ON A CRITERION OF MUTUAL ADJOINTNESS FOR EXTENSIONS OF SOME NONDENSELY DEFINED OPERATORS

IU. I. OLIIAR AND O. G. STOROZH

Dedicated to Vladimir Koshmanenko on the occasion of his 70th birthday

Abstract

In the paper the role of initial object is played by a pair of closed linear densely defined operators L_{0} and M_{0}, where $L_{0} \subset M_{0}^{*}:=L$, acting in Hilbert space. A criterion of mutual adjointness for some classes of the extensions of finitedimensional (non densely defined) restrictions of L_{0} and M_{0} are established. The main results are based on the theory of linear relations in Hilbert spaces and are formulated in the terms of abstract boundary operators.

1. Introduction

The theory of linear relations (i.e. "multivalued operators") in Hilbert spaces was initiated by R. Arens [1]. Some aspects of the the extension theory of linear relations (in particular, nondensely defined operators, first of all, Hermitian ones) had been developed by many other mathematicians (see, e. g., [2]-[20]).

In this paper, a criterion of mutual adjointness for some classes of extensions of finitedimensional (non densely defined) restrictions of two given closed linear (densely defined) operators acting in Hilbert space are established.

Through this report we use the following denotations: $D(T), R(T)$, ker T are, respectively, the domain, range, and kernel of a linear operator ; $\mathcal{B}(X, Y)$ is the set of linear bounded operators $T: X \rightarrow Y$ such that $D(T)=X ; \mathcal{C}(X)$ is a class of closed densely defined linear operators $T: X \rightarrow X ;(\cdot \mid \cdot)_{X}$ is the inner product in a Hilbert space X; $T \downarrow E$ is the restriction of T onto $E ; \mathbb{I}_{X}$ is the identity in $X ; \oplus$ and \ominus are the symbols of orthogonal sum and orthogonal complement, respectively; $A E:=\{A x: x \in E\}$.

If $A: X \rightarrow Y_{i}, i=1, \ldots, n$ are linear operators then the notation $A=A_{1} \oplus \cdots \oplus A_{n}$ means that $A x=\left(A_{1} x, \ldots, A_{n} x\right)$ for every $x \in X$. The role of the initial object is played by a couple $\left(L, L_{0}\right)$ of operators $H \rightarrow H$ (H is a fixed complex Hilbert space equipped with the inner product $(\cdot \mid \cdot)$ and the corresponding norm $\|\cdot\|)$ such that

$$
\begin{gather*}
L, L_{0} \in \mathcal{C}(H), \quad L_{0} \subset L \tag{1}\\
M_{0}:=L^{*}, \quad M:=L_{0}^{*} .
\end{gather*}
$$

(Here and below T^{*} means the operator or relation adjoint of the operator or relation $T)$.

By $D[T], T \in \mathcal{C}(H)$, we understand the variety $D(T)$ interpreted as a Hilbert space with the inner product: $\forall y, z \in D(T)(y \mid z)_{T}=(y \mid z)+(T y \mid T z)$ and the corresponding graph-norm $\|\cdot\|_{T}$. By \oplus_{T} and \ominus_{T} we denote the symbols of orthogonal sum and orthogonal complement in $D[T]$.

Put $H_{L}=D[L] \ominus_{L} D\left[L_{0}\right], H_{M}=D[M] \ominus_{M} D\left[M_{0}\right]$ and denote by P_{L}, P_{M}, respectively, the orthoprojections

$$
D[L] \rightarrow H_{L}, D[M] \rightarrow H_{M} .
$$

Furthermore, for each $W \in \mathcal{B}(D, G)$, where D coincides with $D[L]$ or $D[M]$ and G is an (auxiliary) Hilbert space, the adjoint operator will be denoted by W^{\prime}, consequently

$$
\forall y \in D(L), \quad \forall g \in G(W y \mid g)_{G}=\left(y \mid W^{\prime} g\right)_{L}
$$

Remark 1. It is known (see [1]) that for each couple (L, L_{0}) satisfying (1) there exists a so-called boundary pair (G, U). It means that G is an auxiliary Hilbert space,

$$
\begin{equation*}
U \in \mathcal{B}(D[L], G), \quad R(U)=G, \quad \operatorname{ker} U=D\left(L_{0}\right) . \tag{3}
\end{equation*}
$$

Moreover, if M and M_{0} are defined by (2), and $\left(G_{L}, U\right),\left(G_{M}, V\right)$ are boundary pairs for $\left(L, L_{0}\right),\left(M, M_{0}\right)$, respectively, then there exists a unique operator E satisfying the following conditions:
i)

$$
\begin{equation*}
E \in \mathcal{B}\left(G_{L}, G_{M}\right), \quad E^{-1} \in \mathcal{B}\left(G_{M}, G_{L}\right) \tag{4}
\end{equation*}
$$

ii)

$$
\begin{gather*}
\forall y \in D(L), \quad \forall z \in D(M) \\
(L y \mid z)-(y \mid M z)=(E U y \mid V z)_{G}=\left(U y \mid E^{*} V z\right)_{G} \tag{5}
\end{gather*}
$$

