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Abstract. For an operator differential equation that depends on a spectral para-

meter in the Nevanlinna manner we obtain expansions in eigenfunctions.

Introduction

We consider, either on a finite or an infinite interval, the operator differential equation
of arbitrary order

lλ[y] = m[f ], t ∈ Ī, I = (a, b) ⊆ R
1(1)

in the space of vector-functions with values in a separable Hilbert space H, where

lλ[y] = l[y]− λm[y]− nλ[y],(2)

l[y],m[y] are symmetric operator differential expression. The order of lλ[y] is equal to
r > 0. For the expression m[y] the subintegral quadratic form m{y, y} of its Dirichlet
integral m[y, y] =

∫

I m{y, y}dt is nonnegative for t ∈ Ī. The leading coefficient of the

expression m[y] may not have the inverse one in B(H) for any t ∈ Ī and even it may
vanish on some intervals. For the operator differential expression nλ[y] the form nλ{y, y}
depends on λ in the Nevanlinna manner for t ∈ Ī. Therefore the order s ≥ 0 of m[y] is
even and ≤ r.

In paper [28] in the Hilbert space L2
m(I) with metrics generated by the form m[y, y],

for equation (1)–(2) we constructed analogs R(λ) of the generalized resolvents which in
general are non-injective and which possess the following representation:

R(λ) =

∫

R1

dEµ

µ− λ
,(3)

where Eµ is a generalized spectral family for which E∞ is less or equal to the identity
operator.

This analogue is an integro-differential operator depending on the characteristic ope-
rator of the equation

lλ[y] = − (ℑlλ)[f ]
ℑλ , t ∈ Ī,(4)

where (ℑlλ)[f ] = 1
2i (l[f ] − l∗[f ]). This characteristic operator was defined in [28]. It is

an analogue of the characteristic matrix of a scalar differential operator [40] (see also
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[32, p. 280]). The operator R(λ) in the case nλ[y] ≡ 0 is the generalized resolvent of the
minimal relation corresponding to equation (1) (see the details in [26, 28]).

In this paper we calculate E∆ and derive an inequality of Bessel type. In the case
where the expression nλ [y] submits in a special way to the expression m [y] we obtain
inversion formulae and the Parseval equality. The general results obtained in the work
are illustrated with the example of equation (1) with coefficients which are periodic on
the semi-axes. We remark that in the case nλ [y] ≡ 0 it follows from [22, 26] that if
I = R

1, r > s and dimH < ∞, then Eµ for equation (1) with periodic coefficients has
no jumps. (For r = s in the described case Eµ may have jump (see e.g. [26])). We show
that in contrast to the case nλ [y] ≡ 0 if r = 1, dimH = 2 then Eµ for equation (1) with
periodic coefficients on the axis may have jump.

In the case nλ [y] ≡ 0 the eigenfunction expansion results above are obtained in pa-
per [26], which contains its comparison with the results that were obtained earlier for
this case. For the case nλ[y] ≡ 0 we also refer to papers [5, 6, 7, 15]. In contrast to [26]
in [5, 6] dimH = 1, 0 ≤ s < r, the leading coefficient of the expression m[y] does not
vanish and the operator m is uniformly positive. In [5] the elementary approach by [9]
has been used to show the existence of eigenfunction expansions. In [6] another existence
proof was given, based on the spectral theorem in a direct integral form. The results
of [5, 6] can not be used (in contrast to [26]) if for example m[y] = w(t)y where the
weight w(t) may vanish or m[y] = (−1)ny(2n), I = R

1. However they can be used (in
contrast to [26]) in some cases if m{y, y} < 0 for some y(t) and t. In the case where l and
m are partial differential operators, expansions in distribution solutions of the equation
(l − λm)[y] = 0 for formally self-adjoint l and positive m have been obtained in [15] if
m−1l has a self-adjoint realization and in [7] without this assumption.

Eigenfunction expansions for differential operators and relations are considered in
the monographs [9, 14, 2, 3, 4, 29, 30, 37, 38]. Let us notice that for infinite systems
first eigenfunction expansion results are obtained in [34] for operator Sturm-Liouville
equation. (Later it was done in [16] in another way). An expansion in eigenfunctions of
an operator equation of highest order (analogous to scalar case [40]) was obtained in [8]).

Also for the case of the half-axis we obtain for equation (1) a generalization of the result
from [39] on the expansion in solutions of a scalar Sturm-Liouville equation which satisfy,
in the regular end-point, a boundary condition depending on a spectral parameter. To do
this we introduce, for equation (1), Weyl type functions and solutions. Such solutions for
operator equation of the first order containing a spectral parameter in Nevanlinna manner
was constructed in [24]. In the case of finite canonical systems, a parametrization of Weyl
functions for such an equation was obtained in [33] with the help of J -theory. For the first
order systems depending on a spectral parameter in a linear manner a parametrization
of Weyl functions immediately in terms of boundary conditions was obtained in [1]. The
method of [1] is based on the theory of the abstract Weyl function for symmetric linear
relations (see [10, 12] and references therein).

A part of the results of this paper is contained in a preliminary form in the preprint [27].
We denote by ( . ) and ‖ · ‖ the scalar product and the norm in various spaces with

special indices if it is necessary. For a differential operation l, we denote ℜl = 1
2 (l + l∗),

ℑl = 1
2i (l − l∗).

Let an interval ∆ ⊆ R
1, f (t) (t ∈ ∆) be a function with values in some Banach space

B. The notation f (t) ∈ Ck (∆, B) , k = 0, 1, . . . (we omit the index k if k = 0) means
that, in any point of ∆, f (t) has continuous in the norm ‖ · ‖B derivatives of order up to
and including l that are taken in the norm ‖ · ‖B ; if ∆ is either semi-open or closed interval
then on its ends belonging to ∆ there exist one-side continuous derivatives. The notation
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f (t) ∈ Ck
0 (∆, B) means that f (t) ∈ Ck (∆, B) and f (t) = 0 in the neighborhoods of

the ends of ∆.

1. Characteristic operator. Weyl type operator function and solution

In order to formulate the eigenfunction expansion results we present in this section
several results from [28]. Comparing with [28] some of these results are given here in
either a more general form (Propositions 1.1, 1.2) or a weaker form (Theorem 1.3).
Lemmas 1.1, 1.2, Theorem 1.2 and Corollary 1.1 are new.

We consider an operator differential equation in a separable Hilbert space H1,

(5)
i

2

(

(Q (t)x (t))
′

+Q∗ (t)x′ (t)
)

−Hλ (t)x (t) = Wλ (t)F (t) , t ∈ Ī,

where Q (t) , [ℜQ (t)]
−1

, Hλ (t) ∈ B (H1) , Q (t) ∈ C1
(

Ī, B (H1)
)

; the operator function
Hλ (t) is continuous in t and is Nevanlinna’s in λ. Namely, the following condition holds:

(A) There is a set A ⊇ C\R1, every its point has a neighborhood independent of t ∈ Ī,
in this neighborhood Hλ (t) is analytic ∀t ∈ Ī; ∀λ ∈ AHλ (t) = H∗

λ̄
(t) ∈ C

(

Ī, B (H1)
)

;
the weight Wλ (t) = ℑHλ (t) /ℑλ ≥ 0 (ℑλ 6= 0).

In view of [24] ∀µ ∈ A⋂R
1 : Wµ (t) = ∂Hλ (t) /∂λ|λ=µ is Bochner locally integrable

in the uniform operator topology.
For convenience we suppose that 0 ∈ Ī and we denote ℜQ (0) = G.
Let Xλ (t) be an operator solution of the homogeneous equation (5) satisfying the

initial condition Xλ (0) = I, where I is an identity operator in H1.

For any α, β ∈ Ī, α ≤ β, we denote ∆λ (α, β) =
∫ β

α
X∗

λ (t)Wλ (t)Xλ (t) dt, and N =

{h ∈ H1 |h ∈ Ker∆λ (α, β) ∀α, β} , P is the ortho-projection onto N⊥. N is independent
of λ ∈ A [24].

For x (t) ∈ H1 we denote U [x (t)] = ([ℜQ (t)]x (t) , x (t)).

Definition 1.1. [23, 24] An analytic operator-function M (λ) = M∗ (λ̄
)

∈ B (H1) of
non-real λ is called a characteristic operator of equation (5) on I, if for ℑλ 6= 0 and for
any H1 - valued vector-function F (t) ∈ L2

Wλ
(I) with compact support the corresponding

solution xλ (t) of equation (5) of the form

(6) xλ (t, F ) = RλF =

∫

I
Xλ (t)

{

M (λ)− 1

2
sgn (s− t) (iG)

−1

}

X∗
λ̄ (s)Wλ (s)F (s) ds

satisfies the condition

(ℑλ) lim
(α,β)↑I

(U [xλ (β, F )]− U [xλ (α, F )]) ≤ 0, ℑλ 6= 0.(7)

Let us note that in [24], a characteristic operator was defined if Q(t) = Q∗(t). Our
case is equivalent to this one since equation (5) coincides with equation of (5) type with
ℜQ(t) instead of Q(t) and with Hλ(t)− 1

2ℑQ′(t) instead of Hλ(t).
Properties of the characteristic operator and sufficient conditions of the characteristic

operators existence are obtained in [23, 24].
In the case dimH1 < ∞, Q(t) = J = J ∗ = J−1, −∞ < a = 0, a description of

characteristic operators was obtained in [33] (the results of [33] were specified and sup-
plemented in [25]). In the case dimH1 = ∞ and I is finite, a description of characteristic
operators was obtained in [24]. These descriptions are obtained under the condition that

∃λ0 ∈ A, [α, β] ⊆ I : ∆λ0
(α, β) ≫ 0.(8)

Definition 1.2. [23, 24] Let M (λ) be the characteristic operator of equation (5) on
I. We say that the corresponding condition (7) is separated for nonreal λ = µ0 if for
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any H1-valued vector function f (t) ∈ L2
Wµ0

(t) (I) with compact support the following

inequalities hold simultaneously for the solution xµ0
(t) (6) of equation (5):

lim
α↓a

ℑµ0U [xµ0
(α)] ≥ 0, lim

β↑b
ℑµ0U [xµ0

(β)] ≤ 0.(9)

Theorem 1.1. [23, 24] Let P = I, M (λ) be the characteristic operator of equation (5),
P(λ) = iM(λ)G+ 1

2I, so that we have the following representation:

M (λ) =

(

P (λ)− 1

2
I

)

(iG)
−1

.(10)

Then the condition (7) corresponding to M (λ) is separated for λ = µ0 if and only if
the operator P (µ0) is a projection, i.e.,

P (µ0) = P2 (µ0) .

