname{Im} \lambda>0\}$. It is called R-function (or Nevanlinna function) if it is holomorphic in \mathbb{C}_{+}and $\operatorname{Im} F(z) \geqslant 0$, $z \in \mathbb{C}_{+}$. Each R-function admits the following integral representation

$$
\begin{equation*}
F(z)=A+z B+\int_{-\infty}^{+\infty}\left(\frac{1}{t-z}-\frac{t}{1+t^{2}}\right) d \sigma(t), \quad z \in \mathbb{C}_{+} \tag{12}
\end{equation*}
$$

where $A, B \in \mathbb{C}^{n \times n}$ are selfadjoint matrices, $B \geqslant 0$ and $\sigma(t)$ is a non-decreasing leftcontinuous selfadjoint $n \times n$ matrix-function such that the matrix integral

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{d \sigma(t)}{1+t^{2}} \tag{13}
\end{equation*}
$$

converges. The matrix-function $\sigma(\cdot)$ is called the spectral function of $F(\cdot)$. Note that the spectral function $\sigma(\cdot)$ of $F(\cdot)$ can be obtained by the Stieltjes inversion formula,
(14) $\frac{1}{2}(\sigma(t+0)+\sigma(t))-\frac{1}{2}(\sigma(s+0)+\sigma(s))=\frac{1}{\pi} \lim _{y \downarrow 0} \int_{s}^{t} \operatorname{Im}(F(x+i y)) d x, \quad s, t \in \mathbb{R}$.
2.2. Boundary triplets and Weyl functions. Let A be a closed symmetric operator in a Hilbert space \mathfrak{H} with equal deficiency indices $n_{+}(A)=n_{-}(A)$.

Definition 3. ([4]). A triplet $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ consisting of an auxiliary Hilbert space \mathcal{H} and linear mappings

$$
\begin{equation*}
\Gamma_{j}: \operatorname{dom}\left(A^{*}\right) \longrightarrow \mathcal{H}, \quad j \in\{0,1\} \tag{15}
\end{equation*}
$$

is called a boundary triplet for the adjoint operator A^{*} of A if the following two conditions are satisfied:
(i) The second Green's formula

$$
\begin{equation*}
\left(A^{*} f, g\right)-\left(f, A^{*} g\right)=\left(\Gamma_{1} f, \Gamma_{0} g\right)-\left(\Gamma_{0} f, \Gamma_{1} g\right), \quad f, g \in \operatorname{dom}\left(A^{*}\right) \tag{16}
\end{equation*}
$$

takes place and
(ii) the mapping

$$
\begin{equation*}
\Gamma: \operatorname{dom}\left(A^{*}\right) \longrightarrow \mathcal{H} \oplus \mathcal{H}, \quad \Gamma f:=\left\{\Gamma_{0} f, \Gamma_{1} f\right\} \tag{17}
\end{equation*}
$$

is surjective.
It is easily seen that for each self-adjoint extension \widetilde{A} of A there exists a (non-unique) boundary triplet $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ such that

$$
\operatorname{dom}(\widetilde{A})=\operatorname{ker}\left(\Gamma_{0}\right)
$$

We say in this case that the triplet Π corresponds to \widetilde{A}.
Definition 4. ([2, 3]). Let $\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triplet for the operator A^{*} and $A_{0}:=A^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right)$. The Weyl function of A corresponding to the boundary triplet $\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ is the unique mapping $M(\cdot): \rho\left(A_{0}\right) \longrightarrow[\mathcal{H}]$ satisfying

$$
\begin{equation*}
\Gamma_{1} f_{z}=M(z) \Gamma_{0} f_{z}, \quad f_{z} \in \mathfrak{N}_{z}:=\operatorname{ker}\left(A^{*}-z I\right), \quad z \in \rho\left(A_{0}\right) \tag{18}
\end{equation*}
$$

It is well known (see [2]) that the above implicit definition of the Weyl function is correct and the Weyl function $M(\cdot)$ is an R-function obeying $0 \in \rho(\operatorname{Im}(M(i)))$. Therefore, if $\operatorname{dim} \mathcal{H}<\infty$, it admits the integral representation (12), where $\sigma_{M}(\cdot)$ can be found by (14).