Further, let H_{0}^{L}, H_{0}^{M} be finite-dimensional subspaces of H. Put

$$
\begin{aligned}
S_{0} & =L_{0} \downarrow H \ominus H_{0}^{(L)}, \quad \hat{M}_{0}=M_{0} \downarrow H \ominus H_{0}^{(M)} \\
S & =\left\{\left(y, L y+\phi^{(M)}\right): y \in D(L), \phi^{(M)} \in H_{0}^{(M)}\right\}, \\
T & =\left\{\left(z, M z+\phi^{(L)}\right): z \in D(M), \phi^{(L)} \in H_{0}^{(L)}\right\}
\end{aligned}
$$

and denote by $P_{0}^{(L)}, P_{0}^{(M)}$, respectively, the orthoprojections

$$
H \rightarrow H_{0}^{(L)}\left(H \rightarrow H_{0}^{(M)}\right)
$$

Note that $S_{0}^{*}=\hat{M}, T_{0}^{*}=\hat{L}($ see $[2])$.
2. One abstract analogue of the Green's formula for the pairs of NONDENSELY DEFINED OPERATORS

Definition 1. ([18]) Let G_{S} be an auxiliary Hilbert space and $U_{S} \in \mathcal{B}\left(S, G_{S}\right)$. A pair $\mathcal{B}\left(G_{S}, U_{S}\right)$ is called a boundary pair for $\left(S, S_{0}\right)$, if $R\left(U_{S}\right)=G_{S}$, $\operatorname{ker} U_{S}=S_{0}$. In this case G_{S} is said to be a boundary space for $\left(S, S_{0}\right)$.

Remark 2. It should be noted that

- in the case where L_{0} is a symmetric operator with equal defect numbers and $L=L_{0}^{*}$, the latter definition may be interpreted as some generalization of the notion of boundary triplet, exposed in [2], [7], [9], [16] (Yu. M. Arlinskii, V. A. Derkach, M. M. Malamud, S. Hassi, H. S. V. de Snoo and others);
- in the situation if, in addition, $L_{0}=S_{0}$, the concept of boundary triplet (=boundary value space) had been developed by V. I. Gorbachuk and M. L. Gorbachuk [6], F. S. Rofe-Beketov [19], A. N. Kochubei [10], V. M. Bruk [4], V. A. Mikhailets [17] and other mathematicians (see [15] and reference therein).

Lemma 1. Defined on S the norms $\|\cdot\|_{\hat{L}},\|\cdot\|_{\mathcal{L}}$, where

$$
\begin{aligned}
\forall\left(y, L y+\phi^{(M)}\right) \in S \quad\left\|\left(y, L y+\phi^{(M)}\right)\right\|_{H^{2}}^{2} & =\|y\|^{2}+\left\|L y+\phi^{(M)}\right\|^{2} \\
\forall\left(y, L y+\phi^{(M)}\right) \in S \quad\left\|\left(y, L y+\phi^{(M)}\right)\right\|_{S}^{2} & =\|y\|^{2}+\|L y\|^{2}+\left\|\phi^{(M)}\right\|^{2}
\end{aligned}
$$

are equivalent.
Proof. We have

$$
\begin{aligned}
\left\|\left(y, L y+\phi^{(M)}\right)\right\|_{H^{2}}^{2} & =\|y\|^{2}+\left\|L y+\phi^{(M)}\right\|^{2} \\
& \leq\|y\|^{2}+\|L y\|^{2}+2\|L y\| \cdot\left\|\phi^{(M)}\right\|+\left\|\phi^{(M)}\right\|^{2} \\
& \leq\|y\|^{2}+\|L y\|^{2}+\|L y\|^{2}+\left\|\phi^{(M)}\right\|^{2}+\left\|\phi^{(M)}\right\|^{2} \\
& \leq 2\left(\|y\|^{2}+\|L y\|^{2}+\left\|\phi^{(M)}\right\|^{2}\right)=2\left\|\left(y, L y+\phi^{(M)}\right)\right\|_{S}^{2}
\end{aligned}
$$

Thus $\|\cdot\|_{S}$ is stronger than $\|\cdot\|_{H^{2}}$. On the other hand, S is a closed relation, therefore the space $\left(S,\|\cdot\|_{H^{2}}\right)$ is complete. Moreover, L is a closed operator and $H_{0}^{(M)}$ is a finitedimensional subspaces of H , consequently $\left(S,\|\cdot\|_{H^{2}}\right)$ is a complete space too. To complete the proof it is sufficiently to apply Banach inverse operator theorem.

Remark 3. In the sequel we assume that by setting

$$
\left(y, L y+\phi^{(M)}\right) \leftrightarrow\left(y, \phi^{(M)}\right), \quad\left(z, M z+\phi^{(L)}\right) \leftrightarrow\left(z, \phi^{(L)}\right)
$$

the identifications

$$
S \leftrightarrow D[L] \oplus H_{0}^{(M)}, \quad T \leftrightarrow D[M] \oplus H_{0}^{(L)}
$$

(therefore the identifications $L \leftrightarrow D[L], L_{0} \leftrightarrow D\left[L_{0}\right], S_{0} \leftrightarrow D\left[S_{0}\right]$ and $M \leftrightarrow D[M], M_{0} \leftrightarrow$ $\left.D\left[M_{0}\right], T_{0} \leftrightarrow D\left[T_{0}\right]\right)$ are provided. The latter lemma shows that the mappings

$$
\begin{aligned}
& S \supset\left(y, L y+\phi^{(M)}\right) \mapsto\left(y, \phi^{(M)}\right) \in D[L] \oplus H_{0}^{(M)} \\
& T \supset\left(z, M z+\phi^{(L)}\right) \mapsto\left(z, \phi^{(L)}\right) \in D[M] \oplus H_{0}^{(L)}
\end{aligned}
$$

are homeomorphic ones.
Theorem 1. Suppose that (G, U) is a boundary pair for $\left(L, L_{0}\right)$ and

$$
\forall\left(y, L y+\phi^{(M)}\right) \in S \quad U_{S}\left(y, L y+\phi^{(M)}\right)=\left(U y, P_{0}^{(L)} y, \phi^{(M)}\right)
$$

