SCHRÖDINGER OPERATORS WITH NON-SYMMETRIC ZERO-RANGE POTENTIALS

A. GROD AND S. KUZHEL

Dedicated to Professor V. D. Koshmanenko on the occasion of his seventieth birthday

ABSTRACT. Non-self-adjoint Schrödinger operators $A_{\mathbf{T}}$ which correspond to non-symmetric zero-range potentials are investigated. For a given $A_{\mathbf{T}}$, a description of non-real eigenvalues, spectral singularities and exceptional points are obtained; the possibility of interpretation of $A_{\mathbf{T}}$ as a self-adjoint operator in a Krein space is studied, the problem of similarity of $A_{\mathbf{T}}$ to a self-adjoint operator in a Hilbert space is solved

1. Introduction

An important class of Schrödinger operators is formed by operators with singular perturbations. For example, this class contains Schrödinger operators with zero-range potentials or point interactions. These operators effectively simulate short range interactions and belong to the class of exactly solvable models. Numerous works are devoted to a study of singularly perturbed Schrödinger operators, in which a series of approaches to the construction and investigation of such operators are developed (see, e.g., [1, 2, 3, 12, 13] and references therein). These studies, in the majority of cases, deal with *symmetric singular perturbations* that lead to *self-adjoint Schrödinger operators*.

In the present paper we study *non-self-adjoint* Schrödinger operators which correspond to non-symmetric zero-range potentials.

Our work was inspirited in part by an intensive development of Pseudo-Hermitian (\mathcal{PT} -Symmetric) Quantum Mechanics PHQM (PTQM) during last decades [7, 8, 16]. The key point of PHQM/PTQM theories is the employing of non-self-adjoint operators with certain properties of symmetry for the description of experimentally observable data. Briefly speaking, in order to interpret a given non-self-adjoint operator A in a Hilbert space \mathfrak{H} as a physically meaning Hamiltonian we have to check the reality of its spectrum and to prove the existence of a new inner product that ensures the (hidden) self-adjointness of A.

The paper is devoted to the implementation of this program for various classes (\mathcal{PT} symmetric operators, δ - and δ' - potentials with complex couplings, see definitions in
Examples II-IV of Sec. 2) of non-self-adjoint Schrödinger operators $A_{\mathbf{T}}$ corresponding to
the Schrödinger type differential expression (2.1) with singular zero-range potential

$$a < \delta, \cdot > \delta(x) + b < \delta', \cdot > \delta(x) + c < \delta, \cdot > \delta'(x) + d < \delta', \cdot > \delta'(x),$$

where the parameters a, b, c, d are complex numbers. The matrix **T** is formed by these parameters and operators $A_{\mathbf{T}}$ are defined by Lemma 2.1.

In Sec. 2, the necessary and sufficient conditions for the existence of non-real eigenvalues, spectral singularities and exceptional points of $A_{\mathbf{T}}$ are given.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A55, 47B25; Secondary 47A57, 81Q15. Key words and phrases. Non-self-adjoint Schrödinger operators, zero-range potentials, Krein spaces,

Key words and phrases. Non-self-adjoint Schrödinger operators, zero-range potentials, Krein spaces similarity to a self-adjoint operator.

Sec. 3 is devoted to an interpretation of $A_{\mathbf{T}}$ as a self-adjoint operator in a Krein space. Such kind of self-adjointness cannot be considered as completely satisfactory in PHQM/PTQM because it does not guarantee unitarity of the dynamics generated by $A_{\mathbf{T}}$. However, possible realization of $A_{\mathbf{T}}$ as self-adjoint with respect to some indefinite metrics (indefinite inner product) allows us to apply well-developed tools of the Krein spaces theory [6] to solving the problem of similarity of $A_{\mathbf{T}}$ to a self-adjoint operator in a Hilbert space. The similarity property means that $A_{\mathbf{T}}$ turns out to be a self-adjoint operator in a Hilbert space with respect to a suitably chosen inner product.

In Sec. 4, we solve the similarity problem for $A_{\mathbf{T}}$ with the use of a general criterion of similarity [18] and the Krein spaces methods.

The properties of $A_{\mathbf{T}}$ established in the paper illustrate a typical PHQM/PTQM evolution of spectral properties which can be obtained by changing entries of \mathbf{T} : complex eigenvalues \rightarrow spectral singularities / exceptional points \rightarrow similarity to a self-adjoint operator. For this reason, the operators $A_{\mathbf{T}}$ considered in the work can be used as exactly solvable models of PHQM/PTQM.

Throughout the paper $\mathcal{D}(A)$, $\mathcal{R}(A)$, and ker A denote the domain, the range, and the null-space of a linear operator A, respectively, while $A \upharpoonright \mathcal{D}$ stands for the restriction of A to the set \mathcal{D} . The resolvent set and the spectrum of an operator A are denoted as $\rho(A)$ and $\sigma(A)$, respectively.

2. Operator realizations and their simplest properties

A one-dimensional Schrödinger operator corresponding to a general zero-range potential at the point x = 0 can be defined by the heuristic expression

$$(2.1) \qquad -\frac{d^2}{dx^2} + a < \delta, \cdot > \delta(x) + b < \delta', \cdot > \delta(x) + c < \delta, \cdot > \delta'(x) + d < \delta', \cdot > \delta'(x),$$

where δ and δ' are, respectively, the Dirac δ -function and its derivative (with support at 0) and a, b, c, d are complex numbers.

The expression (2.1) gives rise to the symmetric operator

(2.2)
$$A_{\text{sym}} = -\frac{d^2}{dx^2}, \quad \mathcal{D}(A_{\text{sym}}) = \{u(x) \in W_2^2(\mathbb{R}) \mid u(0) = u'(0) = 0\}$$

acting in $L_2(\mathbb{R})$ and, generally speaking, any proper extension A of A_{sym} (i.e., $A_{\text{sym}} \subset A \subset A_{\text{sym}}^*$) can be considered as an operator realization of (2.1) in $L_2(\mathbb{R})$.

In order to specify more exactly which a proper extension A of A_{sym} corresponds to (2.1) we will use an approach suggested in [3]. The idea consists in the construction of some regularization $\mathbb{A}_{\mathbf{r}}$ of (2.1) that is well defined as an operator from $\mathcal{D}(A_{\text{sym}}^*) = W_2^2(\mathbb{R}\setminus\{0\})$ to $W_2^{-2}(\mathbb{R})$. Then, the corresponding operator realization of (2.1) in $L_2(\mathbb{R})$ is determined as follows:

(2.3)
$$A = \mathbb{A}_{\mathbf{r}} \upharpoonright_{\mathcal{D}(A)}, \quad \mathcal{D}(A) = \{ f \in \mathcal{D}(A_{\text{sym}}^*) \mid \mathbb{A}_{\mathbf{r}} f \in L_2(\mathbb{R}) \}.$$

To obtain a regularization of (2.1) it suffices to extend the distributions δ and δ' onto $W_2^2(\mathbb{R}\setminus\{0\})$. The most reasonable way (based on preserving of initial homogeneity of δ and δ' with respect to scaling transformations, see, for details, [3], [9]) leads to the following definition:

$$<\delta_{\rm ex}, f> = \frac{f(+0)+f(-0)}{2}, \quad <\delta_{\rm ex}', f> = -\frac{f'(+0)+f'(-0)}{2}$$

for all $f(x) \in W_2^2(\mathbb{R} \setminus \{0\})$. In this case, the regularization of (2.1) onto $W_2^2(\mathbb{R} \setminus \{0\})$ takes the form

$$\mathbb{A}_{\mathbf{r}} = -\frac{d^2}{dx^2} + a < \delta_{\mathrm{ex}}, \cdot > \delta(x) + b < \delta'_{\mathrm{ex}}, \cdot > \delta(x) + c < \delta_{\mathrm{ex}}, \cdot > \delta'(x) + d < \delta'_{\mathrm{ex}}, \cdot > \delta'(x),$$

where $-d^2/dx^2$ acts on $W_2^2(\mathbb{R}\backslash\{0\})$ in the distributional sense.

The definition (2.3) is not always easy to use. Repeating the proof of Theorem 1 in [5] we obtain an equivalent description of operators determined by (2.3).

Lemma 2.1. Let A be determined by (2.3). Then A coincides with the restriction of $A_{\text{sym}}^* = -d^2/dx^2$ onto the domain

(2.4)
$$\mathcal{D}(A) = \{ f(x) \in W_2^2(\mathbb{R} \setminus \{0\}) \mid \mathbf{T}\Gamma_0 f = \Gamma_1 f \}, \quad \mathbf{T} = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

where

(2.5)
$$\Gamma_0 f = \frac{1}{2} \begin{pmatrix} f(+0) + f(-0) \\ -f'(+0) - f'(-0) \end{pmatrix}, \quad \Gamma_1 f = \begin{pmatrix} f'(+0) - f'(-0) \\ f(+0) - f(-0) \end{pmatrix}.$$

Remark 2.2. In what follows the notation $A_{\mathbf{T}}$ will be used for operator realizations of (2.1) defined by (2.4) and (2.5).

