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ON FINITE DIMENSIONAL LIE ALGEBRAS OF PLANAR VECTOR
FIELDS WITH RATIONAL COEFFICIENTS

IE. MAKEDONSKYI AND A. PETRAVCHUK

ABSTRACT. The Lie algebra of planar vector fields with coefficients from the field of
rational functions over an algebraically closed field of characteristic zero is considered.
We find all finite-dimensional Lie algebras that can be realized as subalgebras of this
algebra.

INTRODUCTION

Let K be an algebraically closed field of characteristic zero and R = K(z,y) be the
field of rational functions. Recall that a K-linear mapping D : R — R is called a K-
derivation if D(fg) = D(f)g + fD(g) for all f,g € R. We denote by W5(K) the Lie
algebra of all K-derivations of R, this algebra is a two-dimensional vector space over R,
its basis {6%, a%} will be called standard. In geometric terms, a derivation D is a vector

field with rational coefficients and VI/}/Q(K) is the Lie algebra of all vector fields on K? with
rational coefficients. The Lie algebra V[Z(K) is closely connected with the automorphism
group Aut(R) of the field R (for example if D is a locally nilpotent derivation of R, then
exp D is an automorphism of R). The group Aut(R) was intensively studied by many
authors (see, for example [3]). A question about finite subgroups of Aut(R) is of special
interest, the description of such subgroups was recently completed by I. Dolgachev and
V. Iskovskikh [3]. So, it is of interest to study finite dimensional subalgebras of the Lie
algebra Der(R) = W5 (K) which corresponds in some sense to Aut(R).

In this paper, we give a description of finite dimensional subalgebras of VAV;(]K) up to
isomorphism as Lie algebras using only algebraic tools. The advantage of this approach
is that many results of the paper can be transferred on Lie algebras of derivations of
commutative and associative algebras over fields (in [8] we have obtained estimations for
derived length of solvable Lie algebras of derivations in a similar way). Such a description
over the field of complex numbers can also be obtained using analytical and geometric
methods; it can be deduced from results of S. Lie (see [7], 71-73). There are many papers
devoted to such subalgebras, see for example [2], [4], [10], [9], [6], [11]. The main result
of the paper is Theorem 1 where all types of finite dimensional subalgebras of WA;Q(K) are
listed. From this description one can easily obtain all possible types of finite dimensional
subalgebras of the Lie algebra W5(K) = DerK|[z, y] (up to isomorphism as Lie algebras).

We use standard notations, the ground field K is algebraically closed of characteristic
zero (some results are valid for any field of characteristic 0). If Dy,..., D,, are elements
of M/—}/Q(K), then we denote by K(Ds,...,D,) or simply (Di,...,D,) the linear span
of elements Dy, ..., D, over the field K. The field K(z,y) of rational functions will be
denoted by R, every nonzero K-subspace of V%(K) has rank 1 or 2 over R as a system

of elements of the two-dimensional vector space V[N/Q(K) over R.
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1. PRELIMINARIES

Lemma 1. Suppose that D1, Dy € WQ(K). Then

(1) For any a,b € R it holds [aD1,bDs] = ab[D1, Ds] + aD1(b) Dy — bDs(a)D;.

(2) If Dy, Dy are linearly independent over R and D1(c) = Da(c) = 0 for some ¢ € R,
then c € K.

Proof. 1. Straightforward calculation.
2. Note that 8%, 8% € W5(K) are linear combinations of D; and Dy with coefficients

in R. Then 2 (c) = 2 (c) = 0 which implies ¢ € K. O

Lemma 2. Let L be a finite dimensional subalgebra of the Lie algebra WQ(K). If L is

of rank 1 over R, then there exists an element Dy € WQ(K) such that L is one of the
following algebras:

(1) L = (Dy,a1D1,...,a,D1) for some a; € R such that Dy(a;) = 0 for all i. The
algebra L is abelian.

(2) L = (D1,a1D1,...,an_1D1,bD1) for some a;,b € R such that Di(a;) =0 for all
i, D1(b) = —1. L is metabelian.

(3) L = (Dy,—a%Dy,—2aD;) for some a € R with Di(a) = 1. The algebra L is
isomorphic to sla(K).

Proof. Replacing the polynomial ring K[z, y] by the field R = K(z,y) in the proof of
Theorem 1 in [1] one can show that a finite dimensional subalgebra of rank 1 over R
from I/IA/;(K) is either abelian, or metabelian of the form L = (b) £ A,[b,a] = a for all
a € A with abelian A, or L =~ sl3(K). Consider all these cases. If L is abelian with K-basis
{D1,a1Ds,...,a,D1} then [Dy,a;D1] =0 = Dy(a;)D; for all i. Hence D1 (a;) = 0 for all4
and L is of type 1. Let L = (b) XA with abelian subalgebra A = {D1,a1D1,...,an_1D1}.
Then as above Dj(a;) = 0 for all ¢ and since [bD;, D1] = Dy we get Dy(b) = —1. Thus
L is of type 2. Finally, let L ~ sl3(K). Choose the standard basis {e, f, h} of L over K.
Without loss of generality we may put e = Dy, f = bD1,h = aD; for some a,b € R.
Then

[aDl, Dl] = 2D1, [CL.Dl, bDl] = —2bD1, [.Dl7 bDl} = aDl,
so using Lemma 1 we get from the first equality that D;(a) = —2. The second equality im-
plies aD1 (b) 4+ 2b = —2b and therefore D;(b) = —4b/a. The third equality yields D;(b) =
a.So, a = —4b/a and a? = —4b, i.e. b = —a?/4. We get the basis {Dy, —a?/4Dy,aD} of
the algebra L. Replacing here a by —a/2 we obtain a basis {D1, —a%2D;, —2aD;} where

Dl(a) =1. O
Remark 1. One can easily point out realizations for Lie algebras from the previous
Lemma: 1. D; = 8%’(“ =yi=1,...,n;2. D1 = %,ai =yi=1,...,n—1,b=—x;
3. Dy = %70, =x.