Then $\left(G_{S}, U_{S}\right)$, where $G_{S}=G \oplus H_{0}^{(L)} \oplus H_{0}^{(M)}$, is a boundary pair for $\left(S, S_{0}\right)$.
Proof. i) $U_{S} \in \mathcal{B}\left(S, G_{S}\right)$.
For each $\left(y, L y+\phi^{(M)}\right) \in S$ we have

$$
\begin{aligned}
\left\|U_{S}\left(y, L y+\phi^{(M)}\right)\right\|_{G_{S}}^{2} & =\left\|\left(U y, P_{0}^{(L)} y, \phi^{(M)}\right)\right\|_{G_{S}}^{2} \\
& =\|U y\|_{G}^{2}+\left\|P_{0}^{(L)} y\right\|^{2}+\left\|\phi^{(M)}\right\|^{2} \\
& \leq c^{2}\left(\|y\|^{2}+\|L y\|^{2}\right)+\|y\|^{2}+\left\|\phi^{(M)}\right\|^{2} \\
& \leq c_{1}^{2}\left(\|y\|^{2}+\|L y\|^{2}+\left\|\phi^{(M)}\right\|^{2}\right)=c_{1}^{2}\left\|\left(y, L y+\phi^{(M)}\right)\right\|_{S}^{2}
\end{aligned}
$$

(for some $c>0, c_{1}>0$), consequently $U_{S} \in \mathcal{B}\left(S, G_{S}\right)$. Now the proof follows from Lemma 1.
ii) $R\left(U_{S}\right)=G_{S}$.

Suppose that $\left(g, h_{L}, h_{M}\right) \in G \oplus H_{0}^{(L)} \oplus H_{0}^{(M)}=\hat{G}$. Since $R(U)=G$ and $P_{0}^{(L)}$ is a bounded finite-dimensional operator, there exists $y \in D(L)$ such that $U y=g, P_{0}^{(L)} y=h_{L}$ (see, e. g, [1, p. 195]). Put $\phi^{(M)}=h_{M}$. It is clear that $U_{S}\left(y, L y+\phi^{(M)}\right)=\left(g, h_{L}, h_{M}\right)$.
iii) $\operatorname{ker} U_{S}=\hat{L}_{0}$.

Indeed,

$$
\begin{aligned}
U_{S}\left(y, L y+\phi^{(M)}\right)=0 & \Leftrightarrow\left(U y=0, P_{0}^{(L)}=0\right) \wedge\left(\phi^{(M)}=0\right) \\
& \Leftrightarrow\left(y \in D\left(L_{0}\right) \wedge\left(\phi^{(M)}=0\right)\right) \Leftrightarrow\left(y, L y+\phi^{(M)}\right)=\left(y, S_{0} y\right) \in S_{0}
\end{aligned}
$$

(Let us recall that in the theory of linear relations the operator and its graph are identified).

Theorem 2. Let $\left(G_{L}, U\right),\left(G_{M}, U\right), E$ be as above, in particular (5) is fulfilled;

$$
\begin{gathered}
G_{S}:=G_{L} \oplus H_{0}^{(L)} \oplus H_{0}^{(M)}, \\
\forall\left(y, L y+\phi^{(M)}\right) \in S \quad U_{S}\left(y, L y+\phi^{(M)}\right)=\left(U y, P_{0}^{(L)} y, \phi^{(M)}\right) ; \\
G_{T}:=G_{M} \oplus H_{0}^{(M)} \oplus H_{0}^{(L)}, \\
\forall\left(z, M z+\phi^{(L)}\right) \in T \quad V_{T}\left(z, M z+\phi^{(L)}\right)=\left(V z, P_{0}^{(M)} z, \phi^{(L)}\right) .
\end{gathered}
$$

Then
i) $\left(G_{S}, U_{S}\right)$ is a boundary pair for $\left(S, S_{0}\right)$;
ii) $\left(G_{T}, V_{T}\right)$ is a boundary pair for $\left(T, T_{0}\right)$;
iii) $\forall\left(y, L y+\phi^{(M)}\right) \in S, \forall\left(z, M z+\phi^{(L)}\right) \in T$

$$
\begin{aligned}
(L y & \left.+\phi^{(M)} \mid z\right)-\left(y \mid M z+\phi^{(L)}\right) \\
& =\left(E_{S} U_{S}\left(y, L y+\phi^{(M)}\right) \mid V_{T}\left(z, M z+\phi^{(L)}\right)\right)_{G_{T}} \\
& =\left(U_{S}\left(y, L y+\phi^{(M)}\right) \mid E_{S}^{*} V_{T}\left(z, M z+\phi^{(L)}\right)\right)_{G_{S}}
\end{aligned}
$$

where

$$
E_{S}=\left(\begin{array}{ccc}
E & 0 & 0 \tag{7}\\
0 & 0 & \mathbb{I}_{H_{0}^{(M)}} \\
0 & -\mathbb{I}_{H_{0}^{(L)}} & 0
\end{array}\right)
$$