It is known that the continuous spectrum of an operator $A_{\mathbf{T}}$ coincides with $[0, \infty)$ and the point spectrum of $A_{\mathbf{T}}$ may appear only in $\mathbb{C}\backslash\mathbb{R}_+$.

Denote

$$\mathbf{det} \ \mathbf{T} = ad - bc.$$

Lemma 2.3. An operator A_T has an eigenvalue $z = \tau^2$ if and only if the equation

(2.7)
$$2d\tau^{2} + i(\det \mathbf{T} - 4)\tau + 2a = 0$$

has a solution $\tau \in \mathbb{C}_+ = \{ \tau \in \mathbb{C} : \operatorname{Im} \tau > 0 \}.$

Proof. Let us denote by τ the square root of the energy parameter $z=\tau^2$ determined uniquely by the condition Im $\tau>0$ and consider the functions

(2.8)
$$h_{1\tau}(x) = \begin{cases} e^{i\tau x}, & x > 0 \\ e^{-i\tau x}, & x < 0 \end{cases}, \quad h_{2\tau}(x) = \begin{cases} -e^{i\tau x}, & x > 0 \\ e^{-i\tau x}, & x < 0 \end{cases}$$

that form a basis of $\ker(A^*_{\mathrm{sym}} - zI)$, where $z = \tau^2$ runs $\mathbb{C}\backslash\mathbb{R}_+$. It is clear that z belongs to the point spectrum of A if and only if there exists a function $f \in \ker(A^*_{\mathrm{sym}} - zI) \cap \mathcal{D}(A)$. Representing f(x) in the form

$$f(x) = c_1 h_{1\tau}(x) + c_2 h_{2\tau}(x), \quad c_i \in \mathbb{C}$$

and substituting this expression into (2.4) we arrive at the conclusion that z is an eigenvalue of A if and only if the system of equations

$$(a-2i\tau)c_1 + ib\tau c_2 = 0,$$

 $cc_1 + (id\tau + 2)c_2 = 0$

has a nontrivial solution c_1, c_2 . This is possible if the determinant of the coefficient matrix of the system is equal to zero, i.e., $2d\tau^2 + i(ad - bc - 4)\tau + 2a = 0$. Rewriting the obtained equation in the form (2.7) we complete the proof.

Definition 2.4. Let $A_{\mathbf{T}}$ be defined by (2.4), (2.5) and let the spectrum of $A_{\mathbf{T}}$ do not coincide with \mathbb{C} . We will say that the operator $A_{\mathbf{T}}$ has:

- a nonzero spectral singularity $z = \tau^2$ if the equation (2.7) has a solution $\tau \in \mathbb{R} \setminus \{0\}$:
- a spectral singularity at point z=0 if (2.7) has a solution $\tau=0$ with multiplicity 2;
- a spectral singularity at point $z = \infty$ if there are no solutions of (2.7) in \mathbb{C} .

The non-self-adjoint operator $A_{\mathbf{T}}$ has an exceptional point $z = \tau^2$ if the equation (2.7) has a solution $\tau \in \mathbb{C}_+$ with multiplicity 2.

A spectral singularity (an exception point) z lies on the continuous spectrum (on the point spectrum) of $A_{\mathbf{T}}$ and it is a serious defect that rules out the operator as a viable candidate for a physical observable [11, 15].

Example I. Symmetric potential.

The singular potential

$$(2.9) V = a < \delta, \cdot > \delta(x) + b < \delta', \cdot > \delta(x) + c < \delta, \cdot > \delta'(x) + d < \delta', \cdot > \delta'(x)$$

in (2.1) is symmetric (i.e., $V^* = V$) if and only if

$$(2.10) a, d \in \mathbb{R}, c = \bar{b}.$$

The corresponding operators $A_{\mathbf{T}}$ turn out to be self-adjoint operators in $L_2(\mathbb{R})$ with respect to the initial inner product

(2.11)
$$(f,g) = \int_{\mathbb{R}} f(x)\overline{g(x)} dx.$$

Lemma 2.5. The spectrum $\sigma(A_T)$ is real and it contains the continuous part $[0, \infty)$ and possibly, negative eigenvalues. There are no spectral singularities and exceptional points.

Proof. An operator $A_{\mathbf{T}}$ is a finite dimensional extension of the symmetric operator A_{sym} determined by (2.2). This means that the continuous spectrum of $A_{\mathbf{T}}$ coincides with $[0,\infty)$.

Let $d \neq 0$. Then the solutions $\tau_{1,2}$ of (2.7) have the form

(2.12)
$$\tau_{1,2} = i \frac{4 - \det \mathbf{T} \pm \sqrt{D}}{4d},$$

where **det** T and $D = (4 - \mathbf{det} \ \mathbf{T})^2 + 16ad$ are real numbers.

Taking (2.6) into account we rewrite

$$(2.13) D = (4 - ad + bc)^2 + 16ad = (4 + ad - bc)^2 + 16bc = (4 + \mathbf{det} \ \mathbf{T})^2 + 16bc.$$

Moreover, in view of (2.10), $bc = |b|^2$. Therefore $D = (4 + \det \mathbf{T})^2 + 16|b|^2 \ge 0$. This means that the solutions $\tau_{1,2}$ determined by (2.12) always belong to $i\mathbb{R}$.

Similarly, if d = 0, equation (2.7) is reduced to $-i(|b|^2 + 4)\tau + 2a = 0$. The solution $\tau_1 = -2ai/(|b|^2 + 4)$ belongs to $i\mathbb{R}$.

The two cases above and Lemma 2.3 show that $A_{\mathbf{T}}$ may have negative eigenvalues $z = \tau^2$ and there are no spectral singularities and exceptional points of $A_{\mathbf{T}}$.

Example II. PT-symmetric potential.

Denote by \mathcal{P} and \mathcal{T} the operators of space parity and complex conjugation, respectively

(2.14)
$$\mathcal{P}f(x) = f(-x), \quad \mathcal{T}f(x) = \overline{f(x)}.$$

The potential V is called \mathcal{PT} -symmetric if $\mathcal{PT}V = V\mathcal{PT}$. Extending \mathcal{P} onto $W_2^{-2}(\mathbb{R})$, one gets $\mathcal{P}\delta = \delta$ and $\mathcal{P}\delta' = -\delta'$. These relations and (2.9) imply that V is \mathcal{PT} -symmetric if and only if¹

$$(2.15) a, d \in \mathbb{R}, b, c \in i\mathbb{R}.$$

The corresponding operators $A_{\mathbf{T}}$ turn out to be \mathcal{PT} -symmetric operators, i.e., the relation

$$\mathcal{P}\mathcal{T}A_{\mathbf{T}} = A_{\mathbf{T}}\mathcal{P}\mathcal{T}$$

holds on the domain $\mathcal{D}(A_{\mathbf{T}})$.

 $^{^1}$ the cases of symmetric and \mathcal{PT} -symmetric potentials differs by conditions imposed on parameters b, c

Remark 2.6. In what follows we will often use operator identities

$$(2.17) XA = BX,$$

where A and B are (possible) unbounded operators in $L_2(\mathbb{R})$ and X is a bounded operator in $L_2(\mathbb{R})$. In that case, we always assume that (2.17) holds on $\mathcal{D}(A)$. This means that $X: \mathcal{D}(A) \to \mathcal{D}(B)$ and the identity XAu = BXu holds for all $u \in \mathcal{D}(A)$. If A is bounded, then (2.17) should hold on the whole $L_2(\mathbb{R})$. In particular, relation (2.15) means that the operator \mathcal{PT} maps $\mathcal{D}(A_T)$ onto $\mathcal{D}(A_T)$ and $\mathcal{PT}A_Tf = A_T\mathcal{PT}f$ for all $f \in \mathcal{D}(A_T)$.

Comparing the condition of self-adjointness (2.10) and the condition of \mathcal{PT} -symmetry (2.16) we obtain that \mathcal{PT} -symmetric operators $A_{\mathbf{T}}$ are not self-adjoint with respect to the initial inner product (2.11) except the case $b = -c \in i\mathbb{R}$. Therefore, \mathcal{PT} -symmetric operators $\mathcal{D}(A_{\mathbf{T}})$ may have non-real eigenvalues. In particular, it may happen that the set of complex eigenvalues of $A_{\mathbf{T}}$ coincide with $\mathbb{C} \setminus \mathbb{R}_+$.

Lemma 2.7. 1. A PT-symmetric operator A_T has non-real eigenvalues if and only if one of the following conditions are satisfied:

(i)
$$D = (4 - \det \mathbf{T})^2 + 16ad < 0$$
, $(4 - \det \mathbf{T})d > 0$;

(ii)
$$\det \mathbf{T} = 4$$
, $a = d = 0$.