Lemma 3. Let L # 0 be a finite dimensional solvable subalgebra of the Lie algebra
W5(K) and let (D) be its arbitrary one-dimensional ideal. Then

(1) The set I = RD1 N L is an ideal of L.

(2) dim L/I <2 and if dim L/I = 2, then the quotient algebra L/I is nonabelian.

(3) If dim L > 5, then the ideal I contains all ideals of rank 1 over R from L.

Proof. 1. Take any element D € L. Since (D) is an ideal of L we have [D, D] = AD;
for some A € K depending on D. Then for any element aD; € I it holds

[D,aDy]) = D(a)D1 + a[D, D1] = (D(a) + Aa)D; € I.
Therefore I is an ideal of L.
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2. We can obviously assume that I # L. Choose a one-dimensional ideal (D3 + I) of
the quotient algebra L/I. As Dy ¢ I the elements D, Do are linearly independent over
R. It suffices to show that the ideal J = I+ (D3) of the algebra L is of codimension < 1 in
L. Take arbitrary elements D3 = a3Dy 4+ b3 D2, Dy = ag4D1 + by Dy with a3, a4,b3,04 € R
from the set L\ J. Since

[D1, D3] = D1(a3)D1 + D1(bs) D2 + bsAD1 € (D)

(here [D2, D1] = AD;) we get D;(b3) = 0. Analogously from the relation [Dz, D3] € J we
have Dy (b3) = ¢3 € K. Similar calculations yield Dj(by) = 0, D2(bs) = ¢4 € K. It can be
easily shown that c3 # 0, ¢4 # 0. Indeed, let to the contrary ¢z = 0. Then the equalities
Dy (b3) =0, Da(b3) = c3 = 0 imply by Lemma 1 that b3 € K. This means that agD; € L
and as agD; € I we get D3 € J. The latter contradicts to the choice of D3. Analogously
one can show that ¢4 # 0. Consider the element ¢y D3 — ¢3Dy4 of L and write it in the
form

(C4CL3 — CgCL4)D1 + (C4b3 — Cgb4)D2 =r1D1 +1raD>.

Straightforward calculation shows that Da(re) = 0. As also D;(r2) = 0, the element 1y
belongs to K by Lemma 1. Therefore ¢4 D3 —c3D4 € J and D3, D, are linearly dependent
over J, i.e. dimL/J < 1.

Now let dim L/I = 2 and {D2 + I,aD; + bD3 + I} be a basis of L/I. Suppose that
L/I is abelian. Then [Dq,aD; + bD3] € I and therefore Do(b) = 0. From the relation
[aDy +bDs, D1] € (Dy) it follows that D;(b) = 0. But then Lemma 1 yields b € K which
implies aDy € L. This means that aD; € I and aD; + bDy € I + (D). The latter is
impossible because the elements Dy and aD; +bD5 are linearly independent over I. This
contradiction shows that L/I is nonabelian.

3. Finally, let dimL > 5, I = RD; N L and T = RDy N L for some ideals (D) and
(D5). Suppose that elements Dy and Dy linearly independent over R. Since dim L/T < 2
and dimL/T < 2 (by the proved above) and INT = 0 we get dim L < 4 which contradicts
to our assumption. Thus, I contains all ideals of rank 1 over R. |

We need also some elementary properties of rational functions in a single variable.
These properties seem to be known but having no reference we supply them with com-
plete proofs. For a rational function ¢ € K(t) we will denote ¢’ = %f' If p(t) € K[t] is
an irreducible polynomial, then ord,y denotes as usually the integer o from the decom-
position of ¢ into the product of the form ¢ = p“vy, where neither numerator nor the
denominator of 1 is divisible by p.

Lemma 4. Let K be an algebraically closed field of characteristic zero. Then

(1) If p(t) € K(t)\K, then there does not exist any function ¢ € K(t) such that
V=2
(2) Let v, € K(t)\K be such functions that pp'y — o' =0 for some p € K. Then
peQ, p="2,and ™ = cy” for some c € K. Moreover, there exists 6 € K(t) such that
@ = c10%, 1 = bt for some ci,co €K, s,t € Z.

Proof. 1. Suppose on the contrary that there exists ¢ € K(¢) such that ¢’ = %. Let
p € K[t] be an irreducible polynomial such that ord,(¢) # 0. Put o = ord,(¢). Then

a—1,7/

© =p*q and ¢’ = ap® p'q + p®q’. Therefore
¢ ap'plg+pd _ agp’ +pd

14 Peq pq

Since ord,(agp’ + pg¢’) = 0 it holds ord, (%) = —1 (note that ord,(q) = 0). Now
put B = ord,(¥), ¥ = pPr. Then ¢/ = Bp'p?~lr + pPr'. If B = 0, then ¢’ = 7/ and
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ord,(¢') = ord,(r’) > 0. Suppose that 5 # 0. Then
ord, (¢') = ord, (Bp'p” ~tr + p’r') = ord, (Bp'p’1r) = B — 1.

Therefore in any case ord,y’ # —1, which contradicts to the equality ord, (%) = —1.

Hence there does not exist such a polynomial v that )’
2. Take any functions ¢, ¥ from K(¢)\K satisfying the condition

(1) ' — ' = 0.
It can be easily shown that there exists a point ¢y € K such that ord;—s,¢ # 0 ( because

the field K is algebraically closed). Without loss of generality we can assume that the
field K(¢) is embedded to the field K((¢)) of Laurent series at the point ¢y. Put

o0

gozZal(t—to, Y = Zﬁzt—to, where m,n €Z, a;,B,#0.

i=m

¢
Z.

Since ordi—_;,¢p # 0, it holds m ;é O, We can assume that «a,, = 3, = 1, because the
equation (1) is homogeneous. Computing coefficients at t™*"~! in both sides of the
equation (1) we obtain ym = n. Therefore u = n/m € Q. Further,

((pn >' B n 1 /,(/}m m(pn,(/}m—l,(/}/ B (Pn_lwm_l(n@/@[] _ m‘m//)
W - ¢2m - ¢2m
because np'yy — meyy’ = m(ue'y — p’) = 0. Hence, fjm e Kie. " = cy™ for some
ce K.

