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ON THE COMMON POINT SPECTRUM OF PAIRS OF

SELF-ADJOINT EXTENSIONS

ANDREA POSILICANO

Dedicated to Vladimir Koshmanenko on the occasion of his 70th birthday

Abstract. Given two different self-adjoint extensions of the same symmetric ope-
rator, we analyse the intersection of their point spectra. Some simple examples are
provided.

1. Preliminaries

Given a linear closed operator L, we denote by

D(L) , K(L) , R(L) , G(L) , ρ(L)

its domain, kernel, range, graph and resolvent set respectively. H denotes a Hilbert space
with scalar product 〈·, ·〉 and corresponding norm ‖ · ‖; we also make use of an auxiliary
Hilbert space h with scalar product (·, ·) and corresponding norm | · |.

Given a closed, densely defined, symmetric operator

S : D(S) ⊆ H → H
with equal deficiency indices, by von Neumann’s theory one has (here the direct sums
are given w.r.t. the graph inner product of S∗)

D(S∗) = D(S)⊕K+ ⊕K− , K± := K(−S∗ ± i) ,

S∗(φ◦ ⊕ φ+ ⊕ φ−) = Sφ◦ + i φ+ − i φ− ,

and any self-adjoint extension of S is of the kind AU = S∗|G(U), the restriction of S∗

to G(U), where U : K+ → K− is unitary. Therefore, fixing a unitary U◦ and posing
A := AU◦

, one has

S = A|K(τ◦) , τ◦ : D(A) → h◦ ,

where

h◦ = K+ , τ◦ = P+ ,

and P+ is the orthogonal (w.r.t. the graph inner product of S∗) projection onto K+.
Since K(τ◦) = K(τ) where τ = Mτ◦ and M : h◦ → h is any continuous linear bijection,
in the search of the self-adjoint extension of S, we can consider the following equivalent
problem: determine all the self-adjoint extensions of A|K(τ), where

τ : D(A) → h

is a linear, continuous (with respect to the graph norm on D(A)), surjective map onto
an auxiliary Hilbert space h with its kernel K(τ) dense in H. Typically A is a differential
operator, τ is some trace (restriction) operator along a null subset N and h is some
function space over N .
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We suppose that the spectrum of A does not coincide with the whole real line and so,
by eventually adding a constant to A, we make the following hypothesis:

0 ∈ ρ(A) .

By the results provided in [9] and [7] (to which we refer for proofs and connections
with equivalent formulations, in particular with boundary triplets theory) one has the
following

Theorem 1.1. The set of all self-adjoint extensions of S is parametrized by the set E(h)
of couples (Π,Θ), where Π is an orthogonal projection in h and Θ is a self-adjoint operator
in R(Π). If AΠ,Θ denotes the self-adjoint extension corresponding to (Π,Θ) ∈ E(h) then

AΠ,Θ : D(AΠ,Θ) ⊆ H → H , AΠ,Θφ := Aφ0 ,

D(AΠ,Θ) := {φ = φ0 +G0ξφ , φ0 ∈ D(A) , ξφ ∈ D(Θ) , Πτφ0 = Θξφ} ,
where

Gz : h → H , Gz :=
(

τ(−A+ z̄)−1
)∗
, z ∈ ρ(A) .

Moreover the resolvent of AΠ,Θ is given, for any z ∈ ρ(A)∩ ρ(AΠ,Θ), by the Krĕın’s type
formula

(−AΠ,Θ + z)−1 = (−A+ z)−1 +GzΠ(Θ + zΠG∗
0GzΠ)

−1ΠG∗
z̄ .

Remark 1.2. Notice that the extension corresponding to Π = 0 is A itself. The extension
corresponding to (1,Θ) is denoted by AΘ and everywhere we omit the index Π in the
case Π = 1. By [8], Corollary 3.2, the sub-family {AΘ : Θ self-adjoint} gives all singular

perturbations of A, where we say that Â is a singular perturbation of A whenever the
set {φ ∈ D(A) ∩ D(Â) : Aφ = Âφ} is dense in H (see [4]).