$$
E_{S} \in \mathcal{B}\left(G_{S}, G_{T}\right)
$$

Proof. The statement i) was shown before (see Theorem 1). The proof of the second statement is analogous. Further, in view of (5) for each $y \in D(L), z \in D(M), \phi^{(L)} \in$ $H_{0}^{(L)}, \phi^{(M)} \in H_{0}^{(M)}$ we have

$$
\begin{aligned}
(L y & \left.+\phi^{(M)} \mid z\right)-\left(y \mid M z+\phi^{(L)}\right)=(L y \mid z)-(y \mid M z)-\left(y \phi^{(L)}\right) \\
& =(E U y \mid V z)_{G_{M}}+\left(\phi^{(M)} \mid P_{0}^{(M)} z\right)_{H_{0}^{(M)}}-\left(P_{0}^{(L)} y \mid \phi^{(L)}\right)_{H_{0}^{(L)}} \\
& =\left(U y \mid E^{*} V z\right)_{G_{L}}+\left(\phi^{(M)} \mid P_{0}^{(M)} z\right)_{H_{0}^{(M)}}-\left(P_{0}^{(L)} y \mid \phi^{(L)}\right)_{H_{0}^{(L)}} .
\end{aligned}
$$

But

$$
\begin{aligned}
(E U y & \mid V z)_{G_{M}}+\left(\phi^{(M)} \mid P_{0}^{(M)} z\right)_{H_{0}^{(M)}}-\left(P_{0}^{(L)} y \mid \phi^{(L)}\right)_{H_{0}^{(L)}} \\
& =\left(\left.\left(\begin{array}{c}
E U y \\
\phi^{(M)} \\
-P_{0}^{(L)} y
\end{array}\right) \right\rvert\,\left(\begin{array}{c}
V z \\
P_{0}^{(M)} z \\
\phi^{(L)}
\end{array}\right)\right)_{G_{M} \oplus H_{0}^{(M)} \oplus H_{0}^{(M)}} \\
& =\left(\left.\left(\begin{array}{ccc}
E & 0 & 0 \\
0 & 0 & 1_{M} \\
0 & -1_{L} & 0
\end{array}\right)\left(\begin{array}{c}
U y \\
P_{0}^{(L)} y \\
\phi^{(M)}
\end{array}\right) \right\rvert\,\left(\begin{array}{c}
V z \\
P_{0}^{(M)} z \\
\phi^{(L)}
\end{array}\right)\right)_{G_{T}} \\
& =\left(E_{S} U_{S}\left(y, L y+\phi^{(M)}\right) \mid V_{T}\left(z, M z+\phi^{(L)}\right)\right)_{G_{T}} \\
& =\left(U_{S}\left(y, L y+\phi^{(M)}\right) \mid E_{S}^{*} V_{S}\left(z, M z+\phi^{(L)}\right)\right)_{G_{S}}
\end{aligned}
$$

(here and below $\left.1_{L}:=\mathbb{I}_{H_{0}^{(L)}}, 1_{M}:=\mathbb{I}_{H_{0}^{(M)}}\right)$. The Theorem is proved.
Denotations. Let us introduce the following denotations.

$$
L_{u}:=L \downarrow H_{L}, \quad M_{v}:=M \downarrow H_{M}, \quad 1_{L}:=\mathbb{I}_{H_{0}^{(L)}}, \quad 1_{M}:=\mathbb{I}_{H_{0}^{(M)}}
$$

$$
S_{u}:=\left(\begin{array}{ccc}
L_{u} & 0 & 0 \tag{8}\\
0 & 0 & 1_{M} \\
0 & -1_{L} & 0
\end{array}\right), \quad T_{v}:=\left(\begin{array}{ccc}
M_{v} & 0 & 0 \\
0 & 0 & 1_{L} \\
0 & -1_{M} & 0
\end{array}\right) .
$$

Corollary 1. Assume that $\left(G_{S} L, U_{S}\right)$ and $\left(G_{T}, V_{T}\right)$ are boundary pairs for $\left(S, S_{0}\right)$ and $\left(T, T_{0}\right)$, respectively. The following assertions are equivalent (up to the identifications $\left.S \leftrightarrow D[L] \oplus H_{0}^{(M)}, T \leftrightarrow D[M] \oplus H_{0}^{(L)}\right):$
i) the relation (6) holds;
ii) $U_{S} T_{v} V_{T}^{*}=-E_{S}^{-1}$;
iii) $V_{T}^{*} E_{S} U_{S} \downarrow H_{S}=S_{u}$;
iv) $V_{T} S_{u} U_{S}^{*}=\left(E_{S}^{*}\right)^{-1}$;
v) $U_{S}^{*} E_{S}^{*} V_{T} \downarrow H_{T}=-T_{v}$,
where $H_{S}=H_{L} \oplus H_{0}^{(L)} \oplus H_{0}^{(M)}, H_{T}=H_{M} \oplus H_{0}^{(M)} \oplus H_{0}^{(L)}$.
Proof. At first let us remind that here and below S and T are treated as Hilbert spaces equipped with the inner products generating the norms

$$
\forall\left(y, L y+\phi^{(M)}\right) \in S \quad\left\|\left(y, L y+\phi^{(M)}\right)\right\|_{S}^{2}=\|y\|^{2}+\|L y\|^{2}+\left\|\phi^{(M)}\right\|^{2}
$$

