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ON THE DISCRETE SPECTRUM OF A LINEAR OPERATOR

PENCIL ARISING IN TRANSPORT THEORY

P. A. COJUHARI

Dedicated to V. D. Koshmanenko on the occasion of his 70th birthday

Abstract. We study the problem of the finiteness of the discrete spectrum for linear

operator pencils occurring in one-velocity transport theory. The results are obtained
using direct methods of perturbation theory for linear operators. The proposed
approach allowed to give a relatively quick proofs of the main results improving
related results obtained previously by K. M. Case and C. G. Lekkerkerker.

1. Introduction

The time-independent linear transport equation in one dimensional slab configuration
with anisotropic scattering has the following form:

(1.1) ωω0

∂

∂x
f(x, ω) + f(x, ω)−

∫

S2

k(x, ω, ω
′

)f(x, ω
′

) dω
′

= 0,

where f is the distribution function defined on Ω = ∆ × S2 (the phase space), ∆ is an
open interval on the real axis R, S2 denotes the unit sphere in R

3, ω0 is a fixed unit
vector (selected in the direction of increasing x), by ωω

′

it is denoted the scalar product

(defined on R
3) of ω, ω

′ ∈ S2 [5].
We consider the situation of azimuthal symmetry that means that the distribution

function is independent of the azimuth, in other words, the dependence on ω is only thru
the variable µ = ωω0, −1 ≤ µ ≤ 1. In addition, we assume that the scattering kernel k
is of the form

(1.2) k(x, ω, ω
′

) = g(ωω
′

), x ∈ ∆, ω, ω
′ ∈ S2,

that is, k does not depend on the position variable x (the host medium is homogeneous)

depending only on ωω
′

(the rotational invariance property). The function g determined
k as in (1.2) is also called the scattering function or, in other terminology especially in
the theory of radiative transfer, the dispersion indicatrix [7].

Looking for a solution in the form u(µ)e−λx, in our assumptions, from Eq. (1.1) it
follows that

(1.3) u(µ)− λµu(µ)−
∫

S2

g(ωω
′

)u(µ
′

) dω
′

= 0.

In transport theory (cf., for instance, [7]), the auxiliary equation (1.3) is called the
characteristic equation of transport processes described, in our case, by Eq. (1.1). The
main question is to determine λ for which the equation (1.3) has a non-trivial solution
or, in more general setting, to investigate the nature of the spectrum of the operator
pencil defined by the expression from the left side of Eq. (1.3).
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For our purposes Eq. (1.3) is considered in the space L2[−1, 1], the scattering function
g is assumed to be summable on [−1, 1], i. e., g ∈ L1[−1, 1] and, it is required that

(1.4) 0 < g0 ≤ 1, | gj | < g0 (j = 1, 2, . . .),

where

gn = 2π

∫ 1

−1

g(µ)Pn(µ) dµ (n = 0, 1, . . .)

and Pn(µ) are the Legendre polynomials.
The main purpose of the present paper is to give conditions in order that the discrete

part of the spectrum of the operator pencil (already mentioned) corresponding to the
characteristic equation (1.3) be finite. The results are formulated in terms of the coef-
ficients gn, improve those obtained by K. M. Case [1] and C. G. Lekkerkerker [6]. In
[1] Case proved the finiteness of the set of the discrete eigenvalues under the condition
∑

∞

n=0
n2 | gn | < ∞. Lekkerkerker [6] showed, however, that the assertion remains true

under the following substantially weaker condition:

(1.5)

∞
∑

n=1

(n log n) | gn | < ∞.

Notice [5] for historical remarks and perspectives of the problem, and other related results
(see also references on the subject cited in [5]).

The present paper is a continuation of the author’s work [3] in which similar results
are established in terms of smoothness of the scattering function g (see Theorems 3.1
and 3.3 [3]). In fact, we treat the problem in the abstract framework developed in [3] (cf.
Theorem 2.1 [3]). However, for the sake of convenience, we present the corresponding
abstract results in suitable forms in which they are need in our concrete applications.
The results thus presented in an abstract setting are important by themselves and useful
for other applications. The abstract results are stated in Section 2, and their applications
to transport theory are given in Section 3.

2. Preliminaries. Abstract framework

Let H be a Hilbert space. We denote by B (H) the set of all bounded operators
defined on H, B∞ (H) (⊂ B(H)) stands for the set of all compact operators in H. The
resolvent set, the spectrum and the discrete spectrum for an operator A are denoted by
ρ(A), σ(A) and σd (A), respectively. In the case of a self-adjoint operator A, we say that
an open interval Λ of the real axis is a gap in the spectrum of A (or, simply, a spectral
gap of A) if Λ ⊂ ρ (A). Also, we say that the spectrum of the operator A is finite on Λ
if Λ ∩ σ (A) consists only of a finite number of eigenvalues of finite multiplicity. We
will keep the same terminology for the general case of operator-valued functions or, in
particular, operator pencils with which we are concerned in this paper.