3. Proofs of the main results

Lemma 5. Let $\operatorname{Im} \lambda>0$ and $\lambda=r e^{i \varphi}, 0<\varphi<\pi$. Then

$$
\begin{equation*}
\mathfrak{N}_{\lambda}=\operatorname{span}\left\{y_{k}(\cdot, \lambda)\right\}_{k=0}^{n-1}, \quad y_{k}(x, \lambda):=e^{\omega_{k} \rho x} \tag{19}
\end{equation*}
$$

where $\rho:=i \sqrt[2 n]{\lambda}:=\sqrt[2 n]{r} \cdot e^{\frac{(\pi n+\varphi) i}{2 n}}$ and $\omega_{k}:=e^{\frac{i \pi k}{n}}$.
Proof. The system $\left\{y_{k}(\cdot, \lambda)\right\}_{k=0}^{2 n-1}$ forms a fundamental system of solutions of the equation $(-1)^{n} y^{(2 n)}=\lambda y$ for $\lambda \neq 0$. For $k \in\{0,1, \ldots, n-1\}$ we have

$$
\begin{equation*}
\operatorname{Re}\left(\omega_{k} \rho\right)=\sqrt[2 n]{r} \cos \left(\frac{\pi}{2}+\frac{\varphi}{2 n}+\frac{\pi k}{n}\right)<0 \tag{20}
\end{equation*}
$$

Hence $y_{k}(\cdot, \lambda) \in \mathfrak{N}_{\lambda}, k \in\{0,1, \ldots, n-1\}$. Since $\operatorname{dim} \mathfrak{N}_{\lambda}=n$, we are done.

Let $x_{0}, \ldots, x_{n-1} \in \mathbb{C}$. Put

$$
\operatorname{Vand}\left(x_{0}, \ldots, x_{n-1}\right):=\left(x_{k}^{n-1-j}\right)_{j, k=0}^{n-1}=\left(\begin{array}{cccc}
x_{0}^{n-1} & x_{1}^{n-1} & \cdots & x_{n-1}^{n-1} \tag{21}\\
\vdots & \vdots & \cdots & \vdots \\
x_{0} & x_{1} & \cdots & x_{n-1} \\
1 & 1 & \cdots & 1
\end{array}\right) .
$$

The determinant of this matrix coincides with the Vandermonde determinant:

$$
\begin{equation*}
\operatorname{det}\left(\operatorname{Vand}\left(x_{0}, \ldots, x_{n-1}\right)\right)=\operatorname{det}\left(\left(x_{k}^{n-1-j}\right)_{j, k=0}^{n-1}\right)=\prod_{0 \leqslant j<k<n}\left(x_{j}-x_{k}\right) \tag{22}
\end{equation*}
$$

Next put

$$
\operatorname{codiag}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\operatorname{codiag}\left(x_{j}\right)_{j=0}^{n-1}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & x_{0} \tag{23}\\
0 & 0 & \cdots & x_{1} & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & x_{n-2} & \cdots & 0 & 0 \\
x_{n-1} & 0 & \cdots & 0 & 0
\end{array}\right)
$$

It is clear that

$$
\begin{align*}
\operatorname{codiag}\left(x_{j}\right)_{j=0}^{n-1} \cdot\left(a_{j, k}\right)_{j, k=0}^{n-1} & =\left(x_{j} a_{n-1-j, k}\right)_{j, k=0}^{n-1} \tag{24}\\
\left(a_{j, k}\right)_{j, k=0}^{n-1} \cdot \operatorname{codiag}\left(x_{k}\right)_{k=0}^{n-1} & =\left(a_{j, n-1-k} x_{n-1-k}\right)_{j, k=0}^{n-1} \tag{25}
\end{align*}
$$

Proof of Theorem 1. The triplet $\Pi=\left\{\mathbb{C}^{n}, \Gamma_{0}, \Gamma_{1}\right\}$ with

$$
\begin{align*}
& \Gamma_{0} y:=\operatorname{col}\left(y^{(n-1)}(0), \ldots, y^{\prime}(0), y(0)\right) \tag{26}\\
& \Gamma_{1} y:=\operatorname{col}\left(y^{(n)}(0),-y^{(n+1)}(0), \ldots,(-1)^{n-1} y^{(2 n-1)}(0)\right) \tag{27}
\end{align*}
$$

is a boundary triplet for the adjoint operator A^{*} (see [2]). Clearly it corresponds to A_{F}. Hence the characteristic matrix of A_{F} coincides with the Weyl function $M_{F}(\lambda)$ of A that corresponds to the triplet Π.

