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DELTA-TYPE SOLUTIONS FOR A SYSTEM OF INDUCTION

EQUATIONS WITH DISCONTINUOUS VELOCITY FIELD

A. I. ESINA AND A. I. SHAFAREVICH

The article is dedicated to the 70th anniversary of brilliant mathematician V. D. Koshmanenko

Abstract. We study asymptotic solutions of a Cauchy problem for induction equa-
tions describing magnetic field in a well conducting fluid. We assume that the co-

efficient (the velocity field of the fluid) changes rapidly in a small vicinity of a two-
dimensional surface. We prove that the weak limit of the solution has delta-type
singularity on this surface; in the case of a perfectly conducting fluid, we describe

several regularizations of the problem with discontinuous coefficients which allow to
define generalized solutions.

1. Statement of the problem

A description of the magnetic field temporal evolution in a conductive fluid plays an
important role in the study of strong fields of planets, stars and galaxies. In particular,
a lot of papers was devoted to a detailed study of the effect of hydrodynamic dynamo–
unlimited growth of the magnetic field at large times caused by irregular behavior of
the trajectories of the smooth velocity field of the fluid (see, e.g. [8], [1]). From the
mathematical point of view, it means there are eigenvalues with positive real part of
the induction operator and the Cauchy problem‘s solutions, which grow exponentially as
t → ∞. We study an alternative effect, an instantaneous growth of the field due to the
velocity field‘s jump (break) (cf. [4], [5]). It appears that the magnetic field has delta-type
singularity on the surface of discontinuity. The correct generalized statement of problem
exists, in particular, if passing through the surface only the amplitude changes rather
than direction of the velocity field.

In the linear approximation, magnetic field in a conducting fluid satisfies the induction
equation

(1.1)
∂B

∂t
+ (V,∇)B − (B,∇)V = ε2µ△B, (∇, V ) = (∇, B) = 0.

Here, x ∈ R
n, n = 2, 3, B is the magnetic field (a vector field in R

n), V (x) a given vector
field (fluid velocity), the coefficient of resistance (the inverse of the magnetic Reynolds
number) is written as ε2µ for convenience when writing future asymptotic behavior of
the solution (we will assume that ε → 0). For the equation (1.1), consider the Cauchy
problem

(1.2) B|t=0 = B0(x),
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where B0 is a smooth compactly supported divergence-free vector field. We are interested
in the case of a discontinuous velocity field V ; it is well known that the divergence-free
field can have only a tangential discontinuity on a smooth surface (on a curve in the
two-dimensional case). We denote this surface by M and assume it to be compact and
defined by the equation Φ(x) = 0, where Φ is a smooth function and ∇Φ|M 6= 0. As we
will see later, the magnetic field B has, in general, a δ-type singularity on the surface M ;
thus a generalized formulation of the problem (1.1)–(1.2), in general, is not clear (even
if we write the system in the divergent form we have to multiply the δ-function by a
discontinuous one). Therefore, we regularize the problem as follows. We introduce the

fast variable y = Φ(x)
ε and consider the “smoothened” velocity field V (y, x): we assume

that V is a smooth function, and

(1.3) lim
y→±∞

V (x, y) = V±(x), ∀x.

Here, V± are smooth divergence-free vector fields, and convergence to the limit is assumed
to be sufficiently fast (faster than any power of y).

In particular, we can consider the field of the form

V (x, y) =
V+(x) + V−(x)

2
+ β(y)

V+(x)− V−(x)

2
,

where β(y) is a smooth function which tends to ±1 as y → ±∞.
We are particularly interested in the weak limit of B as ε → 0 and its dependence on

the method of regularization of the velocity field V . Note that, if the magnetic viscosity
coefficient is not O(ε2), the delta-type singularity, in general, does not appear, — the
viscosity prevents rapid changes of B. That is why this factor in the system (1.1) was
chosen as ε2µ. We begin studying solutions of the Cauchy problem (1.1)–(1.2) in the
case µ = 0 (an ideally conducting fluid).

2. Regularization and generalized solutions in the case of an ideally

conducting fluid

2.1. Two-dimensional case. First, we consider the two-dimensional case. Since the
field V is divergence-free, trajectories of V are the level lines of a scalar function (the
current function). A smooth closed curveM is a trajectory of the field; in a neighborhood
of M , we can introduce the action-angle variables – I, ϕ (see, e.g. [1]). The field V has
the form

V = ω(y, I)
∂

∂ϕ
,

where ω → ω± for y → ±∞. We can assume that the curve M is defined by the equation
I = 0 and y = I/ε. We also assume that action-angle variables are defined globally (i.e.
in the area containing the support of the initial field B0) do not depend on y.

Theorem 1. Let µ = 0. Under the assumptions formulated above, the weak limit of the
magnetic field does not depend on the form of regularization of V and has a delta-type
singularity on the curve M .

Proof. Let us write the equation (1.1) in the coordinates I, ϕ,

∂BI

∂t
+ ω

∂BI

∂ϕ
= 0,

∂Bϕ

∂t
+ ω

∂Bϕ

∂ϕ
=

1

ε
BI

∂ω

∂y
+BI

∂ω

∂I
,

BI |t=0 = B0
I (I, ϕ),

Bϕ|t=0 = B0
ϕ(I, ϕ).
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Solution of this system has the form

BI = B0
I (I, ϕ− ωt),

Bϕ = t(
1

ε

∂ω

∂y
+

∂ω

∂I
)B0

I (I, ϕ− ωt) +B0
ϕ(I, ϕ).

Let us compute the weak limit of the solution as ε → 0. Due to the fact that

ω → ω±,
∂ω

∂I
→

∂ω±

∂I
,

∂ω

∂y
→ 0

as y → ±∞, we can deduce

lim
ε→0

BI = B0
I (I, ϕ− ω−t) + θ(I)(B0

I (I, ϕ− ω+t)−B0
I (I, ϕ− ω−t)),

lim
ε→0

Bϕ = tδ(I)

∫ ∞

−∞

∂ω

∂y
(y, 0)B0

I (0, ϕ− ω(y, 0)t) dy

+ t
∂ω−

∂I
B0

I (I, ϕ− ω−t) +B0
ϕ(I, ϕ− ω−t) + θ(I)

(

t
∂ω+

∂I
B0

I (I, ϕ− ω+t)

+B0
ϕ(I, ϕ− ω+t)− t

∂ω−

∂I
B0

I (I, ϕ− ω−t)−B0
ϕ(I, ϕ− ω−t)

)

.