Next, let A and B be bounded operators on the space H, and consider the following
linear operator pencil

L(λ) = B − λA, λ ∈ C.

We are interested to find conditions under which the discrete spectrum (i.e. the set
of eigenvalues lying outside of the essential spectrum) of the operator pencil L(λ) is
only finite. The restrictions on A and B which we made are given by the assumptions
listed below. Although these restrictions stimulate typical situations in transport theory
considered in our applications, it seems that they are natural and, in a sense, optimal
for the posed problem.

(A1) i) A and B are self-adjoint operators in H.
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ii) The interval Λ = (a, b) is a spectral gap of the (unperturbed) operator pencil
L0(λ) = I − λA.

iii) B = I + C, where C ∈ B∞ (H) and ‖ C ‖ ≤ 1.
Under these assumptions the spectrum of L(λ) is entirely situated on the real axis

(cf. [3], Proposition 2.1), and, due to Weyl type theorems, the spectrum of L (λ) on the
interval Λ can be only discrete with its possible points of accumulation the edges of Λ.
As has been shown in [3] (see Theorem 2.7 [3]), the finiteness of this discrete part of the
spectrum is ensured by the assumptions in (A1) together with the following.

(A2) For an operator of finite rank K the operator C − K admits a factorization of
the form C − K = S∗TS with S ∈ B (H), T = T ∗ and T ∈ B∞(H)) such that the
operator-valued functions

Qj(λ) = λSAj(L0(λ))
−1S∗ (j = 0, 1, 2; λ ∈ ρ(L0))

are uniformly bounded on Λ , i.e. there exists c > 0 such that

‖ Qj(λ) ‖ ≤ c (j = 0, 1, 2; λ ∈ Λ).

Below we give other formulations of this result more suitable for our purposes. To
this end, denote by E the spectral measure associated with A, and put

| L0(λ) |=
∫

| 1− λs | dE(s), W0(λ) =

∫

sgn(1− λs) dE(s)

(the integration is taken over the spectrum of A).

Theorem 2.1. Let A,B and Λ = (a, b) (with −∞ < a < b ≤ ∞) be as in (A1), and
assume that a is not a characteristic number of A, i.e. Ker(L0(a)) = {0}. Furthermore,
let S and T denote bounded operators on H so that C = S∗TS, suppose that T is self-
adjoint and

(2.1) | L0(a) |−1/2 S∗P ∈ B∞(H),

where P is an orthogonal projection such that dim(I − P )H < ∞. Then the spectrum of
the operator pencil L(λ) on Λ is only discrete for which a is not an accumulation point.

Proof. From
(

| L0(a) |−1/2 S∗P
)

∗ ⊃ PS | L0(a) |−1/2

it follows that the densely defined operator PS | L0(a) |−1/2 is bounded and has a unique
extension, namely (| L0(a) |−1/2 S∗P )∗, on H. Therefore, we can write

C = S∗TS = S∗PTPS +K = | L0(a) |1/2 T0 | L0(a) |1/2 +K,

where
T0 = | L0(a) |−1/2 S∗PT

(

| L0(a) |−1/2 S∗P
)

∗

and
K = S∗PT (I − P )S + S∗(I − P )TPS + S∗(I − P )T (I − P )S.

It is seen that the operator T0 is self-adjoint and compact in H, and that the
operator-valued functions

λ | L0(a) |1/2 Aj(L0(λ))
−1 | L0(a) |1/2 (= λAj | L0(a) | (L0(λ))

−1) (j = 0, 1, 2)

are uniformly bounded on an arbitrary, but fixed, subinterval Λ
′

= (a, a
′

) ⊂ Λ.
Therefore, the obtained factorization for C −K (with K as above), namely

C −K = | L0(a) |1/2 T0 | L0(a) |1/2,
is satisfactory for the assumption (A2) to be true. Thus Theorem 2.7 [3] can be applied

in order to conclude the fact that the spectrum of L(λ) on Λ
′

is finite. �
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Corollary 2.2. If A,B and Λ = (a, b) (with −∞ < a < b < ∞) satisfy the conditions
of Theorem 2.1 at both end points of Λ, then the spectrum of the operator pencil L(λ) on
Λ is finite.