The functions ¢ and ¥ can be written as products of irreducible factors with (nonzero)
integer powers

207

s k
ki — li
o=]lur v=]Iv"
i=1 Jj=1

Using the equality @™ = cy™ we get k = s and after renumbering the factors we can
write down u; = 7;v; for some ~; € K. Hence we have

(1) - (o)

This equality implies that nk; = ml; for all ¢ = 1,...,k. Denote d = ged(m,n) and
m = mid, n = nid. We obtain equalities n1dk; = midl;, i = 1,...,k, and therefore
n1k; = mql;. Since ged(my,n1) = 1 we obtain that [; is divisible by ny, k; is divisible by
mi, 4 =1,..., k. Denote 7171 = 7’7?1 =r;and 6 = [[_, u;". Then ¢ = 0™, ¢cy3p = 0™ for
some c¢; € K*. This completes the proof of Lemma. O

Lemma 5. Let Dy and D5 be elements of WZ(K) linearly independent over R such that
[Da, D1] = vD; for some v € K. Let by, by be linearly independent over K elements of
R\K such that Dy(b;) = 0,3 =1,2. Then

(1) If [Da,b;D1] = X\ibiDy for some A\; € K,i = 1,2, then \y # Xo. If Ay # v, then
ey €Q

(2) If [Dg, leﬂ = /\le1> [DQ,bQDl] = )\bng + lel for some \ € K, then A =v.
Proof. 1. Using the condition [Ds,b; D] = \;b; D1 we get

(2) Dy(b;) = (N —v)by, i=1,2.
Suppose that Ay = Ao. Then Dy ( ) = M = 0. Besides, Dl(bl) =0 by
conditions of Lemma. Then using linear 1ndependence of elements Dy, Dy we obtain by

Lemma 1 the inclusion b—l € K. The latter is impossible because of linear independence

of elements by, by over K Hence A1 # As.
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Let now Ay # v. Since by,by € R\K, the subfield ker(D;) of R is of transcendence
degree 1 over K (it is obvious that this degree cannot be equal to 2). Hence ker D; is
generated by a single element (see, for example, [12], Th. 3). Denote this element by 6.
Then by = p1(0), ba = p2() for some rational functions ¢;(t), w2(t) € K(t). Using
the relation [Dy, D1] = vD; we see that Ds(0) € ker(D;). Denote also D2(0) = f(0),
f € K(t). The conditions (2) imply

PO f(0) = (M —v)ei(t),  a(0)f(0) = (A2 —v)p2(6).
Since ; are not constants and A; — v # 0 we have

)\2—1/
)\171/-

P10y — ppip =0, where  p =

Now Lemma 4 yields the inclusion p € Q.
2. By the condition (2) of Lemma we have
(3) Dg(bl) = ()\ — I/)bl, Dg(bg) = ()\ — I/)bg + bl.

As above we can show that by = ¢1(0), by = 12(0), where 0 is a generator of the
subfield ker Dy and D5 (0) = g(0) for some rational functions 1,19, g € K(¢). Using (3)
one can easily show that

(4) Yig=A—v)r, Yhg=(A—v)v2 + 1.
Since b; € R\K it holds ¢} # 0. The equality (4) implies the next relations
(5) ﬁ: ()\_V)f/)é _((A_V)¢2)/
Y1 A=V + i 1
(note that (A — )Y + ¢ # 0 because 1, and s are linearly independent over K).

But the relation (5) is impossible if A # v by Lemma 4. This contradiction shows that
A=v. g

The next statement can be easily deduced from the theorem of S. Lie about solvable
Lie algebras.

Lemma 6. Let V' be a finite dimensional vector space over the field K and T, S be linear
operators on V. If [T, S] = S, then the operator S is nilpotent.

2. FINITE DIMENSIONAL SOLVABLE SUBALGEBRAS OF W3(K)

Lemma 7. Let L be a finite dimensional solvable subalgebra of rank 2 over R of I/If\/:/Q(K)
and let (D1) be its arbitrary one dimensional ideal. Denote I = RDy N L. If the ideal
I is abelian, then there exists an element Dy € L\I such that L is one of the following
algebras:

(1) L = (D1,aDs,...,(a"/n!)D1,D3), where a € R such that Di(a) = 0,Ds(a) =
1,[D2,D1] =ADy and A=0 or A=1,n>1. If n =0, we put L = (D1, D3).

(2) L= <D1,CL1D1, ., anD1, l)2>7 where a; € R, [DQ, Dl] = Dl,Dl(ai) =0, Dg(ai) =
Bmsa;,m; € Z for all i, € KX, m;y #m; fori#j,n>1

(3) L = (Dy,aDq,...,(a"/nl)D1, Da,bDy + aDs), where a,b € R such that D1(a) =
0,D1(b) = 8,8 €K, [D2,D1] =0,D3(a) = 1,D2(b) = (n+ 1)yva",y € K,n>1 (ifn=0
we put L = (D1, Da,bD1 + aDs)).

Proof. The set I = RD1NL is an ideal of L by Lemma 3. We can write I = (Dq,a1 Dy, ...,
anD1) for some elements a; € R and n > 1 (if n = 0 we put I = (D1)). Since the ideal I
is abelian we have Dy (a;) =0, i = 1,...,n. We consider two cases depending on dim L /T
(recall that dim L/I < 2 by Lemma 3).