Here, θ(I) is the Heaviside function. Evidently, only the factor of δ(I) can depend on the
form of regularization of V ; changing the integration variable y → tωy and calculating
the integral, we find that this coefficient equals

(2.1) −

∫ ϕ−ω+(0)t

ϕ−ω−(0)t

B0
I (0, z)dz, z = ϕ− ωt,

and it doesn‘t depend on the form of regularization of V (i.e. depends only on V±). �

Note, that in the two-dimensional case it is easy to obtain a regularization of the
original problem which directly admits a generalized formulation. In fact, let ω(I) be
a discontinuous function: ω = ω−(I) + θ(I)(ω+(I) − ω−(I)) (ω±(I) are assumed to be
smooth). We write the system in the “divergent” form,

(2.2)

∂BI

∂t
+ ω

∂BI

∂ϕ
= 0,

∂Bϕ

∂t
=

∂

∂I
(BIω),

BI |t=0 = B0
I (I, ϕ),

Bϕ|t=0 = B0
ϕ(I, ϕ).

Theorem 2. The generalized function

(2.3)

BI = B0
I (I, ϕ− ωt),

Bϕ =
∂

∂I
ω−

∫ t

0

B0
I (I, ϕ− ω−(I)t) dt

+ θ(I)
∂

∂I

(

ω+

∫ t

0

B0
I (I, ϕ− ω+(I)t) dt− ω−

∫ t

0

B0
I (I, ϕ− ω−(I)t) dt

)

+ δ(I)

∫ t

0

(

ω+(0)B
0
I (0, ϕ− ω+(0)t)− ω−(0)B

0
I (0, ϕ− ω−(0)t)

)

dt+B0
ϕ(I, ϕ)

satisfies (2.2)
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Proof. First, we solve the first equation of the system,

BI = B0
I (I, ϕ− ωt).

Then we obtain a solution of the second one,

Bϕ =

∫ t

0

∂

∂I
(BIω)dt+B0

ϕ(I, ϕ).

Rewriting ωB0
I (I, ϕ− ω(I)t) in the form

ωB0
I (I, ϕ− ω(I)t) = ω−(I)B

0
I (I, ϕ− ω−(I)t)

+ θ(I)
(

ω+B
0
I (I, ϕ− ω+(I)t)− ω−B

0
I (I, ϕ− ω−(I)t)

)

and differentiating the product of θ(I) and a smooth function, we obtain

Bϕ =
∂

∂I
ω−

∫ t

0

B0
I (I, ϕ− ω−(I)t) dt

+ θ(I)
∂

∂I

(

ω+

∫ t

0

B0
I (I, ϕ− ω+(I)t) dt− ω−

∫ t

0

B0
I (I, ϕ− ω−(I)t) dt

)

+ δ(I)

∫ t

0

(

ω+(0)B
0
I (0, ϕ− ω+(0)t)− ω−(0)B

0
I (0, ϕ− ω−(0)t)

)

dt+B0
ϕ(I, ϕ).

�

Note that the obtained generalized solution coincides with the weak limit of the smooth
solution of the “smoothened” problem (see Theorem 1). Compare, for example, the
coefficients of the delta function. We denote by F (z) the integral of B0

I (0, z). Obviously,
the function (2.1) can be written as

F (ϕ− ω−(0)t)− F (ϕ− ω+(0)t);

it is clear that it equals the function
∫ t

0

(

ω+(0)B
0
I (0, ϕ− ω+(0)t)− ω−(0)B

0
I (0, ϕ− ω−(0)t)

)

dt,

determining the coefficient of the delta function in formula (2.3). Similarly one can check
that all the other terms also coincide.

2.2. Three-dimensional case. Now let us consider the three-dimensional case. It turns
out that in this case the weak limit of smooth solution of the problem is uniquely defined
(i.e. independent of the method of regularization of V ) if, when passing through the
surface, the jump of the field V is “one-dimensional”. In another words, we have the jump
either of the length or of the direction of the vector V (but not of the both quantities). Let
us formulate a precise result. We will assume that V is an Euler field (i.e., a stationary
solution of the Euler equations) in general position. The latter means that the fields V
and curlV are linearly independent almost everywhere in the treated area of the three-
dimensional space. In this case, the trajectories of V lie on two-dimensional surfaces,
Bernoulli surfaces, which, if they are compact, are homeomorphic to tori. Moreover,
in the area, foliated by these tori, one can introduce action — angle variables I, ϕ,
ϕ = (ϕ1, ϕ2), such that

V =
(

ω(I),
∂

∂ϕ

)

= ω1(I)
∂

∂ϕ1
+ ω2(I)

∂

∂ϕ2
.

Here, the variable I numbers the tori and is proportional to the volume of the area
bounded by the torus, ϕ mod 2π are angular coordinates on the tori. We again assume
that these variables are defined globally on support of B0 and are independent of y. We
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assume that the surface of the field discontinuity is given by I = 0 and represent the
vector of frequencies ω in the form of

ω(I) = λω0,

where λ is a scalar function, ω0 is the unit vector

ω0 = (cosα, sinα).

The jump of the field when crossing the surface is the jump (or, in the smoothened
problem, a rapid change) of the two-dimensional vector ω, the jump of its absolute value
is the jump of λ, and the jump of the direction is the jump of the angle function α.
Consider the regularized problem, let y = I/ε and let ω → ω± as y → ±∞.

Theorem 3. Let one of the two functions α, λ be independent of y. Then the weak limit
of the smooth solution of the Cauchy problem is independent of the regularizing function
(i.e. depends only on ω±).

Proof. Let‘s write the equations in the action–angle coordinates,

(2.4)















∂BI

∂t
+
(

ω,
∂BI

∂ϕ

)

= 0,

∂Bϕ

∂t
+
(

ω,
∂

∂ϕ

)

Bϕ = BI

(∂ω

∂I
+

1

ε

∂ω

∂y

)

.