Condition (i) corresponds to the case where $A_{\mathbf{T}}$ has two non-real eigenvalues, which are conjugate to each other. Condition (ii) describes the situation where any point $z \in \mathbb{C} \backslash \mathbb{R}_+$ is an eigenvalue of $A_{\mathbf{T}}$. In that case the spectrum of $A_{\mathbf{T}}$ coincides with \mathbb{C} ;

- 2. A \mathcal{PT} -symmetric operator $A_{\mathbf{T}}$ has:
 - nonzero spectral singularity if and only if

(iii)
$$D < 0$$
, $(4 - \det \mathbf{T})d = 0$.

In that case, the positive number $z = -\frac{a}{d}$ is the spectral singularity of $A_{\mathbf{T}}$;

• spectral singularity at point z = 0 if and only if

(iv)
$$D = 0$$
, $(4 - \det \mathbf{T})d = 0$, $d \neq 0$, $a = 0$;

• spectral singularity at point $z = \infty$ if and only if

(v)
$$D = 0$$
, $(4 - \det \mathbf{T})d = 0$, $d = 0$, $a \neq 0$;

• exceptional point if and only if

(vi)
$$D = 0$$
, $(4 - \det \mathbf{T})d > 0$.

In that case, the negative number $z=\frac{a}{d}$ is the exceptional point of $A_{\mathbf{T}}$.

Proof. Let $A_{\mathbf{T}}$ be a \mathcal{PT} -symmetric operator. Then, the values of **det** \mathbf{T} and D are real (it follows from (2.15)).

Using Lemma 2.3 and (2.12), we arrive at the conclusion that condition (i) is necessary and sufficient for the existence of two non-real eigenvalues $z_{1,2} = \tau_{1,2}^2$ of $A_{\mathbf{T}}$, which are conjugate to each other.

The requirement that any point $z = \tau^2 \in \mathbb{C} \backslash \mathbb{R}_+$ is an eigenvalue of $A_{\mathbf{T}}$ is equivalent to the condition that any $\tau \in \mathbb{C}_+$ is a solution of (2.7). This is possible only in the case where the left-hand side of (2.7) vanishes. The latter is equivalent to the condition (ii).

It follows from (2.12) that a nonzero spectral singularity exists in the case where $D = (4 - \det \mathbf{T})^2 + 16ad < 0$ and $\det \mathbf{T} = 4$ that is equivalent to (iii). In that case, $\tau_{1,2} = \pm \sqrt{-\frac{a}{d}}$ and $z = \tau_{1,2}^2 = -\frac{a}{d}$.

The descriptions (iv) and (v) of spectral singularities at 0 and at ∞ are obvious due to (2.7).

By Definition 2.4 a point $z = \tau^2$ ($\tau \in \mathbb{C}_+$) is an exceptional point of A_T if its multiplicity is 2. Hence, $d \neq 0$ in (2.7) and τ is determined by (2.12) with D = 0.

Furthermore, the condition $\tau \in \mathbb{C}_+$ implies $(4 - \det \mathbf{T})d > 0$. Thus we show that condition (vi) corresponds to exceptional points. In that case

$$z = \tau^2 = -\frac{(4 - \mathbf{det} \ \mathbf{T})^2}{16d^2} = \frac{16ad}{16d^2} = \frac{a}{d} < 0$$

(since D = 0, $(4 - \det \mathbf{T}) \neq 0$ and hence, ad < 0). Lemma 2.7 is proved.

Example III. δ -potential with a complex coupling [15].

Let $a \in \mathbb{C}$ and b = c = d = 0. Then (2.1) takes the form

$$-\frac{d^2}{dx^2} + a < \delta, \cdot > \delta(x), \quad a \in \mathbb{C}$$

and (2.4) gives rise to operators $A_{\bf T} \equiv A_a = -\frac{d^2}{dx^2}$ with domains of definition

$$\mathcal{D}(A_a) = \left\{ f(x) \in W_2^2(\mathbb{R} \setminus \{0\}) \mid \begin{array}{c} f(0+) = f(0-) \ (\equiv f(0)) \\ f'(0+) - f'(0-) = af(0) \end{array} \right\}.$$

By virtue of Lemma 2.3 and Definition 2.4 we conclude:

- if Re a < 0, then A_a has a unique eigenvalue $z = -a^2/4$, which is real \iff Im a = 0;
- if Re $a \geq 0$, then the spectrum of A_a is real, continuous and it coincides with $[0,\infty)$;
- if $a \in i\mathbb{R} \setminus \{0\}$, then A_a has spectral singularity $z = \frac{|a|^2}{4}$;
- there are no exceptional points of A_a .

Example IV. δ' -potential with a complex coupling.

Let $d \in \mathbb{C}$ and a = b = c = 0. Then (2.1) takes the form

$$-\frac{d^2}{dx^2} + d < \delta', \cdot > \delta'(x), \quad d \in \mathbb{C}$$

and (2.4) gives rise to operators $A_{\bf T} \equiv A_d = -\frac{d^2}{dx^2}$ with domains of definition .

$$\mathcal{D}(A_d) = \left\{ f(x) \in W_2^2(\mathbb{R} \setminus \{0\}) \mid \begin{array}{c} f'(0+) = f'(0-) \ (\equiv f'(0)) \\ f(0+) - f(0-) = -df'(0) \end{array} \right\}.$$

By virtue of Lemma 2.3 and Definition 2.4:

- if Re d>0, then A_d has a unique eigenvalue $z=-4/d^2$, which is real \iff Im d=0:
- if Re $d \leq 0$, then the spectrum of A_d is real, continuous and it coincides with $[0,\infty)$;
- if $d \in i\mathbb{R} \setminus \{0\}$, then A_d has spectral singularity $z = \frac{4}{|d|^2}$;
- there are no exceptional points of A_d .

3. Interpretation as self-adjoint operators in Krein spaces

Let \mathfrak{H} be a Hilbert space with inner product (\cdot,\cdot) and with fundamental symmetry J (i.e., $J=J^*$ and $J^2=I$). The space \mathfrak{H} endowed with the indefinite inner product (indefinite metric) $[f,g]_J:=(Jf,g),\ \forall f,g\in\mathfrak{H}$ is called a Krein space $(\mathfrak{H},[\cdot,\cdot]_J)$.

The difference between the initial inner product (\cdot, \cdot) and indefinite metric $[\cdot, \cdot]_J$ consists in the fact that, except the cases $J=\pm I$, the sign of the sesqulinear form $[f,f]_J$ is not determined (i.e, it is possible $[f,f]_J<0$, $[f,f]_J=0$, or $[f,f]_J>0$ for various $f\neq 0$). The Hilbert space $\mathfrak H$ can be considered as a particular case of the Krein space $(\mathfrak H,[\cdot,\cdot]_J)$ with J=I.

A linear densely defined² operator A acting in \mathfrak{H} is called self-adjoint in the Krein space $(\mathfrak{H}, [\cdot, \cdot]_J)$ if A is self-adjoint with respect to the indefinite metric $[\cdot, \cdot]_J$. This condition is equivalent to the relation

$$(3.1) A^* = JAJ.$$

The spectrum of a self-adjoint operator in Krein space is symmetric with respect to the real axis. For an additional information about Krein spaces and operators acting therein we refer to [6].

We recall [16, 17] that a linear densely defined operator A acting in a Hilbert space \mathfrak{H} is said to be *pseudo-Hermitian* if there exists a bounded and boundedly invertible self-adjoint operator $\eta: \mathfrak{H} \to \mathfrak{H}$ such that

$$A^* = \eta A \eta^{-1}.$$

Relation (3.2) means that A is self-adjoint with respect to the pseudo-metric $[\cdot,\cdot]_{\eta} = (\eta\cdot,\cdot)$.

It follows from (3.1) and (3.2) that self-adjoint operators in Krein spaces are pseudo-Hermitian. The inverse implication is also true. Indeed, let A be pseudo-Hermitian. Then (3.2) holds for some η . Denote

(3.3)
$$|\eta| = \sqrt{\eta^2}, \quad J = \eta |\eta|^{-1}$$

and consider the Hilbert space $(\mathfrak{H}, (\cdot, \cdot)_{|\eta|})$ endowed with new (equivalent to (\cdot, \cdot)) inner product $(\cdot, \cdot)_{|\eta|} = (|\eta| \cdot, \cdot)$. Then, the pseudo-metric $[\cdot, \cdot]_{\eta}$ coincides with the indefinite metric $[\cdot, \cdot]_{J|\eta|} = (J \cdot, \cdot)_{|\eta|}$ constructed with the use of fundamental symmetry $J = \eta |\eta|^{-1}$ and new inner product $(\cdot, \cdot)_{|\eta|}$, i.e.,

$$[\cdot,\cdot]_{\eta} = (\eta\cdot,\cdot) = (J|\eta|\cdot,\cdot) = (J\cdot,\cdot)_{|\eta|} = [\cdot,\cdot]_{J|\eta|}.$$

This means that A turns out to be a self-adjoint operator in the Krein space $(\mathfrak{H}, [\cdot, \cdot]_{J|n|})$.