It follows from $y_{k}^{(j)}(0, \lambda)=\left(\rho \cdot \omega_{k}\right)^{j}$ that

$$
\begin{align*}
& N_{0}(\lambda):=\left(\begin{array}{lll}
\Gamma_{0} y_{0} & \ldots & \Gamma_{0} y_{n-1}
\end{array}\right)=\left(\begin{array}{lll}
\left.\left(\rho \cdot \omega_{k}\right)^{n-1-j}\right)_{j, k=0}^{n-1} \\
N_{1}(\lambda) & :=\left(\begin{array}{lll}
\Gamma_{1} y_{0} & \ldots & \Gamma_{1} y_{n-1}
\end{array}\right)=\left((-1)^{j}\left(\rho \cdot \omega_{k}\right)^{n+j}\right)_{j, k=0}^{n-1}
\end{array} . \begin{array}{l}
\end{array} . \begin{array}{ll}
\end{array}\right) \tag{28}
\end{align*}
$$

Put

$$
\begin{equation*}
V:=\left(v_{j k}\right)_{j, k=0}^{n-1}:=\left(\omega_{k}^{n-1-j}\right)_{j, k=0}^{n-1}=\operatorname{Vand}\left(\omega_{0}, \ldots, \omega_{n-1}\right) \tag{30}
\end{equation*}
$$

Since numbers $\omega_{0}, \ldots, \omega_{n-1}$ are distinct, it follows from (22) that V is non-singular matrix. Put $V^{-1}=:\left(\widetilde{v}_{j k}\right)_{j, k=0}^{n-1}$. Then by Lemma 5 , for the Weyl function $M_{F}(\lambda)$ we have

$$
\begin{align*}
M_{F}(\lambda)=N_{1}(\lambda) \cdot N_{0}^{-1}(\lambda) & =\left((-1)^{j}\left(\rho \cdot \omega_{p}\right)^{n+j}\right)_{j, p=0}^{n-1} \cdot\left(\rho^{k+1-n} \cdot \widetilde{v}_{p k}\right)_{p, k=0}^{n-1} \\
& =\left((-1)^{j} \rho^{j+k+1} \sum_{p=0}^{n-1} \omega_{p}^{n+j} \cdot \widetilde{v}_{p k}\right)_{j, k=0}^{n-1} \tag{31}
\end{align*}
$$

Let $V_{j k}$ be the cofactor of the element $v_{j k}$ of the matrix V. Combining Cramer's rule with the expansion of the determinant according to the k-th row yields

$$
\begin{equation*}
\sum_{p=0}^{n-1} \omega_{p}^{n+j} \cdot \widetilde{v}_{p k}=\frac{1}{\operatorname{det}(V)} \sum_{p=0}^{n-1} \omega_{p}^{n+j} V_{k p}=\frac{\operatorname{det}\left(V_{j}^{(k)}\right)}{\operatorname{det}(V)} \tag{32}
\end{equation*}
$$

where the matrix $V_{j}^{(k)}$ is obtained from the matrix V by replacing the row $\left(\omega_{p}^{n-1-k}\right)_{p=0}^{n-1}$ by the row $\left(\omega_{p}^{n+j}\right)_{p=0}^{n-1}$. Since $\omega_{p}^{q}=e^{\frac{\pi i p q}{n}}=\omega_{q}^{p}$, then $V_{j}^{(k)}$ is symmetric to the matrix $\operatorname{Vand}\left(\omega_{0}, \ldots, \omega_{n-k-2}, \omega_{n+j}, \omega_{n-k}, \ldots, \omega_{n-1}\right)$ with respect to the off-diagonal. Hence

$$
\begin{equation*}
\operatorname{det}\left(V_{j}^{(k)}\right)=\operatorname{det}\left(\operatorname{Vand}\left(\omega_{0}, \ldots, \omega_{n-k-2}, \omega_{n+j}, \omega_{n-k}, \ldots, \omega_{n-1}\right)\right) \tag{33}
\end{equation*}
$$

Combining (22) with (33) yields

$$
\frac{\operatorname{det}\left(V_{j}^{(k)}\right)}{\operatorname{det}(V)}=\prod_{\substack{p=0 \\ p \neq n-1-k}}^{n-1} \frac{\omega_{n+j}-\omega_{p}}{\omega_{n-1-k}-\omega_{p}}
$$