and

$$
\forall\left(z, M z+\phi^{(L)}\right) \in T \quad\left\|\left(z, M z+\phi^{(L)}\right)\right\|_{T}^{2}=\|z\|^{2}+\|M z\|^{2}+\left\|\phi^{(L)}\right\|^{2}
$$

respectively.
The Theorem 2 shows that the relations (5) and (6) are equivalent. On the other hand, (5) is equivalent to each of following equalities:

$$
\text { vi) } U M_{v} V^{\prime}=-E^{-1}
$$

vii) $V^{\prime} E U \downarrow H_{L}=L_{u}$;
viii) $V L_{u} U^{\prime}=\left(E^{*}\right)^{-1}$;
ix) $U^{\prime} E^{*} V \downarrow H_{M}=-M_{v}$
(see [1]). Further, $L_{u}^{*}=-M_{v}, L_{u} M_{v}=-\mathbb{I}_{H_{M}}, M_{v} L_{u}=-\mathbb{I}_{H_{L}}$ (it is proved in [7]; see also [1, p. 158]), consequently one can readily check by calculations that

$$
S_{u}^{*}=-T_{v}, S_{u}\left(-T_{v}\right)=\left(\begin{array}{ccc}
\mathbb{I}_{H_{M}} & 0 & 0 \tag{14}\\
0 & 1_{M} & 0 \\
0 & 0 & 1_{L}
\end{array}\right), \quad\left(-T_{v}\right) S_{u}=\left(\begin{array}{ccc}
\mathbb{I}_{H_{M}} & 0 & 0 \\
0 & 1_{L} & 0 \\
0 & 0 & 1_{M}
\end{array}\right)
$$

Furthermore, it is clear that

$$
U_{S} \downarrow H_{S}=\left(\begin{array}{ccc}
U_{H_{L}} & 0 & 0 \tag{15}\\
0 & 1_{L} & 0 \\
0 & 0 & 1_{M}
\end{array}\right), \quad V_{T} \downarrow H_{T}=\left(\begin{array}{ccc}
V_{H_{M}} & 0 & 0 \\
0 & 1_{M} & 0 \\
0 & 0 & 1_{L}
\end{array}\right)
$$

In addition, (7) implies
(16)

$$
\begin{gathered}
E_{S}^{*}=\left(\begin{array}{ccc}
E^{*} & 0 & 0 \\
0 & 0 & -1_{L} \\
0 & 1_{M} & 0
\end{array}\right), \quad \hat{E}^{-1}=\left(\begin{array}{ccc}
E^{-1} & 0 & 0 \\
0 & 0 & -1_{L} \\
0 & 1_{M} & 0
\end{array}\right) \\
\left(E_{S}^{*}\right)^{-1}=\left(\begin{array}{ccc}
\left(E^{*}\right)^{-1} & 0 & 0 \\
0 & 0 & 1_{M} \\
0 & -1_{L} & 0
\end{array}\right)
\end{gathered}
$$

and the equalities (15) imply
(17) $\quad U_{S}^{*}=\left(U_{S} \downarrow H_{S}\right)^{*}=\left(\begin{array}{ccc}U^{\prime} & 0 & 0 \\ 0 & 1_{L} & 0 \\ 0 & 0 & 1_{M}\end{array}\right), \quad V_{T}^{*}=\left(V_{T} \downarrow H_{T}\right)^{*}=\left(\begin{array}{ccc}V^{\prime} & 0 & 0 \\ 0 & 1_{M} & 0 \\ 0 & 0 & 1_{L}\end{array}\right)$.

Taking into account (15)-(17), we obtain

$$
\begin{aligned}
V_{T} S_{u} U_{S}^{*}= & \left(\begin{array}{ccc}
V L_{u} U^{\prime} & 0 & 0 \\
0 & 0 & 1_{M} \\
0 & -1_{L} & 0
\end{array}\right), \quad U_{S} T_{v} V_{T}^{*}=\left(\begin{array}{ccc}
U M_{v} V^{\prime} & 0 & 0 \\
0 & 0 & 1_{L} \\
0 & -1_{M} & 0
\end{array}\right) \\
& V_{T}^{*} E_{S} U_{S} \downarrow H_{S}=\left(\begin{array}{ccc}
V^{\prime} E U \downarrow H_{L} & 0 & 0 \\
0 & 0 & 1_{M} \\
0 & -1_{L} & 0
\end{array}\right) \\
& U_{S} E_{S}^{*} V_{T} \downarrow H_{T}=\left(\begin{array}{ccc}
U^{\prime} E^{*} V \downarrow H_{M} & 0 & 0 \\
0 & 0 & -1_{L} \\
0 & 1_{M} & 0
\end{array}\right)
\end{aligned}
$$

Now the proof follows from the equalities vi)-ix).
Remark 4. Taking into account (14), it is easy to conclude that (up to the mentioned identifications)

$$
S_{0}^{*}=S^{*} \oplus S_{u}\left(S \ominus S_{0}\right), \quad T_{0}^{*}=T^{*} \oplus T_{v}\left(T \ominus T_{0}\right)
$$