Case 1. dim L/T = 1. Take any element Dy € L\I. As (D;) is an ideal of L we have
[D2, D1] = vD; for some v € K. The elements D; and D5 are linearly independent over R
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by the choice of the ideal I. First, let the linear operator ad Dy have the only eigenvalue
v on the vector space I (recall that [Do, D1] = vDy). If aD1,bD; € I are eigenvectors of
ad Dy, i.e. [Da,aD1] = vaDy, [D2,bD;1] = vbDy, then the elements aDy,bD; are linearly
dependent over K by Lemma 5. Hence D, is the unique eigenvector of ad Dy on I (up
to multiplication by a nonzero scalar). But then the linear operator ad Do has a Jordan
basis in I of the form {Dy,a; Dy, ...,a,D1}, a; € R such that

[D2,a;D1) =va;Dy +a;—1Dy, i=1,...,n, [D,Di]=vD;

(in case n = 0 we have I = (D;)). The last relations imply the equalities Dy(a;) =
a;—1,4=2,...,n, Dy(a;) = 1. Denoting a = a; we have Dy(as — a?/2!) = 0 and taking
into account the relation D;(az —a?/2!) = 0 we see by Lemma 1 that ap —a?/2! € K. But
then without loss of generality we can take ay = a?/2!. Analogously Da(az—a®/3!) = as—
az = 0 and D (a3 —a3/3!) = 0, so we can put ag = a3/3!. Repeating these considerations
we get a K-basis {D1,aDs,...,(a"/n!)D1} of the ideal I (recall that I = (D;) in case
n = 0). The algebra Lie L is of type 1 because we always can assume that v =0orv =1
choosing a convenient multiple of the element Ds.

Now let ad Dy have on I at least two different eigenvalues. Owur aim is to show
that ad Dy is a diagonalizable operator on I. Denote by I(\) the root space of ad Dy
corresponding to the eigenvalue A\, A # v. Since ad Dy has on I(A) the only eigenvalue A
it follows from the previous considerations that ad Dy has on I(A) a Jordan basis such
that the matrix of ad Dy in this basis is a single Jordan block. Therefore if dim I'(A) > 1
then there exist elements aDq,bD; € I such that

[Ds,aDy] = AaDy, [Ds,bDy] = AbDy + aD;.

The latter is impossible by Lemma 5 and therefore dim I(A) = 1. Choosing any element
D} € I with property [Da, Dj] = AD} instead of the element D; and using Lemma 5
we can analogously show that dim I(v) = 1, where I(v) is the root space corresponding
to the eigenvalue v of ad D on I. Therefore all the root spaces are one-dimensional and
ad D5 is diagonalizable on I.

Since at least one of the eigenvalues of ad D on I is nonzero we can choose elements
Dy and D5 in such a way that

[DQaDl] - Dl)I = <D17a1D17"'7anD1>7
where [Da,a;D1] = Nja; D1, A #Njifi# jand \; # 1,i=1,...,n.

Applying Lemma 5 (with ¥ = 1) we can easily show that ilj =1,€Q,i=2,...,n.
Denote 7; = %7 kil € Z,i=2,...,n.If [ is the least common multiple of I5,...,[,, then
one can write 7; = "+ and A; = m; 341, where § = )‘ll_l (note that A; —1 = 7;(A\1 — 1)).

Thus, L is an algebra of type 2 of Lemma.

Case 2. dim L/I = 2. The quotient algebra L/I is nonabelian by Lemma 3, so it
contains a noncentral one-dimensional ideal (Do +I). Then there exists an element bD; +
cD5 € L such that

[bDl +cDy+ 1, D, +I] =Dy + 1.
This means that [0D;1 + ¢Ds, Do| = D2 + gD, for some element gD; € I. Since the ideal
I is abelian it is obvious that ad Dy = ad(D2 + gD1) on the vector space I over K. We
obtain the following relation for linear operators on I :

[ad(bD1 + CDQ), ad D2] = ad(Dg + ng) = ad Ds.

But then ad D acts nilpotently on I by Lemma 6. In case dim I = 1 we get (after direct
calculations) the Lie algebra of type 3 with n = 0. Let dim I > 2. Since [D2, D;] = 0
one can easily show (using Lemma 3) that the ideal I can be written in the form I =
(Dy,aDx,...,(a"/n!)D;) for some a € R, Dy(a) =1,n > 1.
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Returning now to the above mentioned element 6D, + cDs € L we see that
[D1,bD1 4 ¢D3] = D1(b)D1 + D1(¢)Ds € (Dy)
and therefore D;(c) =0, D;(b) € K. Further, from the equality
[Da,bD1 4 ¢D3] = Ds(b)Dy + Da(c)Dy € I + (Ds)

we obtain Da(c) = v € K, Da(b) € (1,a,a?/2!,...,a™/n!). From the relations Do(c) =
v € K and D3(a) =1 it follows that Da(ya — ¢) = 0. Then Lemma 1 yields va — ¢ € K,
i.e. ¢ =~a+ b for some v, 5 € K.

The element D3 = y~1(bD; + cDy — BD3) of the algebra L can be written in the
form D3 = by D; + aDy for some by € R. As Do(by) € (1,a,a?/2!,...,a"/n!) we can
subtract from b; D1 +aDsy a suitable linear combination of the elements D1, aD1,a?/2! Dy,

,a"/n!Dy and assume without loss of generality that Da(b1) = (n + 1)ya™ for some
v € K. Denoting b = by, 8 = D1(b) € K we see that L is of type 3 of this Lemma. |

Remark 2. For each type of Lie algebras from Lemma 7 one can easily point out a

realization
LA=0,Di=g . Dy=ga=y A=1,D1=4&,Do=% —xga=y.

2. D1:3I7a’b_yml D2 ﬁy%_$%7ﬂ€K

3. Dl aw7D2 6y7 —yab:5$+79n+laﬂa’YGK-

Lemma 8. Let L be a subalgebra of V[A//Q(K) satisfying all the conditions of the previous
Lemma with the exception of that the ideal I is abelian. If I is nonabelian, then there
exist elements Dy € I, Dy € L\I such that L is one of the following algebras:

(1) L =(D1,aD1,...,(a"1/(n —1))D1,bD1, Ds), where a,b € R such that D1(a) =
0,Dz(a) =1,D1(b) = —1, D2(b) = 0,[D2, D1] = 0.

(2) L = <D1,a1D1,...,an_lDl,bDl,D2>, where CLl‘,b € R such that [DQ,Dﬂ =
D1,D1(a;) = 0,D1(b) = —1,D3(b) = —b, Da(a;) = pm,a; for some m; € 2,5 € K*
and m; #my if i # .

(3) L= (D1,aDs,...,(a" ' /(n—1)!)D1, (v—aa™) D1, Da, (—Bv+7y(a™/n!)) D1 —aDs),
where a,v € R such that [Dy,D3] = 0,D1(a) = 0,D ( ) = 1,D1(v) = —1,Ds(v) =
0,a,8 €K, and v = a8 —n).