Next we make some useful remarks concerning the condition (2.1), most difficult in
verifications. First of all we observe that if | I − aA |−1/2 S∗ ∈ B∞(H) for a suitable S,
then, due to of

S(I − aA)−1S∗ = S | I − aA |−1/2 W0(a)
∗ | I − aA |−1/2 S∗,

it follows that S(I − aA)−1S∗ has an extension Q(a) on H. In case L0(a) = I − aA is
definite, i.e. either L0(a) ≥ 0 or L0(a) ≤ 0 (in the sense of quadratic forms) the converse
assertion is also true. Let, for instance, L0(a) ≥ 0, and suppose that the operator
S(I − aA)−1S∗ is densely defined (let on the set D) and has a compact extension Q(a)
on H. Then, for any u ∈ D, one has

‖ (I − aA)−1/2S∗u ‖2 = 〈(I − aA)−1/2S∗u, (I − aA)−1/2S∗u〉
= 〈S(I − aA)−1S∗u, u〉 ≤‖ Q(a) ‖ ‖ u ‖2,

so that the operator (I − aA)−1/2S∗ being densely defined possesses also a bounded
extension. However, in these conditions the domains of the operators (I − aA)−1/2S∗

and S∗ coincide (cf. Remark 4.2 in [2]). Thus the operator (I − aA)−1/2S∗ is in fact
bounded on H and, moreover,

Q(a) =
(

(I − aA)−1/2S∗
)

∗
(

(I − aA)−1/2S∗
)

that implies (I − aA)−1/2S∗ ∈ B∞(H).

Remark 2.3. Estimate formulae for the number of the eigenvalues given in [3] (see
Theorem 2.8 [3]) can be adjusted to situations discussed above, in particular, to those of
Corollary 2.2.

3. Applications to transport theory

In this section we study the eigenvalue problem for the transport equation (1.1) under
the restrictions mentioned in Section 1 (Introduction). As was mentioned the problem
reduces to the investigation of the operator pencil defined by the characteristic equation
(1.3). Under the prescribed conditions for the scattering function g the integral operator
on the left side of (1.3) is compact in the space L2[−1, 1], gn are its eigenvalues, and
the corresponding eigenfunctions are the Legendre polynomials Pn(µ) [5]. Accordingly,
using the orthogonality and recursion properties of the Legendre polynomials, Eq. (1.3)
can be reduced equivalently to an equation of the form

(3.1) un − λ(an+1un+1 + anun−1)− gnun = 0 (n = 0, 1, . . . ; u−1 := 0),

considered in the space l2(Z+) of square summable sequences u = (un), un ∈ C (n =
0, 1, . . .), where

(3.2) an =
n√

4n2 − 1
(n = 0, 1, . . .).

Next, A denote the operator defined on l2(Z+) by

(3.3) (Au)n = an+1un+1 + anun−1 (n = 0, 1, . . . ; u−1 := 0),

and C the multiplication operator by gn (also defined on l2(Z+))

(3.4) (Cu)n = gnun (n = 0, 1, . . .).

Eq. (3.1) can be written into the following compact form:

(I − λA− C)u = 0, u ∈ l2(Z+),
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and, in this way, the problem is reduced to the study of the eigenvalues of the operator
pencil

L(λ) = I − λA− C

in the space l2(Z+), where A and C are defined as in (3.3) and (3.4), respectively.
In fact, A is an operator generated in l2(Z+) by a Jacobi matrix with the null main

diagonal and with its elements (3.2) on secondary diagonals. The operator A is self-
adjoint, σ(A) = [−1, 1] and σd(A) = ∅. So, in the spectrum of the unperturbed operator
pencil L0(λ) = I − λA there is a spectral gap Λ = (−1, 1), and our aim is to find
conditions under which the spectrum of L(λ) on Λ is finite. The arguments will based on
the abstract results discussed in Section 2. We let γn = | gn |1/2 and define S ∈ B(l2(Z+))
by

(Su)n = γnun (n = 0, 1, . . .).

In view of symmetric nature of the problem (the discrete spectrum, and therefore the
whole spectrum, of the operator pencil L(λ) is situated symmetrically with respect to
the origin λ = 0) it is enough to study, for instance, the eigenvalues in the interval (0, 1).
To this end, consider the operator

Q = (I −A)−1/2S (clearly, I −A ≥ 0).

The operator Q has a matrix representation Q = [qkn] (hereafter, we identify Q with its
matrix) with respect to the standard basis in l2(Z+) given by

qnk = (k + 1/2)1/2(n+ 1/2)1/2γn

∫ 1

−1

(1− µ)−1/2Pn(µ)Pk(µ) dµ (k, n = 0, 1, . . .),

which can be obtained by formal calculations. Operator Q, in general, is not defined on
the whole space l2(Z+). To avoid such an inconvenience we will consider the operator Q
be defined on all elements u = (un) ∈ l2(Z+) such that

(3.5)

∞
∑

n=0

(n+ 1/2)1/2 γnun = 0.