Example II contd. It is known [14] that an arbitrary \mathcal{PT} -symmetric operator $A_{\mathbf{T}}$ can be interpreted as self-adjoint one in a suitable chosen Krein space $(L_2(\mathbb{R}), [\cdot, \cdot]_J)$. Using [14] we can specify the relevant indefinite metrics $[\cdot, \cdot]_J$. Denote

(3.4)
$$\mathcal{R}f(x) = \operatorname{sign}(x)f(x), \quad f \in L_2(\mathbb{R}).$$

The operator \mathcal{R} is a fundamental symmetry which anti-commutes with \mathcal{P} : $\mathcal{PR} = -\mathcal{RP}$. It is easy to check that the operator $i\mathcal{PR}$ is also a fundamental symmetry and, moreover, any operator

(3.5)
$$J_{\vec{\alpha}} = \alpha_1 \mathcal{P} + \alpha_2 \mathcal{R} + \alpha_3 i \mathcal{P} \mathcal{R}, \quad \alpha_j \in \mathbb{R}, \quad \alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1$$

turns out to be a fundamental symmetry in $L_2(\mathbb{R})$.

We consider also a subset of the set of fundamental symmetries $J_{\vec{\alpha}}$ by imposing an additional condition of \mathcal{PT} -symmetry: $\mathcal{PT}J_{\vec{\alpha}} = J_{\vec{\alpha}}\mathcal{PT}$.

The operator $J_{\vec{\alpha}}$ is \mathcal{PT} -symmetric if and only if $\alpha_2 = 0$. In that case the latter relation in (3.5) takes the form $\alpha_1^2 + \alpha_3^2 = 1$ and we may set $\alpha_1 = \cos \phi$ and $\alpha_3 = \sin \phi$. Then

$$J_{\vec{\alpha}} = (\cos \phi) \mathcal{P} + i(\sin \phi) \mathcal{P} \mathcal{R} = \mathcal{P}(\cos \phi + i(\sin \phi) \mathcal{R}) = \mathcal{P} e^{i\phi \mathcal{R}}.$$

Thus, fundamental symmetries $J_{\vec{\alpha}}$ with the additional property of \mathcal{PT} -symmetry coincide with fundamental symmetries $\mathcal{P}_{\phi} = \mathcal{P}e^{i\phi\mathcal{R}}, \ \phi \in [0, 2\pi)$.

Consider the following collection of indefinite metrics on $L_2(\mathbb{R})$:

$$[\cdot,\cdot]_{J_{\vec{\alpha}}} = (J_{\vec{\alpha}}\cdot,\cdot), \quad [\cdot,\cdot]_{\mathcal{P}_{\phi}} = (\mathcal{P}_{\phi}\cdot,\cdot).$$

² with respect to the initial inner product (\cdot, \cdot)

Proposition 3.1. ([14]) Every \mathcal{PT} -symmetric operator $A_{\mathbf{T}}$ can be interpreted as a self-adjoint operator in the Krein space $(L_2(\mathbb{R}), [\cdot, \cdot]_{\mathcal{P}_{\phi}})$, where the parameter ϕ is determined by the relation

$$(3.6) 2(b-c)\cos\phi = i(4+\det\mathbf{T})\sin\phi.$$

Proposition 3.1 shows that the collection of Krein spaces $(L_2(\mathbb{R}), [\cdot, \cdot]_{\mathcal{P}_{\phi}})$ generated by \mathcal{PT} -symmetric fundamental symmetries \mathcal{P}_{ϕ} is sufficient for the interpretation of $A_{\mathbf{T}}$ as a self-adjoint operator. The possible interpretation of some $A_{\mathbf{T}}$ as a self-adjoint operator in a Krein space $(L_2(\mathbb{R}), [\cdot, \cdot]_{J_{\vec{\alpha}}})$, where $J_{\vec{\alpha}}$ is not \mathcal{PT} -symmetric (i.e. $J_{\vec{\alpha}} \neq \mathcal{P}_{\phi}$) immediately leads to specific spectral properties of $A_{\mathbf{T}}$.

Proposition 3.2. ([14]) Let $A_{\mathbf{T}}$ be a non-self-adjoint \mathcal{PT} -symmetric operator. Then

- if $A_{\mathbf{T}}$ admits an interpretation as a self-adjoint operator in a Krein space $(L_2(\mathbb{R}), [\cdot, \cdot]_{J_{\vec{\alpha}}})$, where $J_{\vec{\alpha}}$ is not \mathcal{PT} -symmetric, then $\sigma(A_{\mathbf{T}}) = \mathbb{C}$;
- if $A_{\mathbf{T}}$ admits an interpretation as a self-adjoint operator in two different Krein spaces $(L_2(\mathbb{R}), [\cdot, \cdot]_{\mathcal{P}_{\phi_1}})$ and $(L_2(\mathbb{R}), [\cdot, \cdot]_{\mathcal{P}_{\phi_2}})$, where \mathcal{P}_{ϕ_1} and \mathcal{P}_{ϕ_2} are linearly independent, then the spectrum of $A_{\mathbf{T}}$ contains a pair of complex conjugated eigenvalues;
- if $A_{\mathbf{T}}$ has a real spectrum, then $A_{\mathbf{T}}$ has interpretation as self-adjoint operator for the unique choice³ of the Krein space $(L_2(\mathbb{R}), [\cdot, \cdot]_{\mathcal{P}_{\phi}})$.

Examples III. VI contd. It follows from (2.10) and (2.15) that operators A_a (A_d) with real a (real d) are self-adjoint in the initial Hilbert space $L_2(\mathbb{R})$. Moreover, taking [5] into account, we decide that these operators are self-adjoint in the Krein space ($L_2(\mathbb{R})$, $[\cdot, \cdot]_{\mathcal{P}}$), where

$$[f,g]_{\mathcal{P}} = (\mathcal{P}f,g) = \int_{\mathbb{R}} f(-x)\overline{g(x)} \, dx.$$

If a is non-real and Re a < 0 (if d is non-real and Re d > 0), then A_a (A_d) cannot be interpreted as pseudo-Hermitian operator, or that is equivalent, cannot be interpreted as a self-adjoint operator in a Krein space. Indeed, if we assume that such an interpretation is possible, then the spectrum of A_a (of A_d) must be symmetric with respect to the real axis that contradicts to the fact that the spectrum of A_a (of A_d) contains a unique complex eigenvalue $z = -a^2/4$ ($d = -4/d^2$).

If $a \in i\mathbb{R} \setminus \{0\}$, $(d \in i\mathbb{R} \setminus \{0\})$ the operator A_a (A_d) has a spectral singularity. Hence, A_a (A_d) cannot be interpreted as a self-adjoint in a Hilbert space (see Theorem 4.6). The problem of interpretation of A_a (A_d) as a self-adjoint operator in a Krein space is still open.

If Re a > 0 (Re d < 0), then the operator A_a (A_d) turns out to be self-adjoint in $L_2(\mathbb{R})$ for a certain choice of inner product equivalent to the initial one (\cdot, \cdot) (it follows from Corollary 4.11).

4. Similarity to self-adjoint operators

An operator A acting in a Hilbert space \mathfrak{H} is called *similar* to a self-adjoint operator H if there exists a bounded and boundedly invertible operator Z such that

$$(4.1) A = Z^{-1}HZ.$$

The similarity of A to a self-adjoint operator means that A turns out to be self-adjoint for a certain choice of inner product of \mathfrak{H} , which is equivalent to the initial inner product (\cdot,\cdot) . Indeed, let (4.1) hold. By analogy with (3.3) we denote

(4.2)
$$|Z| = \sqrt{Z^*Z}, \quad U = Z|Z|^{-1}$$

³ up to linearly dependent fundamental symmetries \mathcal{P}_{ϕ}

and rewrite (4.1) as follows:

$$H = ZAZ^{-1} = U|Z|A|Z|^{-1}U^{-1} = UKU^{-1}, \quad K = |Z|A|Z|^{-1}.$$

The operator U is unitary but, in general, U is not self-adjoint.⁴ Taking into account that H is self-adjoint, we obtain

$$H^* = (UKU^{-1})^* = UK^*U^{-1} = H = UKU^{-1}.$$

Therefore, $K^* = K$. Then

$$(|Z|A|Z|^{-1})^* = |Z|^{-1}A^*|Z| = |Z|A|Z|^{-1}$$

or, that is equivalent $A^*|Z|^2 = |Z|^2A$. The obtained relation allows us to prove the self-adjointness of A in the Hilbert space $(\mathfrak{H}, (\cdot, \cdot)_{|Z|^2})$ endowed with new (equivalent to (\cdot, \cdot)) inner product $(\cdot, \cdot)_{|Z|^2} = (|Z|^2, \cdot)$. Indeed,

$$(Af,g)_{|Z|^2} = (|Z|^2 Af,g) = (f,A^*|Z|^2 g) = (f,|Z|^2 Ag) = (f,Ag)_{|Z|^2}, \quad f,g \in \mathcal{D}(A).$$

Thus A is self-adjoint in the Hilbert space $(\mathfrak{H}, (\cdot, \cdot)_{|Z|^2})$.