Definition 1.3. [23, 24] If the operator-functionM (λ) of the form (10) is a characteristic
operator of equation (5) on I and, moreover, P (λ) = P2 (λ), then P (λ) is called a
characteristic projection of equation (5) on I.

Properties of characteristic projections and sufficient conditions for their existence
are obtained in [24]. Also [24] contains a description of characteristic projections and
an abstract analogue of Theorem 1.1. Necessary and sufficient conditions for existence
of a characteristic operator, which corresponds to such separated boundary conditions
that the corresponding boundary condition in a regular point is self-adjoint, are obtained
in [28] with a help of Theorem 1.1. In the case of self-adjoint boundary conditions an
analogue of this result for regular differential operators in the space of vector-functions
was proved in [35] (see also [37]). For finite canonical systems depending on the spectral
parameter in a linear manner such an analogue was proved in [31]. These analogues were
obtained in a different way comparing with the proof in [28].

From this point and till the end of Corollary 1.1 we suppose that H1 = H2n,

Q(t) =

(

0 iIn
−iIn 0

)

= J/i,(11)

where In is the identity operator in Hn, I = (0, b), b ≤ ∞ and condition (8) holds.
Let condition (7) be separated and P(λ) be a corresponding characteristic projection.
In view of [24, p. 469] the Nevanlinna pair {−a (λ) , b (λ)} , a(λ), b(λ) ∈ B (Hn) (see for
example [11]) and Weyl function m (λ) ∈ B (Hn) of equation (5) on I [24] exist such that

P (λ) =

(

In
m (λ)

)

(

b∗
(

λ̄
)

− a∗
(

λ̄
)

m (λ)
)−1 (

a∗2
(

λ̄
)

, −a∗1
(

λ̄
))

,(12)

I − P (λ) =

(

a (λ)
b (λ)

)

(b (λ)−m (λ) a (λ))
−1

(−m (λ) , In) ,(13)

(

b∗
(

λ̄
)

− a∗
(

λ̄
)

m (λ)
)−1

, (b (λ)−m (λ) a (λ))
−1 ∈ B (Hn) .(14)

(Conversely [24] P (λ) (12) is a characteristic projection for any Nevanlinna pair
(−a (λ) , b (λ)) and any Weyl function m (λ) of equation (5) on I.)

Let also the domain D ⊆ C+ be such that ∀λ ∈ D : 0 ∈ ρ (a (λ)− ib(λ)) (for example
D = C+ if ∃λ± ∈ C± such that a∗ (λ±) b (λ±) = b∗ (λ±) a (λ±)). Let domain D1 be
symmetric to D with respect to real axis. Then the operator RλF (6) for λ ∈ D

⋃

D1

can be represented in the following form using the operator solution Uλ (t) ∈ B
(

Hn, H2n
)

of equation (5), (F = 0) satisfying an accumulative (or dissipative) initial condition and
the operator solution Vλ (t) ∈ B

(

Hn, H2n
)

of Weyl type of the same equation. More
precisely the following proposition holds.
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Proposition 1.1. Let λ ∈ D
⋃

D1 and H1-valued F (t) ∈ L2
Wλ

(I)1. Then solution (6),
(10), (12) of equation (5) is equal to

RλF =

∫ t

0

Vλ (t)U
∗
λ̄ (s)Wλ (s)F (s) ds+

∫ b

t

Uλ (t)V
∗
λ̄ (s)Wλ (s)F (s) ds,(15)

where the integrals converge strongly if the interval of integration is infinite. Here

(16) Uλ (t)=Xλ (t)

(

a (λ)
b (λ)

)

, Vλ (t)=Xλ (t)

(

b (λ)
−a (λ)

)

K−1 (λ)+Uλ (t)ma,b (λ) ,

where

K (λ) = a∗
(

λ̄
)

a (λ) + b∗
(

λ̄
)

b (λ) , K−1 (λ) ∈ B (Hn) ,(17)

ma,b (λ) = m∗
a,b

(

λ̄
)

= K−1 (λ)
(

a∗
(

λ̄
)

+ b∗
(

λ̄
)

m (λ)
) (

b∗
(

λ̄
)

− a∗
(

λ̄
)

m (λ)
)−1

,(18)
∫ β

0

V ∗
λ (t)Wλ (t)Vλ (t) dt≤

(

b(λ̄)−m∗(λ)a(λ̄)
)−1

(ℑm(λ))(b∗(λ̄)− a∗(λ̄)m(λ))−1

ℑλ ,(19)

∀[0, β] ⊆ Ī, and therefore

∀h ∈ Hn : Vλ (t)h ∈ L2
Wλ(t)

(I) .(20)

Moreover if a (λ) = a
(

λ̄
)

, b (λ) = b
(

λ̄
)

as ℑλ 6= 0 then we can set D = C+ and
∫ β

0

V ∗
λ (t)Wλ (t)Vλ (t) dt ≤

ℑma,b (λ)

ℑλ , ℑλ 6= 0.(21)

Proof. In view of (10), (12), (13) RλF has a representation (15) where

Vλ (t) = Xλ (t)

(

In
m (λ)

)

(

a∗2
(

λ̄
)

− a∗1
(

λ̄
)

m (λ)
)−1

.(22)

Due to Lemma 1.2 from [28] the integrals in (15) converge strongly if the interval of
integration is infinite.

In view of [17, 24] and the fact that P∗ (λ̄
)

GP (λ) = 0 [24] one has

a (λ) = ∓i (u (λ) + In)S (λ) , b (λ) = (u (λ)− In)S (λ) , λ ∈ C±,(23)

where u (λ) = u∗ (λ̄
)

∈ B(Hn) is some contraction, S (λ) , S−1 (λ) ∈ B (Hn) ; u (λ) , S (λ)

analytically depend on λ ∈ C \ R1.
In view of (23),

K (λ) = −4S∗ (λ̄
)

u (λ)S (λ)(24)

and so K−1 (λ) ∈ B (Hn) , λ ∈ D
⋃

D1 since u−1 (λ) = −2iS (λ) (a (λ)− ib (λ))
−1 ∈

B (Hn) λ ∈ D ∪D1.
Using (23), (24) it can be directly shown that the initial conditions in point t = 0 for

solutions Vλ (t) (16) and Vλ (22) coincide and that ma,b (λ) = m∗
a,b

(

λ̄
)

. So (15)–(18) is
proved.

In view of [24, p. 450] one has ∀[0, β] ⊆ Ī

P∗ (λ)∆λ (0, β)P (λ) ≤ 1

2ℑλP
∗ (λ)GP (λ) .(25)

Now inequality (19) (and therefore (20)) follows from (25) in view of (12), (17), (22).
If a (λ) = a

(

λ̄
)

, b (λ) = b
(

λ̄
)

as ℑλ 6= 0, then the operator u (λ) is unitary and
independent of λ (cf. [24]). Now in formulae (17), (18) and the right-hand-side of (19)
we substitute a

(

λ̄
)

, b
(

λ̄
)

by a (λ), b (λ) and by direct calculations with the help of (23)

1Norms ‖ · ‖L2
Wλ

(I) are equivalent for λ ∈ A [24].
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we prove that the right hand sides of inequalities (19), (21) coincide. The proposition is
proved. �

For an arbitrary Nevanlinna pair {−a (λ) , b (λ)}, the Weyl solution Vλ (t) (16) does
not satisfy, in general, inequality (21) for λ ∈ D

⋃

D1, and the corresponding Weyl
function ma, b (λ) (18) does not satisfy the condition

ℑma,b (λ)

ℑλ ≥ 0, λ ∈ D
⋃

D1.(26)

But if we choose the pair {−a (λ) , b (λ)} “in a canonical way”, then the corresponding
Weyl solution Vλ (16) satisfies (21).

Namely let v (λ) ∈ B (Hn) be a contraction analytically depending on λ in a do-
main D ⊆ C+ and let v−1 (λ) ∈ B (Hn) , λ ∈ D. Let us consider the following pair
{a (λ) , b (λ)}, where

a (λ) = −i (v (λ) + In) , b (λ) = v (λ)− In, λ ∈ D.(27)

Let us extend the pair {a (λ) , b (λ)} (27) to the domain D1 which is symmetric to D
with the respect to the real axis in the following way:

v (λ) =
(

v∗
(

λ̄
))−1

, λ ∈ D1(28)

(and therefore v∗
(

λ̄
)

is stretching as λ ∈ D). As a result we obtain a pair of (23) type
with D (respectively D1) instead of C+ (respectively C−) and

u(λ) =

{

v(λ), λ ∈ D

v∗(λ̄), λ ∈ D1

, S(λ) =

{

In, λ ∈ D

−v(λ), λ ∈ D1

.

Therefore if λ ∈ D
⋃

D1 then for the pair {a (λ) , b (λ)} (27), (28) the projections (12),
(13) exist and therefore for the operator M (λ) (10), (12) the condition (7) holds and is
separated.

Lemma 1.1. The operator Weyl function ma,b (λ) (18) corresponding to the pair {a (λ) , b (λ)}
(27), (28) satisfies for any h ∈ Hn the identity

ℑ (ma,b (λ)h, h)=
1

4

∥

∥

∥

√

v
(

λ̄
)

v∗
(

λ̄
)

−In (In−im (λ)) g
∥

∥

∥

2

+ℑ (m (λ) g, g) , λ ∈ D,(29)

where g =
((

In − v∗
(

λ̄
))

+ i
(

In + v∗
(

λ̄
)

m (λ)
))−1

h, (. . . )−1 ∈ B(Hn).