Proof. Let (D7) be the one-dimensional ideal of L lying in I. The ideal I has by Lemma
2 a basis over K of the form {Dy,a1D1,...,a,-1D1,bD1}, where D;(a;) = 0,D1(b) =
-1,i=1,...,n—1 (for n = 0 we put I = (Dy,bD;) with D;(b) = —1). Suppose that
n=0,1e dimlI =2 If dimL/I = 1, then L = (Dy,bDq, Ds) is of type 2 or 3. If
dim L/I = 2, then L/I is nonabelian by Lemma 3 and taking into account that L/I is
nonabelian we have L = I @ J for nonabelian ideal J of dimension 2. Then L is of type 3.
So we may assume that dim 7 > 3. As in the previous Lemma we divide the proof into
following cases:

Case 1. dimL/I = 1. Take any element Dy € L\I. Then [Dy,bD;] = AbD; + ¢D;,
where ¢D; € I' = [I,1] because dim L/I' = 2 and (bD; + I’) is a one-dimensional ideal
of L/I'. If X # 0, then we may assume without loss of generality that A = 1, and then

[ad Dg,ad(bDl)] = ad(bD1 + CDl) = ad(bDl)

on I’ because I’ is an abelian ideal of L. But then the linear operator ad(bD;) acts
nilpotently on I’ by Lemma 6. The latter is impossible and therefore A = 0. This
means that L/I’ is an abelian Lie algebra of dimension 2. As [Ds,bD;] = ¢D; for some
element ¢D; € I' we get [Dy + ¢D1,bD1] = 0 (recall that [bDy,c¢Dq] = ¢D; for all
e¢Dy € I'). So, we can choose the element Dy in such a way that [Dy,bD;] = 0. If the
linear operator ad Do has on I' = (Dy,...,a,—1D1) at least two different eigenvalues,
then there exists by Lemma 5 a basis {D1,...,a,—1D1} of I’ such that Ds(a;) = m;Ba;,
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for some m; € Z,5 € K*, m; # m; if ¢ # j,[D2,D1] = D;. Then from the relation
[D2,bD1] = 0 it follows Dy(b) = —b. The algebra L is of type 2 of Lemma.

Now let ad Dy have the only eigenvalue p on I'. If 4 = 0, then L is obviously the Lie
algebra of type 1 of Lemma. Let p # 0. Taking a suitable multiple of Dy we may assume
that © = 1. Then replacing the element Dy by the element Dy — bD; we get the case
p =0 and L is again of type 1 of Lemma.

Case 2. dim L/I = 2. As in the case 1 take a one-dimensional ideal (D) of L lying
in I’ and a basis of I of the form {Dy,a1D1,...,a,_1D1,bD1} such that Dj(a;) = 0,
Dqi(b) =—-1,i=0,...,n—1. Let (Dy+1I) be the one-dimensional ideal of the nonabelian
quotient algebra L/I. Accordingly to Case 1 the algebra (D) + I is of type 1 or type 2
of this Lemma. Let us show that (Ds) + I is of type 1 of this Lemma, i. e. the linear
operator ad Dy acts nilpotently on I’. Really since (bD; + I') is an ideal of the algebra
L/I" and ad(bD;) acts on I’ as the identity operator the ideal (bD; + I') lies in the
center of L/I' (because of Lemma 6), i. e. [D,bD;] € I’ for any element D € L. Take
any element ¢Dy + dDs € L\I such that [cDy + dDs, D3] = Dy + rD; for some element
rDq € I. The element rD; can be written in the form rDy = ubD1 +r1 D1, where p € K|
r1Dy € I'. But then we obtain

[CDl +bDs, Dy + /JbDl] = (D2 + MbDl) 4+ roDq

for some element r9D; € I’ The latter means that ad(Dy + pbD;) acts nilpotently
on I’ (by Lemma 6). Replacing the element Dy by the element Do + pbD; we can
assume without loss of generality that ad D5 is a nilpotent linear operator on I’. So, the
subalgebra (D3) + I is of type 1 of this Lemma and hence I’ + (D3) can be written in

the form
n—1

a

I Ds) =(Dy,aD;,..., ———D1,D
+< 2> < 1, a1, ’(77/—1)' 1 2a>

where [Da, D1] =0, D1(a) =0, Dy(a) = 1.

Further, it follows from the above mentioned equality
(6) [CDl + dDQ, DQ] = D2 + T2D1

that Dy(d) = —1. Analogously we obtain D;(d) = 0, D;i(c) = 81 € K from the relation
[cD1+dDs, Di] € (Dy). Since Dy(a) = 1 and Dy(d) = —1 we have Da(a+d) = 0. Taking
into account the equality Di(a + d) = 0 we obtain by Lemma 1 that a +d = a; € K.
But then d = —a + a3 and without loss of generality we can choose c¢D1 — aDs instead
of the element ¢D + dDs.

Since [D,bD4] € I’ (as we have proved before) we see that

n—1

D(b) = ao +(11@+"'+04n—1m

for some o; € K. Put v = b — aga — 041%—? — = an_l%. Then D;(v) = D1(b) =

—1,D5(v) = 0. Subtracting the element (aga + ozl‘;—? 4t ay_a (2—1)!)D1 € I' from
the element bD; we can assume without loss of generality that b = v — an,l% for some
ap—1 € K. Then Dq(b) = —1, Ds(b) = an_l%. Further, recall that for the basic
element ¢D; — aDy we have Dy(c) = 1 € K.