Remark 1.3. The operator Gz is injective (by surjectivity of τ) and for any z ∈ ρ(A)
one has (see [7], Remark 2.8)

(1.1) R(Gz) ∩ D(A) = {0} ,
so that the decomposition appearing in D(AΠ,Θ) is unique. Moreover (see [7], Lemma 2.1)

(1.2) Gw −Gz = (z − w)(−A+ w)−1Gz .

2. The common point spectrum

Given a self-adjoint operator A let us denote by

σ(A) , σp(A) , σd(A)

its full, point and discrete spectrum respectively.
Given λ ∈ σp(A), we denote by Pλ the orthogonal projector onto the corresponding

eigenspace Hλ ⊆ D(A) and pose P⊥
λ := 1− Pλ.

Given λ ∈ σp(A
Π,Θ), we denote by HΠ,Θ

λ ⊆ D(AΠ,Θ) the corresponding eigenspace.
As regards the eigenvalues of AΠ,Θ which are not in the spectrum of A a complete

answer is given by the following result which is consequence of Krĕın’s resolvent formula
(see [3], Section 2, Propositions 1 and 2, and [8], Theorem 3.4):

Lemma 2.1.

λ ∈ ρ(A) ∩ σp(AΠ,Θ) ⇐⇒ 0 ∈ σp(Θ + λΠG∗
0GλΠ) ,

HΠ,Θ
λ = {Gλξ , ξ ∈ K(Θ + λΠG∗

0GλΠ)} .
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Here we are interested in the common eigenvalues, i.e. in the points in σp(A) ∩
σp(A

Π,Θ). Therefore we take λ ∈ σp(A) and we look for solutions φ ∈ D(AΠ,Θ) of the
eigenvalue equation

AΠ,Θφ = λφ ,

i.e., by Theorem 1.1,
(A− λ)φ0 = λG0ξφ .

By
(A− λ)Pλφ0 = 0 , (A− λ)P⊥

λ φ0 ∈ R(P⊥
λ ) ,

this is equivalent to the couple of equations

(2.1) PλG0ξφ = 0 ,

(2.2) (A− λ)P⊥
λ φ0 = λP⊥

λ G0ξφ

together with the constraint

(2.3) ξφ ∈ D(Θ) ⊆ R(Π) , Πτφ0 = Θξφ .

Equation (2.1) gives, for all ψ ∈ H,

0 = 〈G0ξφ, Pλψ〉 = −〈ξφ, τA−1Pλψ〉 = − 1

λ
〈ξφ, τPλψ〉

and so
ξφ ∈ (R(τPλ))

⊥ .

If R(Π) ∩ (R(τPλ))
⊥ = {0} then, since G0 is injective, one has that in this case φ is an

eigenvector with eigenvalue λ if and only if φ ∈ Hλ and Πτφ = 0.
Conversely suppose that R(Π)∩ (R(τPλ))

⊥ 6= {0} and moreover that λ is an isolated
eigenvalue. Then λ ∈ ρ(A|H⊥

λ ) and (2.2) gives

P⊥
λ φ0 = −λ(−A+ λ)−1P⊥

λ G0ξφ .

By Πτφ0 = Θξφ then one gets

ΠτPλφ0 =Θξφ −ΠτP⊥
λ φ0 = (Θ + λΠτ(−A+ λ)−1P⊥

λ G0Π)ξ .(2.4)

By defining
G⊥

λ : h → H , G⊥
λ := (τ(−A+ λ)−1P⊥

λ )∗ ,

and by (G⊥
λ )

∗G0 = G∗
0G

⊥
λ (this relation is consequence of (1.2)), (2.4) is equivalent to

ΠτPλφ0 = (Θ + λΠG∗
0G

⊥
λΠ)ξ .

Moreover by (−A+ λ)−1P⊥
λ G0 = −A−1G⊥

λ one has

Pλφ0 + P⊥
λ φ0 +G0ξφ =Pλφ0 + (−λ(−A+ λ)−1P⊥

λ + P⊥
λ )G0ξφ

=Pλφ0 −A(−A+ λ)−1P⊥
λ G0ξφ

=Pλφ0 +G⊥
λ ξφ .

In conclusion we have proven the following

Theorem 2.2. