
Methods of Functional Analysis and Topology
Vol. 19 (2013), no. 4, pp. 376–388

ON FINITE DIMENSIONAL LIE ALGEBRAS OF PLANAR VECTOR

FIELDS WITH RATIONAL COEFFICIENTS

IE. MAKEDONSKYI AND A. PETRAVCHUK

Abstract. The Lie algebra of planar vector fields with coefficients from the field of
rational functions over an algebraically closed field of characteristic zero is considered.

We find all finite-dimensional Lie algebras that can be realized as subalgebras of this
algebra.

Introduction

Let K be an algebraically closed field of characteristic zero and R = K(x, y) be the
field of rational functions. Recall that a K-linear mapping D : R → R is called a K-

derivation if D(fg) = D(f)g + fD(g) for all f, g ∈ R. We denote by W̃2(K) the Lie
algebra of all K-derivations of R, this algebra is a two-dimensional vector space over R,
its basis { ∂

∂x
, ∂
∂y

} will be called standard. In geometric terms, a derivation D is a vector

field with rational coefficients and W̃2(K) is the Lie algebra of all vector fields on K2 with

rational coefficients. The Lie algebra W̃2(K) is closely connected with the automorphism
group Aut(R) of the field R (for example if D is a locally nilpotent derivation of R, then
expD is an automorphism of R). The group Aut(R) was intensively studied by many
authors (see, for example [3]). A question about finite subgroups of Aut(R) is of special
interest, the description of such subgroups was recently completed by I. Dolgachev and
V. Iskovskikh [3]. So, it is of interest to study finite dimensional subalgebras of the Lie

algebra Der(R) = W̃2(K) which corresponds in some sense to Aut(R).

In this paper, we give a description of finite dimensional subalgebras of W̃2(K) up to
isomorphism as Lie algebras using only algebraic tools. The advantage of this approach
is that many results of the paper can be transferred on Lie algebras of derivations of
commutative and associative algebras over fields (in [8] we have obtained estimations for
derived length of solvable Lie algebras of derivations in a similar way). Such a description
over the field of complex numbers can also be obtained using analytical and geometric
methods; it can be deduced from results of S. Lie (see [7], 71–73). There are many papers
devoted to such subalgebras, see for example [2], [4], [10], [9], [6], [11]. The main result

of the paper is Theorem 1 where all types of finite dimensional subalgebras of W̃2(K) are
listed. From this description one can easily obtain all possible types of finite dimensional
subalgebras of the Lie algebra W2(K) = DerK[x, y] (up to isomorphism as Lie algebras).

We use standard notations, the ground field K is algebraically closed of characteristic
zero (some results are valid for any field of characteristic 0). If D1, . . . , Dn are elements

of W̃2(K), then we denote by K〈D1, . . . , Dn〉 or simply 〈D1, . . . , Dn〉 the linear span
of elements D1, . . . , Dn over the field K. The field K(x, y) of rational functions will be

denoted by R, every nonzero K-subspace of W̃2(K) has rank 1 or 2 over R as a system

of elements of the two-dimensional vector space W̃2(K) over R.
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1. Preliminaries

Lemma 1. Suppose that D1, D2 ∈ W̃2(K). Then
(1) For any a, b ∈ R it holds [aD1, bD2] = ab[D1, D2] + aD1(b)D2 − bD2(a)D1.
(2) If D1, D2 are linearly independent over R and D1(c) = D2(c) = 0 for some c ∈ R,

then c ∈ K.

Proof. 1. Straightforward calculation.

2. Note that ∂
∂x
, ∂
∂y

∈ W̃2(K) are linear combinations of D1 and D2 with coefficients

in R. Then ∂
∂x

(c) = ∂
∂x

(c) = 0 which implies c ∈ K. �

Lemma 2. Let L be a finite dimensional subalgebra of the Lie algebra W̃2(K). If L is

of rank 1 over R, then there exists an element D1 ∈ W̃2(K) such that L is one of the
following algebras:

(1) L = 〈D1, a1D1, . . . , anD1〉 for some ai ∈ R such that D1(ai) = 0 for all i. The
algebra L is abelian.

(2) L = 〈D1, a1D1, . . . , an−1D1, bD1〉 for some ai, b ∈ R such that D1(ai) = 0 for all
i, D1(b) = −1. L is metabelian.

(3) L = 〈D1,−a
2D1,−2aD1〉 for some a ∈ R with D1(a) = 1. The algebra L is

isomorphic to sl2(K).

Proof. Replacing the polynomial ring K[x, y] by the field R = K(x, y) in the proof of
Theorem 1 in [1] one can show that a finite dimensional subalgebra of rank 1 over R

from W̃2(K) is either abelian, or metabelian of the form L = 〈b〉 ⋌ A, [b, a] = a for all
a ∈ A with abelian A, or L ≃ sl2(K). Consider all these cases. If L is abelian with K-basis
{D1, a1D1, . . . , anD1} then [D1, aiD1] = 0 = D1(ai)D1 for all i. HenceD1(ai) = 0 for all i
and L is of type 1. Let L = 〈b〉⋌A with abelian subalgebra A = {D1, a1D1, . . . , an−1D1}.
Then as above D1(ai) = 0 for all i and since [bD1, D1] = D1 we get D1(b) = −1. Thus
L is of type 2. Finally, let L ≃ sl2(K). Choose the standard basis {e, f, h} of L over K.
Without loss of generality we may put e = D1, f = bD1, h = aD1 for some a, b ∈ R.
Then

[aD1, D1] = 2D1, [aD1, bD1] = −2bD1, [D1, bD1] = aD1,

so using Lemma 1 we get from the first equality thatD1(a) = −2. The second equality im-
plies aD1(b)+2b = −2b and therefore D1(b) = −4b/a. The third equality yields D1(b) =
a. So, a = −4b/a and a2 = −4b, i.e. b = −a2/4. We get the basis {D1,−a

2/4D1, aD1} of
the algebra L. Replacing here a by −a/2 we obtain a basis {D1,−a

2D1,−2aD1} where
D1(a) = 1. �

Remark 1. One can easily point out realizations for Lie algebras from the previous
Lemma: 1. D1 = ∂

∂x
, ai = yi, i = 1, . . . , n; 2. D1 = ∂

∂x
, ai = yi, i = 1, . . . , n− 1, b = −x;

3. D1 = ∂
∂x
, a = x.

Lemma 3. Let L 6= 0 be a finite dimensional solvable subalgebra of the Lie algebra

W̃2(K) and let 〈D1〉 be its arbitrary one-dimensional ideal. Then
(1) The set I = RD1 ∩ L is an ideal of L.
(2) dimL/I ≤ 2 and if dimL/I = 2, then the quotient algebra L/I is nonabelian.
(3) If dimL ≥ 5, then the ideal I contains all ideals of rank 1 over R from L.