Rewriting the relation 6 in the form [¢D; — aDsy, D3] = Dy + 19D we obtain that

n—1
Ds(c) =7 +71a+-~-+7n,1m for some v, €K, i=1,...,n—1.
Subtracting the element (ypa+1 ng' : '+771—2&%11)!)D1 € I’ from the element cD1—aDy

we may assume without loss of generality that Ds(c) = %,1%. Suppose that 8; =
Di(c) # 0. Since Di(B; c+v — By yno1%y) = 0 and Do(By e+ v — B ly19y) =
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_ n—1 _ n—1 _ _ n
B4 17,1_1%—61 1%‘_1% = 0 we have by Lemma 1 that 3] 1c+v—ﬂ1 1%—1?7 =v
for some v € K. Subtracting the element vD; € I’ from the element cD; + aD> we may
assume that v = 0. Then we obtain ¢ = —f1v + 7,1 %. Denoting a,_1 by , 9,1 by
~v and 5, by 8 we obtain a basis of L of the form

anfl

a” a”
{Dl, aDi, - D (0 = @)D Dy (<Bu -+ D - aDQ}
(here Dy(a) = 0,D;(v) = —1,D3(a) = 1, Da(v) = 0). Now suppose that 8 = Dy(c) = 0.
Since Da(c) = 7% we see that for the element ¢; = ¢ — ’y% it holds Dy(¢) = 8 =0,

a”

Ds(c) = 0. So by Lemma 1 we obtain ¢ — y%; = v, for some v, € K. Subtracting the
element 15D from c¢Dy 4+ aDy we may assume that v5 = 0. So we have that ¢ = 7% ie.
the basis of L is of the same form as in case 5 # 0.

Now consider the product [(v — aa™/n!)Dy, (Bv + va™/n!)Dy — aDs]. This product
equals to (—af+v+na)D; and belongs to I’. Hence —af+~y+na =0and v = a(f—n).
We see that L is of type 3 of Lemma. |

Remark 3. There exist realizations for all types of Lie algebras from Lemma 8

1. Dli%,DQZ%,a:y,b:*I'-
2. Dl:%7D2:By%_$%aa/:y7b:_w7ai:ymi7'
3. Dlza%,Dgza%,a:y,f:—x.

The next three corollaries can be easily proved by using results of Lemmas 2, 7 and 8.

Corollary 1. Let L be a finite dimensional nilpotent subalgebra of VAV;(K) Then there
exist elements D1, Dy € L linearly independent over R such that L is one of the following
algebras:

(1) L ={(Dy,a1D7,...,a,D1), for some a; € R such that D1(a;) =0,i=1,...,n.

(2) L = (D1, Ds),[D1, D] = 0.

(3) L =(Dy,aDy,...,(a"™/nl)D1, D) for some a € R such that D1(a) = 0, Da(a) =1,
[Dy, D3] = 0.

Corollary 2. Let L be a finite dimensional solvable subalgebra of V/[\/;(K) If L is non-
abelian and decomposable into a direct sum of proper ideals, then L = A @& B, where
A is a nonabelian ideal of dimension 2 and B is either a one-dimensional ideal or a
two-dimensional nonabelian ideal of L.

Corollary 3. Let L be a finite dimensional solvable subalgebra of V/[\/;(K) If L is non-
abelian, then dim L/L" < 2.

3. NONSOLVABLE SUBALGEBRAS OF W5 (K)

Lemma 9. If L is a finite dimensional semisimple subalgebra of the Lie algebra WA/;(K),
then L is isomorphic to sla(K) or sl3(K), or sla(K) @ sl2(K).

Proof. Tf L is of rank 1 (as a system of vectors) over R, then L ~ sl3(K) by Lemma 2.
So, we can assume that L is of rank 2 over R. Fix a Cartan subalgebra H of the algebra
L, a basis 7 of the system A of roots which correspond to H and let A™ be the set of
positive roots relatively to the ordering on A. Consider the triangular decomposition

L=Ny+H+N_, N+:€Bai>OLam N*:@Oéi<OLOLi
and the Borel subalgebra B = H + N, of L. If the subalgebra N, is abelian, then L
is a direct sum L = Ly @ - -- @ Ly, of ideals isomorphic to sla(K) (see, for example [5]).
Then B is a direct sum B = By @ - - - ® By, of Borel subalgebras of L; ~ sl3(K) and using
Corollary 2 we see that either L = Ly ~ sla(K) or L = L1 & Lo ~ sl3(K) @ sl3(K).
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Now, let the subalgebra N, be nonabelian. Since N is nilpotent it is indecomposable
into a direct sum of nonzero ideals by Corollary 1. But then the algebra L is also
indecomposable into a direct sum of proper ideals and hence is simple. By Corollary 3
we have relations

dim B/B’ = dim B/N = dim H < 2.
Therefore, if N, is nonabelian, then dim H = 2 and L is a simple Lie algebra of one
of the types Ay, By or G5. First suppose that L is of type G3. Then the subalgebra
N, from its triangular decomposition has nonabelian derived subalgebra [N,, N.]. The
latter is impossible (see Corollary 1) and hence L cannot be of type Gs.

Further, let us show that L is not of type By. Fix a Cartan subalgebra H of L and a
basis {«, 8} of the root system A. Then the subalgebra N, has the basis {eq, €, €atg,
ea+2p ). It follows from Corollary 1 that eq15 = f - eqt2p for some element f € R. Con-
sider the element o, of the Weyl group of the root system A acting by the rule o, (v) =

¥— 2((075)) a, where 7 is an arbitrary root from A. Then {—a«, 8+ a.3, «+ 23} are positive

roots relatively to the new basis {oq(@),04(8)}. The subalgebra (e_,,€s1a, €3, Cat2s)
is nilpotent and by Corollary 1 it holds eg = g - eq+23 for some g € R. Analogously one
can show that e, = h - eq428 for some h € R. Three relations with coefficients f, g, h
obtained above imply that all elements from the basis of N are multiple to one of them
and hence the subalgebra N, is abelian by Lemma 2. This is impossible and obtained
contradiction shows that L is not of type Bs. Thus, L is of type As. |

Lemma 10. Let L be a finite dimensional nonsolvable subalgebra of I,/\[/:/Q(K) whose Levi
factor is either of type As or of type Ay x A1. Then L is semisimple of type As or of type
Ay x Ay respectively.

