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ON A CRITERION OF MUTUAL ADJOINTNESS FOR EXTENSIONS

OF SOME NONDENSELY DEFINED OPERATORS
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Dedicated to Vladimir Koshmanenko on the occasion of his 70th birthday

Abstract. In the paper the role of initial object is played by a pair of closed linear
densely defined operators L0 and M0, where L0 ⊂ M∗

0 := L, acting in Hilbert
space. A criterion of mutual adjointness for some classes of the extensions of finite-

dimensional (non densely defined) restrictions of L0 and M0 are established. The
main results are based on the theory of linear relations in Hilbert spaces and are
formulated in the terms of abstract boundary operators.

1. Introduction

The theory of linear relations (i.e. ”multivalued operators”) in Hilbert spaces was
initiated by R. Arens [1]. Some aspects of the the extension theory of linear relations (in
particular, nondensely defined operators, first of all, Hermitian ones) had been developed
by many other mathematicians (see, e. g., [2]–[20]).

In this paper, a criterion of mutual adjointness for some classes of extensions of finite-
dimensional (non densely defined) restrictions of two given closed linear (densely defined)
operators acting in Hilbert space are established.

Through this report we use the following denotations:D(T ), R(T ), kerT are, respec-
tively, the domain, range, and kernel of a linear operator ; B(X,Y ) is the set of linear
bounded operators T : X → Y such that D(T ) = X; C(X) is a class of closed densely
defined linear operators T : X → X; (· | ·)X is the inner product in a Hilbert space X;
T ↓ E is the restriction of T onto E; IX is the identity in X; ⊕ and ⊖ are the symbols
of orthogonal sum and orthogonal complement, respectively; AE := {Ax : x ∈ E}.

If A : X → Yi, i = 1, . . . , n are linear operators then the notation A = A1 ⊕ · · · ⊕An

means that Ax = (A1x, . . . , Anx) for every x ∈ X. The role of the initial object is played
by a couple (L,L0) of operators H → H (H is a fixed complex Hilbert space equipped
with the inner product (· | ·) and the corresponding norm ‖ · ‖ ) such that

(1) L,L0 ∈ C(H), L0 ⊂ L;

(2) M0 := L∗, M := L∗
0.

(Here and below T ∗ means the operator or relation adjoint of the operator or relation
T ).

By D[T ], T ∈ C(H), we understand the variety D(T ) interpreted as a Hilbert space
with the inner product: ∀y, z ∈ D(T )(y | z)T = (y | z) + (Ty | Tz) and the correspond-
ing graph-norm ‖ · ‖T . By ⊕T and ⊖T we denote the symbols of orthogonal sum and
orthogonal complement in D[T ].
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PutHL = D[L]⊖LD[L0], HM = D[M ]⊖MD[M0] and denote by PL, PM , respectively,
the orthoprojections

D[L] → HL, D[M ] → HM .

Furthermore, for each W ∈ B(D,G), where D coincides with D[L] or D[M ] and G is
an (auxiliary) Hilbert space, the adjoint operator will be denoted by W ′, consequently

∀y ∈ D(L), ∀g ∈ G(Wy | g)G = (y | W ′g)L.

Remark 1. It is known (see [1]) that for each couple (L,L0) satisfying (1) there exists
a so-called boundary pair (G,U). It means that G is an auxiliary Hilbert space,

(3) U ∈ B(D[L], G), R(U) = G, kerU = D(L0).

Moreover, if M and M0 are defined by (2), and (GL, U), (GM , V ) are boundary pairs
for (L,L0), (M,M0), respectively, then there exists a unique operator E satisfying the
following conditions:

i)

(4) E ∈ B(GL, GM ), E−1 ∈ B(GM , GL);

ii)

∀y ∈ D(L), ∀z ∈ D(M)

(5) (Ly | z)− (y | Mz) = (EUy | V z)G = (Uy | E∗V z)G.