Proof. The Weyl function ma,b (λ) (18), (27), (28) is equal to

(30)
ma,b(λ) =− 1

4

(

i(In + v∗(λ̄))− (In − v∗(λ̄))m(λ)
)

×
(

In − v∗(λ̄) + i(In + v∗(λ̄))m(λ)
)−1

, λ ∈ D,

where (. . . )−1 ∈ B(Hn) in view of (14), (27), (28).
Now identity (29) follows from (30) by a direct calculation. �

In view of the fact that ma,b

(

λ̄
)

= m∗
a,b (λ), inequality (19), Lemma 1.1, condition

(8) and formula (22) the following theorem is valid.

Theorem 1.2. The solution Vλ (t) (16)–(18), (27), (28) satisfies inequality (21) for
λ ∈ D

⋃

D1 (and therefore ma,b (λ) (18), (27), (28) satisfies inequality (26) with ” ≫ ”
replaced with ” ≥ ”).
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Lemma 1.2. Let v (λ) ∈ B (Hn) be a contraction analytically depending on λ ∈ C+. Let
limit points of the set S =

{

λ ∈ C+ : v−1 (λ) /∈ B (Hn)
}

that belong to C+ be isolated. Let
D = C+\S. Let us consider the operator-function mab (λ) (18), (27), (28) as λ ∈ D

⋃

D1.
Then the points of the set S are removable singular points of this function. If ma,b (λ) is
extended to the set S in a proper way then we obtain the Nevanlinna operator-function
ma.b(λ) = m∗

a,b(λ̄).

Proof. Let λ0 ∈ S not be a limit point of S. Then λ0 is a removable singular point
of the scalar function (ma,b (λ) f, f) ∀f ∈ Hn in view of (29). Hence ∃m0 ∈ B (Hn) :
lim

λ→λ0

(ma,b (λ) f, f) = (m0f, f) ∀f ∈ Hn in view of principle of uniform boundedness

[18, p. 164], [19, p. 322]. If we define ma,b (λ) in the point λ0 as ma,b (λ0) = m0 then
we obtain an operator-function which is analytic in the point λ0 in view of [19, p. 195].
Analyticity of ma,b (λ) in the limit points of S belonging to C+ is proved analogously. �

Corollary 1.1. Let the construction v(λ) ∈ B(Hn) satisfy condition of Lemma 1.2.
Then the corresponding solution Vλ(t) (16)–(18), (27), (28) satisfies the inequality (21)

(Vλ(t)
def
= (22), λ /∈ D ∪D1).

For the construction of solutions of Weyl type and descriptions of Weyl function in
various situation see [1, 24] and references in [1].

We consider in the separable Hilbert space H differential expression lλ [y] of order
r > 0 with coefficients from B (H). This expression is presented in the divergent form,
namely

(31) lλ [y] =

r
∑

k=0

iklk(λ) [y] ,

where l2j(λ) = Djpj (t, λ)D
j , l2j−1(λ) =

1
2D

j−1 {Dqj (t, λ) + sj (t, λ)D}Dj−1, D = d
dt .

Let −lλ depend on λ in Nevanlinna manner. Namely, from now on the following
condition holds:

(B) The set B ⊇ C \ R1
exists, every its point has a neighborhood independent on

t ∈ Ī, in this neighborhood coefficients pj = pj (t, λ) , qj = qj (t, λ) , s = sj (t, λ) of the
expression lλ are analytic ∀t ∈ Ī; ∀λ ∈ B, pj (t, λ), qj (t, λ), sj (t, λ) ∈ Cj

(

Ī, B (H)
)

and

(32)
p−1
n (t, λ) ∈ B (H) (r = 2n) ,

(qn+1 (t, λ) + sn+1 (t, λ))
−1 ∈ B (H) (r = 2n+ 1) , t ∈ Ī;

these coefficients satisfy the following conditions:

pj (t, λ) = p∗j
(

t, λ̄
)

, qj (t, λ) = s∗j
(

t, λ̄
)

, λ ∈ B (⇐⇒ lλ = l∗λ̄, λ ∈ B),(33)

(34)

∀h0, . . . , h[ r+1

2 ] ∈ H :

ℑ
( [r/2]
∑

j=0

(pj (t, λ)hj , hj) +
i
2

[ r+1

2 ]
∑

j=1

{(sj (t, λ)hj , hj−1)− (qj (t, λ)hj−1, hj)}
)

ℑλ ≤ 0,

t ∈ Ī, ℑλ 6= 0.

Therefore the order of expression ℑlλ is even and therefore if r = 2n+ 1 is odd, then
qm+1, sm+1 are independent on λ and sn+1 = q∗n+1.

Condition (34) is equivalent to the condition: (ℑlλ) {f, f} /ℑλ ≤ 0, t ∈ Ī, ℑλ 6= 0.

Here for differential expression L[y] =
R
∑

k=0

ikLk[y] with sufficiently smooth coefficients
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from B(H), where L2j = DjPj (t)D
j , L2j−1 = 1

2D
j−1 {DQj (t) + Sj (t) D}Dj−1, we

denote by

(35)

L {f, g} =

[R/2]
∑

j=0

(

Pj (t) f
(j) (t) , g(j) (t)

)

+
i

2

[R+1

2 ]
∑

j=1

(

Sj (t) f
(j) (t) , g(j−1) (t)

)

−
(

Qj (t) f
(j−1) (t) , g(j) (t)

)

the bilinear form which corresponds to subintegral expression of the Dirichlet integral
for expression L[y].

Let m[y] be the same as lλ[y] differential expression of even order s ≤ r with operator
coefficients p̃j (t) = p̃∗j (t) , q̃j (t) , s̃j (t) = q̃∗j (t) ∈ Cj(Ī, B(H)) that are independent on
λ. Let

(36)

∀h0, . . . , h[ r+1

2 ] ∈ H : 0 ≤
s/2
∑

j=0

(p̃j (t)hj , hj) + ℑ
s/2
∑

j=1

(q̃j (t)hj−1, hj)

≤ −
ℑ
( [r/2]
∑

j=0

(pj (t, λ)hj , hj) +
i
2

[ r+1

2 ]
∑

j=1

((sj (t, λ)hj , hj−1)− (qj (t, λ)hj−1, hj))
)

ℑλ ,

t ∈ Ī, ℑλ 6= 0.

Condition (36) is equivalent to the condition: 0 ≤ m {f, f} ≤ −(ℑlλ) {f, f} /ℑλ, t ∈ Ī,
ℑλ 6= 0.

In the case of even r = 2n ≥ s we denote

Q (t, lλ) = J/i, S (t, lλ) = Q (t, lλ) ,(37)

H (t, lλ) = ‖hαβ‖2α, β=1 , hαβ ∈ B (Hn) ,(38)

where h11 is a three diagonal operator matrix whose elements under the main diago-
nal are equal to

(

i
2q1, . . . ,

i
2qn−1

)

, the elements over the main diagonal are equal to
(

− i
2s1, . . . , − i

2sn−1

)

, the elements on the main diagonal are equal to
(

−p0, . . . , −pn−2,
1
4snp

−1
n qn−pn−1

)

; h12 is an operator matrix with the identity operators I1 under the main

diagonal, the elements on the main diagonal are equal to
(

0, . . . , 0, − i
2snp

−1
n

)

, all the
rest elements are equal to zero; h21 is an operator matrix with identity operators I1 over
the main diagonal, the elements on the main diagonal are equal to

(

0, . . . , 0, i
2p

−1
n qn

)

,

all the rest elements are equal to zero; h22 = diag
(

0, . . . , 0, p−1
n

)

.

Also in this case we denote 2

(39) W (t, lλ, m) = C∗−1 (t, lλ)
{

‖mαβ‖2α, β=1

}

C−1 (t, lλ) , mαβ ∈ B (Hn) ,

where m11 is a three diagonal operator matrix whose elements under the main diagonal
are equal to

(

− i
2 q̃1, . . . , − i

2 q̃n−1

)

, the elements over the main diagonal are equal to
(

i
2 s̃1, . . . ,

i
2 s̃n−1

)

, the elements on the main diagonal are equal to (p̃0, . . . , p̃n−1); m12 =

diag
(

0, . . . , 0, i
2 s̃n
)

, m21 = diag
(

0, . . . , 0, − i
2 q̃n
)

, m22 = diag (0, . . . , 0, p̃n).

2W (t, lλ,m) is given for the case s = 2n . If s < 2n one have to set the corresponding elements of
the operator matrices mαβ to be equal to zero. In particular if s < 2n then m12 = m21 = m22 = 0 and

therefore W (t, lλ,m) = diag (m11, 0) in view of (14) from [28].
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The operator matrix C (t, lλ) is defined by the condition

(40)
C (t, lλ) col

{

f (t) , f ′ (t) , . . . , f (n−1) (t) , f (2n−1) (t) , . . . , f (n) (t)
}

= col
{

f [0] (t|lλ) , f [1] (t|lλ) , . . . , f [n−1] (t|lλ) , f [2n−1] (t |lλ ) , . . . , f [n] (t |lλ )
}

,

where f [k] (t |L ) are quasi-derivatives of vector-function f (t) that correspond to dif-
ferential expression L[y]; C−1(t, lλ) ∈ B(Hr), t ∈ Ī, λ ∈ B in view of (14) from [28].

The quasi-derivatives corresponding to lλ[y] are equal (cf. [36]) to

y[j] (t |lλ ) = y(j) (t) , j = 0, . . . ,
[r

2

]

− 1,(41)

y[n] (t |lλ ) =
{

pny
(n) − i

2qny
(n−1), r = 2n

− i
2qn+1y

(n), r = 2n+ 1
,(42)

(43)

y[r−j] (t |lλ ) = −Dy[r−j−1] (t |lλ ) + pjy
(j) +

i

2

[

sj+1y
(j+1) − qjy

(j−1)
]

,

j = 0, . . . ,

[

r − 1

2

]

, q0 ≡ 0.