Since $\omega_{q}-\omega_{p}=2 i \varepsilon^{p+q} \sin ((q-p) \alpha)$, where $\alpha=\frac{\pi}{2 n}$ and $\varepsilon=e^{i \alpha}$, then

$$
\begin{align*}
\frac{\operatorname{det}\left(V_{j}^{(k)}\right)}{\operatorname{det}(V)} & =\varepsilon^{(j+k+1)(n-1)} \cdot \prod_{\substack{p=0 \\
p \neq n-1-k}}^{n-1} \frac{\sin ((n+j-p) \alpha)}{\sin ((n-1-k-p) \alpha)} \\
& =\frac{\varepsilon^{(j+k+1)(n-1)}}{\sin ((j+k+1) \alpha)} \cdot \frac{\prod_{p=0}^{n-1} \cos ((j-p) \alpha)}{\prod_{p=1}^{n-1-k} \sin p \alpha \cdot \prod_{p=1}^{k}(-\sin p \alpha)} \tag{34}\\
& =\frac{(-1)^{k} \varepsilon^{(j+k+1)(n-1)}}{\sin ((j+k+1) \alpha)} \cdot \frac{\prod_{p=1}^{j} \cos p \alpha \cdot \prod_{p=1}^{n-1-j} \cos p \alpha}{\prod_{p=1}^{k} \sin p \alpha \cdot \prod_{p=1}^{n-1-k} \sin p \alpha} \\
& =\frac{(-1)^{k} \varepsilon^{(j+k+1)(n-1)}}{\sin ((j+k+1) \alpha)} \cdot \prod_{p=1}^{k} \operatorname{ctg} p \alpha \cdot \prod_{p=1}^{j} \operatorname{ctg} p \alpha .
\end{align*}
$$

The last step is implied by the identity

$$
\begin{equation*}
\prod_{p=1}^{j} \cos p \alpha \cdot \prod_{p=1}^{n-1-j} \sin p \alpha=\prod_{p=1}^{n-1} \cos p \alpha=\prod_{p=1}^{n-1} \sin p \alpha, \quad j \in\{0,1, \ldots, n-1\} \tag{35}
\end{equation*}
$$

Inserting formulas (32), (34) into (31) and taking into account the identity $-\varepsilon^{n-1} \rho=$ $\sqrt[2 n]{r} \cdot e^{\frac{i(\varphi-\pi)}{2 n}}$ we get the desired formula (3) for $M_{F}(\lambda)$.

Now let's prove formulas (6)-(7). Since $M_{F}(\lambda)$ is continuous function of λ in the closed upper half-plane, Stieltjes inversion formula (14) and Lebesgue limit theorem yields

$$
\begin{equation*}
\sigma_{F}(t)=\frac{1}{\pi} \int_{0}^{t} \operatorname{Im}\left(\lim _{y \downarrow 0} M_{F}(x+i y)\right) d x, \quad t \in \mathbb{R} \tag{36}
\end{equation*}
$$

Note that if $\lambda=x+i y$ with $x \in \mathbb{R}, y>0$, then (5) implies

$$
\lim _{y \downarrow 0} \sqrt[2 n]{-\lambda}= \begin{cases}\sqrt[2 n]{x} \cdot e^{-i \alpha}, & x \geqslant 0 \tag{37}\\ \sqrt[2 n]{-x}, & x<0\end{cases}
$$

Combining (3) with (37) yields

$$
\lim _{y \downarrow 0} M_{F}(x+i y)= \begin{cases}\left(-C_{j} \cdot C_{k} \cdot x^{\frac{j+k+1}{2 n}} \cdot \frac{e^{-i(j+k+1) \alpha}}{\sin ((j+k+1) \alpha)}\right)_{j, k=0}^{n-1}, & x \geqslant 0 \tag{38}\\ \left(-C_{j} \cdot C_{k} \cdot(-x)^{\frac{j+k+1}{2 n}} \cdot \frac{1}{\sin ((j+k+1) \alpha)}\right)_{j, k=0}^{n-1}, & x<0 .\end{cases}
$$

Hence

$$
\operatorname{Im}\left(\lim _{y \downarrow 0} M_{F}(x+i y)\right)= \begin{cases}\left(C_{j} \cdot C_{k} \cdot x^{\frac{j+k+1}{2 n}}\right)_{j, k=0}^{n-1}, & x \geqslant 0 \tag{39}\\ 0, & x<0\end{cases}
$$

Combining (36) with (39) yields (6)-(7).