Further, let HL
0 , H

M
0 be finite-dimensional subspaces of H. Put

S0 = L0 ↓ H ⊖H
(L)
0 , M̂0 = M0 ↓ H ⊖H

(M)
0 ,

S =
{

(y, Ly + φ(M)) : y ∈ D(L), φ(M) ∈ H
(M)
0

}

,

T =
{

(z,Mz + φ(L)) : z ∈ D(M), φ(L) ∈ H
(L)
0

}

and denote by P
(L)
0 , P

(M)
0 , respectively, the orthoprojections

H → H
(L)
0 (H → H

(M)
0 ).

Note that S∗
0 = M̂, T ∗

0 = L̂ (see [2]).

2. One abstract analogue of the Green’s formula for the pairs of

nondensely defined operators

Definition 1. ([18]) Let GS be an auxiliary Hilbert space and US ∈ B(S,GS). A pair
B(GS , US) is called a boundary pair for (S, S0), if R(US) = GS , kerUS = S0. In this case
GS is said to be a boundary space for (S, S0).

Remark 2. It should be noted that

• in the case where L0 is a symmetric operator with equal defect numbers and
L = L∗

0 , the latter definition may be interpreted as some generalization of the
notion of boundary triplet, exposed in [2], [7], [9], [16] (Yu. M. Arlinskii, V. A.
Derkach, M. M. Malamud, S. Hassi, H. S. V. de Snoo and others);

• in the situation if, in addition, L0 = S0, the concept of boundary triplet (=boun-
dary value space) had been developed by V. I. Gorbachuk and M. L. Gor-
bachuk [6], F. S. Rofe-Beketov [19], A. N. Kochubei [10], V. M. Bruk [4], V. A.
Mikhailets [17] and other mathematicians (see [15] and reference therein).
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Lemma 1. Defined on S the norms ‖ · ‖
L̂
, ‖ · ‖L, where

∀(y, Ly + φ(M)) ∈ S ‖(y, Ly + φ(M))‖2
H2 = ‖y‖2 + ‖Ly + φ(M)‖2,

∀(y, Ly + φ(M)) ∈ S ‖(y, Ly + φ(M))‖2S = ‖y‖2 + ‖Ly‖2 + ‖φ(M)‖2,

are equivalent.

Proof. We have

‖(y, Ly + φ(M))‖2
H2 = ‖y‖2 + ‖Ly + φ(M)‖2

≤ ‖y‖2 + ‖Ly‖2 + 2‖Ly‖ · ‖φ(M)‖+ ‖φ(M)‖2

≤ ‖y‖2 + ‖Ly‖2 + ‖Ly‖2 + ‖φ(M)‖2 + ‖φ(M)‖2

≤ 2
(

‖y‖2 + ‖Ly‖2 + ‖φ(M)‖2
)

= 2‖(y, Ly + φ(M))‖2S .

Thus ‖ · ‖S is stronger than ‖ · ‖H2 . On the other hand, S is a closed relation, therefore

the space (S, ‖ · ‖H2) is complete. Moreover, L is a closed operator and H
(M)
0 is a finite-

dimensional subspaces of H, consequently (S, ‖·‖H2) is a complete space too. To complete
the proof it is sufficiently to apply Banach inverse operator theorem. �

Remark 3. In the sequel we assume that by setting

(y, Ly + φ(M)) ↔ (y, φ(M)), (z,Mz + φ(L)) ↔ (z, φ(L))

the identifications
S ↔ D[L]⊕H

(M)
0 , T ↔ D[M ]⊕H

(L)
0

(therefore the identifications L ↔ D[L], L0 ↔ D[L0], S0 ↔ D[S0] and M ↔ D[M ],M0 ↔
D[M0], T0 ↔ D[T0]) are provided. The latter lemma shows that the mappings

S ⊃ (y, Ly + φ(M)) 7→ (y, φ(M)) ∈ D[L]⊕H
(M)
0 ,

T ⊃ (z,Mz + φ(L)) 7→ (z, φ(L)) ∈ D[M ]⊕H
(L)
0

are homeomorphic ones.

Theorem 1. Suppose that (G,U) is a boundary pair for (L,L0) and

∀(y, Ly + φ(M)) ∈ S US(y, Ly + φ(M)) = (Uy, P
(L)
0 y, φ(M)).