Proof. 1. Take any element D ∈ L. Since 〈D1〉 is an ideal of L we have [D,D1] = λD1

for some λ ∈ K depending on D. Then for any element aD1 ∈ I it holds

[D, aD1] = D(a)D1 + a[D,D1] = (D(a) + λa)D1 ∈ I.

Therefore I is an ideal of L.
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2. We can obviously assume that I 6= L. Choose a one-dimensional ideal 〈D2 + I〉 of
the quotient algebra L/I. As D2 6∈ I the elements D1, D2 are linearly independent over
R. It suffices to show that the ideal J = I+〈D2〉 of the algebra L is of codimension ≤ 1 in
L. Take arbitrary elements D3 = a3D1 + b3D2, D4 = a4D1 + b4D2 with a3, a4, b3, b4 ∈ R
from the set L \ J. Since

[D1, D3] = D1(a3)D1 +D1(b3)D2 + b3λD1 ∈ 〈D1〉

(here [D2, D1] = λD1) we get D1(b3) = 0. Analogously from the relation [D2, D3] ∈ J we
have D2(b3) = c3 ∈ K. Similar calculations yield D1(b4) = 0, D2(b4) = c4 ∈ K. It can be
easily shown that c3 6= 0, c4 6= 0. Indeed, let to the contrary c3 = 0. Then the equalities
D1(b3) = 0, D2(b3) = c3 = 0 imply by Lemma 1 that b3 ∈ K. This means that a3D1 ∈ L
and as a3D1 ∈ I we get D3 ∈ J. The latter contradicts to the choice of D3. Analogously
one can show that c4 6= 0. Consider the element c4D3 − c3D4 of L and write it in the
form

(c4a3 − c3a4)D1 + (c4b3 − c3b4)D2 = r1D1 + r2D2.

Straightforward calculation shows that D2(r2) = 0. As also D1(r2) = 0, the element r2
belongs to K by Lemma 1. Therefore c4D3−c3D4 ∈ J and D3, D4 are linearly dependent
over J, i.e. dimL/J ≤ 1.

Now let dimL/I = 2 and {D2 + I, aD1 + bD2 + I} be a basis of L/I. Suppose that
L/I is abelian. Then [D2, aD1 + bD2] ∈ I and therefore D2(b) = 0. From the relation
[aD1 + bD2, D1] ∈ 〈D1〉 it follows that D1(b) = 0. But then Lemma 1 yields b ∈ K which
implies aD1 ∈ L. This means that aD1 ∈ I and aD1 + bD2 ∈ I + 〈D2〉. The latter is
impossible because the elements D2 and aD1+ bD2 are linearly independent over I. This
contradiction shows that L/I is nonabelian.

3. Finally, let dimL ≥ 5, I = RD1 ∩ L and T = RD2 ∩ L for some ideals 〈D1〉 and
〈D2〉. Suppose that elements D1 and D2 linearly independent over R. Since dimL/I ≤ 2
and dimL/T ≤ 2 (by the proved above) and I∩T = 0 we get dimL ≤ 4 which contradicts
to our assumption. Thus, I contains all ideals of rank 1 over R. �

We need also some elementary properties of rational functions in a single variable.
These properties seem to be known but having no reference we supply them with com-
plete proofs. For a rational function ϕ ∈ K(t) we will denote ϕ′ = dϕ

dt
. If p(t) ∈ K[t] is

an irreducible polynomial, then ordpϕ denotes as usually the integer α from the decom-
position of ϕ into the product of the form ϕ = pαψ, where neither numerator nor the
denominator of ψ is divisible by p.

Lemma 4. Let K be an algebraically closed field of characteristic zero. Then
(1) If ϕ(t) ∈ K(t)\K, then there does not exist any function ψ ∈ K(t) such that

ψ′ = ϕ′

ϕ
.

(2) Let ϕ,ψ ∈ K(t)\K be such functions that µϕ′ψ − ϕψ′ = 0 for some µ ∈ K. Then
µ ∈ Q, µ = m

n
, and ϕm = cψn for some c ∈ K. Moreover, there exists θ ∈ K(t) such that

ϕ = c1θ
s, ψ = c2θ

t for some c1, c2 ∈ K, s, t ∈ Z.

Proof. 1. Suppose on the contrary that there exists ψ ∈ K(t) such that ψ′ = ϕ′

ϕ
. Let

p ∈ K[t] be an irreducible polynomial such that ordp(ϕ) 6= 0. Put α = ordp(ϕ). Then
ϕ = pαq and ϕ′ = αpα−1p′q + pαq′. Therefore

ϕ′

ϕ
=
αp′pα−1q + pαq′

pαq
=
αqp′ + pq′

pq
.

Since ordp(αqp
′ + pq′) = 0 it holds ordp

(
ϕ′

ϕ

)
= −1 (note that ordp(q) = 0). Now

put β = ordp(ψ), ψ = pβr. Then ψ′ = βp′pβ−1r + pβr′. If β = 0, then ψ′ = r′ and
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ordp(ψ
′) = ordp(r

′) ≥ 0. Suppose that β 6= 0. Then

ordp(ψ
′) = ordp(βp

′pβ−1r + pβr′) = ordp(βp
′pβ−1r) = β − 1.

Therefore in any case ordpψ
′ 6= −1, which contradicts to the equality ordp

(
ϕ′

ϕ

)
= −1.

Hence there does not exist such a polynomial ψ that ψ′ = ϕ′

ϕ
.

2. Take any functions ϕ,ψ from K(t)\K satisfying the condition

(1) µϕ′ψ − ϕψ′ = 0.

It can be easily shown that there exists a point t0 ∈ K such that ordt−t0ϕ 6= 0 ( because
the field K is algebraically closed). Without loss of generality we can assume that the
field K(t) is embedded to the field K((t)) of Laurent series at the point t0. Put

ϕ =

∞∑

i=m

αi(t− t0)
i, ψ =

∞∑

i=n

βi(t− t0)
i, where m,n ∈ Z, αmβn 6= 0.

Since ordt−t0ϕ 6= 0, it holds m 6= 0, We can assume that αm = βn = 1, because the
equation (1) is homogeneous. Computing coefficients at tm+n−1 in both sides of the
equation (1) we obtain µm = n. Therefore µ = n/m ∈ Q. Further,

(
ϕn

ψm

)
′

=
nϕn−1ϕ′ψm −mϕnψm−1ψ′

ψ2m
=
ϕn−1ψm−1(nϕ′ψ −mϕψ′)

ψ2m
= 0,

because nϕ′ψ −mϕψ′ = m(µϕ′ψ − ϕψ′) = 0. Hence, ϕn

ψm ∈ K i.e. ϕn = cψm for some

c ∈ K.
The functions ϕ and ψ can be written as products of irreducible factors with (nonzero)

integer powers

ϕ =

s∏

i=1

ukii , ψ =

k∏

j=1

vlii .

Using the equality ϕn = cψm we get k = s and after renumbering the factors we can
write down ui = γivi for some γi ∈ K. Hence we have

(
k∏

i=1

ukii

)n
= c

(
k∏

i=1

(γiui)
li

)m
.