A solution of the first equation has the form BI = B0
I (I, ϕ − ωt). The second (vec-

tor) equation we project to the unit vector ω0 and to the orthogonal unit vector n =
(− sinα, cosα). We denote the corresponding components of the vector Bϕ by Bω and
Bn. For these functions, we obtain the following equations:

( ∂

∂t
+
(

ω,
∂

∂ϕ

))

Bω = BI

(

ω0,
( ∂

∂I
+

1

ε

∂

∂y

)

ω
)

,

( ∂

∂t
+
(

ω,
∂

∂ϕ

))

Bn = BI

(

n,
( ∂

∂I
+

1

ε

∂

∂y

)

ω
)

,

Let ω be λω0; using the fact that the derivative of the unit vector ω0 equals n, multiplied
by the derivative of α, we obtain the following system:

( ∂

∂t
+
(

ω,
∂

∂ϕ

))

Bω = BI

( ∂

∂I
+

1

ε

∂

∂y

)

λ,

( ∂

∂t
+
(

ω,
∂

∂ϕ

))

Bn = λBI

( ∂

∂I
+

1

ε

∂

∂y

)

α.

A solution has the form

Bω = t
(∂λ

∂I
+

1

ε

∂λ

∂y

)

B0
I (I, ϕ− ωt) +B0

ω(I, ϕ− ωt),

Bn = tλ
(∂α

∂I
+

1

ε

∂α

∂y

)

B0
I (I, ϕ− ωt) +B0

n(I, ϕ− ωt).

Now we use the fact that only one of the functions α, λ depends on y.
1. Let α be independent of y; let us compute the weak limit of the solution

lim
ε→0

Bω = δ(I)

∫ ∞

−∞

t
∂λ

∂y
B0

I (0, ϕ− tλω0(0)) dy

+B0
ω(I, ϕ− ω−t) + θ(I)

(

B0
ω(I, ϕ− ω+t)−B0

ω(I, ϕ− ω−t)
)

+ t
∂λ−

∂I
B0

I (I, ϕ− ω−t) + θ(I)
(

t
∂λ+

∂I
B0

I (I, ϕ− ω+t)− t
∂λ−

∂I
B0

I (I, ϕ− ω−t)
)

.
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Clearly, only the coefficient of the delta function can depend on the way of regularization
of V . Changing the variable of integration y → tλ(y), this coefficient can be rewritten as

∫ λ+t

λ−t

B0
I (0, ϕ− ω0(0)z) dz, z = λt,

which does not depend on the form of the function λ (i.e. on the way of regularization
of V ).

The weak limit of Bn can be calculated similarly,

lim
ε→0

Bn = B0
n(I, ϕ− ω−t)

+ θ(I)
(

B0
n(I, ϕ− ω+t)−B0

n(I, ϕ− ω−t)
)

+ tλ−
∂α−

∂I
B0

I (I, ϕ− ω−t)

+ θ(I)
(

tλ+
∂α+

∂I
B0

I (I, ϕ− ω+t)− tλ−
∂α−

∂I
B0

I (I, ϕ− ω−t)
)

.

This limit is also independent of the regularizing function λ(y).
2. Now let λ be independent of y. Let us compute the weak limit of the vector

Bϕ = Bωω0 +Bnn,

lim
ε→0

Bϕ = δ(I)

∫ ∞

−∞

tλ
∂α

∂y
B0

I (0, ϕ− tλω0(0, α))n(0, α) dy

+ n−

(

B0
n(I, ϕ− ω−t) + tλ−

∂α−

∂I
B0

I (I, ϕ− ω−t)
)

+ θ(I)

(

n+

(

B0
n(I, ϕ− ω+t) + tλ+

∂α+

∂I
B0

I (I, ϕ− ω+t)
)

− n−(B
0
n(I, ϕ− ω−t)) + tλ−

∂α−

∂I
B0

I (I, ϕ− ω−t)

)

+ ω−
0

(

B0
ω(I, ϕ− ω−t) + t

∂λ−

∂I
B0

I (I, ϕ− ω−t)
)

+ θ(I)

(

ω+
0

(

B0
ω(I, ϕ− ω+t) + t

∂λ+

∂I
B0

I (I, ϕ− ω+t)
)

− ω−
0 (B

0
ω(I, ϕ− ω−t)) + t

∂λ−

∂I
B0

I (I, ϕ− ω−t)

)

,

where ω±
0 = ω0(0, α±), n± = n(0, α±). It is clear that only the factor of the delta

function can depend on the way of regularization (i.e. on the function α). Changing the
variable of integration, we present this form factor in the form

tλ(0)

∫ α+

α−

B0
I (o, ϕ− tλ(0)ω0(α))n(0, α) dα,

which does not depend on α. �

Remark 1. Generally speaking, there are other ways to regularize the velocity field;
one of them, for example, is indicated at the beginning of the paper. The methods of
regularization, discussed above (the “smoothening” is applied either to the direction or
to the absolute value of V ) seem to be quite natural. In particular, as we will prove later,
if α is independent of y, the weak limit of the solution coincides with the generalized
solution of the special regularized problem.

Similarly to the two-dimensional case, the invariance of the weak limit with respect to
the method of smoothing the velocity field is associated with the possibility of the direct
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generalized formulation of the original problem. First we consider the case when the
absolute value (but not the direction) of the field is discontinuous. The weak formulation
is based on the two simple ideas.

1. If V is smooth, the system of induction equations can be written in the “divergence”
form

(2.5)
∂B

∂t
= curl(V ×B).

2. From the formulas for the solutions obtained in the previous theorem, it follows that
the delta-type singularity occurs only in the components of the magnetic field parallel to
V . However, in the right-hand side of (2.5) this component is obviously not included, —
this system can be rewritten as

(2.6)
∂B

∂t
= curl(V ×B⊥),

where B⊥ denotes the projection of B to the plane orthogonal to V (note that, under
our assumptions, this plane depends smoothly on x). In what follows, by the generalized
formulation of the Cauchy problem with discontinuous field V we mean (2.6). As before,
we assume that V is an Euler field in a general position without a jump of the direction,
i.e. that in the action–angle variables

V = λ(I)(ω0(I),
∂

∂ϕ
),

where ω0(I) is a smooth unit vector function, and the scalar function λ is discontinuous
at I = 0,

λ = λ−(I) + θ(I)(λ+(I)− λ−(I)),

where λ± are smooth functions.