Then (GS , US), where GS = G⊕H
(L)
0 ⊕H

(M)
0 , is a boundary pair for (S, S0).

Proof. i) US ∈ B(S,GS).
For each (y, Ly + φ(M)) ∈ S we have

‖US(y, Ly + φ(M))‖2GS
= ‖(Uy, P

(L)
0 y, φ(M))‖2GS

= ‖Uy‖2G + ‖P
(L)
0 y‖2 + ‖φ(M)‖2

≤ c2
(

‖y‖2 + ‖Ly‖2
)

+ ‖y‖2 + ‖φ(M)‖2

≤ c21

(

‖y‖2 + ‖Ly‖2 + ‖φ(M)‖2
)

= c21

∥

∥

∥
(y, Ly + φ(M))

∥

∥

∥

2

S

(for some c > 0, c1 > 0), consequently US ∈ B(S,GS). Now the proof follows from
Lemma 1.

ii) R(US) = GS .

Suppose that (g, hL, hM ) ∈ G ⊕ H
(L)
0 ⊕ H

(M)
0 = Ĝ. Since R(U) = G and P

(L)
0 is a

bounded finite-dimensional operator, there exists y ∈ D(L) such that Uy = g, P
(L)
0 y = hL

(see, e. g, [1, p. 195]). Put φ(M) = hM . It is clear that US(y, Ly + φ(M)) = (g, hL, hM ).

iii) kerUS = L̂0.
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Indeed,

US(y, Ly + φ(M)) = 0 ⇔ (Uy = 0, P
(L)
0 = 0) ∧ (φ(M) = 0)

⇔ (y ∈ D(L0) ∧ (φ(M) = 0)) ⇔ (y, Ly + φ(M)) = (y, S0y) ∈ S0.

(Let us recall that in the theory of linear relations the operator and its graph are iden-
tified). �

Theorem 2. Let (GL, U), (GM , U), E be as above, in particular (5) is fulfilled;

GS := GL ⊕H
(L)
0 ⊕H

(M)
0 ,

∀(y, Ly + φ(M)) ∈ S US(y, Ly + φ(M)) = (Uy, P
(L)
0 y, φ(M));

GT := GM ⊕H
(M)
0 ⊕H

(L)
0 ,

∀(z,Mz + φ(L)) ∈ T VT (z,Mz + φ(L)) = (V z, P
(M)
0 z, φ(L)).

Then

i) (GS , US) is a boundary pair for (S, S0);
ii) (GT , VT ) is a boundary pair for (T, T0);
iii) ∀(y, Ly + φ(M)) ∈ S, ∀(z,Mz + φ(L)) ∈ T

(6)

(Ly + φ(M) | z)− (y | Mz + φ(L))

= (ESUS(y, Ly + φ(M)) | VT (z,Mz + φ(L)))GT

= (US(y, Ly + φ(M)) | E∗
SVT (z,Mz + φ(L)))GS

where

(7) ES =







E 0 0
0 0 I

H
(M)
0

0 −I
H

(L)
0

0






,

ES ∈ B(GS , GT ).

Proof. The statement i) was shown before (see Theorem 1). The proof of the second
statement is analogous. Further, in view of (5) for each y ∈ D(L), z ∈ D(M), φ(L) ∈

H
(L)
0 , φ(M) ∈ H

(M)
0 we have

(Ly + φ(M) | z)− (y | Mz + φ(L)) = (Ly | z)− (y | Mz)− (yφ(L))

= (EUy | V z)GM
+ (φ(M) | P

(M)
0 z)

H
(M)
0

− (P
(L)
0 y | φ(L))

H
(L)
0

= (Uy | E∗V z)GL
+ (φ(M) | P

(M)
0 z)

H
(M)
0

− (P
(L)
0 y | φ(L))

H
(L)
0

.