If A is a self-adjoint operator in Krein space, then similarity of A to a self-adjoint operator in a Hilbert space admits an equivalent characterization. Indeed, a characteristic property of a Krein space $(\mathfrak{H}, [\cdot, \cdot]_J)$ is the possibility of its decomposition onto the direct sum of maximal uniformly positive \mathfrak{L}_+ and maximal uniformly negative \mathfrak{L}_- subspaces, which are orthogonal with respect to the indefinite metric $[\cdot, \cdot]_J$:

$$\mathfrak{H} = \mathfrak{L}_{+}[\dot{+}]\mathfrak{L}_{-}$$

(here $[\dot{+}]$ means the orthogonality with respect to the indefinite metric $[\cdot,\cdot]_I$).

The pair of subspaces \mathfrak{L}_{\pm} in the decomposition (4.3) is not determined uniquely.

Let A be an operator in \mathfrak{H} . We say that the decomposition (4.3) is invariant with respect to A if

$$\mathcal{D}(A) = \mathcal{D}_{+}[\dot{+}]\mathcal{D}_{-}, \quad \mathcal{D}_{\pm} = \mathcal{D}(A) \cap \mathfrak{L}_{\pm}$$

and $A = A_{+}[\dot{+}]A_{-}$, where the operators $A_{\pm} = A \upharpoonright_{\mathcal{D}_{\pm}}$ acts in the subspaces \mathfrak{L}_{\pm} , respectively.

Proposition 4.1. ([4]) A pseudo-Hermitian operator A is similar to a self-adjoint operator if and only if there exists decomposition (4.3) of the Krein space⁵ $(\mathfrak{H}, [\cdot, \cdot]_{J|\eta|})$ which is invariant with respect to A.

The decomposition (4.3) can be easily characterized with the use of the following operator C:

(4.4)
$$Cf = C(f_{+} + f_{-}) = f_{+} - f_{-}, \quad f = f_{+} + f_{-}, \quad f_{\pm} \in \mathfrak{L}_{\pm}$$

(since $\mathfrak{L}_{+} = (I + \mathcal{C})\mathfrak{H}$ and $\mathfrak{L}_{-} = (I - \mathcal{C})\mathfrak{H}$). Therefore, the invariance of a given decomposition (4.3) with respect to a linear operator A is equivalent to the relation $A\mathcal{C} = \mathcal{C}A$.

Assume additionally that A is self-adjoint in a Krein space $(\mathfrak{H}, [\cdot, \cdot]_J)$, then the operators A_{\pm} in the decomposition $A = A_{+}[\dot{+}]A_{-}$ are self-adjoint in the Hilbert spaces \mathfrak{L}_{\pm} endowed with the inner products $\pm [\cdot, \cdot]_J$, respectively. Therefore, A is self-adjoint in the Hilbert space \mathfrak{H} with the inner product

$$(f,g)_1 = [f_+,g_+]_J - [f_-,g_-]_J, \quad f = f_+ + f_-, \quad g = g_+ + g_-, \quad f_\pm \in \mathfrak{L}_\pm, \quad g_\pm \in \mathfrak{L}_\pm.$$

Taking the definition of C into account, we get $(\cdot, \cdot)_1 = [C \cdot, \cdot]_J$. Moreover, it is known (see, for example, [10]) that every operator C defined by (4.4) has the form $C = Je^Q$, where Q is a bounded self-adjoint operator in \mathfrak{H} which anticommutes with J: QJ = -JQ. Therefore,

$$(\cdot,\cdot)_1 = [\mathcal{C}\cdot,\cdot]_J = (JJe^Q\cdot,\cdot) = (e^Q\cdot,\cdot)$$

⁴ this is a difference with the operator J in (3.3).

⁵ see Sec. 3 for the definition of the Krein space $(\mathfrak{H}, [\cdot, \cdot]_{J|\eta|})$.

and, finally we conclude that A is self-adjoint in the Hilbert space $(\mathfrak{H}, (e^Q, \cdot))$.

Proposition 4.2. A pseudo-Hermitian operator A is similar to a self-adjoint operator if and only there exists an operator $C = Je^Q$ such that $J = \eta |\eta|^{-1}$, the operator Q satisfies the relations

(4.5)
$$Q^*|\eta| = |\eta|Q, \quad -Q^*\eta = \eta Q$$

and AC = CA. In that case, the operator A turns out to be self-adjoint in the Hilbert space \mathfrak{H} endowed with inner product $(|\eta|e^Q,\cdot,\cdot)$.

Proof. According to Proposition 4.1 the similarity of A to a self-adjoint operator is equivalent to the existence of decomposition (4.3) of the Krein space $(\mathfrak{H}, [\cdot, \cdot]_{J|\eta|})$ that is invariant with respect to A. This condition is equivalent to the relation $A\mathcal{C} = \mathcal{C}A$, where $\mathcal{C} = Je^Q$ corresponds to the mentioned decomposition of $(\mathfrak{H}, [\cdot, \cdot]_{J|\eta|})$. Taking (3.3) into account, we conclude that $J = \eta |\eta|^{-1}$. Then the relation QJ = -JQ and the condition of self-adjointness of Q with respect to the inner product $(\cdot, \cdot)_{|\eta|}$ take the form

$$Q\eta|\eta|^{-1} = -\eta|\eta|^{-1}Q, \quad Q^*|\eta| = |\eta|Q$$

that is equivalent to (4.5).

The operator A is self-adjoint in the Krein space $(\mathfrak{H}, [\cdot, \cdot]_{J|\eta|})$ and it commutes with operator $\mathcal{C} = Je^Q$. In that case, as was established above, the operator A is self-adjoint with respect to the inner product $[\mathcal{C}\cdot, \cdot]_{\eta} = (e^Q\cdot, \cdot)_{|\eta|} = (|\eta|e^Q\cdot, \cdot)$. The proof is completed.

For the case, where A cannot be interpreted as self-adjoint operator in Krein space, the following general integral-resolvent criterion of similarity can be used:

Lemma 4.3. ([18]) A closed densely defined operator A acting in \mathfrak{H} is similar to a self-adjoint one if and only if the spectrum of A is real and there exists a constant M such that

$$\sup_{\varepsilon>0} \varepsilon \int_{-\infty}^{\infty} \|(A-zI)^{-1}g\|^2 d\xi \le M \|g\|^2,$$

$$\sup_{\varepsilon>0} \varepsilon \int_{-\infty}^{\infty} \|(A^*-zI)^{-1}g\|^2 d\xi \le M \|g\|^2, \quad \forall g \in \mathfrak{H},$$

where the integrals are taken along the line $z = \xi + i\varepsilon$ ($\varepsilon > 0$ is fixed) of upper half-plane \mathbb{C}_+ .

In order to apply Lemma 4.3 to Examples II-IV, we need an explicit form of the resolvent $(A_{\mathbf{T}} - zI)^{-1}$. Repeating the proof of Lemma 2 in [5], we obtain

Lemma 4.4. Let $A_{\mathbf{T}}$ be defined by (2.4), (2.5) and let $A_0 = -d^2/dx^2$, $\mathcal{D}(A_0) = W_2^2(\mathbb{R})$ be the free Schrödinger operator in $L_2(\mathbb{R})$. Then, for all $g_{\pm} \in L_2(\mathbb{R}_{\pm})$ and for all $z = \tau^2$ from the resolvent set of $A_{\mathbf{T}}$,

$$[(A_{\mathbf{T}} - zI)^{-1} - (A_0 - zI)^{-1}]g_{\pm} = c_{1\pm}(\tau)h_{1\tau} + c_{2\pm}(\tau)h_{2\tau},$$

where $h_{i\tau}(x)$ are defined by (2.8) and

$$c_{1\pm}(\tau) = \frac{iF_{\pm}(\tau)}{\tau} \left(-1 + \frac{2d\tau^2 - 2i\tau(2\pm b)}{p(\tau)} \right),$$

$$c_{2\pm}(\tau) = \pm \frac{iF_{\pm}(\tau)}{\tau} \left(-1 + \frac{-2i\tau(2\mp c) + 2a}{p(\tau)} \right),$$

where $F_{\pm}(\tau) = \frac{1}{2} \int_{\mathbb{R}} e^{\pm i \tau s} g_{\pm}(s) ds$ and $p_{\mathbf{T}}(\tau) = 2d\tau^2 + i(\mathbf{det} \ \mathbf{T} - 4)\tau + 2a$.

It is known that the resolvent of an arbitrary self-adjoint operator H satisfies the inequality $\|(H-zI)^{-1}\| \leq \frac{1}{|\operatorname{Im} z|}$ for all $z \in \mathbb{C} \setminus \mathbb{R}$. If A is similar to a self-adjoint operator H (i.e., (4.1) holds), then the inequality above takes the form

(4.8)
$$||(A - zI)^{-1}|| \le \frac{C}{||\mathbf{Im}||z||}, \quad C = ||Z^{-1}|| ||Z||, \quad z \in \mathbb{C} \setminus \mathbb{R}.$$

Lemma 4.5. If an operator $A_{\mathbf{T}}$ is similar to a self-adjoint operator in $L_2(\mathbb{R})$, then the functions

(4.9)
$$\Phi_{\pm}(\tau) = \frac{(\text{Re }\tau)^2}{|\tau|^2} \cdot \frac{|2d\tau^2 + i\tau(\det \mathbf{T} \mp 2c)|^2 + |i\tau(\det \mathbf{T} \pm 2b) + 2a|^2}{|p_{\mathbf{T}}(\tau)|^2}$$

are uniformly bounded on $\mathbb{C}_{++} = \{ \tau \in \mathbb{C}_+ : \text{Re } \tau > 0 \}$ (i.e., there exists K > 0 such that $\Phi_{\pm}(\tau) < K$ for all $\tau \in \mathbb{C}_{++}$).

Proof. Let $A_{\mathbf{T}}$ be similar to self-adjoint. Since A_0 is self-adjoint, the inequalities (4.8) hold for $A_{\mathbf{T}}$ and for A_0 . Therefore, for all $g \in L_2(\mathbb{R})$ and $z = \tau^2 \in \mathbb{C}_+$,

(4.10)
$$||[(A_{\mathbf{T}} - zI)^{-1} - (A_0 - zI)^{-1}]g||^2 \le \frac{M}{(\operatorname{Im} z)^2} ||g||^2,$$

where M is a constant independent of g and z. In particular, the inequality (4.10) holds if we put $g = g_+$ or $g = g_-$, where

$$g_{+}(x) = \begin{cases} e^{-i\overline{\tau}x}, & x > 0 \\ 0, & x < 0 \end{cases}, \quad g_{-}(x) = \begin{cases} 0, & x > 0 \\ e^{i\overline{\tau}x}, & x < 0 \end{cases}, \quad \tau \in \mathbb{C}_{++}.$$

In these cases, using (4.7) and taking into account that: the functions $h_{j\tau}$ in (4.7) are orthogonal in $L_2(\mathbb{R})$,

(4.11)
$$||g_{\pm}||^2 = \frac{1}{2(\operatorname{Im} \tau)}, \quad ||h_{j\tau}||^2 = \frac{1}{\operatorname{Im} \tau}, \quad F_{\pm}(\tau) = \frac{1}{4(\operatorname{Im} \tau)},$$

and $(\operatorname{Im} z)^2 = 4(\operatorname{Im} z)^2(\operatorname{Re} \tau)^2$ we can rewrite (4.10) as follows

$$\Phi_{\pm}(\tau) = \frac{(\operatorname{Re} \tau)^2}{|\tau|^2} M_{\pm}(\tau) \le 2M, \quad \forall \tau \in \mathbb{C}',$$

where

$$M_{\pm}(\tau) = \left| 1 - \frac{2d\tau^2 - 2i\tau(2 \pm b)}{p_{\mathbf{T}}(\tau)} \right|^2 + \left| 1 - \frac{-2i\tau(2 \mp c) + 2a}{p_{\mathbf{T}}(\tau)} \right|^2.$$

Finally, remembering that $p_{\mathbf{T}}(\tau) = 2d\tau^2 + i\tau(\det \mathbf{T} - 4) + 2a$ we rewrite $M_{\pm}(\cdot)$ as

(4.12)
$$M_{\pm}(\tau) = \frac{|2d\tau^2 + i\tau(\det \mathbf{T} \mp 2c)|^2 + |i\tau(\det \mathbf{T} \pm 2b) + 2a|^2}{|p_{\mathbf{T}}(\tau)|^2}$$

that gives (4.9). Lemma 4.5 is proved.

The proof of Lemma 4.8 is close to the part of the proof of Theorem 4 in [5], where the particular case of operators $A_{\mathbf{T}}$ was considered.

Theorem 4.6. Let $A \in \{A_T, A_a, A_d\}$ be an operator considered in Examples II-IV. If the spectrum of A contains the spectral singularity (the exceptional point), then A cannot be similar to a self-adjoint operator.

Proof. Assume that $A = A_{\mathbf{T}}$ is a \mathcal{PT} -symmetric operator from Example II. It follows from the proof of Lemma 2.7 that $A_{\mathbf{T}}$ has a nonzero spectral singularity if the positive number $\tau = \sqrt{-\frac{a}{d}}$ is the root of $p_{\mathbf{T}}(\tau)$; and $A_{\mathbf{T}}$ has an exceptional point if the imaginary number $\tau = i\sqrt{-\frac{a}{d}} \in \mathbb{C}_+$ is the root of $p_{\mathbf{T}}(\tau)$ with multiplicity 2.

Let us suppose that $A_{\mathbf{T}}$ is similar to self-adjoint. Then, by virtue of Lemma 4.5, the functions $\Phi_{\pm}(\cdot)$ have to be uniformly bounded on \mathbb{C}_{++} . This is impossible since $\Phi_{\pm}(\tau)$ tend to infinity in neighborhood of τ .

Consider now the case of spectral singularity at point 0. Then, in view of relations (iv) of Lemma 2.7,

$$\Phi_{\pm}(\tau) = \frac{(\text{Re }\tau)^2}{|\tau|^2} \cdot \frac{|d\tau + i(2\mp c)|^2 + |i(2\pm b)|^2}{d^2|\tau|^2}.$$

Here $|bc| \neq 0$ because $4 = \det \mathbf{T} = -bc$. Hence, at least one of functions $\Phi_{\pm}(\cdot)$ tends to infinity when $\tau \to 0$.

Finally, if $A_{\mathbf{T}}$ has spectral singularity at ∞ , then relations (v) of Lemma 2.7 hold and

$$\Phi_{\pm}(\tau) = \frac{(\text{Re }\tau)^2}{|\tau|^2} \cdot \frac{|i\tau(2\mp c)|^2 + |i\tau(2\pm b) + a|^2}{|a|^2}.$$

It follows from relations (v) that $4 = \det \mathbf{T} = -bc$. Hence, $|bc| \neq 0$ and at least one of functions $\Phi_{\pm}(\cdot)$ tends to infinity when $\tau \to \infty$.

Summing the cases above we conclude that $A_{\mathbf{T}}$ cannot be similar to a self-adjoint operator.

The cases $A = A_a$ and $A = A_d$ can be considered similarly (it suffices to consider the case of spectral singularity only). Theorem 4.6 is proved.

The functions $M_{\pm}(\tau)$ in (4.12) corresponds to the operator $A_{\mathbf{T}}$ defined by (2.4), (2.5). The adjoint operator $A_{\mathbf{T}}^*$ coincides with $A_{\overline{\mathbf{T}}^t}$. Hence, the following functions:

$$(4.13) M'_{\pm}(\tau) = \frac{|2\overline{d}\tau^2 + i\tau(\det \overline{\mathbf{T}} \mp 2\overline{b})|^2 + |i\tau(\det \overline{\mathbf{T}} \pm 2\overline{c}) + 2\overline{a}|^2}{|p_{\overline{\mathbf{T}}}(\tau)|^2}$$

correspond to $A_{\mathbf{T}}^*$.

Theorem 4.7. Let $A_{\mathbf{T}}$ be an operator defined by (2.4), (2.5) with real spectrum. If the functions $M_{\pm}(\tau), M'_{\pm}(\tau)$ are uniformly bounded in $\mathbb{C}_{++} = \{\tau \in \mathbb{C}_{+} : \text{Re } \tau > 0\}$, then $A_{\mathbf{T}}$ is similar to self-adjoint.

Proof. The operator A_0 satisfies relations (4.6) as a self-adjoint operator. Hence, the inequalities

$$\sup_{\varepsilon>0} \varepsilon \int_{-\infty}^{\infty} \|[(A_{\mathbf{T}} - zI)^{-1} - (A_0 - zI)^{-1}]g\|^2 d\xi \le M \|g\|^2,$$

$$\sup_{\varepsilon>0} \varepsilon \int_{-\infty}^{\infty} \|[(A_{\mathbf{T}}^* - zI)^{-1} - (A_0 - zI)^{-1}]g\|^2 d\xi \le M \|g\|^2, \quad \forall g \in L_2(\mathbb{R}),$$

are necessarily and sufficient condition for the similarity of $A_{\mathbf{T}}$ to a self-adjoint operator. Let $g = g_+$ be an arbitrary function from $L_2(\mathbb{R}_+)$. Using Lemma 4.4 and the relation $||h_{j\tau}(x)||^2 = \frac{1}{|\mathbf{m}|_T}$ (see (4.11)), we get

(4.15)
$$||[(A_{\mathbf{T}} - zI)^{-1} - (A_0 - zI)^{-1}]g_+||^2 = \frac{|F_+(\tau)|^2}{|\tau|^2(\operatorname{Im} \tau)} M_+(\tau),$$

where $F_{+}(\tau)$ is the Fourier transform of g_{+} and $z = \tau^{2}$ ($\tau \in \mathbb{C}_{++}$).