Proof. Let S = S(L) be the solvable radical of L. By Theorem of Levi-Maltsev L = L1 £S,
where L, is a Levi factor of L. First suppose that Ly is of type As. Let us fix a Cartan
subalgebra H of L; and the root system A corresponding to H. Consider the triangular
decomposition

(7) L=N_+H+Ny

of L; relatively to H and A. Since the subalgebra N, is nonabelian (this follows from
the multiplication law in algebras of type As) it contains by Corollary 1 elements Dy and
D5, linearly independent over R such that [D;, D3] = 0. Consider S as an Lj-module
and take the older vector D € S relatively to the decomposition (7). Then we have

(8) [D1,D] =0, [Dy,D]=0.
If we write D = aDy + bD5 for some a,b € R, then from the previous relation we get
Di(a) =0, D;i(b)=0, Dz2(a)=0 and Ds(b)=0.

Lemma 1 yields now that a,b € K, i.e. D € L;. As L1 NS = 0 we obtain S = 0 and
therefore L = L; is a simple Lie algebra of type As.

Let now Lp be of type A; x A;. Write L1 = Gy ® G, where G; ~ sl3(K) and fix
Cartan subalgebras H; C Gy, Ha C G2. Consider any triangular decompositions

G1 =Ny +Hi+ N1, G2= Ny + Hy+ No-

relatively to Hy and Hy. Take any nonzero element Dy € Nj,. Then at least one of
the subalgebras N;_, Noy, No_ contains a nonzero element Dy such that D, and D are
linearly independent over R. Really, in other case H; = [N14, N1_] and Ho = [Nay, No_]
lie also in RD; and therefore L = G; & G2 C RD; which is impossible by Lemma 2. It
is easily shown that the two-dimensional abelian subalgebra N = (Dy, D2) is a part of
triangular decomposition L = N4 + H + N_ of L relatively to the Cartan subalgebra
H = H; & H,. Choosing as above the older vector in S relatively to N, and repeating
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the considerations from the case L; ~ As we get S = 0, i.e. L is semisimple of type
Al X Al. O

Lemma 11. Let L be a nonsolvable finite dimensional subalgebra of WQ(K). Then L s
isomorphic to one of the following algebras:

(1) sl3(K).

(2) sla(K) or sla(K) @ sla(K).

(3) sl2(K) A Vi, where Vy, is the irreducible module over sla(K) of dimension m + 1,
m=0,1,...

(4) glo(K) A V;,, where Vy, is the irreducible module over gla(K) of dimension m + 1,
m=0,1,... and nonzero central elements of gla(K) act on V,, as nonzero scalars.

Proof. Let S be the solvable radical of L and L; be a Levi factor of the algebra L.
We can consider only the case S # 0 because of Lemma 9. It follows from Lemma 10
that L; ~ sl3(K). Choose a Cartan subalgebra H of the algebra L; and a triangular
decomposition Ly = Ny + H + N_ of L;.

Case 1.dimS=1ordimS =2.If dimS =1, then L = L; & S is a sum of two ideals
and L ~ sl3(K) &V, where V} is a one-dimensional module over sl (K). The algebra L
is of type 4 with m = 0. Suppose that dim .S = 2. If S is a nonabelian ideal of L, then L
is a direct sum of ideals L = L; @ S. Since S = (w) K (vg) for some elements w, vy € S,
then L ~ g¢l3(K) K (vg) is of type (5) with m = 0 because L; ® (w) =~ gl2(K). Let S
be abelian. Suppose that S is a reducible module. Then S = S; & S5 is a direct sum
of Li-modules of dimension 1 over K. Take the Borel subalgebra B = H + Ny of Lj.
Then the subalgebra B & 51 @& S2 of L is solvable of dimension 4. But such an algebra
does not exist by Lemmas 7 and 8. This contradiction shows that S is irreducible and
L ~ sl3(K) <V;, where V; is of dimension 2 over K. The algebra L is of type 4. Further,
we will assume that dim S > 3.

Case 2. S is abelian (of dimension > 3). Let us show that S is an irreducible module
over L;. Assume to the contrary that S is reducible. If S is a sum of one-dimensional
submodules over L1, then L = Ly & S is a direct sum of ideals. Its subalgebra B + .S
is solvable, nonabelian and decomposable into direct sum of subalgebras B @ S. The
latter is impossible by Corollary 2. So we can assume S = S; & Sy where 51,5, are
Li-submodules, dimS; > 2 and S; is irreducible (note that S; and Sp are ideals of
L because S is abelian). Let Dy € Ny be a nonzero element. Then the subalgebra
M = (Ds) + S is nonabelian, nilpotent and dim M/[M, M] < 2 by Corollary 3. On the
other hand, since [M, M] = [D3,S1] & [Da, S2], dim S;/[D2,5;] > 1, ¢ = 1,2 (because
ad Ds acts nilpotently on S;) we have

dim M/[M, M] = dim(Ds) + dim Sy /[D2, S1] + dim S2 /[ D3, Sa] > 3.

The latter contradicts to Corollary 3 and hence S is a simple L;-module. It is obvious
that L is of type 4. Note that the subalgebra M = (Dj) + S is of the form

ak

k!

Case 3. S is a nilpotent (nonabelian) ideal. Then by Corollary 1 there exist elements
D1, D5 € S such that

S = (Dy,Dy,aDy,..., (a"/K)D:), [D2,D;i]=0,
D1(a) = 07 DQ(G) = 1, dim S > 3.

Therefore (D;) = S*~1 and (D) is an ideal of L. Using Lemma 3 we see that RD; N L
is an ideal of L and therefore Ly £ (Di,aDq,..., %DQ is a subalgebra of L. This
subalgebra has the abelian decomposable ideal (Dy,aDyq, ...
by the Case 1 and therefore the Case 3 is impossible.

<D2,D1,CLD1, PN D1>, [DQ,Dl] = 0, Dl(a) = 0, DQ(G) = 1.

a*

, 4 D1). This is impossible
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Case 4. S is solvable (nonnilpotent). The Lj-submodule S’ = [S,S] is nilpotent,
therefore S’ is abelian by the previous case and S is an irreducible Li-module by Cases
1 and 2. Since dim S/S’ < 2 by Corollary 3 we have a direct decomposition S = S’ & Sy
of Li-submodules with dim Sy, < 2. First suppose that dim Sy = 2. Let us show that
Sy is an irreducible Li-module. Indeed, in other case S; C Cg(L1) and the centralizer
Cs(Ly) a submodule of the L-module S. Because of previous cases we can assume that
dim S” > 2 and hence S’ is an irreducible Li-module. Then obviously Cg(L1) = Ss.
Since Cg(L1) = Sy is a subalgebra of L the sum S + L; is a subalgebra of L. The
latter is impossible because the subalgebra S; + L1 does not exist by the Case 1. This
contradiction shows that Sy is an irreducible Li-module.