This equality implies that nki = mli for all i = 1, . . . , k. Denote d = gcd(m,n) and
m = m1d, n = n1d. We obtain equalities n1dki = m1dli, i = 1, . . . , k, and therefore
n1ki = m1li. Since gcd(m1, n1) = 1 we obtain that li is divisible by n1, ki is divisible by
m1, i = 1, . . . , k. Denote li

n1

= ki
m1

= ri and θ =
∏s
i=1 u

ri
i . Then ϕ = θm1 , c1ψ = θn1 for

some c1 ∈ K∗. This completes the proof of Lemma. �

Lemma 5. Let D1 and D2 be elements of W̃2(K) linearly independent over R such that
[D2, D1] = νD1 for some ν ∈ K. Let b1, b2 be linearly independent over K elements of
R\K such that D1(bi) = 0, i = 1, 2. Then

(1) If [D2, biD1] = λibiD1 for some λi ∈ K, i = 1, 2, then λ1 6= λ2. If λ1 6= ν, then
λ2−ν
λ1−ν

∈ Q.

(2) If [D2, b1D1] = λb1D1, [D2, b2D1] = λb2D1 + b1D1 for some λ ∈ K, then λ = ν.

Proof. 1. Using the condition [D2, biD1] = λibiD1 we get

(2) D2(bi) = (λi − ν)bi, i = 1, 2.

Suppose that λ1 = λ2. Then D2

(
b1
b2

)
= D2(b1)b2−b1D2(b2)

b2
2

= 0. Besides, D1(
b1
b2
) = 0 by

conditions of Lemma. Then using linear independence of elements D1, D2 we obtain by
Lemma 1 the inclusion b1

b2
∈ K. The latter is impossible because of linear independence

of elements b1, b2 over K. Hence λ1 6= λ2.
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Let now λ1 6= ν. Since b1, b2 ∈ R\K, the subfield ker(D1) of R is of transcendence
degree 1 over K (it is obvious that this degree cannot be equal to 2). Hence kerD1 is
generated by a single element (see, for example, [12], Th. 3). Denote this element by θ.
Then b1 = ϕ1(θ), b2 = ϕ2(θ) for some rational functions ϕ1(t), ϕ2(t) ∈ K(t). Using
the relation [D2, D1] = νD1 we see that D2(θ) ∈ ker(D1). Denote also D2(θ) = f(θ),
f ∈ K(t). The conditions (2) imply

ϕ′

1(θ)f(θ) = (λ1 − ν)ϕ1(t), ϕ′

2(θ)f(θ) = (λ2 − ν)ϕ2(θ).

Since ϕi are not constants and λ1 − ν 6= 0 we have

ϕ1ϕ
′

2 − µϕ′

1ϕ2 = 0, where µ =
λ2 − ν

λ1 − ν
.

Now Lemma 4 yields the inclusion µ ∈ Q.
2. By the condition (2) of Lemma we have

(3) D2(b1) = (λ− ν)b1, D2(b2) = (λ− ν)b2 + b1.

As above we can show that b1 = ψ1(θ), b2 = ψ2(θ), where θ is a generator of the
subfield kerD1 and D2(θ) = g(θ) for some rational functions ψ1, ψ2, g ∈ K(t). Using (3)
one can easily show that

(4) ψ′

1g = (λ− ν)ψ1, ψ′

2g = (λ− ν)ψ2 + ψ1.

Since b1 ∈ R\K it holds ψ′

1 6= 0. The equality (4) implies the next relations

(5)
ψ′

1

ψ1
=

(λ− ν)ψ′

2

(λ− ν)ψ2 + ψ1
=

(
(λ− ν)ψ2

ψ1

)
′

(note that (λ − ν)ψ2 + ψ1 6= 0 because ψ1 and ψ2 are linearly independent over K).
But the relation (5) is impossible if λ 6= ν by Lemma 4. This contradiction shows that
λ = ν. �

The next statement can be easily deduced from the theorem of S. Lie about solvable
Lie algebras.

Lemma 6. Let V be a finite dimensional vector space over the field K and T, S be linear
operators on V. If [T, S] = S, then the operator S is nilpotent.

2. Finite dimensional solvable subalgebras of W̃2(K)

Lemma 7. Let L be a finite dimensional solvable subalgebra of rank 2 over R of W̃2(K)
and let 〈D1〉 be its arbitrary one dimensional ideal. Denote I = RD1 ∩ L. If the ideal
I is abelian, then there exists an element D2 ∈ L\I such that L is one of the following
algebras:

(1) L = 〈D1, aD1, . . . , (a
n/n!)D1, D2〉, where a ∈ R such that D1(a) = 0, D2(a) =

1, [D2, D1] = λD1 and λ = 0 or λ = 1, n ≥ 1. If n = 0, we put L = 〈D1, D2〉.
(2) L = 〈D1, a1D1, . . . , anD1, D2〉, where ai ∈ R, [D2, D1] = D1, D1(ai) = 0, D2(ai) =

βmiai,mi ∈ Z for all i, β ∈ K⋆,mi 6= mj for i 6= j, n ≥ 1.
(3) L = 〈D1, aD1, . . . , (a

n/n!)D1, D2, bD1 + aD2〉, where a, b ∈ R such that D1(a) =
0, D1(b) = β, β ∈ K, [D2, D1] = 0, D2(a) = 1, D2(b) = (n+1)γan, γ ∈ K, n ≥ 1 (if n = 0
we put L = 〈D1, D2, bD1 + aD2〉).

Proof. The set I = RD1∩L is an ideal of L by Lemma 3. We can write I = 〈D1, a1D1, . . . ,
anD1〉 for some elements ai ∈ R and n ≥ 1 (if n = 0 we put I = 〈D1〉). Since the ideal I
is abelian we have D1(ai) = 0, i = 1, . . . , n.We consider two cases depending on dimL/I
(recall that dimL/I ≤ 2 by Lemma 3).

Case 1. dimL/I = 1. Take any element D2 ∈ L\I. As 〈D1〉 is an ideal of L we have
[D2, D1] = νD1 for some ν ∈ K. The elements D1 and D2 are linearly independent over R
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by the choice of the ideal I. First, let the linear operator adD2 have the only eigenvalue
ν on the vector space I (recall that [D2, D1] = νD1). If aD1, bD1 ∈ I are eigenvectors of
adD2, i.e. [D2, aD1] = νaD1, [D2, bD1] = νbD1, then the elements aD1, bD1 are linearly
dependent over K by Lemma 5. Hence D1 is the unique eigenvector of adD2 on I (up
to multiplication by a nonzero scalar). But then the linear operator adD2 has a Jordan
basis in I of the form {D1, a1D1, . . . , anD1}, ai ∈ R such that

[D2, aiD1] = νaiD1 + ai−1D1, i = 1, . . . , n, [D2, D1] = νD1

(in case n = 0 we have I = 〈D1〉). The last relations imply the equalities D2(ai) =
ai−1, i = 2, . . . , n, D2(a1) = 1. Denoting a = a1 we have D2(a2 − a2/2!) = 0 and taking
into account the relation D1(a2−a

2/2!) = 0 we see by Lemma 1 that a2−a
2/2! ∈ K. But

then without loss of generality we can take a2 = a2/2!. Analogously D2(a3−a
3/3!) = a2−

a2 = 0 and D1(a3−a
3/3!) = 0, so we can put a3 = a3/3!. Repeating these considerations

we get a K-basis {D1, aD1, . . . , (a
n/n!)D1} of the ideal I (recall that I = 〈D1〉 in case

n = 0). The algebra Lie L is of type 1 because we always can assume that ν = 0 or ν = 1
choosing a convenient multiple of the element D2.