Corollary 2. Suppose that the boundary pair $\left(G_{S}, U_{S}\right)$ for $\left(S, S_{0}\right)$ is as above and there exist the orthogonal decomposition $G_{S}=G_{1} \oplus G_{2}$ and the operators $U_{i} \in \mathcal{B}\left(S, G_{i}\right)$ $(i=1,2)$ such that $U_{s}=U_{1} \oplus U_{2}$. Then
a) there exist unique $\tilde{U}_{1} \in \mathcal{B}\left(T, G_{2}\right), \tilde{U}_{2} \in \mathcal{B}\left(T, G_{1}\right)$ such that $\left(\tilde{G}_{S}, \tilde{U}_{S}\right)$ where $\tilde{G}_{S}=$ $G_{2} \oplus G_{1}, \tilde{U}_{S}=U_{2} \oplus U_{2}$. is a boundary pair for $\left(T, T_{0}\right)$ and

$$
\begin{aligned}
& \forall\left(y, L y+\phi^{(M)}\right) \in S, \quad \forall\left(z, M z+\phi^{(L)}\right) \in T \\
& \begin{aligned}
&(L y\left.+\phi^{(M)} \mid z\right)-\left(y \mid M z+\phi^{(L)}\right) \\
& \quad=\left(i J_{S} U_{S}\left(y, L y+\phi^{(M)}\right) \mid \tilde{U}_{S}\left(z, M z+\phi^{(L)}\right)\right)_{\tilde{G}_{S}} \\
& \quad=\left(U_{S}\left(y, L y+\phi^{(M)}\right) \mid-i J_{S}^{*} \tilde{U}_{S}\left(z, M z+\phi^{L}\right)\right)_{G_{S}} \\
& \quad=\left(U_{1}\left(y, L y+\phi^{(M)}\right) \mid \tilde{U}_{2}\left(z, M z+\phi^{(L)}\right)\right)_{G_{1}} \\
& \quad-\left(U_{2}\left(y, L y+\phi^{(M)}\right) \mid \tilde{U}_{1}\left(z, M z+\phi^{(L)}\right)\right)_{G_{2}}
\end{aligned}
\end{aligned}
$$

where

$$
\begin{equation*}
\left(\forall g_{1} \in G_{1}\right)\left(\forall g_{2} \in G_{2}\right) \quad J_{S}\left(g_{1}, g_{2}\right)=\left(i g_{2},-i g_{1}\right) \tag{19}
\end{equation*}
$$

b) Let $\left(\tilde{G}_{S}, \tilde{U}_{S}\right)$ where $\tilde{G}_{S}=G_{2} \oplus G_{1}, \tilde{U}_{S}=\tilde{U}_{1} \oplus \tilde{U}_{2}$ is a boundary pair for $\left(T, T_{0}\right)$. The following statements are equivalent:
i) the relation (18) holds;
ii) $U_{S} T_{v} \tilde{U}_{S}^{*}=i J_{S}^{*}$;
iii) $\tilde{U}_{S}^{*} J_{S} U_{S} \downarrow H_{S}=-i S_{u}$;
iv) $\tilde{U}_{S} S_{u} U_{S}^{*}=i J_{S}$;
v) $U_{S}^{*} J_{S}^{*} \tilde{U}_{S} \downarrow H_{T}=-i T_{v}$.

Proof. The proof of Corollary 2 can be obtained from Theorem 2 and Corollary 1 by substituting $\left(G_{T}, V_{T}\right)=\left(\tilde{G}_{S}, \tilde{U}_{S}\right), E_{S}=i J_{S}$ into the corresponding formulas.

3. The general form of mentioned above relation

Proposition 1. Let $G_{i}, U_{i}, \tilde{U}_{i}(i=1,2)$ be as in Corollary 2. Put $S_{1}=\operatorname{ker} U_{1}$. Then $S_{1}^{*}=\operatorname{ker} \tilde{U}_{1}$.

Proof. The inclusion $S_{0} \subset S_{1}$ implies $S_{1}^{*} \subset T$. Further, (18) yields ker $\tilde{U}_{1} \subset S_{1}^{*}$. Conversely, assume that $\left(z, M z+\phi^{(L)}\right)$. Taking into account (18), we conclude that

$$
\forall\left(y, L y+\phi^{(M)}\right) \in S_{1}=\operatorname{ker} U_{1} \quad\left(U_{2}\left(y, L y+\phi^{(M)}\right) \mid \tilde{U}_{1}\left(z, M z+\phi^{(L)}\right)\right)_{G_{2}}=0
$$

But the equalities $R\left(U_{1} \oplus U_{2}\right)=G_{1} \oplus G_{2}=R\left(U_{1}\right) \oplus R\left(U_{2}\right)$ show that $R\left(U_{2} \downarrow \operatorname{ker} U_{1}\right)=$ $R\left(U_{2}\right)=G_{2}$, therefore $\tilde{U}_{1}\left(z, M z+\phi^{(L)}\right)=0$. In other words, $\left(z, M z+\phi^{(L)}\right) \in \operatorname{ker} \tilde{U}_{1}$; thus $S_{1}^{*} \subset \operatorname{ker} \tilde{U}_{1}$.