Then lλ [y] = y[r] (t |lλ ). The quasi-derivatives y[k] (t |m ) corresponding to m[y] are
defined in the same way with even s instead of r and p̃j , q̃j , s̃j instead of pj , qj , sj .

In the case of odd r = 2n+ 1 > s we denote

Q (t, lλ) =

{

J/i⊕ qn+1

q1
, S (t, lλ) =

{

J/i⊕ sn+1, n > 0

s1, n = 0
,(44)

H (t, lλ) =

{

‖hαβ‖2α, β=1 , n > 0

p0, n = 0
,(45)

where B (Hn) ∋ h11 is a three-diagonal operator matrix whose elements under the main
diagonal are equal to

(

i
2q1, . . . ,

i
2qn−1

)

, the elements over the main diagonal are equal to
(

− i
2s1, . . . , − i

2sn−1

)

, the elements on the main diagonal are equal to (−p0, . . . , −pn−1),

all the rest elements are equal to zero. B
(

Hn+1, Hn
)

∋ h12 is an operator matrix whose
elements with numbers j, j − 1 are equal to I1, j = 2, . . . , n, the element with number
n, n+ 1 is equal to 1

2sn, all the rest elements are equal to zero. B
(

Hn, Hn+1
)

∋ h21 is
an operator matrix whose elements with numbers j − 1, j are equal to I1, j = 2, . . . , n,
the element with number n+1, n is equal to 1

2qn, all the rest elements are equal to zero.

B
(

Hn+1
)

∋ h22 is an operator matrix whose last row is equal to (0, . . . , 0, −iI1, −pn),
last column is equal to col (0, . . . , 0, iI1, −pn), all the rest elements are equal to zero.

Also in this case we denote 3

(46) W (t, lλ, m) = ‖mαβ‖2α, β=1 ,

where m11 is defined in the same way as m11 (39). B
(

Hn+1, Hn
)

∋ m12 is an operator

matrix whose element with number n, n + 1 is equal to − 1
2 s̃n, all the rest elements are

equal to zero. B
(

Hn, Hn+1
)

∋ m21 is an operator matrix whose element with number

n + 1, n is equal to − 1
2 q̃n, all the rest elements are equal to zero. B

(

Hn+1
)

∋ m22 =
diag (0, . . . , 0, p̃n).

Obviously in view of (33), (36) for H (t, lλ) (38), (45) and W (t, lλ,m) (39), (46) one
has

(47) H∗ (t, lλ) = H (t, lλ̄) , W ∗ (t, lλ,m) = W (t, lλ, m) , t ∈ Ī, λ ∈ B.

3See the previous footnote.
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For sufficiently smooth vector-function f (t) we denote
(48)
Hr ∋ F (t, lλ,m)

=



















































(

s/2
∑

j=0

⊕f (j) (t)

)

⊕ 0⊕ · · · ⊕ 0, r = 2n, r = 2n+ 1 > 1, s < 2n

(

n−1
∑

j=0

⊕f (j) (t)

)

⊕ 0⊕ · · · ⊕ 0⊕
(

−if (n) (t)
)

, r = 2n+ 1 > 1, s = 2n

f (t) , r = 1
(

n−1
∑

j=0

⊕f (j) (t)

)

⊕
(

n
∑

j=1

⊕f [r−j] (t |lλ )
)

, r = s = 2n.

Theorem 1.3. [28] Equation (1) is equivalent to the following first order system:

(49)
i

2

(

(Q (t, lλ) ~y (t))
′

+Q∗ (t, lλ) ~ypx
′ (t)

)

−H (t, lλ) ~y (t) = W (t, lλ̄,m)F (t, lλ̄,m) ,

where Q (t, lλ) , H (t, lλ) are defined by (37), (38), (44), (45) and W (t, lλ̄,m), F (t, lλ̄,m)
are defined by (39), (46), (48) with lλ̄ instead of lλ. Namely if y (t) is a solution of
equation (1) then
(50)
~y (t) = ~y (t, lλ, m, f)

=



































(n−1
∑

j=0

⊕y(j) (t)
)

⊕
( n
∑

j=1

⊕
(

y[r−j] (t |lλ )−f [s−j] (t |m )
)

)

, r = 2n

(n−1
∑

j=0

⊕y(j) (t)
)

⊕
( n
∑

j=1

⊕
(

y[r−j] (t |lλ )−f [s−j] (t |m )
)

)

⊕
(

−iy(n)(t)
)

, r = 2n+1>1

(

here f [k] (t |m ) ≡ 0 as k < s
2

)

y (t) , r = 1

is a solution of (49). Any solution of equation (49) is equal to (50), where y (t) is some
solution of equation (1).

Let us notice that different vector-functions f(t) can generate different right-hand-
sides of equation (49) but only unique right-hand-side of equation (1).

Due to Lemma 1.1 and Theorem 1.2 from [28] we have ℑH(t,lλ)
ℑλ = W

(

t, lλ,−ℑlλ
ℑλ

)

≥ 0,

t ∈ Ī, ℑλ 6= 0 and therefore H (t, lλ) satisfies condition (A) with A = B. Therefore

∀µ ∈ B ∩ R
1 W (t, lµ,−ℑlµ

ℑµ ) = ∂H(t,lλ)
∂λ

∣

∣

∣

λ=µ
is Bochner locally integrable in uniform

operator topology. Here in view of (38), (45) ∀µ ∈ B⋂R
1 ∃ℑlµ

ℑµ

def
=

ℑlµ+i0

ℑ(µ+i0) = ∂lλ
∂λ

∣

∣

λ=µ
,

where the coefficients
∂pj(t,µ)

∂λ ,
∂qj(t,µ)

∂λ ,
∂sj(t,µ)

∂λ of expression ∂lµ/∂µ are Bochner locally
integrable in the uniform operator topology.

Also in view of Theorem 1.2 and Lemma 1.1 from [28] one has

(51) 0 ≤ W (t, lλ,m) ≤ W

(

t, lλ,−
ℑlλ
ℑλ

)

=
ℑH (t, lλ)

ℑλ , t ∈ Ī, ℑλ 6= 0.

Let us consider in H1 = Hr the equation

(52)
i

2

(

(Q (t, lλ) ~y (t))
′

+Q∗ (t, lλ) ~y
′(t)
)

−H (t, lλ) ~y (t) = W

(

t, lλ,−
ℑlλ
ℑλ

)

F (t) .

This equation is an equation of (5) type due to (47), (51). Equation (4) is equivalent to

equation (52) with F (t) = F
(

t, lλ̄,−ℑlλ
ℑλ

)

due to Theorem 1.3 since W (t, lλ,−ℑlλ/ℑλ) =
W (t, lλ̄,−ℑlλ/ℑλ) in view of (33), (47), (51).
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Definition 1.4. [28] Every characteristic operator of equation (52) corresponding to the
equation (4) is said to be a characteristic operator of equation (4) on I.

In some cases we will suppose additionally that

(53)

∃λ0 ∈ B; α, β ∈ Ī, 0 ∈ [α, β] , the number δ > 0 :

−
∫ β

α

(ℑlλ0

ℑλ0

)

{y (t, λ0) , y (t, λ0)} dt ≥ δ ‖P~y (0, lλ0
,m, 0)‖2

for any solution y (t, λ0) of (1) as λ = λ0, f = 0, where P ∈ B(Hr) is the orthoprojection
onto subspace N⊥ which corresponds to equation (52). In view of Theorem 1.2 from [28]
this condition is equivalent to the fact that for the equation (52)

∃λ0 ∈ A = B; α, β ∈ Ī, 0 ∈ [α, β] , the number δ > 0 :

(∆λ0
(α, β) g, g) ≥ δ ‖Pg‖2 , g ∈ Hr.

Therefore in view of [24] the fulfillment of (53) implies its fulfillment with δ (λ) > 0
instead of δ for all λ ∈ B.

Let us notice that in view of (36) lλ can be a represented in form (2) where

(54) l = ℜli, nλ = lλ − l − λm; ℑnλ {f, f} /ℑλ ≥ 0, t ∈ Ī, ℑλ 6= 0.

From now on we suppose that lλ has a representation (2), (54) and therefore the order
of nλ is even.

We consider pre-Hilbert spaces
◦
H and H of vector-functions y (t) ∈ Cs

0

(

Ī,H
)

and

y (t) ∈ Cs
(

Ī,H
)

, m [y (t) , y (t)] < ∞ correspondingly with a scalar product

(f (t) , g (t))m = m [f (t) , g (t)] ,

where

m [f, g] =

∫

I

m {f, g} dt.(55)

Here m {f, g} is defined by (35) with expression m[y] from condition (36) instead of L[y].
Namely,

m {f, g} =

s/2
∑

j=0

(p̃j (t) f
(j)(t), g(j)(t))

+
i

2

s/2
∑

j=1

(

(q̃∗j (t) f
(j)(t), g(j−1)(t))− (q̃j (t) f

(j−1)(t), g(j)(t))
)

.

By
◦

L2
m (I) and L2

m (I) we denote the completions of spaces
◦
H and H in the norm

‖ • ‖m =
√

( •, •)m correspondingly. By
◦
P we denote the orthoprojection in L2

m (I) onto
◦

L2
m (I).

Theorem 1.4. [28] Let M (λ) be a characteristic operator of equation (4), for which the
condition (53) with P = Ir holds if I is infinite. Let ℑλ 6= 0, f (t) ∈ H and

(56)

col {yj (t, λ, f)}

=

∫

I
Xλ (t)

{

M (λ)− 1

2
sgn (s− t) (iG)

−1
}

X∗
λ̄ (s)W (s, lλ̄,m)F (s, lλ̄,m) ds,

yj ∈ H,

be a solution of equation (49), that corresponds to equation (1), where Xλ (t) is the
operator solution of homogeneous equation (49) such that Xλ (0) = Ir; G = ℜQ (0, lλ)
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(if I is infinite integral (56) converges strongly). Then the first component of vector
function (56) is a solution of equation (1). It defines densely defined in L2

m (I) integro-
differential operator

(57) R (λ) f = y1 (t, λ, f) , f ∈ H,

which has the following properties after closing:
1◦

R∗ (λ) = R
(

λ̄
)

, ℑλ 6= 0;(58)

2◦

R (λ) is holomorphic on C \ R1;(59)

3◦

‖R (λ) f‖2L2
m(I) ≤

ℑ (R (λ) f, f)L2
m(I)

ℑλ , ℑλ 6= 0, f ∈ L2
m (I) .(60)

Let us notice that the definition of the operator R (λ) is correct. Indeed if f (t) ∈ H,
m [f, f ] = 0, then R (λ) f ≡ 0 since W (t, lλ̄,m)F (t, lλ̄,m) ≡ 0 due to (51) and Theorem
1.2 from [28].