In the sequel, it will be assumed that γ = (γn) converges rapidly to zero so that the
sequence (n1/2γn) is an element of l2(Z+), i.e.

(3.6)
∞
∑

n=0

n | gn |< ∞.

Then, instead of Q it is in fact considered the operator G = (I−A)−1/2SP, P being the
orthogonal projection onto the subspace of all u = (un) ∈ l2(Z+) satisfying (3.5). Obvi-
ously, in this case, dim(I −P ) = I. Moreover, the operator Q0 having the representation
Q0 = [q0kn] with

q0kn =
√
2(k + 1/2)−1/2(n+ 1/2)1/2γn (k, n = 0, 1, . . .)

vanishes on Pl2(Z+). Taking into account this fact and the fact that

q0kn = (k + 1/2)1/2(n+ 1/2)1/2γn

∫ 1

−1

(1− µ)−1/2Pk(µ) dµ,

since
∫ 1

−1

(1− µ)−1/2Pk(µ) dµ =
√
2(k + 1/2)−1 (k = 0, 1, . . .)
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(see [4], 7.255 (3)), the matrix representation of Q on elements of the subspace P (l2(Z+))
is given by

(3.7)
gkn = (k + 1/2)1/2(n+ 1/2)1/2γn

∫ 1

−1

(1− µ)−1/2Pk(µ)(Pn(µ)− 1) dµ

(k, n = 0, 1, . . .).

In case this matrix defines a compact operator in l2(Z+) by Theorem 2.1 we can conclude
that the spectrum of the operator pencil L(λ) in the interval (0, 1), and therefore on
Λ = (−1, 1), is finite. We formulate this result in the following.

Theorem 3.1. Suppose the scattering function g, g ∈ L1[−1, 1], is such that the con-
ditions (1.4) and (3.6) are satisfied. If the operator G = [gkn], where gkn are given by
(3.7), is compact in the space l2(Z+), then the spectrum of the operator pencil L(λ) on
the interval (−1, 1) is finite.

Remark 3.2. The condition G = [gkn] ∈ B∞(l2(Z+)), in Theorem 3.1, is equivalent to
the fact that the integral operator with the kernel

h(µ, ν) =

∞
∑

n=0

2n+ 1

2
γn

Pn(µ)− 1√
1− µ

Pn(ν) (−1 ≤ µ, ν ≤ 1)

is compact in the space L2[−1, 1].

It turns out that under the Lekkerkerker’s condition (1.5) the operator G defined as
in Theorem 3.1 belongs to the class of Hilbert-Schmidt operators. This fact is settled by
the following theorem.

Theorem 3.3. Let G be defined as in Theorem 3.1. If the condition (1.5) is satisfied,
then G is an operator of Hilbert-Schmidt class. Moreover, for the Hilbert-Schmidt norm
there holds

‖ G ‖22=
∞
∑

n=0

2n+ 1

2
Hn | gn |

in which Hn :=
∑n

j=1
1

j .

Proof. Taking into account (3.7) and that γ2
n = | gn |, we have

‖ G ‖22=
∞
∑

n=0

2n+ 1

2
| gn |

∞
∑

k=0

2k + 1

2

∣

∣

∣

∣

∫ 1

−1

Pn(µ)− 1√
1− µ

Pk(µ) dµ

∣

∣

∣

∣

2

and, by Parseval equality, we get

(3.8) ‖ G ‖22=
∞
∑

n=0

2n+ 1

2
| gn |

∫ 1

−1

(Pn(µ)− 1)2

1− µ
dµ.

The integral on the right side of (3.8) can be evaluated as follows. By Christoffel-Darboux
formula (cf. [4], 8.915) it can be obtained

Pn(x)− 1

x− 1
=

n
∑

j=1

1

j

j−1
∑

k=0

(2k + 1)Pk(x) =

n−1
∑

k=0

(2k + 1)

( n
∑

j=k+1

1

j

)

Pk(x).

Thus
∫ 1

−1

(Pn(µ)− 1)2

1− µ
dµ =

∫ 1

−1

Pn(µ)− 1

1− µ
Pn(µ) dµ+

∫ 1

−1

Pn(µ)− 1

1− µ
dµ

=
n−1
∑

k=0

(2k + 1)

( n
∑

j=k+1

1

j

)
∫ 1

−1

Pk(x) dx = Hn,

and the assertion follows. �
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Remark 3.4. Under Lekkerkerker’s condition (1.5) the operator PS(I−A)−1SP admits
an extension G∗G on l2(Z+) representing an nuclear operator. Note that for the finiteness
of eigenvalues of L(λ) on Λ it is enough to require only the compactness of this extension
(cf. the remarks made in Section 2).
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