Now let adD2 have on I at least two different eigenvalues. Our aim is to show
that adD2 is a diagonalizable operator on I. Denote by I(λ) the root space of adD2

corresponding to the eigenvalue λ, λ 6= ν. Since adD2 has on I(λ) the only eigenvalue λ
it follows from the previous considerations that adD2 has on I(λ) a Jordan basis such
that the matrix of adD2 in this basis is a single Jordan block. Therefore if dim I(λ) > 1
then there exist elements aD1, bD1 ∈ I such that

[D2, aD1] = λaD1, [D2, bD1] = λbD1 + aD1.

The latter is impossible by Lemma 5 and therefore dim I(λ) = 1. Choosing any element
D′

1 ∈ I with property [D2, D
′

1] = λD′

1 instead of the element D1 and using Lemma 5
we can analogously show that dim I(ν) = 1, where I(ν) is the root space corresponding
to the eigenvalue ν of adD2 on I. Therefore all the root spaces are one-dimensional and
adD2 is diagonalizable on I.

Since at least one of the eigenvalues of adD2 on I is nonzero we can choose elements
D1 and D2 in such a way that

[D2, D1] = D1, I = 〈D1, a1D1, . . . , anD1〉,

where [D2, aiD1] = λiaiD1, λi 6= λj if i 6= j and λi 6= 1, i = 1, . . . , n.

Applying Lemma 5 (with ν = 1) we can easily show that λi−1
λ1−1 = τi ∈ Q, i = 2, . . . , n.

Denote τi =
ki
li
, ki, li ∈ Z, i = 2, . . . , n. If l is the least common multiple of l2, . . . , ln, then

one can write τi =
mi

l
and λi = miβ+1, where β = λ1−1

l
(note that λi−1 = τi(λ1−1)).

Thus, L is an algebra of type 2 of Lemma.
Case 2. dimL/I = 2. The quotient algebra L/I is nonabelian by Lemma 3, so it

contains a noncentral one-dimensional ideal 〈D2+I〉. Then there exists an element bD1+
cD2 ∈ L such that

[bD1 + cD2 + I,D2 + I] = D2 + I.

This means that [bD1 + cD2, D2] = D2 + gD1 for some element gD1 ∈ I. Since the ideal
I is abelian it is obvious that adD2 = ad(D2 + gD1) on the vector space I over K. We
obtain the following relation for linear operators on I :

[ad(bD1 + cD2), adD2] = ad(D2 + gD1) = adD2.

But then adD2 acts nilpotently on I by Lemma 6. In case dim I = 1 we get (after direct
calculations) the Lie algebra of type 3 with n = 0. Let dim I ≥ 2. Since [D2, D1] = 0
one can easily show (using Lemma 3) that the ideal I can be written in the form I =
〈D1, aD1, . . . , (a

n/n!)D1〉 for some a ∈ R,D2(a) = 1, n ≥ 1.
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Returning now to the above mentioned element bD1 + cD2 ∈ L we see that

[D1, bD1 + cD2] = D1(b)D1 +D1(c)D2 ∈ 〈D1〉

and therefore D1(c) = 0, D1(b) ∈ K. Further, from the equality

[D2, bD1 + cD2] = D2(b)D1 +D2(c)D2 ∈ I + 〈D2〉

we obtain D2(c) = γ ∈ K, D2(b) ∈ 〈1, a, a2/2!, . . . , an/n!〉. From the relations D2(c) =
γ ∈ K and D2(a) = 1 it follows that D2(γa− c) = 0. Then Lemma 1 yields γa− c ∈ K,
i.e. c = γa+ b for some γ, β ∈ K.

The element D3 = γ−1(bD1 + cD2 − βD2) of the algebra L can be written in the
form D3 = b1D1 + aD2 for some b1 ∈ R. As D2(b1) ∈ 〈1, a, a2/2!, . . . , an/n!〉 we can
subtract from b1D1+aD2 a suitable linear combination of the elements D1, aD1, a

2/2!D1,
. . . , an/n!D1 and assume without loss of generality that D2(b1) = (n + 1)γan for some
γ ∈ K. Denoting b = b1, β = D1(b) ∈ K we see that L is of type 3 of this Lemma. �

Remark 2. For each type of Lie algebras from Lemma 7 one can easily point out a
realization

1. λ = 0, D1 = ∂
∂x
, D2 = ∂

∂y
, a = y. λ = 1, D1 = ∂

∂x
, D2 = ∂

∂y
− x ∂

∂x
, a = y.

2. D1 = ∂
∂x
, ai = ymi , D2 = βy ∂

∂y
− x ∂

∂x
, β ∈ K.

3. D1 = ∂
∂x
, D2 = ∂

∂y
, a = y, b = βx+ γyn+1, β, γ ∈ K.

Lemma 8. Let L be a subalgebra of W̃2(K) satisfying all the conditions of the previous
Lemma with the exception of that the ideal I is abelian. If I is nonabelian, then there
exist elements D1 ∈ I,D2 ∈ L\I such that L is one of the following algebras:

(1) L = 〈D1, aD1, . . . , (a
n−1/(n− 1)!)D1, bD1, D2〉, where a, b ∈ R such that D1(a) =

0, D2(a) = 1, D1(b) = −1, D2(b) = 0, [D2, D1] = 0.
(2) L = 〈D1, a1D1, . . . , an−1D1, bD1, D2〉, where ai, b ∈ R such that [D2, D1] =

D1, D1(ai) = 0, D1(b) = −1, D2(b) = −b,D2(ai) = βmiai for some mi ∈ Z, β ∈ K⋆

and mi 6= mj if i 6= j.
(3) L = 〈D1, aD1, . . . , (a

n−1/(n−1)!)D1, (v−αa
n)D1, D2, (−βv+γ(a

n/n!))D1−aD2〉,
where a, v ∈ R such that [D1, D2] = 0, D1(a) = 0, D2(a) = 1, D1(v) = −1, D2(v) =
0, α, β ∈ K, and γ = α(β − n).