Remark 6. Calculation similar to (31)-(34) was made in the proof of Theorem 1 and Corollary 1 in [7] in connection with sharp constants in inequalities for intermediate derivatives. Moreover, it is curious to note that these constants are connected with diagonal entries of the Weyl functions $M_{F}(\lambda)$ and $M_{K}(\lambda)$. Namely, if $A_{n, j}, j \in$ $\{0,1, \ldots, n-1\}$, is the sharp constant in the following inequality

$$
\begin{equation*}
\left|f^{j}(0)\right| \leqslant A_{n, j} \cdot\left(\|f\|_{2}^{2}+\left\|f^{(n)}\right\|_{2}^{2}\right)^{1 / 2}, \quad f \in W^{n, 2}[0, \infty) \tag{40}
\end{equation*}
$$

then formula (1.4) from [7] and formulas (38), (58) imply

$$
\begin{equation*}
A_{n, j}^{2}=\left[M_{K}(-1)\right]_{j j}=-\left[M_{F}(-1)\right]_{j j} \tag{41}
\end{equation*}
$$

Remark 7. Formula (3) could be also proved using explicit formula for the inverse matrix V^{-1} from [6] and some auxiliary trigonometric identity from [6]. But this way is quite cumbersome.

Example 8. For $n=1$ the Weyl function $M_{F}(\lambda)$ and its spectral function $\sigma_{F}(t)$ are well-known (see [1, § 132], [8]) and given by

$$
\begin{equation*}
M_{F}(\lambda)=i \sqrt{\lambda}, \quad \sigma_{F}(t)=\frac{2}{3 \pi} t^{3 / 2}, \quad t>0 \tag{42}
\end{equation*}
$$

which coincides with formulas (3), (6) for $n=1$. For $n=2$ these formulas turn into

$$
M_{F}(\lambda)=\left(\begin{array}{cc}
(i-1) \lambda^{1 / 4} & i \lambda^{1 / 2} \tag{43}\\
i \lambda^{1 / 2} & (i+1) \lambda^{3 / 4}
\end{array}\right), \quad \sigma_{F}(t)=\frac{1}{\pi}\left(\begin{array}{cc}
\frac{4}{5} t^{5 / 4} & \frac{2}{3} t^{3 / 2} \\
\frac{2}{3} t^{3 / 2} & \frac{4}{7} t^{7 / 4}
\end{array}\right), \quad t>0
$$

while for $n=3$ we have

$$
\begin{align*}
M_{F}(\lambda) & =\left(\begin{array}{ccc}
(i-\sqrt{3}) \lambda^{1 / 6} & (-1+i \sqrt{3}) \lambda^{1 / 3} & i \lambda^{1 / 2} \\
(-1+i \sqrt{3}) \lambda^{1 / 3} & 3 i \lambda^{1 / 2} & (1+i \sqrt{3}) \lambda^{2 / 3} \\
i \lambda^{1 / 2} & (1+i \sqrt{3}) \lambda^{2 / 3} & (i+\sqrt{3}) \lambda^{5 / 6}
\end{array}\right) \tag{44}\\
\sigma_{F}(t) & =\frac{1}{\pi}\left(\begin{array}{ccc}
\frac{6}{7} t^{7 / 6} & \frac{3 \sqrt{3}}{4} t^{4 / 3} & \frac{2}{3} t^{3 / 2} \\
\frac{3 \sqrt{3}}{4} t^{4 / 3} & 2 t^{3 / 2} & \frac{3 \sqrt{3}}{5} t^{5 / 3} \\
\frac{2}{3} t^{3 / 2} & \frac{3 \sqrt{3}}{5} t^{5 / 3} & \frac{6}{11} t^{11 / 6}
\end{array}\right), \quad t>0 . \tag{45}
\end{align*}
$$

Proof of Theorem 2. By [2, Proposition 5], $\operatorname{dom}\left(A_{K}\right)=\operatorname{ker}\left(\Gamma_{1}-M_{F}(0) \Gamma_{0}\right)$, where $M_{F}(0)=s-\lim _{x \uparrow 0} M_{F}(x)$ and Γ_{0}, Γ_{1} are given by $(26)-(27)$. In view of $(3), M_{F}(0)=0$. Hence $\operatorname{dom}\left(A_{K}\right)=\operatorname{ker}\left(\Gamma_{1}\right)$ and the boundary triplet $\Pi^{\prime}:=\left\{\mathbb{C}^{n}, \Gamma_{0}^{\prime}, \Gamma_{1}^{\prime}\right\}:=\left\{\mathbb{C}^{n}, \Gamma_{1},-\Gamma_{0}\right\}$ corresponds to A_{K}. Definition of Γ_{1} (see (27)) implies that A_{K} is defined by the boundary conditions (8). Also note that

$$
\begin{equation*}
M_{K}(\lambda)=-N_{0}(\lambda) N_{1}^{-1}(\lambda)=-M_{F}^{-1}(\lambda) . \tag{46}
\end{equation*}
$$