Since $M_{+}(\tau)$ is uniformly bounded on \mathbb{C}_{++} , there is a constant $K_{1} > 0$ such that $|M_{+}(\tau)| \leq K_{1}$. Then

(4.16)
$$\varepsilon \int_{-\infty}^{\infty} \|[(A_{\mathbf{T}} - zI)^{-1} - (A_0 - zI)^{-1}]g_+\|^2 d\xi \le K_1 \int_{-\infty}^{\infty} \frac{\varepsilon |F_+(\tau)|^2}{|\tau|^2 (\operatorname{Im} \tau)} d\xi.$$

Let us consider an auxiliary self-adjoint operator $\tilde{A}_{\mathbf{T}}$ with b=c=0, a=1, and d=4.

$$\tilde{M}_{+}(\tau) = \frac{|\gamma^2 + i\gamma|^2 + |i\gamma + 1|^2}{|\gamma^2 + 1|^2} = \frac{|\gamma|^2}{|\gamma - i|^2} + \frac{1}{|\gamma + i|^2}, \quad \gamma = 2\tau \in \mathbb{C}_{++}.$$

The obtained expression leads to the conclusion that $\tilde{M}_{+}(\tau) \geq \frac{1}{4}$ for all $\tau \in \mathbb{C}_{++}$. Taking this inequality into account and using (4.14) and (4.15) for the pair of self-adjoint operators $\hat{A}_{\mathbf{T}}$, A_0 , we obtain

$$\begin{split} \frac{1}{4} \int_{-\infty}^{\infty} \frac{\varepsilon |F_{+}(\tau)|^{2}}{|\tau|^{2} (\operatorname{Im} \tau)} \, d\xi &\leq \int_{-\infty}^{\infty} \frac{\varepsilon |F_{+}(\tau)|^{2}}{|\tau|^{2} (\operatorname{Im} \tau)} \tilde{M}_{+}(\tau) \, d\xi \\ &= \varepsilon \int_{-\infty}^{\infty} \|[(\tilde{A}_{\mathbf{T}} - zI)^{-1} - (A_{0} - zI)^{-1}] g_{+}\|^{2} d\xi < M \|g_{+}\|^{2}, \end{split}$$

where M is a constant independent of $\varepsilon > 0$ and g_+ .

Combining the obtained evaluation with (4.16), we obtain

$$\varepsilon \int_{-\infty}^{\infty} \|[(A_{\mathbf{T}} - zI)^{-1} - (A_0 - zI)^{-1}]g_+\|^2 d\xi < 4K_1 M \|g_+\|^2,$$

where $4K_1M$ does not depend on $\varepsilon > 0$ and g_+ .

Considering similarly the case $g = g_{-}(x) \in L_{2}(\mathbb{R}_{-})$ (here the uniformly boundedness of $M_{-}(\tau)$ has to be used) and, consequently, the case of operator $A_{\mathbf{T}}^{*}$, we arrive at the conclusion that (4.14) hold for all functions from $L_2(\mathbb{R})$. Hence, A is similar to a self-adjoint operator. Theorem 4.7 is proved.

Corollary 4.8. Let A_T satisfy conditions of Theorem 4.7. If, in addition, A_T can be interpreted as a self-adjoint operator in a Krein space, then the property of $M_{\pm}(\tau)$ to be uniformly bounded in \mathbb{C}_{++} implies the similarity of $A_{\mathbf{T}}$ to a self-adjoint operator.

Proof. If $A_{\mathbf{T}}$ can be interpreted as self-adjoint in a Krein space, then, for a certain choice of fundamental symmetry J, the equality (3.1) holds for $A_{\mathbf{T}}$ and $A_{\mathbf{T}}^*$. In that case, the first and the second inequalities in (4.6) are equivalent. Obviously, the same remains true for the inequalities (4.14). Thus, for the similarity of $A_{\mathbf{T}}$ to a self-adjoint operator it suffices to establish the first inequality in (4.14). The latter is ensured by uniformly boundedness property of $M_{\pm}(\tau)$ in \mathbb{C}_{++} (see the proof of Theorem 4.7). П

Example II contd.

Corollary 4.9. Let A_T be a \mathcal{PT} -symmetric operator considered in Example II. If one of the following conditions is satisfied, then $A_{\mathbf{T}}$ is similar to a self-adjoint operator:

- $D = (4 \det \mathbf{T})^2 + 16ad < 0, \quad (4 \det \mathbf{T})d < 0;$ $D = 0, \quad (4 \det \mathbf{T})d < 0.$

Proof. Every condition (i), (ii) guarantees that $d \neq 0$ and the roots $\tau_{1,2}$ of the polynomial $p_{\mathbf{T}}(\tau)$ (see (2.12)) belong to \mathbb{C}_{-} . Then the functions $M_{\pm}(\tau)$ (see (4.12)) are uniformly bounded in \mathbb{C}_{++} . By Proposition 3.1, $A_{\mathbf{T}}$ can be realized as self-adjoint in a Krein space. Hence, we can apply Corollary 4.8 that completes the proof.

The conditions of Corollary 4.9 ensure the uniformly boundedness of $M_{\pm}(\tau)$. This property is sufficient for the similarity of $A_{\rm T}$ to a self-adjoint operator. If D>0 the corresponding roots $\tau_{1,2}$ in (2.12) lie on imaginary axes $i\mathbb{R}$ and may happen that at least one of them (let, for definiteness, τ_1) belongs to \mathbb{C}_+ . In that case the functions $M_{\pm}(\tau)$ may tend to infinity as $\tau \to \tau_1$. However, as we show below, the corresponding operator $A_{\mathbf{T}}$ remains similar to a self-adjoint operator.

Theorem 4.10. Let $A_{\mathbf{T}}$ be a \mathcal{PT} -symmetric operator considered in Example II and let $D = (4 - \det \mathbf{T})^2 + 16ad > 0$. Then $A_{\mathbf{T}}$ is similar to a self-adjoint operator.

Proof. By virtue of Proposition 3.1, $A_{\mathbf{T}}$ is self-adjoint in the Krein space $(L_2(\mathbb{R}), [\cdot, \cdot]_{\mathcal{P}_{\phi}})$. Using Proposition 4.2 with $\eta = J = \mathcal{P}_{\phi}$ we conclude that the similarity of $A_{\mathbf{T}}$ to a self-adjoint operator in a Hilbert space is equivalent to the existence of an operator $\mathcal{C} = \mathcal{P}_{\phi} e^{Q}$ which satisfies the following conditions:

$$Q^* = Q, \quad \mathcal{P}_{\phi}Q = -Q\mathcal{P}_{\phi}, \quad A\mathcal{C} = \mathcal{C}A.$$

Let $Q = \chi i \mathcal{R} \mathcal{P}_{\phi}$, where $\chi \in \mathbb{R}$ and \mathcal{R} be defined by (3.4). The fundamental symmetry \mathcal{R} anti-commutes with \mathcal{P} and hence, \mathcal{R} anti-commutes with the fundamental symmetry $\mathcal{P}_{\phi} = \mathcal{P}e^{i\phi\mathcal{R}}$. This means that Q satisfies the first two conditions of (4.17). The third condition is equivalent to the relation

$$A_{\mathbf{T}}^* e^Q = e^Q A_{\mathbf{T}}$$

since $A_{\mathbf{T}}\mathcal{P}_{\phi} = \mathcal{P}_{\phi}A_{\mathbf{T}}^*$ and $\mathcal{C} = \mathcal{P}_{\phi}e^Q$.

The operator $i\mathcal{R}\mathcal{P}_{\phi}$ is a fundamental symmetry in $L_2(\mathbb{R})$ because \mathcal{R} anti-commutes with \mathcal{P}_{ϕ} . This property allows us to rewrite e^Q as

(4.19)
$$e^{Q} = e^{\chi i \mathcal{R} \mathcal{P}_{\phi}} = [\cosh \chi] I + [\sinh \chi] i \mathcal{R} \mathcal{P}_{\phi}.$$

The obtained expression shows that e^Q commutes with the symmetric operator A_{sym} defined by (2.2) and commutes with the adjoint operator A_{sym}^* . Hence, (4.18) holds if $e^Q: \mathcal{D}(A_{\mathbf{T}}) \to \mathcal{D}(A_{\mathbf{T}}^*)$. The latter relation is equivalent to the following implication:

(4.20) if
$$\mathbf{T}\Gamma_0 f = \Gamma_1 f$$
, then $\overline{\mathbf{T}}^t \Gamma_0 e^{\chi i \mathcal{R} \mathcal{P}_{\phi}} f = \Gamma_1 e^{\chi i \mathcal{R} \mathcal{P}_{\phi}} f$,

where Γ_j are boundary operators from Lemma 2.1 and f is an arbitrary element of $\mathcal{D}(A_T)$.