Theorem 3. Assume that $S_{0} \subset S_{1}=\overline{S_{1}} \subset S$ and G_{S} is a boundary space for $\left(S, S_{0}\right)$. Then
i) there exist the orthogonal decomposition $G_{S}=G_{1} \oplus G_{2}$ and the operators

$$
\begin{equation*}
U_{1} \in \mathcal{B}\left(S, G_{1}\right), \quad V_{1} \in \mathcal{B}\left(T, G_{2}\right) \tag{20}
\end{equation*}
$$

such that

$$
\begin{equation*}
S_{1}=\operatorname{ker} U_{1}, \quad S_{1}^{*}=\operatorname{ker} V_{1}, \tag{21}
\end{equation*}
$$

sequently

$$
\begin{equation*}
\operatorname{ker} U_{1} \supset S_{0}, \quad \operatorname{ker} V_{1} \supset T_{0} \tag{22}
\end{equation*}
$$

ii) ii) with the loss of generality, we may assume that

$$
\begin{equation*}
R\left(U_{1}\right)=G_{1}, \quad R\left(V_{1}\right)=G_{2} \tag{23}
\end{equation*}
$$

Proof. Let $\left(G_{S}, U_{S}\right)$ be a boundary pair for $\left(S, S_{0}\right)$. Put $G_{2}=\left\{U_{S}\left(y, L y+\phi^{(M)}\right)\right.$: $\left.\left(y, L y+\phi^{(M)}\right) \in S_{1}\right\}=\left\{\left(U_{S} \downarrow H_{S}\right)\left(y, L y+\phi^{(M)}\right):\left(y, L y+\phi^{(M)}\right) \in S_{1} \ominus S_{0}\right\}$.

Since $U_{S} \downarrow H_{S}$ is a homeomorphism $H_{S} \rightarrow G_{2}\left(\subset G_{S}\right), G_{2}$ is a closed linear space of G_{S} . Put $G_{1}=G_{S} \ominus G_{2}, U_{i}=P_{i} U_{S}$ where $P_{i}(i=1,2)$ are the orthoprojections $G_{S} \rightarrow G_{i}$, and denote by $\tilde{U}_{1} \in \mathcal{B}\left(T, G_{2}\right), \tilde{U}_{2} \in \mathcal{B}\left(T, G_{1}\right)$ the operators uniquely determined by $U_{i} \in \mathcal{B}\left(S, G_{i}\right)(i=1,2)$ from (18).

To complete the proof it is sufficient to substitute $V_{1}=\tilde{U}_{1}$ into (20)-(23) and to apply Proposition 1.

4. On mutual adjointness of considered relations

In this item the following problem is considered: under what conditions two closed relations satisfying the inclusions

$$
S_{0} \subset S_{1} \subset S, \quad T_{0} \subset T_{1} \subset T
$$

are mutually adjoint. Taking into account Theorem 3, we see that this problem may be

$$
\begin{equation*}
S_{1}=\operatorname{ker} U_{1}, \quad T_{1}=\operatorname{ker} V_{1} \tag{24}
\end{equation*}
$$

formulated in such way: assume that are as above (see (20), (22)), (24) (cf. (21)); establish the criterion of mutual adjointness of \hat{L}_{1} and \hat{M}_{1}. Before to solve this problem let us introduce the following notations:

$$
\left\{\begin{align*}
X_{1}=S_{1} \ominus S_{0}, & X_{2}=S \ominus S_{1} \tag{25}\\
Y_{1}=T_{1} \ominus T_{0}, & Y_{2}=T \ominus T_{1}
\end{align*}\right.
$$

It is clear that

$$
\begin{equation*}
H_{S}=X_{1} \oplus X_{2}, \quad H_{T}=Y_{1} \oplus Y_{2} \tag{26}
\end{equation*}
$$

Moreover, by virtue of $(14), H_{S}=T_{v} H_{T}$. Whence using (26) and the unitarity of T_{v} we obtain

$$
\begin{equation*}
H_{S}=T_{v} H_{T}=T_{v}\left(Y_{1} \oplus Y_{2}\right)=T_{v} Y_{1} \oplus T_{v} Y_{2} \tag{28}
\end{equation*}
$$

Lemma 2.

$$
\begin{equation*}
T_{1}^{*}=S_{0} \oplus T_{v} Y_{2}=S_{0} \oplus T_{v} \overline{R\left(V_{1}^{*}\right)} \tag{29}
\end{equation*}
$$

Proof. Applying the assertion from Remark 4 to the pair (T, T_{1}) (instead) (T, T_{0}), we obtain $T_{1}^{*}=S_{0} \oplus T_{v}\left(T \oplus T_{1}\right)$. Taking into account (24), (25), we have

$$
Y_{2}=T \ominus T_{1}=T \ominus \operatorname{ker} V_{1}=\overline{R\left(V_{1}^{*}\right)}
$$

This completes the proof of the lemma.
Lemma 3. The following statements are equivalent:
i) $S_{1} \supset T_{1}^{*}$;
ii) $U_{1} T_{v} V_{1}^{*}=0$;
iii) $\operatorname{ker} U_{1} \supset S_{0} \oplus T_{v} \overline{R\left(V_{1}^{*}\right)}$;
iv) $X_{1} \supset T_{v} Y_{2}$.

In this case

$$
\begin{equation*}
S \ominus T_{1}^{*}=\operatorname{ker} U_{1} \ominus\left(S_{0} \oplus T_{v} \overline{R\left(V_{1}^{*}\right)}\right)=X \ominus T_{v} Y_{2} \tag{30}
\end{equation*}
$$

Proof. Taking into account (26)-(29) and the inclusion ker $U_{1} \supset S_{0}$ we obtain

$$
\begin{aligned}
U_{1} T_{v} V_{1}^{*}=0 & \Leftrightarrow \operatorname{ker} U_{1} \supset T_{v} R\left(V_{1}^{*}\right) \Leftrightarrow \operatorname{ker} U_{1} \supset T_{v} \overline{R\left(V_{1}^{*}\right)} \\
& \Leftrightarrow \operatorname{ker} U_{1} \supset S_{0} \oplus T_{v} \overline{R\left(V_{1}^{*}\right)} \Leftrightarrow S_{1} \supset T_{1}^{*} \\
& \Leftrightarrow S_{1} \ominus S_{0} \supset T_{1}^{*} \ominus S_{0} \Leftrightarrow X_{1} \supset T_{v} Y_{2}
\end{aligned}
$$

Therefore, the conditions i)-iv) are equivalent. Suppose these conditions take place. From (27) and (29) the equalities (30) are derived.