But
(EUy | V z)GM

+ (φ(M) | P
(M)
0 z)

H
(M)
0

− (P
(L)
0 y | φ(L))

H
(L)
0

=









EUy

φ(M)

−P
(L)
0 y



 |





V z

P
(M)
0 z

φ(L)









GM⊕H
(M)
0 ⊕H

(M)
0

=









E 0 0
0 0 1M
0 −1L 0









Uy

P
(L)
0 y

φ(M)



 |





V z

P
(M)
0 z

φ(L)









GT

= (ESUS(y, Ly + φ(M)) | VT (z,Mz + φ(L)))GT

= (US(y, Ly + φ(M)) | E∗
SVS(z,Mz + φ(L)))GS
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(here and below 1L := I
H

(L)
0

, 1M := I
H

(M)
0

). The Theorem is proved. �

Denotations. Let us introduce the following denotations.

(8)

Lu := L ↓ HL, Mv := M ↓ HM , 1L := I
H

(L)
0

, 1M := I
H

(M)
0

,

Su :=





Lu 0 0
0 0 1M
0 −1L 0



 , Tv :=





Mv 0 0
0 0 1L
0 −1M 0



 .

Corollary 1. Assume that (GSL,US) and (GT , VT ) are boundary pairs for (S, S0) and
(T, T0), respectively. The following assertions are equivalent (up to the identifications

S ↔ D[L]⊕H
(M)
0 , T ↔ D[M ]⊕H

(L)
0 ):

i) the relation (6) holds;(9)

ii) USTvV
∗
T = −E−1

S
;(10)

iii) V ∗
TESUS ↓ HS = Su;(11)

iv) VTSuU
∗
S = (E∗

S)
−1;(12)

v) U∗
SE

∗
SVT ↓ HT = −Tv,(13)

where HS = HL ⊕H
(L)
0 ⊕H

(M)
0 , HT = HM ⊕H

(M)
0 ⊕H

(L)
0 .

Proof. At first let us remind that here and below S and T are treated as Hilbert spaces
equipped with the inner products generating the norms

∀(y, Ly + φ(M)) ∈ S ‖(y, Ly + φ(M))‖2S = ‖y‖2 + ‖Ly‖2 + ‖φ(M)‖2

and

∀(z,Mz + φ(L)) ∈ T ‖(z,Mz + φ(L))‖2T = ‖z‖2 + ‖Mz‖2 + ‖φ(L)‖2

respectively.
The Theorem 2 shows that the relations (5) and (6) are equivalent. On the other

hand, (5) is equivalent to each of following equalities:

vi) UMvV
′ = −E−1;

vii) V ′EU ↓ HL = Lu;

viii) V LuU
′ = (E∗)−1;

ix) U ′E∗V ↓ HM = −Mv

(see [1]). Further, L∗
u = −Mv, LuMv = −IHM

,MvLu = −IHL
(it is proved in [7]; see also

[1, p. 158]), consequently one can readily check by calculations that

(14) S∗
u = −Tv, Su(−Tv) =





IHM
0 0

0 1M 0
0 0 1L



 , (−Tv)Su =





IHM
0 0

0 1L 0
0 0 1M



 .

Furthermore, it is clear that

(15) US ↓ HS =





UHL
0 0

0 1L 0
0 0 1M



 , VT ↓ HT =





VHM
0 0

0 1M 0
0 0 1L



 .
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In addition, (7) implies

(16)

E∗
S =





E∗ 0 0
0 0 −1L
0 1M 0



 , Ê−1 =





E−1 0 0
0 0 −1L
0 1M 0



 ,

(E∗
S)

−1 =





(E∗)−1 0 0
0 0 1M
0 −1L 0





and the equalities (15) imply

(17) U∗
S = (US ↓ HS)

∗ =





U ′ 0 0
0 1L 0
0 0 1M



 , V ∗
T = (VT ↓ HT )

∗ =





V ′ 0 0
0 1M 0
0 0 1L



 .

Taking into account (15)–(17), we obtain

VTSuU
∗
S =





V LuU
′ 0 0

0 0 1M
0 −1L 0



 , USTvV
∗
T =





UMvV
′ 0 0

0 0 1L
0 −1M 0



 ,

V ∗
TESUS ↓ HS =





V ′EU ↓ HL 0 0
0 0 1M
0 −1L 0



 ,

USE
∗
SVT ↓ HT =





U ′E∗V ↓ HM 0 0
0 0 −1L
0 1M 0



 .