Theorem 4. The generalized function

BI = B0
I (I, ϕ− λω−

0 t) + θ(I)(B0
I (I, ϕ− λω+

0 t)−B0
I (I, ϕ− λω−

0 t)),

Bn = t
∂α−

∂I
λ−(I)B

0
I (I, ϕ− ω−t) + tθ(I)

(∂α+

∂I
λ+(I)B

0
I (I, ϕ− ω+t)

−
∂α−

∂I
λ−(I)B

0
I (I, ϕ− ω−t)

)

+B0
n(I, ϕ− ω−t) + θ(I)

(

B0
n(I, ϕ− ω+t)−B0

n(I, ϕ− ω−t)
)

,

Bω =

∫ t

0

(

λ(I)
(

n,
∂

∂ϕ

)

Bn +
∂

∂I

(

λ−BI(I, ϕ− ω−t)
)

)

dt

+ δ(I)

∫ t

0

(

λ+B
0
I (0, ϕ− ω+t)− λ−B

0
I (0, ϕ− ω−t)

)

dt

+ θ(I)

∫ t

0

∂

∂I

(

λ+B
0
I (0, ϕ− ω+t)− λ−B

0
I (0, ϕ− ω−t)

)

dt.

satisfies (2.6) with the initial conditions (1.2). This function coincides with the weak
limit of the “smoothened” problem.
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Proof. Let us turn to the action–angle coordinates I, ϕ = (ϕ1, ϕ2). The system can be
rewritten as follows:

∂BI

∂t
+
(

ω,
∂

∂ϕ

)

BI = 0,

∂Bϕ

∂t
+
(

ω,
∂

∂ϕ

)

Bϕ −BI
∂ω

∂I
= 0,

λ(I)

∫ t

0

(

n,
∂

∂ϕ

)

Bn dt = λ(I)
∂α

∂I

∫ t

0

B0
I

(

I, ϕ− λω0t
)

t dt.

Using the equality (∇, B) = 0, the equation for Bϕ can be rewritten as

∂Bϕ

∂t
+
(

ω,
∂

∂ϕ

)

Bϕ − ω
( ∂

∂ϕ
,Bϕ

)

=
∂

∂I

(

ωBI

)

.

We expand this component of the magnetic field in the following components:

Bϕ = Bωω0 +Bnn,

where ω = (ω1, ω2) = λ(I)ω0, λ(I) is a discontinuous function, ω0(I) is a unit vector,
depending smoothly on I. The right side of the equation can be written as follows:

∂

∂I

(

BIλω0

)

= ω0
∂

∂I

(

BIλ
)

+BIλ
∂ω0

∂I
.

We project the equation on smooth unit vectors ω0 and n; taking into account that
∂ω0

∂I = n(I)∂α∂I , we obtain

∂BI

∂t
+ λ

(

ω0,
∂

∂ϕ

)

BI = 0,

∂Bn

∂t
+ λ

(

ω0,
∂

∂ϕ

)

Bn =
∂α

∂I
λ(I)BI ,

∂Bω

∂t
= λ(I)

(

n,
∂

∂ϕ

)

Bn +
∂

∂I

(

λBI

)

,

BI |t=0 = B0
I (I, ϕ), Bω|t=0 = B0

ω(I, ϕ), Bn|t=0 = B0
n(I, ϕ).

Solutions of the first two equations have the form

BI = B0
I (I, ϕ− λω0t),

Bn = tλ
∂α

∂I
B0

I (I, ϕ− λω0t).

We note that these functions have simple discontinuities on the surface M . Expressing
them through the Heaviside function and substituting to the equation for Bω, we finally
obtain

BI = B0
I

(

I, ϕ− λω−
0 t
)

+ θ(I)
(

B0
I (I, ϕ− λω+

0 t)−B0
I (I, ϕ− λω−

0 t)
)

,

Bn = t
∂α−

∂I
λ−(I)B

0
I (I, ϕ− ω−t)

+ tθ(I)
(∂α+

∂I
λ+(I)B

0
I (I, ϕ− ω+t)−

∂α−

∂I
λ−(I)B

0
I (I, ϕ− ω−t)

)

+B0
n(I, ϕ− ω−t) + θ(I)

(

B0
n(I, ϕ− ω+t)−B0

n(I, ϕ− ω−t)
)

,

Bω =

∫ t

0

(

λ(I)
(

n,
∂

∂ϕ

)

Bn +
∂

∂I

(

λ−BI(I, ϕ− ω−t)
)

)

dt

+ δ(I)

∫ t

0

(

λ+B
0
I (0, ϕ− ω+t)− λ−B

0
I (0, ϕ− ω−t)

)

dt

+ θ(I)

∫ t

0

∂

∂I

(

λ+B
0
I (0, ϕ− ω+t)− λ−B

0
I (0, ϕ− ω−t)

)

dt.
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Thus, on the surface M , the component Bω of the magnetic field has a delta-type sin-
gularity. Let us compare the coefficients of the delta function of the weak limit of the
smooth problem and the generalized solution. The factor of the delta function in the
generalized solution has the form

∫ t

0

(

λ+B
0
I (0, ϕ− ω+t)− λ−B

0
I (0, ϕ− ω−t)

)

dt

=

∫ λ+t

0

B0
I (0, ϕ− ω+t) d(λ+t)−

∫ λ−t

0

B0
I (0, ϕ− ω−t) d(λ−t)

=

∫ λ+t

λ−t

B0
I (0, ϕ− ωt) d(λt).

This function coincides with the corresponding coefficient in the weak limit of the solution
of the smooth problem. �

Now let α and n be discontinuous functions, and let the function λ(I) be smooth.
In this case the original system can also be rewritten in such a way that generalized
solutions can be defined.

Consider the initial system of equations in the action-angle variables and suppose that
V is smooth. This system has the form

∂BI

∂t
+
(

ω,
∂

∂ϕ

)

BI = 0,

∂Bϕ

∂t
+
(

ω,
∂

∂ϕ

)

Bϕ = BI
∂ω

∂I
.

As before, we set ω = λω0, ω0 = (cosα, sinα).
The solution of the first equation with the initial condition BI |t=0 = B0

I (I, ϕ) has the
form

BI = B0
I (I, ϕ− ωt).

Substituting this function into the equation for Bϕ we obtain

(2.7)
∂Bϕ

∂t
+
(

ω,
∂

∂ϕ

)

Bϕ = B0
I (I, ϕ− ωt)

∂λ

∂I
ω0 +B0

I (I, ϕ− ωt)λ
∂α

∂I
n(α).

We represent the solution as a sum of Bϕ = B1+B2, where each of the vectors Bj satisfies
the equation with the right-hand side equal to one of the two components in (2.7). Note
that the field B1 is directed along ω0, and B2 is orthogonal to this vector. For B1, B2 we
obtain the equations

(2.8)















∂B1

∂t
+
(

ω,
∂

∂ϕ

)

B1 = B0
I (I, ϕ− ωt)

∂λ

∂I
ω0,

∂B2

∂t
+
(

ω,
∂

∂ϕ

)

B2 = B0
I (I, ϕ− ωt)λ

∂α

∂I
n(α),

B1|t=0 = B0
1(I, ϕ) B2|t=0 = B0

2(I, ϕ).

It is easy to see that, if α has a simple discontinuity on M , the first equation in (2.8)
has generalized solution which also has a simple discontinuity. The second equation can
be transformed as follows. We denote

∫ α

α0
n(α)B0

I (I, ϕ−λω0(α)t) dα = w(α, I), then the
second equation can be rewritten as:

∂B2

∂t
+
(

ω,
∂

∂ϕ

)

B2 = λ(I)
( ∂

∂I

(

w(α(I), I)
)

−
∂w

∂I

)

.

Thus, if the field V is smooth, the solution of (2.8) has the form

B1 = tB0
I (I, ϕ− ωt)

∂λ

∂I
ω0 +B0

1(I, ϕ− ωt),
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B2 = tλ(I)
( ∂

∂I

(

w(α(I), I)
)

−
∂w

∂I

)

+B0
1(I, ϕ− ωt),

where B0
1 = (B0

ϕ, ω0)ω0, B
0
2 = (B0

ϕ, n)n. It is easy to see that these functions are well-
defined generalized functions in the case of discontinuous α; we call them (along with a
discontinuous function BI) a generalized solution of (2.7).

Theorem 5. The generalized solution of (2.7) coincides with the weak limit as ε → 0
of the smooth regularized problem.

Proof. Note that the function w and its derivatives have the following form:

∂w

∂I
=

∫ α(I)

α0

∂B0
I

∂I
(I, ϕ− λω0t) dα− t

∫ α(I)

α0

n(α)
(∂B0

I

∂ϕ
, ω0(α)

)∂λ

∂I
dα,

w =

∫ α−(I)

α0

n(α)B0
I (I, ϕ− λω0t) dα+ θ(I)

∫ α+(I)

α−(I)

n(α)B0
I (I, ϕ− λω0t) dα.

It is clear that the generalized solution may differ from the weak limit of the smooth
problem only in the term containing the delta function. We write down the coefficient
of δ(I) in the expression for Bϕ,

tλδ(I)

∫ α+

α−

n(0, α)B0
I (0, ϕ− λω0(0, α)t) dα

= δ(I)

∫ ∞

−∞

tλ
∂α

∂y
n(0, α)B0

I (0, ϕ− λω0(0, α)t) dy.

This function coincides with the corresponding weak limit in the smooth problem. �

3. Highly conducting fluid: asymptotic solutions of the Cauchy problem

In what follows we describe the asymptotic behavior of solutions to the Cauchy prob-
lem (1.1)–(1.2) with µ > 0 and ε → 0 (low resistance). We assume that the initial field is
smooth, divergence-free, compactly supported and independent of ε. First, we describe
the formal asymptotic solutions of this problem, i.e., we impose a formal series satisfying
the equation and the initial conditions. Then we present the justification of the asymp-
totics, that is, prove that the partial sums of this series differ from the exact solution by
a function, sufficiently fast decreasing as ε → 0. At the second stage, we need certain
estimates for the resolving operator of the Cauchy problem, which we prove separately.

3.1. The formal asymptotics. Let V (x, y) (x ∈ R3, y ∈ R) be a smooth vector function
satisfying the equations (1.3) and uniformly bounded together with all its derivatives.
Let Φ(x) be a smooth scalar function; we assume that a smooth two-dimensional surface
M : Φ(x) = 0 is compact, (V,∇Φ)|M = 0 and |∇Φ|2 = 1 in the neighborhood of M . We
also assume that Φ < 0 in the domain, bounded by M and |∇Φ| ≥ Const > 0 everywhere
in R

3. We construct an asymptotic solution of the equation (1.1) in the form

(3.1) B
(

x,
Φ(x)

ε
, t, ε

)

=
1

ε
B−1

(

x,
Φ(x)

ε
, t
)

+

∞
∑

k=0

εkBk

(

x,
Φ(x)

ε
, t
)

We assume that all the fields Bk(y, x, t) are smooth function of all their arguments,
B−1 → 0 as |y| → ∞, Bk → B±

k as y → ±∞ faster than any power of y. Thus, when
ε → 0, the first term of the series converges weakly to the delta-function on M , and other
terms — to functions with a simple jump on M .

Fix a number T , independent of ε.
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Theorem 6. For t ∈ [0, T ] there exist such smooth vector fields Bk(x, y, t), that the
partial sums of (3.1)

BN
(

x,
Φ(x)

ε
, t, ε

)

=
1

ε
B−1

(

x,
Φ(x)

ε
, t
)

+
N
∑

k=0

εkBk

(

x,
Φ(x)

ε
, t
)

satisfy the equations

(3.2)
∂BN

∂t
+ (V,∇)BN − (BN ,∇)V −

1

ε
(BN ,∇Φ)

∂V

∂y
= µε2△BN +O(εN ).

Here the symbol O(εN ) denotes the estimate from above in the C(R3)-norm.

Proof. We introduce the following notations:

u(x, y, t) = B−1(x, y, t)|M ,

f(x, y, t) = (B0,∇Φ)|M ,

w(x, y) ≡ y
∂

∂Φ
|M (V,∇Φ),

v = V (x, y)|M .

We substitute (3.1) into the equation (1.3) and equate the functions multiplied by the
same powers of ε. For ε−2 we obtain

(V,∇Φ)
∂B−1

∂y
− (B−1,∇Φ)

∂V

∂y
= 0.