Proof. Let 〈D1〉 be the one-dimensional ideal of L lying in I. The ideal I has by Lemma
2 a basis over K of the form {D1, a1D1, . . . , an−1D1, bD1}, where D1(ai) = 0, D1(b) =
−1, i = 1, . . . , n − 1 (for n = 0 we put I = 〈D1, bD1〉 with D1(b) = −1). Suppose that
n = 0, i.e. dim I = 2. If dimL/I = 1, then L = 〈D1, bD1, D2〉 is of type 2 or 3. If
dimL/I = 2, then L/I is nonabelian by Lemma 3 and taking into account that L/I is
nonabelian we have L = I⊕J for nonabelian ideal J of dimension 2. Then L is of type 3.
So we may assume that dim I ≥ 3. As in the previous Lemma we divide the proof into
following cases:

Case 1. dimL/I = 1. Take any element D2 ∈ L\I. Then [D2, bD1] = λbD1 + cD1,
where cD1 ∈ I ′ = [I, I] because dimL/I ′ = 2 and 〈bD1 + I ′〉 is a one-dimensional ideal
of L/I ′. If λ 6= 0, then we may assume without loss of generality that λ = 1, and then

[adD2, ad(bD1)] = ad(bD1 + cD1) = ad(bD1)

on I ′ because I ′ is an abelian ideal of L. But then the linear operator ad(bD1) acts
nilpotently on I ′ by Lemma 6. The latter is impossible and therefore λ = 0. This
means that L/I ′ is an abelian Lie algebra of dimension 2. As [D2, bD1] = cD1 for some
element cD1 ∈ I ′ we get [D2 + cD1, bD1] = 0 (recall that [bD1, cD1] = cD1 for all
cD1 ∈ I ′). So, we can choose the element D2 in such a way that [D2, bD1] = 0. If the
linear operator adD2 has on I ′ = 〈D1, . . . , an−1D1〉 at least two different eigenvalues,
then there exists by Lemma 5 a basis {D1, . . . , an−1D1} of I ′ such that D2(ai) = miβai,
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for some mi ∈ Z, β ∈ K⋆, mi 6= mj if i 6= j, [D2, D1] = D1. Then from the relation
[D2, bD1] = 0 it follows D2(b) = −b. The algebra L is of type 2 of Lemma.

Now let adD2 have the only eigenvalue µ on I ′. If µ = 0, then L is obviously the Lie
algebra of type 1 of Lemma. Let µ 6= 0. Taking a suitable multiple of D2 we may assume
that µ = 1. Then replacing the element D2 by the element D2 − bD1 we get the case
µ = 0 and L is again of type 1 of Lemma.

Case 2. dimL/I = 2. As in the case 1 take a one-dimensional ideal 〈D1〉 of L lying
in I ′ and a basis of I of the form {D1, a1D1, . . . , an−1D1, bD1} such that D1(ai) = 0,
D1(b) = −1, i = 0, . . . , n−1. Let 〈D2+I〉 be the one-dimensional ideal of the nonabelian
quotient algebra L/I. Accordingly to Case 1 the algebra 〈D2〉+ I is of type 1 or type 2
of this Lemma. Let us show that 〈D2〉 + I is of type 1 of this Lemma, i. e. the linear
operator adD2 acts nilpotently on I ′. Really since 〈bD1 + I ′〉 is an ideal of the algebra
L/I ′ and ad(bD1) acts on I ′ as the identity operator the ideal 〈bD1 + I ′〉 lies in the
center of L/I ′ (because of Lemma 6), i. e. [D, bD1] ∈ I ′ for any element D ∈ L. Take
any element cD1 + dD2 ∈ L\I such that [cD1 + dD2, D2] = D2 + rD1 for some element
rD1 ∈ I. The element rD1 can be written in the form rD1 = µbD1+r1D1, where µ ∈ K,
r1D1 ∈ I ′. But then we obtain

[cD1 + bD2, D2 + µbD1] = (D2 + µbD1) + r2D1

for some element r2D1 ∈ I ′ The latter means that ad(D2 + µbD1) acts nilpotently
on I ′ (by Lemma 6). Replacing the element D2 by the element D2 + µbD1 we can
assume without loss of generality that adD2 is a nilpotent linear operator on I ′. So, the
subalgebra 〈D2〉 + I is of type 1 of this Lemma and hence I ′ + 〈D2〉 can be written in
the form

I ′ + 〈D2〉 = 〈D1, aD1, . . . ,
an−1

(n− 1)!
D1, D2, 〉

where [D2, D1] = 0, D1(a) = 0, D2(a) = 1.
Further, it follows from the above mentioned equality

(6) [cD1 + dD2, D2] = D2 + r2D1

that D2(d) = −1. Analogously we obtain D1(d) = 0, D1(c) = β1 ∈ K from the relation
[cD1+dD2, D1] ∈ 〈D1〉. Since D2(a) = 1 and D2(d) = −1 we have D2(a+d) = 0. Taking
into account the equality D1(a + d) = 0 we obtain by Lemma 1 that a + d = α1 ∈ K.
But then d = −a + α1 and without loss of generality we can choose cD1 − aD2 instead
of the element cD1 + dD2.

Since [D2, bD1] ∈ I ′ (as we have proved before) we see that

D2(b) = α0 + α1a+ · · ·+ αn−1
an−1

(n− 1)!

for some αi ∈ K. Put v = b − α0a − α1
a2

2! − · · · − αn−1
an

n! . Then D1(v) = D1(b) =

−1, D2(v) = 0. Subtracting the element (α0a + α1
a2

2! + · · · + αn−2
an−1

(n−1)! )D1 ∈ I ′ from

the element bD1 we can assume without loss of generality that b = v−αn−1
an

n! for some

αn−1 ∈ K. Then D1(b) = −1, D2(b) = αn−1
an−1

(n−1)! . Further, recall that for the basic

element cD1 − aD2 we have D1(c) = β1 ∈ K.
Rewriting the relation 6 in the form [cD1 − aD2, D2] = D2 + r2D1 we obtain that

D2(c) = γ0 + γ1a+ · · ·+ γn−1
an−1

(n− 1)!
for some γi ∈ K, i = 1, . . . , n− 1.

Subtracting the element (γ0a+γ1
a2

2! +· · ·+γn−2
an−1

(n−1)! )D1 ∈ I ′ from the element cD1−aD2

we may assume without loss of generality that D2(c) = γn−1
an−1

(n−1)! . Suppose that β1 =

D1(c) 6= 0. Since D1(β
−1
1 c + v − β−1

1 γn−1
an

n! ) = 0 and D2(β
−1
1 c + v − β−1

1 γn−1
an

n! ) =
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β−1
1 γn−1

an−1

(n−1)!−β
−1
1 γn−1

an−1

(n−1)! = 0 we have by Lemma 1 that β−1
1 c+v−β−1

1 γn−1
an

n! = ν

for some ν ∈ K. Subtracting the element νD1 ∈ I ′ from the element cD1 + aD2 we may
assume that ν = 0. Then we obtain c = −β1v + γn−1

an

n! . Denoting αn−1 by α, γn−1 by
γ and β1 by β we obtain a basis of L of the form

{
D1, aD1, . . . ,

an−1

(n− 1)!
D1, (v − α

an

n!
)D1, D2, (−βv + γ

an

n!
)D1 − aD2

}

(here D1(a) = 0, D1(v) = −1, D2(a) = 1, D2(v) = 0). Now suppose that β = D1(c) = 0.