Also let us notice that if L2
m(I) =

◦
L2
m(I) then Theorem 1.4 is valid with f(t) ∈

◦
H

instead of f(t) ∈ H and without condition (53) with P = Ir if I is infinite.
The resolvent R(λ) can be represented in another forms (see Remarks 3.1, 3.2 from

[28]). The following proposition is the generalization of Remark 3.2 from [28].

Proposition 1.2. Let r = 2n, I = (0, b), b ≤ ∞, condition (53) hold with P = Ir.
(Therefore for equation (52) condition (8) holds.) Let for characteristic operator M (λ)
of equation (4) condition (7) be separated. (Therefore M (λ) has representation (10)
where characteristic projection P (λ) can be represented in the form (12), (13) with the
help of some Nevanlinna pair {−a(λ), b(λ)} and some Weyl function m(λ) of equation
(52); this equation with F (t) = 0 has an operator solutions Uλ (t) , Vλ (t) (16)-(18)). Let
domains D,D1 be the same as in Proposition 1.1. Then R(λ)f (57) for λ ∈ D

⋃

D1 can
be represented in the form

R (λ) f =

∫ t

0

n
∑

j=1

vj (t, λ)

s/2
∑

k=0

(

u
(k)
j

(

s, λ̄
)

)∗
mk [f (s)] ds

+

∫ b

t

n
∑

j=1

uj (t, λ)

s/2
∑

k=0

(

v
(k)
j

(

s, λ̄
)

)∗
mk [f (s)] ds,

where the integrals converge strongly if the interval of integration is infinite. Here
uj (t, λ) , vj (t, λ) ∈ B (H) are operator solutions of equation (1) as f = 0, such that

(61)

(u1 (t, λ) , . . . un (t, λ)) = [Xλ (t)]1

(

a (λ)
b (λ)

)

,

(v1 (t, λ) , . . . , vn (t, λ))

= [Xλ (t)]1

(

b (λ)
−a (λ)

)

K−1 (λ) + (u1 (t, λ) , . . . , un (t, λ))ma,b (λ) ,

K (λ) , ma,b (λ) see (17), (18),

(62)
mk [f (s)] = p̃k (s) f

(k) (s) +
i

2

(

q̃∗k+1 (s) f
(k+1) (s)− q̃k (s) f

(k−1) (s)
)

(

q̃0 ≡ 0, q̃ s
2
+1 ≡ 0

)

,
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‖ (v1 (t, λ) , . . . , vn (t, λ))h‖2m ≤ ℑ(m(λ)g, g)

ℑλ , ℑλ 6= 0,

where g = (b∗(λ̄)− a∗(λ̄)m(λ))−1h, h ∈ Hn and therefore

(v1 (t, λ) , . . . , vn (t, λ))h ∈ L2
m (I) ∀h ∈ Hn.

Moreover if a (λ) = a
(

λ̄
)

, b (λ) = b
(

λ̄
)

as ℑλ 6= 0 then we can set D = C+ and

‖(v1 (t, λ) , . . . , vn (t, λ))h‖2m ≤ ℑ (ma,b (λ)h, h)

ℑλ , ℑλ 6= 0.(63)

Let the contructed v(λ) ∈ B(Hn) satisfy the conditions of Lemma 1.2 and domains D,
D1 be the same as in Lemma 1.2. Then corresponding solution (v1 (t, λ) , . . . , vn (t, λ))

(61), (17)), (18), (27), (28) satisfies inequality (63) ((v1 (t, λ) , . . . , vn (t, λ))
def
= [Vλ(t)]1,

λ /∈ D ∪D1, where [Vλ(t)]1 ∈ B(Hn,H) is an analogue of [Xλ(t)]1 for Vλ(t) (22)).

Proof. The proof follows from Proposition 1.1, Corollary 1.1, Theorem 1.4 and also
Theorem 1.2 from [28]. �

Comparison of Theorem 1.4, Propositions 1.2 (in less complete form) with results for
various particular cases see in [28].

2. Eigenfunction expansions

It is known [13] that (58)–(60) implies (3), where Eµ ∈ B
(

L2
m (I)

)

, Eµ = Eµ−0,

(64) 0 ≤ Eµ1
≤ Eµ2

≤ I, µ1 < µ2; E−∞ = 0.

Here I is the identity operator in L2
m (I). We denote Eαβ = 1

2 [Eβ+0 + Eβ − Eα+0 − Eα].

Theorem 2.1. Let M (λ) be the characteristic operator of equation (4) (and therefore by
[24, p. 162] ℑPM (λ)P/ℑλ ≥ 0 as ℑλ 6= 0) and σ (µ) = w− lim

ε↓0
1
π

∫ µ

0
ℑPM (µ+ iε)Pdµ

be the spectral operator-function that corresponds to PM (λ)P .
Let the condition (53) with P = Ir hold if I is infinite. Let Eµ be generalized spectral

family (64) corresponding by (3) to the resolvent R (λ) from Theorem 1.4 which is con-
structed with the help of characteristic operator M (λ). Let B1 = B ∩ R

1. Then for any
[α, β] ⊂ B1 the equalities

(65)

◦
P Eα,βf (t) =

◦
P

∫ β

α

[Xµ (t)]1 dσ (µ)ϕ (µ, f) , if f (t) ∈
◦
H, I is infinite,

Eα,βf (t) =

∫ β

α

[Xµ (t)]1 dσ (µ)ϕ (µ, f) , if f (t) ∈ H, I is finite

are valid in L2
m (I), where [Xλ (t)]1 ∈ B (Hr, H) is the first row of the operator solution

Xλ (t) of homogeneous equation (49) which is written in the matrix form and such that
Xλ (0) = Ir,

(66) ϕ (µ, f) =



























∫

I

(

[Xµ (t)]1
)∗

m [f ] dt, if f (t) ∈
◦
H,

∫

I

(

[Xµ (t)]1
)∗

W (t, lµ,m)F (t, lµ,m) dt, if f (t) ∈ H, I is finite

or f(t) ∈
◦
H,

µ ∈ [α, β].
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Moreover, if vector-function f (t) satisfy the following conditions:

(67)

◦
P E∞f = f,

◦
P

∫

R1\B1

dEµf = 0, if f ∈
◦

H, I is infinite,

E∞f = f,

∫

R1\B1

dEµf = 0, if f ∈ H, I is finite

then the inversion formulae in L2
m (I)

(68)

f (t) =
◦
P

∫

B1

[Xµ (t)]1 dσ (µ)ϕ (µ, f) , if f (t) ∈
◦
H, I is infinite,

f (t) =

∫

B1

[Xµ (t)]1 dσ (µ)ϕ (µ, f) , if f (t) ∈ H, I is finite

and Parceval’s equality

(69) m [f, g] =

∫

B1

(dσ (µ)ϕ (µ, f) , ϕ (µ, g))

are valid, where g (t) ∈
◦
H if I is infinite or g (t) ∈ H if I is finite.

In general case for f (t) , g (t) ∈
◦
H if I is infinite or f (t) , g (t) ∈ H if I is finite, the

inequality of Bessel type

(70) m [f (t) , g (t)] ≤
∫

B1

(dσ (µ)ϕ (µ, f) , ϕ (µ, g))

is valid.

Let us notice that B1 = ∪k(ak, bk), (aj , bj) ∩ (ak, bk) = ∅, k 6= j since B1 is an open

set. In (68)
◦
P
∫

B1 =
∑

k lim
αk↓ak,βk↑bk

◦
P
∫ βk

αk
. In (68)–(70) we understand

∫

B1 similarly.

Proof. Let for definiteness r = s = 2n, I is infinite (for another cases the proof becomes

simpler). Let the vector-functions f (t) , g (t) ∈
◦
H, λ = µ+ iε,G (t, lλ,m) be defined by

(48) with g (t) instead of f (t). In view of the Stieltjes inversion formula, we have

(71)

(Eα,βf, g)L2
m(I) = lim

ε↓0

1

2πi

∫ β

α

([

y1 (t, λ, f)− y1
(

t, λ̄, f
)]

, g
)

m
dµ

= lim
ε↓0

1

2πi

∫ β

α

[

(~y1 (t, lλ,m, f) , G (t, lλ,m))L2

W(t,lλ,m)
(I)

− (~y1 (t, lλ̄,m, f) , G (t, lλ̄,m))L2

W(t,lλ̄,m)
(I)

+ 2i

∫

I

(

(

ℑp−1
n (t, λ)

)

f [n] (t |m ) , g[n] (t |m )
)

dt

]

dµ

= lim
ε↓0

1

2πi

∫ β

α

[

(

M (λ)

∫

I
X∗

λ̄ (t)W (t, lλ̄,m)F (t, lλ̄,m) dt,

∫

I
X∗

λ (t)W (t, lλ,m)G (t, lλ,m) dt
)
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−
(

M∗ (λ)

∫

I
X∗

λ (t)W (t, lλ,m)F (t, lλ,m) dt,

∫

I
X∗

λ̄ (t)W (t, lλ̄,m)G (t, lλ̄,m) dt
)

]

dµ

=

∫ β

α

(

dσ (µ)

∫

I
X∗

µ (t)W (t, lµ)F (t, lµ,m) dt,

∫

I
X∗

µ (t)W (t, lµ)G (t, lµ,m) dt
)

,

where ~y1(t, lλ,m, f) is defined by (50) with y1(t, λ, f) (57) instead of y(t); the second
equality is a corollary of formula (40) from [28], the next to last is a corollary of (56) and
the last one follows from the well-known generalization of the Stieltjes inversion formula
[40, p. 803], [8, p. 952]. (In the case of finite I we have to substitute in (71) M(λ) by
PM(λ)P and then when passing to the next to the last equality in (71) we have to use
the remark after the proof of Lemma 2.1 from [28].) But for λ ∈ B

(72)

∫

I
X∗

λ̄ (t)W (t, lλ̄,m)F (t, lλ̄) dt =

∫

I
([Xλ̄ (t)]1)

∗
m [f ] dt,

because in view of Theorem 2.1 from [28]

∀h ∈ Hr : (

∫

I
X∗

λ̄ (t)W (t, lλ̄,m)F (t, lλ̄) dt, h)

=

∫

I
(W (t, lλ̄,m)F (t, lλ̄) , Xλ̄ (t)h) dt = (

∫

I
([Xλ̄]1)

∗
m [f ] , h) dt.

Due to (71), (72), (66)

(73) (Eα,βf, g)L2
m(I) =

∫ β

α

(dσ (µ)ϕ (µ, f) , ϕ (µ, g)) .

The equality (69) and inequality (70) are the corollaries of (73).
Representing ϕ (µ, g) in (73) by the second variant of (66), changing in (73) the order

of integration and replacing
∫ β

α
by integral sum and using Theorem 2.1 from [28] we

obtain that

(Eα,βf, g)L2
m(I) = (

∫ β

α

[Xµ (t)]1 dσ (µ)ϕ (µ, f) , g (t))L2
m(I)

= (
◦
P

∫ β

α

[Xµ (t)]1 dσ (µ)ϕ (µ, f) , g (t))L2
m(I)

since g(t) ∈
◦
H and (65) is proved. Equalities (68) are the corollary of (65), (67). Theorem

2.1 is proved. �

Let us notice that if L2
m(I) =

◦
L2
m(I) then Theorem 2.1 is valid without condition (53)

with P = Ir if I is infinite.
Formulae (65), (68), (69) are similar to corresponding formulas for scalar differential

operators from [40] (operator case see [8]). For such operators the formulas that corres-
ponds to (65), (68), (69) are represented in [14, p. 251, 255], [32, p. 516] in another form.
Let us represent for example inversion formula (68), in the form analogues to [14, 32].

Proposition 2.1. Let all conditions of Theorem 2.1 hold. Let us represent spectral
operator-function σ (µ) in matrix form: σ (µ) = ‖σij (µ)‖ri,j=1 , σij (µ) ∈ B (H). Then
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the following inversion formulae in L2
m (I)

f (t) =
◦
P

∫

B1

r
∑

i,j=1

xi (t, µ) dσij (µ)

∫

I
x∗
j (s, µ)m [f (s)] ds,(74)

f (t) =
◦
P

∫

B1

r
∑

i,j=1

xi (t, µ) dσij (µ)

∫

I

s/2
∑

k=0

(

x
(k)
j (s, µ)

)∗
mk [f (s)] ds(75)

are valid if I is infinite, vector function f (t) ∈
◦
H satisfies (67). Let I is finite. Then

◦
P

in (74)–(75) disappears, and (74) (respectively, (75)) is valid for vector functions f (t) ∈
◦
H (respectively, f (t) ∈ H) satisfying (67). In formulae (74), (75): xi(t, µ) ∈ B(H),
(x1(t, µ), . . . , xr(t, µ)) = [Xµ(t)]1, mk[f(s)] see (62).

The proof of this proposition is carried out in the same way as the proof of (68) taking
into account the proof of Remark 3.1 from [28].

Further we present several statements (Theorem 2.2, Proposition 2.3) which allow to
check the fulfillment of conditions (67) of Theorem 2.1 in various situations.

It is known (see for example [21, 22] or [28, Ex. 3.2]) that even in the case nλ [y] ≡ 0
in (1), (2) there is such Eµ satisfying (3), (56)–(60), (64) that E∞ 6= I.

On the other hand if nλ[y] ≡ 0 then R(λ) is a generalized resolvent of relation L0 and
∀f ∈ D (L0)E∞f = f in view of [20, 22]. Here L0 is the minimal relation generated in
L2
m(I) by the pair of expressions l[y] and m[y]; in particular L0 ⊃ {{y(t), f(t)} : y(t) ∈

Cr
0 (I), f(t) ∈

◦
H, l[y] = m[f ]} (see [26, 28]).

Let expression nλ in representation (2), (54) have a divergent form with coefficients
˜̃pj = ˜̃pj (t, λ) , ˜̃qj = ˜̃qj (t, λ) , ˜̃sj = ˜̃sj (t, λ).

We denote m (t) three-diagonal (n+ 1) × (n+ 1) operator matrix, whose elements
under main diagonal are equal to

(

− i
2 q̃1, . . . , − i

2 q̃n
)

, the elements over the main diagonal

are equal to
(

i
2 s̃1, . . . ,

i
2 s̃n
)

, the elements on the main diagonal are equal to (p̃0, . . . , p̃n),
where p̃j , q̃j , s̃j = q̃∗j are the coefficients of expressions m. (Here either 2n or 2n + 1 is
equal to the order r of lλ). If order of nλ is less or equal to 2n, we denote n (t, λ) the

analogues (n+ 1) × (n+ 1) operator matrix with ˜̃pj , ˜̃qj , ˜̃sj instead of p̃j , q̃j , s̃j . If order
m or order nλ is less than 2n, we set the correspondent elements of m (t) or n (t, λ) be
equal to zero.

Theorem 2.2. Let in (1), (2) the order of the expression nλ[y] is less or equal to the
order of the expression (l− λm)[y] (and therefore in view of (54) the order of l− λm is
equal to r; so Q (t, lλ) = Q (t, l − λm)). Let y = Rλf, f ∈ H be the generalized resolvent
of the minimal relation L0 generated in L2

m(I) by the pair of expressions l[y], m[y] and
let y satisfy equation (1). Let y1 = R (λ) f, f ∈ H be the operator (56), (57) from
Theorem 1.4.

Let the following conditions hold for τ > 0 large enough:
1◦.

(76)

lim
α↓a, β↑b

([ℜQ (t, lλ)] (~y1 (t, lλ,m, f)−~y (t, l−λm,m, f)), (~y1 (t, lλ,m, f))−~y (t, l−λm,m, f))

ℑλ

∣

∣

∣

∣

β

α

≤ 0,

λ = iτ.

2◦.

(77) ℑn (t,λ) ≤ c (t, τ)m (t) , t ∈ Ī, λ = iτ,

where the scalar function c (t, τ) satisfies the following condition:

(78) sup
t∈Ī

c (t, τ) = o (τ) , τ → +∞.
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Then for generalized spectral family Eµ (64) corresponding by (3) to the resolvent
R (λ) (56)–(57) from Theorem 1.4 and for generalized spectral family Eµ corresponding
to the generalized resolvent Rλ one has E∞ = E∞.

Let us notice that in view of (77) the coefficient at the highest derivative in the
expression l − λm has inverse from B (H) if t ∈ Ī, ℑλ 6= 0.

Proof. Let f (t) ∈ H, y1 = R (λ) f , y = Rλf . Then z = y1 − y satisfies the following
equation:

(79) l [z]− λm [z] = nλ [y1] .

Applying to the equation (79) the Green formula [28, Theorem 1.3] one has

∫ β

α

ℑ (nλ {y1, z}) dt+
∫ β

α

m {z, z} dt = 1

2

ℜ (Q (t, lλ) ~z, ~z)

ℑλ

∣

∣

∣

∣

∣

β

α

,

where ~z = ~z (t, l − λm, nλ, y1) = ~y1 (t, lλ,m, f) − ~y (t, l − λm,m, f) in view Lemma 1.2
from [28] and of (50). Hence for τ > 0 large enough

(80)

m [z, z] ≤ −
∫

I
ℑ (nλ [y1, z]) dt

/

τ

≤
∫

I

∣

∣

∣

(

n (t,λ) col
{

y1, y
′
1, . . . , y

(n)
1

}

, col
{

z, z′, . . . , z(n)
})∣

∣

∣ dt

/

τ , λ = iτ

in view of (76). But due to the inequality of the Cauchy type for dissipative operators [41,
p. 199] and (77), (78): subintegral function in the last integral in (80) is less or equal to

(m {z, z})1/2 (m {y1, y1})1/2 o (1) with λ = iτ, τ → +∞. Therefore ‖z‖m ≤ o (1/τ) ‖f‖m
since ‖Rλ‖ ≤ 1/ |ℑλ|. Hence

‖R (λ)−Rλ‖ ≤ o (1/τ) , λ = iτ, τ → +∞.

To complete the proof of the theorem it remains to prove the following

Lemma 2.1. Let Rk (λ) =
∫

R1

dEk
µ

µ−λ , k = 1, 2, where Ek
µ are the generalized spectral

families the type (64) in Hilbert space H. If ‖R1 (λ)−R2 (λ)‖ ≤ o (1/τ) , λ = iτ, τ →
+∞, then E1

∞ = E2
∞.

Proof. Let f ∈H σ (µ) =
((

E1
µ − E2

µ

)

f, f
)

. One has

|([R1 (λ)−R2 (λ)] f, f)|

=
1

τ

∣

∣

∣

∣

∣

−
∫

∆

dσ (µ) +

∫

∆

µdσ (µ)

µ− λ
+

∫

R1\∆

λdσ (µ)

µ− λ

∣

∣

∣

∣

∣

≤ o (1/τ) ‖f‖2 ,

λ = iτ, τ → +∞.

Therefore

(81)

∣

∣

∣

∣

∣

−
∫

∆

dσ (µ) +

∫

∆

µdσ (µ)

µ− λ
+

∫

R1\∆

λdσ (µ)

µ− λ

∣

∣

∣

∣

∣

≤ o (1) , λ = iτ, τ → +∞.