Thus if (4.20) holds for a certain $\chi \in \mathbb{R}$, then $A_{\mathbf{T}}$ is similar to a self-adjoint operator in a Hilbert space.

Denote

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Using (2.5), (2.14), (3.4), and (4.19) it is easy to verify that

$$\Gamma_0 e^Q f = \cosh \chi \Gamma_0 f + \sinh \chi \left[-\frac{i}{2} \cos \phi \sigma_1 \Gamma_1 f + \sin \phi \sigma_3 \Gamma_0 f \right],$$

and

$$\Gamma_1 e^Q f = \cosh \chi \Gamma_1 f + \sinh \chi [2i \cos \phi \sigma_1 \Gamma_0 f + \sin \phi \sigma_3 \Gamma_1 f]$$

for all $f \in \mathcal{D}(A_{\text{sym}}^*) = W_2^2(\mathbb{R} \setminus \{0\}).$

Substituting these expressions into (4.20), we obtain that (4.20) is equivalent to the matrix equality

(4.21)
$$\cosh \chi(\mathbf{T} - \overline{\mathbf{T}}^{t}) = -\sinh \chi(\frac{i}{2}\cos \phi[\overline{\mathbf{T}}^{t}\sigma_{1}\mathbf{T} + 4\sigma_{1}] + \sin \phi[\sigma_{3}\mathbf{T} - \overline{\mathbf{T}}^{t}\sigma_{3}]).$$

Since $A_{\mathbf{T}}$ is \mathcal{PT} -symmetric, the entries of \mathbf{T} satisfy (2.15) and we can set b=ix, c=iy, where x,y are arbitrary real numbers.

Simple calculations give

$$\mathbf{T} - \overline{\mathbf{T}}^{t} = i(x+y)\sigma_{1}, \quad \overline{\mathbf{T}}^{t}\sigma_{1}\mathbf{T} + 4\sigma_{1} = (\mathbf{det}\ \mathbf{T} + 4)\sigma_{1}, \quad \sigma_{3}\mathbf{T} - \overline{\mathbf{T}}^{t}\sigma_{3} = i(x-y)\sigma_{1}.$$

Hence, the matrix relation (4.21) can be reduced to the equality

$$x + y = -\frac{\sinh \chi}{\cosh \chi} \left[\frac{1}{2} (\det \mathbf{T} + 4) \cos \phi + (x - y) \sin \phi \right],$$

which, obviously, has a solution χ if and only if

(4.22)
$$\left[\frac{1}{2} (\det \mathbf{T} + 4) \cos \phi + (x - y) \sin \phi \right]^2 > (x + y)^2.$$

Using the identity $2(x-y)\cos\phi = (\det \mathbf{T} + 4)\sin\phi$, which follows directly from (3.6), and making elementary transformations, we reduce (4.22) to the inequality

$$(4.23) (det T + 4)^2 - 16xy > 0.$$

To complete the proof it is sufficient to observe that the inequality (4.23) coincides with the condition D > 0 (since (2.13) and b = ix, c = iy). Theorem 4.10 is proved.

Summing the results above we obtain the following relationship between properties of $A_{\mathbf{T}}$ and the parameters $D = (4 - \det \mathbf{T})^2 + 16ad$, $K = (4 - \det \mathbf{T})d$.

	K > 0	K = 0	K < 0
D > 0	similarity	similarity	similarity
D=0	exceptional point	spectral singularity at 0 spectral singularity at ∞ $\sigma(A_{\mathbf{T}}) = \mathbb{C}$	similarity
D < 0	pair of complex eigenvalues	nonzero spectral singularity	similarity

Examples III. VI contd.

Corollary 4.11. Let A_a (A_d) be an operator considered in Example III (IV). If Re a > 0 (Re d < 0), then A_a (A_d) is similar to a self-adjoint operator.

Proof. Let Re a > 0. Then the spectrum of A_a is real. The adjoint A_a^* coincides with $A_{\overline{a}}$. The functions $M_{\pm}(\tau), M'_{\pm}(\tau)$ have the form

$$M_{+}(\tau) = M_{-}(\tau) = \frac{|a|^2}{|-2i\tau + a|^2}, \quad M'_{+}(\tau) = M'_{-}(\tau) = \frac{|\overline{a}|^2}{|-2i\tau + \overline{a}|^2}.$$

If Re a>0, then the roots $\tau_1=-\frac{ia}{2}$, $\tau_2=-\frac{i\overline{a}}{2}$ of the denominators belong to \mathbb{C}_- . In these cases, $M_\pm(\tau), M'_\pm(\tau)$ are uniformly bounded in \mathbb{C}_{++} . By Theorem 4.7, the operator A_a is similar to self-adjoint.

The operators A_d have real spectrum when Re d < 0 and $A_d^* = A_{\overline{d}}$. The functions

$$M_+(\tau) = M_-(\tau) = \frac{|d\tau|^2}{|d\tau - 2i|^2}, \quad M_+'(\tau) = M_-'(\tau) = \frac{|\overline{d}\tau|^2}{|\overline{d}\tau - 2i|^2}.$$

are uniformly bounded in \mathbb{C}_{++} . Using again Theorem 4.7 we complete the proof.

The following picture illustrates the change of properties of A_a (complex eigenvalue \rightarrow spectral singularity \rightarrow similarity to a self-adjoint operator):

- \diagdown self-adjointness
- ⇒ spectral singularities (zero point is excluded)
- non-real eigenvalues
- - similarity to self-adjoint operator

References

- S. Albeverio, M. Dudkin, A. Konstantinov, and V. Koshmanenko, On the point spectrum of H₋₂-singular perturbations, Math. Nachr. 12 (2006), no. 280, 20–27.
- 2. S. Albeverio, A. Konstantinov, and V. Koshmanenko, *The Aronszajn-Donoghue theory for rank one perturbations of the* \mathcal{H}_{-2} -class, Integr. Equ. Oper. Theory **50** (2004), no. 1, 1–8.
- S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators, Solvable Schrödinger Type Operators, London Mathematical Society Lecture Note Series, vol. 271, Cambridge University Press, Cambridge, 2000.
- S. Albeverio and S. Kuzhel, Pseudo-Hermiticity and theory of singular perturbations, Letters Math. Phys. 67 (2004), no. 3, 223–238.
- S. Albeverio and S. Kuzhel, One-dimensional Schrödinger operators with P-symmetric zerorange potentials, J. Phys. A. 38 (2005), 4975–4988.
- T. Ya. Azizov and I. S. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric, John Wiley & Sons, Chichester, 1989.
- C. M. Bender, Introduction to PT-symmetric quantum theory, Contemp. Phys. 46 (2005), 277– 292.
- C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70 (2007), 947–1018.
- 9. S. Hassi and S. Kuzhel, On J-self-adjoint operators with stable C-symmetries, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 143 (2013), no. 1, 141–167.
- A. Grod, S. Kuzhel, and V. Sudilovskaja, On operators of transition in Krein spaces, Opuscula Mathematica 31 (2011), no. 1, 49–59.
- U. Günther, I. Rotter, and B. Samsonov, Projective Hilbert space structures at exceptional points, J. Phys. A. 40 (2007), 8815–8833.
- W. Karwowski, V. Koshmanenko, and S. Ota, Schrödinger operator perturbed by operators related to null sets, Positivity 2 (1998), no. 1, 77–99.
- V. Koshmanenko, Singular Quadratic Forms in Perturbation Theory, Mathematics and Its Applications, vol. 474, Kluwer Academic Publishers, Dordrecht, 1999.
- S. O. Kuzhel, O. M. Patsiuk, Interpretation of PT-symmetric operators like self-adjoint ones in Krein spaces, Collection of research works of Institute of Mathematics of National Academy of Sciences of Ukraine 8 (2011) no. 1, 111–127. (Ukrianian)
- A. Mostafazadeh, Delta-function potential with a complex coupling, J. Phys. A: Math. Gen. 39 (2006), 13495–13506.
- A. Mostafazadeh, Pseudo-Hermitian Representation of Quantum Mechanics, Int. J. Geom. Meth. Mod. Phys. 7 (2010), 1191–1306.
- 17. A. Mostafazadeh, Pseudo-Hermiticity versus PT-symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43 (2002), 205–214.
- 18. S. N. Naboko, Conditions for similarity to unitary and selfadjoint operators, Funktsional. Anal. i Prilozhen. 18 (1984), no. 1, 16–27. (Russian)

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

 $E ext{-}mail\ address: and {\tt riy.grod@yandex.ua}$

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KRAKÓW, POLAND

 $E ext{-}mail\ address: kuzhel@mat.agh.edu.pl}$

Received 02/09/2013; Revised 20/09/2013