Since D2(c) = γ an−1

(n−1)! we see that for the element c1 = c− γ a
n

n! it holds D1(c) = β = 0,

D2(c) = 0. So by Lemma 1 we obtain c − γ a
n

n! = ν2 for some ν2 ∈ K. Subtracting the

element ν2D1 from cD1 + aD2 we may assume that ν2 = 0. So we have that c = γ a
n

n! i.e.
the basis of L is of the same form as in case β 6= 0.

Now consider the product [(v − αan/n!)D1, (βv + γan/n!)D1 − aD2]. This product
equals to (−αβ+γ+nα)D1 and belongs to I ′. Hence −αβ+γ+nα = 0 and γ = α(β−n).
We see that L is of type 3 of Lemma. �

Remark 3. There exist realizations for all types of Lie algebras from Lemma 8
1. D1 = ∂

∂x
, D2 = ∂

∂y
, a = y, b = −x.

2. D1 = ∂
∂x
, D2 = βy ∂

∂y
− x ∂

∂x
, a = y, b = −x, ai = ymi , .

3. D1 = ∂
∂x
, D2 = ∂

∂y
, a = y, f = −x.

The next three corollaries can be easily proved by using results of Lemmas 2, 7 and 8.

Corollary 1. Let L be a finite dimensional nilpotent subalgebra of W̃2(K). Then there
exist elements D1, D2 ∈ L linearly independent over R such that L is one of the following
algebras:

(1) L = 〈D1, a1D1, . . . , anD1〉, for some ai ∈ R such that D1(ai) = 0, i = 1, . . . , n.
(2) L = 〈D1, D2〉, [D1, D2] = 0.
(3) L = 〈D1, aD1, . . . , (a

n/n!)D1, D2〉 for some a ∈ R such that D1(a) = 0, D2(a) = 1,
[D1, D2] = 0.

Corollary 2. Let L be a finite dimensional solvable subalgebra of W̃2(K). If L is non-
abelian and decomposable into a direct sum of proper ideals, then L = A ⊕ B, where
A is a nonabelian ideal of dimension 2 and B is either a one-dimensional ideal or a
two-dimensional nonabelian ideal of L.

Corollary 3. Let L be a finite dimensional solvable subalgebra of W̃2(K). If L is non-
abelian, then dimL/L′ ≤ 2.

3. Nonsolvable subalgebras of W̃2(K)

Lemma 9. If L is a finite dimensional semisimple subalgebra of the Lie algebra W̃2(K),
then L is isomorphic to sl2(K) or sl3(K), or sl2(K)⊕ sl2(K).

Proof. If L is of rank 1 (as a system of vectors) over R, then L ≃ sl2(K) by Lemma 2.
So, we can assume that L is of rank 2 over R. Fix a Cartan subalgebra H of the algebra
L, a basis π of the system ∆ of roots which correspond to H and let ∆+ be the set of
positive roots relatively to the ordering on ∆. Consider the triangular decomposition

L = N+ +H +N−, N+ = ⊕αi>0Lαi
, N− = ⊕αi<0Lαi

and the Borel subalgebra B = H + N+ of L. If the subalgebra N+ is abelian, then L
is a direct sum L = L1 ⊕ · · · ⊕ Lk of ideals isomorphic to sl2(K) (see, for example [5]).
Then B is a direct sum B = B1⊕· · ·⊕Bk of Borel subalgebras of Li ≃ sl2(K) and using
Corollary 2 we see that either L = L1 ≃ sl2(K) or L = L1 ⊕ L2 ≃ sl2(K)⊕ sl2(K).
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Now, let the subalgebra N+ be nonabelian. Since N+ is nilpotent it is indecomposable
into a direct sum of nonzero ideals by Corollary 1. But then the algebra L is also
indecomposable into a direct sum of proper ideals and hence is simple. By Corollary 3
we have relations

dimB/B′ = dimB/N = dimH ≤ 2.

Therefore, if N+ is nonabelian, then dimH = 2 and L is a simple Lie algebra of one
of the types A2, B2 or G2. First suppose that L is of type G2. Then the subalgebra
N+ from its triangular decomposition has nonabelian derived subalgebra [N+, N+]. The
latter is impossible (see Corollary 1) and hence L cannot be of type G2.

Further, let us show that L is not of type B2. Fix a Cartan subalgebra H of L and a
basis {α, β} of the root system ∆. Then the subalgebra N+ has the basis {eα, eβ , eα+β ,
eα+2β}. It follows from Corollary 1 that eα+β = f · eα+2β for some element f ∈ R. Con-
sider the element σα of the Weyl group of the root system ∆ acting by the rule σα(γ) =

γ− 2(γ,α)
(α,α) α, where γ is an arbitrary root from ∆. Then {−α, β+α.β, α+2β} are positive

roots relatively to the new basis {σα(α), σα(β)}. The subalgebra 〈e−α, eβ+α, eβ , eα+2β〉
is nilpotent and by Corollary 1 it holds eβ = g · eα+2β for some g ∈ R. Analogously one
can show that eα = h · eα+2β for some h ∈ R. Three relations with coefficients f, g, h
obtained above imply that all elements from the basis of N+ are multiple to one of them
and hence the subalgebra N+ is abelian by Lemma 2. This is impossible and obtained
contradiction shows that L is not of type B2. Thus, L is of type A2. �

Lemma 10. Let L be a finite dimensional nonsolvable subalgebra of W̃2(K) whose Levi
factor is either of type A2 or of type A1×A1. Then L is semisimple of type A2 or of type
A1 ×A1 respectively.

Proof. Let S = S(L) be the solvable radical of L. By Theorem of Levi-Maltsev L = L1⋌S,
where L1 is a Levi factor of L. First suppose that L1 is of type A2. Let us fix a Cartan
subalgebra H of L1 and the root system ∆ corresponding to H. Consider the triangular
decomposition

(7) L = N− +H +N+

of L1 relatively to H and ∆. Since the subalgebra N+ is nonabelian (this follows from
the multiplication law in algebras of type A2) it contains by Corollary 1 elements D1 and
D2, linearly independent over R such that [D1, D2] = 0. Consider S as an L1-module
and take the older vector D ∈ S relatively to the decomposition (7). Then we have

(8) [D1, D] = 0, [D2, D] = 0.

If we write D = aD1 + bD2 for some a, b ∈ R, then from the previous relation we get

D1(a) = 0, D1(b) = 0, D2(a) = 0 and D2(b) = 0.

Lemma 1 yields now that a, b ∈ K, i.e. D ∈ L1. As L1 ∩ S = 0 we obtain S = 0 and
therefore L = L1 is a simple Lie algebra of type A2.