It follows from (28) and (29) that

$$
\begin{equation*}
N_{0}(\lambda)=D_{0}(\lambda) V, \quad N_{1}(\lambda)=D_{1}(\lambda) \cdot\left(\omega_{k}^{j}\right)_{j, k=0}^{n-1} \cdot D \tag{47}
\end{equation*}
$$

where

$$
\begin{gather*}
D_{0}(\lambda):=\operatorname{diag}\left(\rho^{n-1-j}\right)_{j=0}^{n-1}, \quad D_{1}(\lambda):=\operatorname{diag}\left((-1)^{j} \rho^{n+j}\right)_{j=0}^{n-1}, \tag{48}\\
D:=\operatorname{diag}\left(\omega_{k}^{n}\right)_{k=0}^{n}=\operatorname{diag}\left((-1)^{k}\right)_{k=0}^{n} . \tag{49}
\end{gather*}
$$

Combining (24) with (30) yields

$$
\left(\omega_{k}^{j}\right)_{j, k=0}^{n-1}=R \cdot V, \quad R=\operatorname{codiag}(1, \ldots, 1)
$$

Therefore,

$$
\begin{equation*}
N_{1}(\lambda)=D_{1}(\lambda) \cdot R \cdot V \cdot D \tag{50}
\end{equation*}
$$

Combining (31) with (47) and (50) and taking into account that $D=D^{-1}$ and $R=R^{-1}$ we get

$$
\begin{array}{ll}
M_{F}(\lambda)=N_{1}(\lambda) N_{0}^{-1}(\lambda) & =D_{1}(\lambda) R \cdot V D V^{-1} \cdot D_{0}^{-1}(\lambda) \\
M_{K}(\lambda)=-M_{F}^{-1}(\lambda) & =-D_{0}(\lambda) \cdot V D V^{-1} \cdot R D_{1}^{-1}(\lambda) \tag{52}
\end{array}
$$

Expressing $V D V^{-1}$ from (51) and inserting it to (52) we arrive at

$$
\begin{equation*}
M_{K}(\lambda)=-D_{0}(\lambda) R D_{1}^{-1}(\lambda) \cdot M_{F}(\lambda) \cdot D_{0}(\lambda) R D_{1}^{-1}(\lambda) \tag{53}
\end{equation*}
$$

Definition of $D_{0}(\lambda)$ and $D_{1}(\lambda)$ (see (48)) and formulas (24)-(25) implies

$$
\begin{align*}
D_{0}(\lambda) R D_{1}^{-1}(\lambda) & =\operatorname{codiag}\left(\rho^{n-1-j}\right)_{j=0}^{n-1} \cdot \operatorname{diag}\left((-1)^{j} \rho^{-n-j}\right)_{j=0}^{n-1} \\
& =\rho^{-n} \operatorname{codiag}\left((-1)^{n-1-j}\right)_{j=0}^{n-1} . \tag{54}
\end{align*}
$$

Combining (53), (54), (24), (25) and (3) yields

$$
\begin{align*}
M_{K}(\lambda) & =\left(\rho^{-2 n}(-1)^{n-1-j+k} \frac{C_{n-1-j} \cdot C_{n-1-k}}{\sin ((2 n-1-j-k) \alpha)}(\sqrt[2 n]{-\lambda})^{2 n-1-j-k}\right)_{j, k=0}^{n-1} \\
& =\left(-\lambda \cdot \frac{i^{-2 n}}{\lambda} \cdot(-1)^{n} \cdot \frac{C_{n-1-j} \cdot C_{n-1-k}}{\sin ((j+k+1) \alpha)}\left(\frac{-1}{\sqrt[2 n]{-\lambda}}\right)^{j+k+1}\right)_{j, k=0}^{n-1} \tag{55}
\end{align*}
$$

It follows from (35) that $C_{j}=C_{n-1-j}, j \in\{0,1, \ldots, n-1\}$. In view of this, (55) implies the desired formula (9) for $M_{K}(\lambda)$.