Note that the left hand side of this equation decreases rapidly as |y| → ∞, so, by the
well-known estimate ([3])

F
(

x,
φ(x)

ε

)

= F (x, y)|x∈M,y=Φ/ε +Φ
( ∂

∂Φ
F (x, y)

)∣

∣

∣

x∈M,y=Φ/ε
+ · · ·

= F (x, y)|x∈M,y=Φ/ε + εy
( ∂

∂Φ
F (x, y)

)∣

∣

∣

x∈M,y=Φ/ε
+ · · ·

= F (x, y)|x∈M,y=Φ/ε +O(ε)

the equation can be modO(ε) restricted to the surface M . Note that in fact we apply
a Taylor expansion with respect to the distance from the surface M . As (V,∇Φ) = 0
on the surface M , the resulting equation implies that (B−1,∇Φ)|M = 0. Below, we
continue functions decreasing in y and defined on M , to a neighborhood of the surface
(and, further, to the whole space). We adopt the following convention: the functions
and the fields F will be continued in a neighborhood of M in such way that they do not
depend on Φ (i.e, as solutions of the equation ∇∇ΦF = 0). Thus, we put (B−1,∇Φ) = 0
in the neighborhood of M . This means that the main term in the expansion of B is
tangent to the surface.

For the functions containing ε−1 we obtain

y
∂B−1

∂y

∣

∣

∣

M

[ ∂

∂Φ
(V,∇Φ)

]∣

∣

∣

M
+

∂B−1

∂t
+ (V,∇)B−1

− (B−1,∇)V + (V,∇Φ)
∂B0

∂y
− (B0,∇Φ)

∂V

∂y
= µ2(∇Φ)2

∂2B−1

∂y2
.

The first term in the left-hand side of this equation is obtained from the second term
of the Taylor expansion for (B−1,∇Φ)∂V∂y with respect to Φ. All the terms in the latter

equation decrease rapidly as |y| → ∞, so modO(ε) we can restrict the equation to M .
Since (∇Φ)2 = 1, B−1|M = u and V |M = v, we have

(3.3)
∂u

∂t
+ {v, u} − f

∂u

∂y
+ w

∂u

∂y
= µ2 ∂

2u

∂y2
.
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Here {, } denotes the commutator of vector fields on M . Note that this equation contains
the function f = (B0,∇Φ)|M from the next term of the asymptotic expansion. In order
to obtain a closed system of equations, consider the terms containing ε0. Equating the
corresponding functions we obtain

∂B0

∂t
− (B0,∇)V + (V,∇)B0 + (V,∇Φ)

∂B1

∂y
− (B1,∇Φ)

∂V

∂y

+
1

2
y2

∂B−1

∂y

∂2

∂Φ2
(V,∇Φ)

∣

∣

∣

M
+ y

∂

∂Φ
(V,∇Φ)

∣

∣

∣

M

∂B0

∂y

∣

∣

∣

M

− (B−1,∇)y
∂V

∂y

∣

∣

∣

M
− y

∂

∂Φ
(B0,∇Φ)

∣

∣

∣

M

∂V

∂y

∣

∣

∣

M
+ y(B0,∇Φ)

∣

∣

∣

M

∂

∂Φ

∂V

∂y

∣

∣

∣

M

= 2µ(∇Φ,∇)
∂B−1

∂y
+ µ△Φ

∂B−1

∂y
+ µ(∇Φ)2

∂2B0

∂y2
.

Here we took into account the corresponding terms of the Taylor expansion with
respect to Φ. It is easy to see that the left-hand side of the corresponding equality, in
general, does not decrease as y → ±∞. Let us turn here to the limit as y → ±∞; since
Bk → B±

k and V → V ±, we get the equation

∂B±
0

∂t
+ (V ±,∇)B±

0 − (B±
0 ,∇)V ± = 0.

Let B±
0 be solutions of these equations in the corresponding domains, bounded by M ;

we also claim that
B±

0 |t=0 = B0

in the corresponding domain (the existence and uniqueness of solution for this Cauchy
problem is evident). Now entire multiplier of ε0 vanishes as y → ±∞, and hence, it can
be modO(ε) restricted to M . Multiplying the resulting equality by the vector ∇Φ|M ,
after direct calculations we obtain

(3.4)
∂f

∂t
+ (v,∇)f + w

∂f

∂y
− f

∂w

∂y
− (u,∇)w = µ

∂2f

∂y2
.

Thus, we got a coupled system of equations for the normal to the surface M component
of the field B0 and (tangent to M) field B−1. Evidently, the initial conditions for this
system have the form

(3.5) u|t=0 = 0, f |t=0 = (B0,∇Φ)|M .

Let u, f be the solution of this problem. These functions with respect to the variables x
are defined on the surface M ; note that u → 0 and f → (B±

0 ,∇Φ)|M as y → ±∞. Now
we define the corresponding functions in the whole space. We define B−1 according to
the rule ∇∇ΦB−1 = 0, B−1|M = u (note that it is sufficient to define this function in the
neighborhood of M). In order to define (B0,∇Φ), we represent this function in the form

(B0,∇Φ) = (B−
0 ,∇Φ) + η(y)(B+

0 ,∇Φ) + f0,

where η(y) = 1
2 (1 + tanh y), ∇∇Φ

f0 = 0. Note that f0 → 0 as |y| → ∞.
We now write down the equations for the projection of B0 to the tangent plane to the

surface M . After direct calculations, we obtain the equation of the form

∂b0
∂t

+ {v, b0} − (B1,∇Φ)|M
∂v

∂y
+ w

∂b0
∂y

= µ2 ∂
2b0
∂y2

+ F0,

where b0 is the tangent component of B0|M and F0 is already defined. This equation
contains unknown function w1 = (B1,∇Φ)|M ; in order to obtain the close system we
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consider the next approximation (terms, containing ε1). Analogous considerations lead
to the equation of the form

∂f1
∂t

+ (v,∇)f1 + w
∂f1
∂y

− f1
∂w

∂y
− (b0,∇)w = µ

∂2f1
∂y2

+G0,

where f1 = (B1,∇Φ)|M and G0 is already defined. Using the same procedure we finally
kill arbitrary term, appearing after the substitution of (3.1) to the equations (1.1). �

Remark 2. Described asymptotic procedure computes from the coupled systems the pairs
Bτ

k , B
n
k+1, where Bτ and Bn denote tangent and normal to M components of the vector

field.

Remark 3. For the leading terms of asymptotic solution we have the system (3.3)–(3.4)
with initial conditions (3.5).

3.2. Estimates for the Green’s function of the equation (1.1). In order to justify
the formal asymptotics obtained above, we have to obtain certain estimates for the
resolving operator of the Cauchy problem (1.1)–(1.2). These estimates were proved by
S. Smirnov in his bachelor thesis [6]; in the close case of periodic function V (y) the
analogous estimates were obtained in [5].

Lemma 1. Suppose that as |x| → ∞, all derivatives V (x, y) and Φ(x) uniformly in y, t,
and ε converge to constants faster then any power of |x|. Consider the scalar parabolic
operator L0 = ∂

∂t + (V,∇) − ε2△. The Green’s function G(x, ξ, t, τ) for the equation
L0u = g satisfies the following estimates:

(3.6) |DmG| ≤ A
1

(ε2(t− τ))3/2
1

(t− τ)|m|/2
exp

(

− λ
|x− ξ|2

ε2(t− τ)

)

,

where m = (m1,m2,m3), |m| = m1 + m2 + m3, D
m = ε|m| ∂|m|

∂x
m1
1

∂x
m2
2

∂x
m3
3

, A does not

depend on ε.

Proof. We use the Levy method (parametrix method, see [2]). We introduce the function

Z(x, t, ξ, τ) =
1

(ε2(t− τ))3/2
exp

(

− λ
|x− ξ|2

ε2(t− τ)

)

.

This is the fundamental solution of the operator ∂
∂t − ε2△. We regard this operator as

a “first approximation” to the operator L0. The function Z will be regarded as “ the
leading part” of the fundamental solution G0 of the operator L0; namely, we construct
G0 in the form

(3.7) G0(x, t, ξ, τ) = Z(x, t, ξ, τ) +

∫ t

τ

∫

R3

Z(x, t, η, σ)Ψ(η, σ, ξ, τ) dη dσ.

From the equation L0G0 = 0 it follows that Ψ(x, t, ξ, τ) satisfies the Volterra equation
with a singular kernel LZ(x, t, η, σ)

(3.8) Ψ(x, t, ξ, τ) = LZ(x, t, ξ, τ) +

∫ t

τ

∫

R3

LZ(x, t, η, σ)Ψ(η, σ, ξ, τ) dη dσ.

The solution of this equation is (see [2])

(3.9) Ψ(x, t, ξ, τ) = Σ∞
ν=1(LZ)ν(x, t, ξ, τ),

where (LZ)1 = LZ = ( ∂
∂t + (V,∇)− ε2△)Z,

(LZ)ν+1 =

∫ t

τ

∫

R3

[LZ(x, t, η, σ)](LZ)ν(η, σ, ξ, τ) dη dσ.
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Let us obtain estimates for the operator (LZ)ν

(3.10)

|(LZ)1(x, t, ξ, τ)| = |LZ(x, t, ξ, τ)| = |(V (x, y),∇)Z(x, t, ξ, τ)|

≤ A1
|x− ξ|

(t− τ)5/2ε5
exp

( −|x− ξ|2

4ε2(t− τ)

)

≤ A1
1

(t− τ)2ε4
exp

(

− λ
|x− ξ|2

4ε2(t− τ)

)

.

In [2] the convergence of (3.9) for an arbitrary parabolic operator is proved. To ob-
tain an estimate on the Green’s function and its derivatives one has to differentiate the
equation (3.7)

DmG0(x, t, ξ, τ) = DmZ(x, t, ξ, τ) +

∫ t

τ

∫

R3

(DmZ(x, t, η, σ))Ψ(η, σ, ξ, τ) dη dσ.

Only the first term is important for the estimate. We have

∂

∂xi
Z(x, t, ξ, τ) =

xi − ξi
23/2+2|m|π3/2(t− τ)3/2+|m|ε3+2|m|

exp
(

− λ
|x− ξ|2

4ε2|t− τ |

)

,

DmZ(x, t, ξ, τ) ≤
C

23/2+|m|π3/2(t− τ)3/2+|m|/2ε3
exp

(

− λ
|x− ξ|2

4ε2|t− τ |

)

.

�

.

Remark 4. The proof of this lemma differs from that presented in [2] by the explicit
assessment of the dependence of G0 on ε.

Theorem 7. The Green matrix of the Cauchy problem for the equation (1.1) for all t

satisfies the estimates: |DmGij | ≤
C
ε

1
ε3t1/2

1
t|m|/2 exp(−

|x−z|2

ε2t ).

Proof. Consider a column T of the matrix G and decompose it into components parallel
and orthogonal to ∇Φ: T = a∇Φ+w, (w,∇Φ) = 0. This column satisfies the equation:

L0T −
1

ε

∂V

∂y
(∇Φ, T )−

∂V

∂x
T = 0.

For the further proof of the theorem we prove the following lemma.

Lemma 2. The scalar function a and the vector w are related by the following equations:

(3.11)







L0a = Λa+ ε(M,w),

L0w =
1

ε
a
∂V

∂y
+ Pw + εQa,

where Λ, the elements of the vector Q and matrix P are polynomials of degree 1 in
the operators ε ∂

∂xj
, whose coefficients are smooth functions of x, y, t, ε and (M,w) =

ε(∇Φ,△w).

Proof. Substituting the expression for column T to the equations (1.1) we obtain

(3.12) L0a∇Φ−
1

ε

∂V

∂y
a− a

∂V

∂x
∇Φ+ L0w −

∂V

∂x
w = 0.

The projection of this equation on the direction given by the vector ∇Φ has the form

(∇Φ, L0a∇Φ)−
1

ε

(

∇Φ,
∂V

∂y

)

a− a
(

∇Φ,
∂V

∂x
∇Φ
)

+ (∇Φ, L0w)−
(

∇Φ,
∂V

∂x
w
)

= 0.
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Here (∇Φ, ∂V
∂y ) = 0, (∇Φ, ∂w

∂t ) = 0,

L0a∇Φ =
(∂a

∂t
+ (V,∇)a− ε2△a

)

∇Φ+ a(V,∇)∇Φ + 2ε2(∇a,∇)∇Φ− ε3∇3Φa,

(∇Φ, (V,∇)w)−
(

∇Φ,
∂V

∂x
w
)

= (V,∇)(w,∇Φ)− (w, (V,∇)∇Φ)−
(

w,
∂V ∗

∂x
∇Φ
)

= −
(

w, (V,∇)∇Φ +
∂V ∗

∂x
∇Φ
)

= −(w,∇(V,∇Φ)) = 0.

All the terms containing a and not included to the L0a, are summarized in the Λa. Thus,
we obtained the first equation in the system. In order to prove the second one, let us
project (3.12) to plane, orthogonal to ∇Φ (the tangent plane to the surface Mc : Φ = c.).
We have

(

L0a∇Φ− a
∂V

∂x
∇Φ−

∂V

∂x
w
)

−
((

L0a∇Φ− a
∂V

∂x
∇Φ−

∂V

∂x
w
)

,∇Φ
)

∇Φ

−
1

ε

∂V

∂y
a+Π|TpM (L0w) = 0.

The non-zero coefficients multiplied by a form the following expression:

(V,∇)∇Φ−
∂V

∂x
∇Φ−

((

(V,∇)∇Φ−
∂V

∂x
∇Φ
)

,∇Φ
)

∇Φ.

The j th component of this vector is

Vi
∂2Φ

∂xi∂xj
−

∂Vj

∂xi

∂Φ

∂xi
− Vi

∂2Φ

∂xi∂xl

∂Φ

∂xl

∂Φ

∂xj
+

∂Vl

∂xi

∂Φ

∂xl

∂Φ

∂xi

∂Φ

∂xj
.

Note that (V,∇)∇Φ = ∇(V,∇Φ)− ∂V ∗

∂x ∇Φ = − ∂Vi

∂xj

∂Φ
∂xi

, so the coefficient with a is

−
(∂Vj

∂xi
+

∂Vi

∂xj

) ∂Φ

∂xi
+
(∂Vl

∂xi
+

∂Vi

∂xl

) ∂Φ

∂xl

∂Φ

∂xi

∂Φ

∂xj
.

For the terms with l = j we have

−
(∂Vj

∂xi
+

∂Vi

∂xj

) ∂Φ

∂xi
+
(∂Vj

∂xi
+

∂Vi

∂xj

) ∂Φ

∂xi

( ∂Φ

∂xj

)2

as |∇Φ|2 = 1. Since the fluid is incompressible (∇, V ) = ∂Vi

∂xi
= 0, the terms with l = i

are:
(

∂Vi

∂xi
+ ∂Vi

∂xi

)

∂Φ
∂xi

∂Φ
∂xi

∂Φ
∂xj

. The last term in l 6= i 6= j:
(

∂Vi

∂xl
+ ∂Vl

∂xi

)

∂Φ
∂xl

∂Φ
∂xi

∂Φ
∂xj

. This

expression does not depend on the choice of an orthonormal system of coordinates xi, so
we can choose a system in which one axis is directed along the ∇Φ, and the other two
in the tangent plane. Conditions l 6= i 6= j imply that at least one of the axes lies in the
tangent plane to Mc; for this component we have ∂Φ

∂xm
= 0, so this expression vanishes.

Carefully collecting all the terms, we get the second equation of the system. �

We continue the proof of the theorem. We look for solution of the obtained system in
the form

a =
∞
∑

k=0

εkak, w =
∞
∑

k=−1

εkwk.

Equating terms with the respective powers of ε, we obtain

(L0 − Λ)ak = (∇Φ,△wk−2),

(L0 − P )wk = ak+1
∂V

∂y
+Qak−1.

For a0 we have
(L0 − Λ)a0 = 0,
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so

a0 ≤ A0
1

ε3t3/2
exp

(

− λa
|x− ξ|2

ε2t

)

(see Lemma 1 ).
Now consider the estimate for w−1

(L0 − P )w−1 = a0
∂V

∂y
,

w−1 ≤

∫ t

τ

∫

R3

B0
1

ε3(t− σ)3/2

∣

∣

∣

∂V

∂y

∣

∣

∣
exp

(

− λ
( |x− η|2

ε2(t− σ)
+

|η − ξ|2

ε2σ

))

dη dσ,

where λ = max(λa, λw). To estimate the integral above we make the substitution

Wi =
( 1

ε2
t− σ

t− τ

)1/2 ηi − ξi
2(τ − σ)1/2

+
( 1

ε2
τ − σ

t− τ

)1/2 ξi − xi

2(τ − σ)1/2
.

Now the integral can be estimated from above w−1 ≤ W 1
ε3t1/2

exp(λ |x−ξ|2

ε2t ).
The same can be done for the functions ak and wk. As a result, we obtain the following

inequalities:

|ak| ≤
Ak

ε3
t−3/2+2k exp

(

− λ
|x− ξ|2

ε2t

)

,

|wk| ≤
Wk

ε3
t−3/2+2k exp

(

− λ
|x− ξ|2

ε2t

)

.

After summation of the series we get the following estimates :

|a| ≤
A

ε3
t−3/2 exp

(

− λ
|x− ξ|2

ε2t

)

,

|w| ≤
W

ε4
t−1/2 exp

(

− λ
|x− ξ|2

ε2t

)

.

Thus for all t the estimate |T | ≤ C
ε4 t

−1/2 exp(−λ |x−ξ|2

ε2t ) holds. The same arguments can
be used in order to obtain the estimates of the derivatives of the Green’s matrix. �

Remark 5. The proof of the theorem is essentially based on the Jordan structure of the
system (3.11).

3.3. Justification of the formal asymptotics. Now we can prove that the formal
asymptotics constructed above is close to the exact solution of the problem (1.1)–(1.2).
Namely, the following assertion follows immediately from the theorems 6 and 7.

Theorem 8. For t ∈ [0, t0] the solution B(x, t, ε) of the Cauchy problem of the equa-
tion (1.1)–(1.2) has the form

(3.13) B(x, t, ε) =
N
∑

k=−1

εkBk

(Φ(x)

ε
x, t
)

+O(εN+1).

Remark 6. The weak limit of the solution as ε → 0 has a δ-type singularity on the surface
M . The corresponding vector is tangent to the surface.

Remark 7. The leading term of asymptotics is computed from the system (3.3)–(3.5).
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