Let now L1 be of type A1 × A1. Write L1 = G1 ⊕ G2, where Gi ≃ sl2(K) and fix
Cartan subalgebras H1 ⊂ G1, H2 ⊂ G2. Consider any triangular decompositions

G1 = N1+ +H1 +N1−, G2 = N2+ +H2 +N2−

relatively to H1 and H2. Take any nonzero element D1 ∈ N1+. Then at least one of
the subalgebras N1−, N2+, N2− contains a nonzero element D2 such that D1 and D2 are
linearly independent over R. Really, in other case H1 = [N1+, N1−] and H2 = [N2+, N2−]
lie also in RD1 and therefore L = G1 ⊕G2 ⊂ RD1 which is impossible by Lemma 2. It
is easily shown that the two-dimensional abelian subalgebra N+ = 〈D1, D2〉 is a part of
triangular decomposition L = N+ + H + N− of L relatively to the Cartan subalgebra
H = H1 ⊕H2. Choosing as above the older vector in S relatively to N+ and repeating
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the considerations from the case L1 ≃ A2 we get S = 0, i.e. L is semisimple of type
A1 ×A1. �

Lemma 11. Let L be a nonsolvable finite dimensional subalgebra of W̃2(K). Then L is
isomorphic to one of the following algebras:

(1) sl3(K).
(2) sl2(K) or sl2(K)⊕ sl2(K).
(3) sl2(K)⋌ Vm, where Vm is the irreducible module over sl2(K) of dimension m+ 1,

m = 0, 1, . . .
(4) gl2(K)⋌ Vm, where Vm is the irreducible module over gl2(K) of dimension m+ 1,

m = 0, 1, . . . and nonzero central elements of gl2(K) act on Vm as nonzero scalars.

Proof. Let S be the solvable radical of L and L1 be a Levi factor of the algebra L.
We can consider only the case S 6= 0 because of Lemma 9. It follows from Lemma 10
that L1 ≃ sl2(K). Choose a Cartan subalgebra H of the algebra L1 and a triangular
decomposition L1 = N+ +H +N− of L1.

Case 1. dimS = 1 or dimS = 2. If dimS = 1, then L = L1 ⊕ S is a sum of two ideals
and L ≃ sl2(K)⊕ V0, where V0 is a one-dimensional module over sl2(K). The algebra L
is of type 4 with m = 0. Suppose that dimS = 2. If S is a nonabelian ideal of L, then L
is a direct sum of ideals L = L1 ⊕ S. Since S = 〈w〉⋌ 〈v0〉 for some elements w, v0 ∈ S,
then L ≃ gl2(K) ⋌ 〈v0〉 is of type (5) with m = 0 because L1 ⊕ 〈w〉 ≃ gl2(K). Let S
be abelian. Suppose that S is a reducible module. Then S = S1 ⊕ S2 is a direct sum
of L1-modules of dimension 1 over K. Take the Borel subalgebra B = H + N+ of L1.
Then the subalgebra B ⊕ S1 ⊕ S2 of L is solvable of dimension 4. But such an algebra
does not exist by Lemmas 7 and 8. This contradiction shows that S is irreducible and
L ≃ sl2(K)⋌V1, where V1 is of dimension 2 over K. The algebra L is of type 4. Further,
we will assume that dimS ≥ 3.

Case 2. S is abelian (of dimension ≥ 3). Let us show that S is an irreducible module
over L1. Assume to the contrary that S is reducible. If S is a sum of one-dimensional
submodules over L1, then L = L1 ⊕ S is a direct sum of ideals. Its subalgebra B + S
is solvable, nonabelian and decomposable into direct sum of subalgebras B ⊕ S. The
latter is impossible by Corollary 2. So we can assume S = S1 ⊕ S2 where S1, S2 are
L1-submodules, dimS1 ≥ 2 and S1 is irreducible (note that S1 and S2 are ideals of
L because S is abelian). Let D2 ∈ N+ be a nonzero element. Then the subalgebra
M = 〈D2〉 + S is nonabelian, nilpotent and dimM/[M,M ] ≤ 2 by Corollary 3. On the
other hand, since [M,M ] = [D2, S1] ⊕ [D2, S2], dimSi/[D2, Si] ≥ 1, i = 1, 2 (because
adD2 acts nilpotently on Si) we have

dimM/[M,M ] = dim〈D2〉+ dimS1/[D2, S1] + dimS2/[D2, S2] ≥ 3.

The latter contradicts to Corollary 3 and hence S is a simple L1-module. It is obvious
that L is of type 4. Note that the subalgebra M = 〈D2〉+ S is of the form

〈D2, D1, aD1, . . . ,
ak

k!
D1〉, [D2, D1] = 0, D1(a) = 0, D2(a) = 1.

Case 3. S is a nilpotent (nonabelian) ideal. Then by Corollary 1 there exist elements
D1, D2 ∈ S such that

S = 〈D2, D1, aD1, . . . , (ak/k!)D1〉, [D2, D1] = 0,

D1(a) = 0, D2(a) = 1, dimS ≥ 3.

Therefore 〈D1〉 = Sk−1 and 〈D1〉 is an ideal of L. Using Lemma 3 we see that RD1 ∩ L

is an ideal of L and therefore L1 ⋌ 〈D1, aD1, . . . ,
ak

k!D1〉 is a subalgebra of L. This

subalgebra has the abelian decomposable ideal 〈D1, aD1, . . . ,
ak

k!D1〉. This is impossible
by the Case 1 and therefore the Case 3 is impossible.
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Case 4. S is solvable (nonnilpotent). The L1-submodule S′ = [S, S] is nilpotent,
therefore S′ is abelian by the previous case and S′ is an irreducible L1-module by Cases
1 and 2. Since dimS/S′ ≤ 2 by Corollary 3 we have a direct decomposition S = S′ ⊕ S2

of L1-submodules with dimS2 ≤ 2. First suppose that dimS2 = 2. Let us show that
S2 is an irreducible L1-module. Indeed, in other case S2 ⊆ CS(L1) and the centralizer
CS(L1) a submodule of the L-module S. Because of previous cases we can assume that
dimS′ ≥ 2 and hence S′ is an irreducible L1-module. Then obviously CS(L1) = S2.
Since CS(L1) = S2 is a subalgebra of L the sum S2 + L1 is a subalgebra of L. The
latter is impossible because the subalgebra S2 + L1 does not exist by the Case 1. This
contradiction shows that S2 is an irreducible L1-module.