Now let's prove formulas (10)-(11). It follows from (9) that for $j, k \in\{0,1, \ldots, n-1\}$

$$
\begin{equation*}
\left|\left[M_{K}(x+i y)\right]_{j k}\right| \leqslant C\left(|x|^{-1+\frac{1}{2 n}}+|x|^{-\frac{1}{2 n}}\right), \quad x \in \mathbb{R} \backslash\{0\}, \quad y>0 \tag{56}
\end{equation*}
$$

for some $C>0$. Hence Stieltjes inversion formula (14) and Lebesgue limit theorem yields

$$
\begin{equation*}
\sigma_{K}(t)=\frac{1}{\pi} \int_{0}^{t} \operatorname{Im}\left(\lim _{y \downarrow 0} M_{K}(x+i y)\right) d x, \quad t \in \mathbb{R} \tag{57}
\end{equation*}
$$

Combining (9) with (37) we arrive at
(58) $\lim _{y \downarrow 0} M_{K}(x+i y)= \begin{cases}\left((-1)^{j+k} \cdot C_{j} \cdot C_{k} \cdot x^{-\frac{j+k+1}{2 n}} \cdot \frac{e^{i(j+k+1) \alpha}}{\sin ((j+k+1) \alpha)}\right)_{j, k=0}^{n-1}, & x>0, \\ \left((-1)^{j+k} \cdot C_{j} \cdot C_{k} \cdot(-x)^{-\frac{j+k+1}{2 n}} \cdot \frac{1}{\sin ((j+k+1) \alpha)}\right)_{j, k=0}^{n-1}, & x<0 .\end{cases}$

Hence

$$
\operatorname{Im}\left(\lim _{y \downarrow 0} M_{K}(x+i y)\right)= \begin{cases}\left((-1)^{j+k} C_{j} \cdot C_{k} \cdot x^{-\frac{j+k+1}{2 n}}\right)_{j, k=0}^{n-1}, & x>0 \tag{59}\\ 0, & x<0\end{cases}
$$

Combining (57) with (59) yields (10)-(11).
Remark 9. Formulas (3), (9) and (46) lead to the following curious identity
(60) $\quad \sum_{p=0}^{n-1} \frac{(-1)^{p+k} \cdot C_{j} \cdot C_{p}^{2} \cdot C_{k}}{\sin ((j+p+1) \alpha) \sin ((p+k+1) \alpha)}=\delta_{j k}, \quad j, k \in\{0,1, \ldots, n-1\}$.

It seems non-trivial to prove it directly.

References

1. N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. II, Pitman, Boston, 1981.
2. V. A. Derkach and M. M. Malamud, Generalised resolvent and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1-95.
3. V. A. Derkach, M. M. Malamud, Characteristic functions of almost solvable extensions of Hermitian operators, Ukrain. Mat. Zh. 44 (1992), no. 4, 435-459. (Russian); English transl. Ukrainian Math. J. 44 (1992), no. 4, 379-401.
4. V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Kluwer Academic Publishers, Dordrecht—Boston—London, 1991. (Russian edition: Naukova Dumka, Kiev, 1984)
5. B. M. Levitan and I. S. Sargsyan, Introduction to Spectral Theory: Selfadioint Ordinary Differential Operators, Nauka, Moscow, 1970. (Russian); English transl. Amer. Math. Soc., Providence, RI, 1975.
6. A. A. Lunyov, Exact constants in inequalities for intermediate derivatives, Ukrainian Math. Bull. 4 (2007), no. 3, 415-427.
7. A. A. Lunev and L. L. Oridoroga, Exact constants in generalized inequalities for intermediate derivatives, Mat. Zametki 85 (2009), no. 5, 737-744. (Russian); English transl. Math. Notes 85 (2009), no. 5, 703-711.
8. M. A. Naimark, Linear Differential Operators, Nauka, Moscow, 1969. (Russian)
R. Luxemburg, 74, Donetsk, 83114, Ukraine

E-mail address: A.A.Lunyov@gmail.com

[^0]: 2000 Mathematics Subject Classification. 47E05; 34B40.
 Key words and phrases. Friedrichs and Krein extensions, spectral function, boundary triplet, Weyl function, Vandermonde determinant.

 The author expresses his gratitude to Prof. M. Malamud for posing the problem and permanent attention to the work.