Choose any nonzero elements Dy € Ny and h € H and take standard bases {eg,e1} C
Sy and {fo, f1,..., fm} C S’ of the Li-modules Sy and S’ respectively (recall that Ly ~
sl2(K)). Then the linear operator ad h has eigenvalues 1,—1 on Ss. If the eigenvalues
of adh on S’ are even, then the elements [e;, f;] are eigenvectors for ad h with odd
eigenvalues. Since [e;, f;] € 5" we see that [e;, f;] = 0. Let now the eigenvalues of
adh on S be odd. Then [e;, f;] are eigenvectors for adh with even eigenvalues, so
lei, fi]=0,i=0,1, j =0,1,...,m. As S’ is abelian the latter means that S’ C Z(S).
This is impossible because of our assumption on S and therefore dim S/S’ = 1. Hence
dim S; = 1. The subalgebra S + L; is obviously isomorphic to gla(K) and S’ is an
irreducible Sy + Li-module. Since S5 lies in the center of So + L1 and S is nonabelian
we see that each nonzero element of Sy acts on S’ as multiplication by a nonzero scalar.
We get a Lie algebra of type 5 from this Lemma. a

Remark 4. For each type of Lie algebras from this Lemma one can easily point out its
realization

(1) <a%,gy,xéfz,wﬁy,ygfz,y%,w(aﬂ%+y§’y),y( = +yay)>~sl3( );

(2) <%77$ dx,*QCC > = 5Z2(K) <di - 2 8 - 25503;50:[/’ -y @772y§y>
= sl (K )?8122 )73 9 P P) P P P P

(3) (@55 Y5m:T5s — Yy 2™ (@ay +yzy) 2™ gy Hygy), -y (@ gs T yg)) =
sla(K) A Vi

() (2 gr iy v vyt (s + ygp) ey gy +yg) .y gy T yd)) =

We give a description of finite dimensional subalgebras of the Lie algebra WQ(K) up to
isomorphism as Lie algebras. In fact we give more information about such Lie algebras
(up to choice of basis {Dy, Dy} of the two-dimensional vector space Wy (KK) over the field
R = K(z,y)). In order to clarify the structure of described subalgebras of Wa (K) we
formulate the main Theorem in terms of generators and relations.

Theorem 1. Let L be a nonzero finite dimensional subalgebra of the Lie algebra WQ(K).
Then the algebra L belongs to one of the following types:

(1) L = (e1,...,en), where [e;,e;] =0,4,7=1,...,n.

(2) L={e1,...,en, [), where [e;,e;] =0,[f,e;] =e;, i=1,...,n.

(3) L = (eg,...,en, [f), where [e;,e;] = 0, 4,5 = 0,...,n, [f,e0] = Xeo, [f,e] =
Xej+ei—1,i=1,....n, A=0o0r A=1.

4) L = (eo,...,en, [), where [e;,e;] = 0, i, = 0,...,n, [fe;] = (1 + Bmy)e;,
i=0,...,n, my € Z, B € K* and m; # m; provided that i # j.

(5) L = (€0,---,en, f,g), where [e;,e;] =0, 1,5 =0,...,n, [feo] =0, [f,e] = e;_1,
i=1,...,n, [g,e] =G —Be;, i =0,...,m, [g, f] = f —ven, B,y € K.

(6) L = (eg,...,en,[,g), where [e;,e;] =0,4,7=0,...,n, [fe;] =e;, i =0,...,n,
[gae()] =0, [gaei] =e-1,1=1,...,n, [f?g} =0.
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(7) L = {eg,...,en, [f,g), where [e;,e;] =0, 4,7 =0,...,n, [fe;] =e;, 1 =0,...,n,
[gaei] = (1+ﬂm1)62> iIO,...,TL, [gaf] :0’ 6 GK*; m; GZ, andmi #mj Zf’L#j

(8) L= {(eo,...,en, f,g,h), where [e;,e;] =0,4,5=0,...,n, [f,e0] =0, [f,e;] = e;_1,
i=1,...,n, [g,e;] =e;, i =0,...,m, [g, f] = aen, [h,e;]] = —(8+i)e;, [h, f] = f — ven,
[hvg] =0,a,B €K,y = O‘(ﬁ - n)

(9) L ~ sl3(K), or L ~ slo(K) & sla(K).

(10) L = sly(K).

(11) sla(K) AV, where Vi, is the irreducible module over sly(K) of dimension m+1,
m=20,1,...

(12) gl2(K) AV, where Vi, is the irreducible module over gla(K) of dimension m+1,
m =0,1,... and nonzero central elements of gla(K) act on V,,, as nonzero scalars.

Proof. Let L be a finite dimensional solvable subalgebra of the Lie algebra W (K). If L
is of rank 1 over R, then L is of type 1 or 2 by Lemma 2. Let L be of rank 2 over R. If L
possesses an abelian ideal I of rank 1 over R which is maximal with this property, then
L is of type 3, 4 or 5 by Lemma 7 (we denote e; = a;D; in type 4 and e; = (a'/i!)D;
for types 3 and 5). Let the ideal I be nonabelian. Then by Lemma 8 L is one of types
6, 7 or 8 (as above we denote e; = a; Dy in type 7 and e; = (a'/i!)D; for types 6 and
8, f = bD; for types 6 and 7 and f = D3,9 = (v — a(a™/n!))D; for type 8 of this
Theorem). Further, let L be nonsolvable. If L is semisimple, then L is one of types 9 or
10 by Lemma 9. Finally, if solvable radical of L is nonzero, then L is either of type 11
or of type 12 by Lemma 11. O
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