Choose any nonzero elements D2 ∈ N+ and h ∈ H and take standard bases {e0, e1} ⊂
S2 and {f0, f1, . . . , fm} ⊂ S′ of the L1-modules S2 and S′ respectively (recall that L1 ≃
sl2(K)). Then the linear operator adh has eigenvalues 1,−1 on S2. If the eigenvalues
of adh on S′ are even, then the elements [ei, fj ] are eigenvectors for adh with odd
eigenvalues. Since [ei, fj ] ∈ S′ we see that [ei, fj ] = 0. Let now the eigenvalues of
adh on S′ be odd. Then [ei, fj ] are eigenvectors for adh with even eigenvalues, so
[ei, fj ] = 0, i = 0, 1, j = 0, 1, . . . ,m. As S′ is abelian the latter means that S′ ⊂ Z(S).
This is impossible because of our assumption on S and therefore dimS/S′ = 1. Hence
dimS2 = 1. The subalgebra S2 + L1 is obviously isomorphic to gl2(K) and S′ is an
irreducible S2 + L1-module. Since S2 lies in the center of S2 + L1 and S is nonabelian
we see that each nonzero element of S2 acts on S′ as multiplication by a nonzero scalar.
We get a Lie algebra of type 5 from this Lemma. �

Remark 4. For each type of Lie algebras from this Lemma one can easily point out its
realization

(1) 〈 ∂
∂x
, ∂
∂y
, x ∂

∂x
, x ∂

∂y
, y ∂

∂x
, y ∂

∂y
, x(x ∂

∂x
+ y ∂

∂y
), y(x ∂

∂x
+ y ∂

∂y
)〉 ≃ sl3(K);

(2) 〈 ∂
∂x
,−x2 ∂

∂x
,−2x ∂

∂x
〉 ≃ sl2(K) and 〈 ∂

∂x
,−x2 ∂

∂x
− 2x ∂

∂x
, ∂
∂y
,−y2 ∂

∂y
,−2y ∂

∂y
〉

≃ sl2(K)⊕ sl2(K);
(3) 〈x ∂

∂y
, y ∂

∂x
, x ∂

∂x
− y ∂

∂y
, xm(x ∂

∂x
+ y ∂

∂y
), xm−1y(x ∂

∂x
+ y ∂

∂y
), . . . , ym(x ∂

∂x
+ y ∂

∂y
)〉 ≃

sl2(K)⋌ Vm;
(4) 〈x ∂

∂x
, x ∂

∂y
, y ∂

∂x
, y ∂

∂y
, xm(x ∂

∂x
+ y ∂

∂y
), xm−1y(x ∂

∂x
+ y ∂

∂y
), . . . , ym(x ∂

∂x
+ y ∂

∂y
)〉 ≃

gl2(K)⋌ Vm.

We give a description of finite dimensional subalgebras of the Lie algebra W̃2(K) up to
isomorphism as Lie algebras. In fact we give more information about such Lie algebras

(up to choice of basis {D1, D2} of the two-dimensional vector space W̃2(K) over the field

R = K(x, y)). In order to clarify the structure of described subalgebras of W̃2(K) we
formulate the main Theorem in terms of generators and relations.

Theorem 1. Let L be a nonzero finite dimensional subalgebra of the Lie algebra W̃2(K).
Then the algebra L belongs to one of the following types:

(1) L = 〈e1, . . . , en〉, where [ei, ej ] = 0, i, j = 1, . . . , n.
(2) L = 〈e1, . . . , en, f〉, where [ei, ej ] = 0, [f, ei] = ei, i = 1, . . . , n.
(3) L = 〈e0, . . . , en, f〉, where [ei, ej ] = 0, i, j = 0, . . . , n, [f, e0] = λe0, [f, ei] =

λei + ei−1, i = 1, . . . , n, λ = 0 or λ = 1.
(4) L = 〈e0, . . . , en, f〉, where [ei, ej ] = 0, i, j = 0, . . . , n, [f, ei] = (1 + βmi)ei,

i = 0, . . . , n, mi ∈ Z, β ∈ K⋆ and mi 6= mj provided that i 6= j.
(5) L = 〈e0, . . . , en, f, g〉, where [ei, ej ] = 0, i, j = 0, . . . , n, [f, e0] = 0, [f, ei] = ei−1,

i = 1, . . . , n, [g, ei] = (i− β)ei, i = 0, . . . , n, [g, f ] = f − γen, β, γ ∈ K.
(6) L = 〈e0, . . . , en, f, g〉, where [ei, ej ] = 0, i, j = 0, . . . , n, [f, ei] = ei, i = 0, . . . , n,

[g, e0] = 0, [g, ei] = ei−1, i = 1, . . . , n, [f, g] = 0.
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(7) L = 〈e0, . . . , en, f, g〉, where [ei, ej ] = 0, i, j = 0, . . . , n, [f, ei] = ei, i = 0, . . . , n,
[g, ei] = (1 + βmi)ei, i = 0, . . . , n, [g, f ] = 0, β ∈ K⋆, mi ∈ Z, and mi 6= mj if i 6= j.

(8) L = 〈e0, . . . , en, f, g, h〉, where [ei, ej ] = 0, i, j = 0, . . . , n, [f, e0] = 0, [f, ei] = ei−1,
i = 1, . . . , n, [g, ei] = ei, i = 0, . . . , n, [g, f ] = αen, [h, ei] = −(β + i)ei, [h, f ] = f − γen,
[h, g] = 0, α, β ∈ K, γ = α(β − n).

(9) L ≃ sl2(K), or L ≃ sl2(K)⊕ sl2(K).
(10) L ≃ sl3(K).
(11) sl2(K)⋌Vm, where Vm is the irreducible module over sl2(K) of dimension m+1,

m = 0, 1, . . .
(12) gl2(K)⋌Vm, where Vm is the irreducible module over gl2(K) of dimension m+1,

m = 0, 1, . . . and nonzero central elements of gl2(K) act on Vm as nonzero scalars.

Proof. Let L be a finite dimensional solvable subalgebra of the Lie algebra W̃2(K). If L
is of rank 1 over R, then L is of type 1 or 2 by Lemma 2. Let L be of rank 2 over R. If L
possesses an abelian ideal I of rank 1 over R which is maximal with this property, then
L is of type 3, 4 or 5 by Lemma 7 (we denote ei = aiD1 in type 4 and ei = (ai/i!)D1

for types 3 and 5). Let the ideal I be nonabelian. Then by Lemma 8 L is one of types
6, 7 or 8 (as above we denote ei = aiD1 in type 7 and ei = (ai/i!)D1 for types 6 and
8, f = bD1 for types 6 and 7 and f = D2, g = (v − α(an/n!))D1 for type 8 of this
Theorem). Further, let L be nonsolvable. If L is semisimple, then L is one of types 9 or
10 by Lemma 9. Finally, if solvable radical of L is nonzero, then L is either of type 11
or of type 12 by Lemma 11. �

References

1. I. V. Arzhantsev, E. A. Makedonskii, and A. P. Petravchuk, Finite-dimensional subalgebras in

polynomial Lie algebras of rank one, Ukrainian Math. J. 63 (2011), no. 5, 708–712.
2. J. Draisma, Transitive Lie algebras of vector fields: an overview, Qual. Theory Dyn. Syst. 11

(2012), no. 1, 39–60.
3. I. V. Dolgachev, V. A. Iskovskikh, Finite subgroups of the plane Cremona group, Algebra,

Arithmetic, and Geometry, Vol. 1: In honor of Yu. I. Manin on the occasion of his 70th birthday,
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