Now the proof follows from the equalities vi)–ix). �

Remark 4. Taking into account (14), it is easy to conclude that (up to the mentioned
identifications)

S∗
0 = S∗ ⊕ Su(S ⊖ S0), T ∗

0 = T ∗ ⊕ Tv(T ⊖ T0).

Corollary 2. Suppose that the boundary pair (GS , US) for (S, S0) is as above and
there exist the orthogonal decomposition GS = G1 ⊕G2 and the operators Ui ∈ B(S,Gi)
(i = 1, 2) such that Us = U1 ⊕ U2 . Then

a) there exist unique Ũ1 ∈ B(T,G2),Ũ2 ∈ B(T,G1) such that (G̃S , ŨS) where G̃S =

G2 ⊕G1,ŨS = U2 ⊕ U2. is a boundary pair for (T, T0) and

(18)

∀(y, Ly + φ(M)) ∈ S, ∀(z,Mz + φ(L)) ∈ T

(Ly + φ(M) | z)− (y | Mz + φ(L))

= (iJSUS(y, Ly + φ(M)) | ŨS(z,Mz + φ(L)))
G̃S

= (US(y, Ly + φ(M)) | −iJ∗
SŨS(z,Mz + φL))GS

= (U1(y, Ly + φ(M)) | Ũ2(z,Mz + φ(L)))G1

− (U2(y, Ly + φ(M)) | Ũ1(z,Mz + φ(L)))G2

where

(19) (∀g1 ∈ G1) (∀g2 ∈ G2) JS(g1, g2) = (ig2,−ig1).
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b) Let (G̃S , ŨS) where G̃S = G2 ⊕G1, ŨS = Ũ1 ⊕ Ũ2 is a boundary pair for (T, T0).
The following statements are equivalent:

i) the relation (18) holds;

ii) USTvŨ
∗
S = iJ∗

S ;

iii) Ũ∗
SJSUS ↓ HS = −iSu;

iv) ŨSSuU
∗
S = iJS ;

v) U∗
SJ

∗
SŨS ↓ HT = −iTv.

Proof. The proof of Corollary 2 can be obtained from Theorem 2 and Corollary 1 by
substituting (GT , VT ) = (G̃S , ŨS), ES = iJS into the corresponding formulas. �

3. The general form of mentioned above relation

Proposition 1. Let Gi, Ui, Ũi (i = 1, 2) be as in Corollary 2. Put S1 = kerU1. Then

S∗
1 = ker Ũ1.

Proof. The inclusion S0 ⊂ S1 implies S∗
1 ⊂ T . Further, (18) yields ker Ũ1 ⊂ S∗

1 .
Conversely, assume that (z,Mz + φ(L)) . Taking into account (18), we conclude that

∀(y, Ly + φ(M)) ∈ S1 = kerU1

(

U2(y, Ly + φ(M)) | Ũ1(z,Mz + φ(L))
)

G2

= 0.

But the equalities R(U1⊕U2) = G1⊕G2 = R(U1)⊕R(U2) show that R(U2 ↓ kerU1) =

R(U2) = G2, therefore Ũ1(z,Mz + φ(L)) = 0. In other words, (z,Mz + φ(L)) ∈ ker Ũ1;

thus S∗
1 ⊂ ker Ũ1. �

Theorem 3. Assume that S0 ⊂ S1 = S1 ⊂ S and GS is a boundary space for (S, S0).
Then

i) there exist the orthogonal decomposition GS = G1 ⊕G2 and the operators

(20) U1 ∈ B(S,G1), V1 ∈ B(T,G2)

such that

(21) S1 = kerU1, S∗
1 = kerV1,

sequently

(22) kerU1 ⊃ S0, kerV1 ⊃ T0;

ii) ii) with the loss of generality, we may assume that

(23) R(U1) = G1, R(V1) = G2.

Proof. Let (GS , US) be a boundary pair for (S, S0) . Put G2 =
{

US(y, Ly + φ(M)) :

(y, Ly + φ(M)) ∈ S1

}

=
{

(US ↓ HS)(y, Ly + φ(M)) : (y, Ly + φ(M)) ∈ S1 ⊖ S0

}

.

Since US ↓ HS is a homeomorphismHS → G2(⊂ GS), G2 is a closed linear space of GS

. Put G1 = GS ⊖G2 , Ui = PiUS where Pi (i = 1, 2) are the orthoprojections GS → Gi,

and denote by Ũ1 ∈ B(T,G2), Ũ2 ∈ B(T,G1) the operators uniquely determined by
Ui ∈ B(S,Gi) (i = 1, 2) from (18).

To complete the proof it is sufficient to substitute V1 = Ũ1 into (20)–(23) and to apply
Proposition 1. �
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4. On mutual adjointness of considered relations

In this item the following problem is considered: under what conditions two closed
relations satisfying the inclusions

S0 ⊂ S1 ⊂ S, T0 ⊂ T1 ⊂ T

are mutually adjoint. Taking into account Theorem 3, we see that this problem may be

(24) S1 = kerU1, T1 = kerV1

formulated in such way: assume that are as above (see (20), (22)), (24) (cf. (21));

establish the criterion of mutual adjointness of L̂1 and M̂1. Before to solve this problem
let us introduce the following notations:

(25)

{

X1 = S1 ⊖ S0, X2 = S ⊖ S1,

Y1 = T1 ⊖ T0, Y2 = T ⊖ T1.

It is clear that

(26) HS = X1 ⊕X2, HT = Y1 ⊕ Y2,

(27) S0 ⊕X1 = S1 = kerU1, T0 ⊕ Y1 = T1 = kerV1.

Moreover, by virtue of (14), HS = TvHT . Whence using (26) and the unitarity of Tv we
obtain

(28) HS = TvHT = Tv(Y1 ⊕ Y2) = TvY1 ⊕ TvY2.

Lemma 2.

(29) T ∗
1 = S0 ⊕ TvY2 = S0 ⊕ TvR(V ∗

1 ).

Proof. Applying the assertion from Remark 4 to the pair (T, T1) (instead) (T, T0) , we
obtain T ∗

1 = S0 ⊕ Tv(T ⊕ T1). Taking into account (24), (25), we have

Y2 = T ⊖ T1 = T ⊖ kerV1 = R(V ∗
1 ).

This completes the proof of the lemma. �

Lemma 3. The following statements are equivalent:

i) S1 ⊃ T ∗
1 ;

ii) U1TvV
∗
1 = 0;

iii) kerU1 ⊃ S0 ⊕ TvR(V ∗
1 );

iv) X1 ⊃ TvY2.

In this case

(30) S ⊖ T ∗
1 = kerU1 ⊖

(

S0 ⊕ TvR(V ∗
1 )

)

= X ⊖ TvY2.

Proof. Taking into account (26)–(29) and the inclusion kerU1 ⊃ S0 we obtain

U1TvV
∗
1 = 0 ⇔ kerU1 ⊃ TvR(V ∗

1 ) ⇔ kerU1 ⊃ TvR(V ∗
1 )

⇔ kerU1 ⊃ S0 ⊕ TvR(V ∗
1 ) ⇔ S1 ⊃ T ∗

1

⇔ S1 ⊖ S0 ⊃ T ∗
1 ⊖ S0 ⇔ X1 ⊃ TvY2.

Therefore, the conditions i)–iv) are equivalent. Suppose these conditions take place.
From (27) and (29) the equalities (30) are derived. �

Now we are able to formulate the main result of present paper.

Theorem 4.

(31) S1 = T ∗
1 ⇔ kerU1 = S0 ⊕ TvR(V ∗

1 ) ⇔ X1 = TvY2.
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Proof. Proof follows immediately from (30). �

Corollary 3. Under the conditions of Theorem 4 suppose that dimHL,∞ and equalities
(23) hold. In this case S1 = T ∗

1 ⇔ U1TvV
∗
1 = 0. Proof can be obtained from Theorem 3 in

the same way as in [15] the proof of Corollary 4.6.5 was obtained from Corollary 4.6.3.
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