For an arbitrarily small ε > 0 we choose such finite interval ∆ (ε) that for any finite

interval ∆ ⊇ ∆(ε) :
∣

∣

∣

∫

R1\∆
λdσ(µ)
µ−λ

∣

∣

∣ < ε
2 , λ = iτ . But for any finite interval ∆ ⊇

∆(ε) ∃N = N (∆) : ∀τ > N :
∣

∣

∣

∫

∆
µdσ(µ)
µ−λ

∣

∣

∣ < ε
2 , λ = iτ . Therefore ∀ε > 0,∆ ⊇ ∆(ε) :

∣

∣

∫

∆
dσ (µ)

∣

∣ < ε in view of (81). Hence ∀f ∈H:
(

E1
∞f, f

)

=
(

E2
∞f, f

)

⇒ E1
∞ = E2

∞.
Lemma 2.1 and Theorem 2.2 are proved. �
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Corollary 2.1. Let the conditions of Theorems 2.1, 2.2 hold. Then for generalized
spectral family Eµ from Theorem 2.1 ∀f (t) ∈ D (L0) : E∞f = f .

Remark 2.1. If L2
m (I) =

◦
L2
m (I), then it is sufficient to verify condition (76) in Theo-

rem 2.2 for f ∈
◦
H.

In regular case condition (76) in Theorem 2.2 holds if Rλf and R(λ)f satisfy ”the
same” boundary conditions. More precisely, the following statement holds.

Proposition 2.2. Let interval I be finite. Let the order of expression nλ[y] be less
or equal to the order of expression (l − λm)[y] and the coefficient p(t, λ) of l − λm at
the highest derivative has the inverse from B (H) for ℑλ 6= 0, t ∈ Ī. Let for equation
(1), (2) with nλ [y] ≡ 0 there exist λ0 ∈ C, α, β ∈ Ī, number δ > 0 such that 0 ∈ [α, β],
p−1(t, λ0) ∈ B(H) for t ∈ [α, β] and condition (53) holds with P = Ir and these λ0, α, β.

Then for equation (1)–(2) condition (53) with P = Ir and these α, β also holds for
any λ0 ∈ B with δ(λ0) > 0 instead of δ.

For an arbitrary f(t) ∈ H the boundary value problem which is obtained by adding to
equation (1)–(2) with nλ[y] ≡ 0 (respectively, (1)–(2)) boundary conditions

∃h = h (λ, f) ∈ Hr : ~y (a, l − λm,m, f) = Mλh, ~y (b, l − λm,m, f) = Nλh(82)

(respectively, ∃h1=h1 (λ, f) ∈ Hr: ~y (a, lλ,m, f)=Mλh1, ~y (b, lλ,m, f)=Nλh1),(83)

has the unique solution y = Rλf (respectively, y1 = R (λ) f) in Cr(Ī,H) as ℑλ 6= 0.
Here ~y(t, lλ,m, f) see (50); the operator-functions Mλ,Nλ ∈ B (Hr) depend analytically
on the non-real λ,

M∗
λ̄ [ℜQ (a, lλ)]Mλ = N ∗

λ̄ [ℜQ (b, lλ)]Nλ, ℑλ 6= 0,

where Q (t, lλ) is the coefficient of equation (49) corresponding by Theorem 1.3 to equa-
tion (1),

‖Mλh‖+ ‖Nλh‖ > 0, 0 6= h ∈ Hr, ℑλ 6= 0,

the lineal {Mλh⊕Nλh |h ∈ Hr } ⊂ H2r is a maximal Q-nonnegative subspace if ℑλ 6= 0,
where Q = (ℑλ) diag (ℜQ (a, lλ) , −ℜQ (b, lλ)) (and therefore

ℑλ (N ∗
λ [ℜQ (b, lλ)]Nλ −M∗

λ [ℜQ (a, lλ)]Mλ) ≤ 0, ℑλ 6= 0) .

Operator Rλf (respectively, R(λ)f) is a generalized resolvent of L0 (respectively, a
resolvent of (57) type). This resolvent is constructed by applying of Theorem 1.4 with
the characteristic operator

M(λ) = −1

2

(

X−1
λ (a)Mλ +X−1

λ (b)Nλ

) (

X−1
λ (a)Mλ −X−1

λ (b)Nλ

)−1
(iG)−1,(84)

to equation (1), (2) with nλ[y]≡0 (respectively, (1)–(2)). Here
(

X−1
λ (a)Mλ−X−1

λ (b)Nλ

)−1

∈ B(Hr), ℑλ 6= 0, Xλ(t) is an operator solution from Theorem 1.4 which corresponds to
equation (l − λm)[y] = 0 (respectively, lλ[y] = 0).

The resolvents y = Rλf and y1 = R (λ) f satisfy condition (76) of Theorem 2.2.

Let us notice that if I is finite and condition (53) holds with P = Ir then any charac-
teristic operator of equation (4) has representation (84) in view of [24]. Also we notice
that if I is finite, nλ[y] ≡ 0 and condition (53) holds then any generalized resolvent of
L0 can be constructed as an operator R(λ) from Theorem 1.4 in view of [28].

Proof. In view of Theorems 3.2, 3.3 from [28] it is sufficient to prove only proposition
about condition (53).

Let for definiteness order l = order m = order nλ = 2n.
Let for equation (1)–(2) with nλ [y] ≡ 0 condition (53) hold with P = Ir and λ0, α, β

as in formulation of proposition, but for equation (1), (2) that is not true for any λ0 ∈ B.



86 VOLODYMYR KHRABUSTOVSKYI

Then in view of [24, 26] the solutions yk (t) of equation (1)–(2) with f(t) = 0, λ = i exist
for which

(85)

∫ β

α

(m+ ℑni) {yk, yk} dt → 0, ~yk (0, li,m, 0) = fk, ‖fk‖ = 1,

where iℑni = ni in view of (54). Hence in view of Theorem 1.2 from [28])

(86)

∫ β

α

(Wi (t, l+im, ni)Yk (t, l+im, ni) , Yk (t, l+im, ni)) dt =

∫ β

α

ni {yk, yk} dt → 0,

where Yk (t, l + im, ni) is defined by (48) with yk(t), l + im, ni instead of f(t), lλ, m
respectively.

On the other hand

(87) Xi (t) fk = X̃i (t) fk + X̃i (t)

∫ t

o

X̃−1
i (s) J−1W (s, l + im, ni)Yk (s, l + im, ni) ds

in view of Theorem 1.3 and the fact that ~yk(t, l−im, ni, yk) = ~yk(t, li,m, 0), where X̃λ (t)
is an analogue of Xλ (t) for the case nλ [y] ≡ 0.

Comparing (86), (87) we see that

(88)
∥

∥

∥Xi (t) fk − X̃i (t) fk

∥

∥

∥→ 0

uniformly in t ∈ [α, β].
In view of (85) subsequence ykq

exist such that

(89) m
{

ykq
, ykq

} a.a.→ 0, ni

{

ykq
, ykq

} a.a.→ 0.

Due to second proposition in (89) and the arguments as in the proof of Proposition 3.1
from [28] one has

(90) y
[j]
kq

(t |ni )
a.a.→ 0, j = n, . . . , 2n.

Let us denote ỹkq
(t) = X̃i (t) fkq

. In view of Theorem 1.3 and (88)

(91)
∥

∥

∥y
(j)
kq

(t)− ỹ
(j)
kq

(t)
∥

∥

∥→ 0, j = 1, . . . , n− 1,

(92)

∥

∥

∥ (pn (t)− ip̃n (t))
[

y
(n)
kq

(t)− ỹ
(n)
kq

(t)
]

− i

2
(qn(t)− iq̃n(t))

[

y
(n−1)
kq

(t)− ỹ
(n−1)
kq

(t)
]

− y
[n]
kq

(t |ni )
∥

∥

∥

=
∥

∥

∥y
[n]
kq

(t|li)− ỹ
[n]
kq

(t|l − im)
∥

∥

∥→ 0

uniformly in t ∈ [α, β]. Comparing (89), (90), (92) and using (pn (t)− ip̃n (t))
−1 ∈ B (H)

we have

(93)
(

p̃n (t) ỹ
(n)
kq

(t) , ỹ
(n)
kq

(t)
)

a.a.→ 0.

In view of (91), (93), (89)

m
{

ỹkq
, ỹkq

} a.a.→ 0, ~ykq
(0, l − im,m, 0) = fkq

,

that contradicts to the condition (53) with P = Ir for equation (1), (2) with nλ [y] ≡ 0.
Hence for equation (1), (2) condition (53) with P = Ir holds for λ0 = i and therefore for
any λ0 ∈ B. Proposition 2.2 is proved. �

If the set R
1\B1 has no finite limit points then to verify the condition

◦
P
∫

. . . = 0
or
∫

. . . = 0 in (67) we can use the following proposition which is a corollary of Lemma
from [39, p. 789].
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Proposition 2.3. Let R (λ) =
∫

R1

dEµ

µ−λ , where Eµ is generalized spectral family in

Hilbert space H; g ∈ H. If σ is not a point of continuity of Eµg, then ∃c (σ, g) > 0:

‖R (σ + iτ) g‖ ∼ c(σ,g)
|τ | , τ → 0.

Proof. Let ∆ be a jump of Eµ in the point σ. Then ∆g 6= 0,

R (σ + iτ) g = i
∆

τ
g +

∫

R1

dẼµg

µ− λ
where Ẽµ =

{

Eµ, µ ≤ σ

Eµ −∆, µ > σ
.(94)

Since the second term in (94) is o
(

1/|τ |
)

in view of [39, p. 789]4 proposition in proved. �

In the next theorem I = R
1 and condition (53) hold with P = Ir both on the negative

semi-axis R1
− (i.e. as I = R

1
−) and on the positive semi-axis R1

+ (i.e. as I = R
1
+).