Now we are able to formulate the main result of present paper.

Theorem 4.

$$
\begin{equation*}
S_{1}=T_{1}^{*} \Leftrightarrow \operatorname{ker} U_{1}=S_{0} \oplus T_{v} \overline{R\left(V_{1}^{*}\right)} \Leftrightarrow X_{1}=T_{v} Y_{2} \tag{31}
\end{equation*}
$$

Proof. Proof follows immediately from (30).
Corollary 3. Under the conditions of Theorem 4 suppose that $\operatorname{dim} H_{L}, \infty$ and equalities (23) hold. In this case $S_{1}=T_{1}^{*} \Leftrightarrow U_{1} T_{v} V_{1}^{*}=0$. Proof can be obtained from Theorem 3 in the same way as in [15] the proof of Corollary 4.6.5 was obtained from Corollary 4.6.3.

References

1. R. Arens, Operational calculus of linear relations, Pacific J. Math. 11 (1961), no. 1, 9-23.
2. Yu. M. Arlinskii, S. Hassi, Z. Sebestyen, H. S. V. de Snoo, On the class of extremal extensions of a nonnegative operators, Oper. Theory Adv. Appl. 127 (2001), 41-81.
3. J. F. Brasche, V. Koshmanenko, H. Neidhardt, New aspects of Krein's extension theory, Ukrainian Math. J. 46 (1994), no. 1, 37-54.
4. V. M. Bruk, Extensions of symmetric relations, Mat. Zametki 22 (1977), no. 6, 825-834. (Russian); English transl. Math. Notes 22 (1977), no. 5-6, 953-958.
5. E. A. Coddington, Self-adjoint subspace extensions of nondensely defined linear operators, Bull. Amer. Math. Soc. 79 (1973), no. 4, 712-715.
6. V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Kluwer Academic Publishers, Dordrecht—Boston—London, 1991. (Russian edition: Naukova Dumka, Kiev, 1984)
7. V. A. Derkach, M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), 141-242.
8. A. Dijksma, H. S. V. de Snoo, Self-adjoint subspace extensions of symmetric operators, Pacific J. Math. 54 (1974), no. 1, 71-100.
9. S. Hassi, H. S. V. de Snoo, A. Sterk, H. Winkler, Finite-dimensional graph perturbations of selfadjoint Sturm-Liouville operators, Tiberiu Constantinescu Memorial Volume, Theta Foundation, Bucharest 2007, pp. 205-226.
10. A. N. Kochubei, Extensions of symmetric operators and symmetric binary relations, Mat. Zametki 17 (1975), no. 1, 41-48. (Russian); English transl. Math. Notes 17 (1975), no. 1, 25-28.
11. A. N. Kochubei, On extensions of nondensely defined symmetric operator, Sibirsk. Mat. Zh. 18 (1977), no. 2, 314-320. (Russian); English transl. Siberian Math. J. 18 (1977), no. 2, 225-229.
12. M. A. Krasnoselskii, On self-adjoint extensions of Hermitian operators, Ukr. Mat. Zh. 1 (1949), no. 1, 21-38. (Russian).
13. A. V. Kuzhel, The Extensions of Hermitian Operators, Mathematics today '87, Vishcha Shkola, Kiev, 1987. (Russian)
14. V. E. Lyantse, On some relations among closed operators, Dokl. Akad. Nauk SSSR 204 (1972), no. 3, 542-545. (Russian)
15. V. E. Lyantse, O. G. Storozh, Methods of the Theory of Unbounded Operators, Naukova Dumka, Kiev, 1983. (Russian)
16. M. M. Malamud, On an approach to the extension theory of a nondensely defined Hermitian operator, Dop. Akad. Nauk Ukrain. RSR, Ser. A (1990), no. 3, 20-25. (Ukrainian)
17. V. A. Mikhailets, Spectra of operators and boundary value problems, Spectral Analysis of Differential Operators, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1980, pp. 106-131. (Russian)
18. Yu. I. Oliyar, O. G. Storozh, Abstract boundary operators and some classes of extensions for linear relations, Dop. NAN Ukrainy (2013), no. 4, 19-22. (Ukrainian)
19. F. S. Rofe-Beketov, On self-adjoint extensions of differential operators in a space of vectorvalued functions, Teor. Functsii, Functsional. Anal. i Prilozehen. (1969), no. 3, 3-24. (Russian).
20. O. G. Storozh, The connection between two pairs of linear relations and dissipative extensions of some nondensely defined operators, Carp. Math. Publ. (2009), no. 2, 207-213. (Ukrainian)

Department of Mathematical and Functional Analysis, Lviv Ivan Franko National UniverSity, 1 Universytetska, Lviv, 79000, Ukraine

E-mail address: aruy14@ukr.net
Department of Mathematical and Functional Analysis, Lviv Ivan Franko National University, 1 Universytetska, Lviv, 79000, Ukraine

E-mail address: storog@ukr.net