Theorem 2.3. Let I = R
1, the coefficient of the expression lλ[y] (2) be periodic on each

of the semi-axes R
1
− and R

1
+ with periods T− > 0 and T+ > 0 correspondingly. Then the

spectrums of the monodromy operators Xλ (±T±) (Xλ (t) is from Theorem 1.4) do not
intersect the unit circle as ℑλ 6= 0, the characteristic operator M (λ) of the equation (4)
is unique and equal to

(95) M (λ) =

(

P (λ)− 1

2
Ir

)

(iG)
−1

(ℑλ 6= 0) ,

where the projection P (λ) = P+ (λ) (P+ (λ) + P− (λ))
−1

, P± (λ) are Riesz projections of
the monodromy operators Xλ (±T±) that correspond to their spectrums lying inside the

unit circle, (P+ (λ) + P− (λ))
−1 ∈ B (Hr) as ℑλ 6= 0.

Also let dimH < ∞, a finite interval ∆ ⊆ B1. Then in Theorem 2.1 dσ (µ) =
dσac (µ) + dσd (µ) , µ ∈ ∆. Here σac (µ) ∈ AC (∆) and, for µ ∈ ∆,

σ′
ac (µ) =

1

2π
G−1

(

Q∗
− (µ)GQ− (µ)−Q∗

+ (µ)GQ+ (µ)
)

G−1,

where the projections Q± (µ) = q± (µ) (P+ (µ) + P− (µ))
−1

, q± (µ) are Riesz projections
of the monodromy matrices Xµ (±T±) corresponding to the multiplicators belonging to
the unit circle and such that they are shifted inside the unit circle as µ is shifted to the
upper half plane, P± (µ) = P± (µ+ i0) ; σd (µ) is a step function.

Let us notice that the sets on which q± (µ) , P± (µ) , (P+ (µ) + P− (µ))
−1

are not in-
finitely differentiable do not have finite limit points ∈ B1 as well as the set of points of
increase of σd (µ).

Proof. The proof of Theorem 2.3 is similar to that on in the case nλ [y] ≡ 0 [26]. �

The following examples demonstrate effects that are the results of appearance in lλ
(2) of perturbation nλ depending nonlinearly on λ.

In Examples 2.1, 2.2 nonlinear in λ perturbation does not change the type of the

spectrum. In this examples dimH = 1, m [y] = −y′′+ y. L2
m (I) =

◦
L2
m (I) = W 1,2

2

(

R
1
)

.
In Example 2.3 such perturbation implies an appearance of spectral gap with ”eigenvalue”
in this gap.

Example 2.1. Let

lλ [y] = iy′ − λ (−y′′ + y)−
(

− h

λ
y
)

, h ≥ 0.

4Lemma from [39, p. 789] is proved for families Eµ with E∞ =identity operator. But analysis of its

proof shows that it is valid in general case.
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Here B = C \ 0, E0 = E+0, spectral matrix σ (µ) ∈ ACloc,

σ′ (µ) = 1
2π

(

2√
4h+1−4µ2

0

0 1
2

√

4h+ 1− 4µ2

)

, as |µ| <
√

h+ 1/4,

σ′ (µ) = 0, as |µ| >
√

h+ 1/4.
In Example 2.1 nonlinear in λ perturbation change edges of spectral band.

Example 2.2. Let

lλ [y] = y(IV ) − λ (−y′′ + y)−
(

−h

λ
y

)

, h ≥ 0.

Here B =

{

C \ {0}, h 6= 0

C, h = 0
, E0 = E+0, spectral matrix σ (µ) ∈ ACloc,

σ′ (µ) =



















































































































1
2π

√

λ+
√
D

D















2
λ+

√
D

0 0 −1

0 1 −λ+
√
D

2 0

0 −λ+
√
D

2

(

λ−
√
D

2

)2

0

−1 0 0 λ+
√
D

2















,

as −
√
h < µ < 0, µ >

√
h

1
2π · 1√

λ−2
√
q













1√
q 0 0 −1

0 1 −√
q 0

0 −√
q

√
q
(

λ−√
q
)

0

−1 0 0 λ−√
q













,

as µ∗ < µ <
√
h

,

where D = µ2 − 4q, q = h/µ − µ, µ∗ = µ∗ (h) – nonnegative root of equation D = 0.

σ′ (µ) = 0, as µ /∈
[

−
√
h, 0
]

⋃

[µ∗,∞).

In Example 2.2 nonlinear in λ perturbation implies an appearance of additional spec-
tral band [−h, 0], variation of edge of semi-infinite spectral band and appearance of

interval
(

µ∗,
√
h
)

of fourfold spectrum.

Example 2.3. Let dimH = 2,

lλ [y] =

(

0 −1
1 0

)

y′ − λy −
(

−h/λ 0
0 0

)

y, h ≥ 0.

Here B =

{

C \ {0}, h 6= 0

C, h = 0
, spectral matrix σ (µ) = σac (µ) + σd (µ), σac(µ) ∈ ACloc,

σ′
ac (µ) 6= 0, as |µ| >

√
h, σ′

ac (µ) = 0, as |µ| <
√
h, step-function σd (µ) has only one

jump

(

0 0

0
√
h
/

2

)

in point µ = 0 (inside of spectral gap). In this point

(E+0 − E0) f =

(

0 0

0
√
h
/

2

)

∫ ∞

−∞
e−

√
h|t−s|f (s) ds, f (t) ∈ L2

(

R
1
)

.

Let us explain that in Examples 2.1, 2.2: 1) Spectral matrices are locally absolutely
continuous in view of Theorem 3.6 and estimates of the type ‖M (λ)‖ ∼ c

|λ|α (λ → i0) , α <
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1 for corresponding characteristic operators (cf. [20]) that follows from (95); 2) Equalities

E0 = E+0 follow from Proposition 2.3, equality L2
m

(

R
1
)

=
◦

L2
m

(

R
1
)

and estimates of

the type ‖R (iτ) g‖m ≤ c(g)

|τ |β , (τ → 0) , β < 1, g ∈
◦
H that follows from Theorems 1.4, 2.3

and Floquet Theorem.
Let us notice that in view of Floquet theorem conditions of Theorem 2.2 ((76) with

account of Remark 2.1) hold for all Examples 2.1–2.3.
The following theorem is a generalization of results from [39] on the expansion in solu-

tions of scalar Sturm-Liouville equation which satisfy in regular end point the boundary
condition depending on spectral parameter.

Theorem 2.4. Let r = 2n, I = (0,∞), condition (53) with P = I2n hold. Let contrac-
tion v (λ) ∈ B (Hn) satisfy the conditions of Lemma 1.2. Let v (λ) analytically depend
in λ in any points of B1 = R

1
⋂B and be unitary in this points.

Let R (λ) (57) correspond to characteristic operator M (λ) (10), (12) of equation (4),
where characteristic projection (12) corresponds to some Weyl function m(λ) of equation
(52) and to pair (27), (28) which is constructed with the help of this v (λ). Let the
generalized spectral family Eµ correspond to R (λ) by (3).

Let ma,b (λ) be Nevanlinna operator-function from Lemma 1.2 corresponding by (18),
(27), (28) to these v (λ) and m(λ). Let σa,b (µ) = w − lim

ε↓0
1
π

∫ µ

0
ℑma,b (µ+ iε) dµ be the

spectral operator-function that corresponds to ma,b (λ).
Then every proposition of Theorem 2.1 is valid with σa,b (µ) instead of σ (µ), (u1 (t, λ) ,

. . . , un (t, λ)) instead of [Xλ (t)]1 and

ϕ (µ, f) =

∫

I
(u1 (t, µ) , . . . , un (t, µ))

∗
m [f (t)] dt

=

∫

I

s/2
∑

k=0

(

u
(k)
1 (t, µ) , . . . , u(k)

n (t, µ)
)∗

mk [f (t)] dt

instead of ϕ(µ, f) (66), where uj (t, λ) see (61), mk [f (t)] see (62).
Therefore if we represent spectral operator-function σab (µ) in matrix form: σa,b (µ) =

∥

∥

∥(σab (µ))ij

∥

∥

∥

n

i,j=1
, (σa,b (µ))ij ∈ B (H) then, for example5, the following inversion for-

mula is valid in L2
m (0,∞) for any vector-function f(t) ∈

◦
H satisfying (67):

f (t) =
◦
P

∫

B1

n
∑

i,j=1

ui (t, µ) d (σa,b (µ))ij

∫

I
u∗
j (s, µ)m [f (s)] ds

=
◦
P

∫

B1

n
∑

i,j=1

ui (t, µ) d (σa,b (µ))ij

∫

I

s/2
∑

k=0

(

u
(k)
j (s, µ)

)∗
mk [f (s)] ds.

The proof is carried out in the same way as the proofs of Theorem 2.1 and Proposi-
tion 2.1 with the help of Proposition 1.1 and Lemma 1.2.

Let us notice that in contrast to operator spectral function σa,b(µ) from Theorem 2.4
the scalar spectral function in [39] was constructed with the help of different formulae
that corresponds to such intervals of real axis where v (µ) 6= −1 or v (µ) 6= 1. But already
in matrix case it is impossible to construct the spectral matrix according to [39] since
here for some real λ (and even for any real λ) (v(λ) + In)

−1 and (v(λ) − In)
−1 may

simultaneously do not belong to B(Hn).

5Also (65), Parseval equality (69), Bessel inequality (70) can be represented in a similar way.
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Remark 2.2. Let contraction v (λ) ∈ B (Hn) is analytic in any point λ ∈ C̄+

⋂B and
is unitary in any point λ ∈ B1 6= ∅. Let dimH < ∞. Then v (λ) satisfy conditions of
Lemma 1.2.

If dimH = ∞ in general it is not valid. Namely let domain D ⊂ C+, dist
{

D̄, [−a, a]
}

> 0 ∀a ∈ R
1
+; set {λk}∞k=1 ⊂ D in dense in D. Let us consider in Hn =

(

l2
)n

the

following operator v (λ) = v1 (λ)⊕ In−1, where v1 (λ) = diag
{

λ−λk

λ−λ̄k

}∞

k=1
. This operator

is analytic in any point λ ∈ C̄+, is a contraction for λ ∈ C+ and is unitary for λ ∈ R
1.

But for this operator the set S =
{

λ ∈ C+ : v−1 (λ) /∈ B (Hn)
}

= D̄.

Finally, we note that, obviously, an analogue of Theorem 2.4 is valid for I = (0, b),
b < ∞.
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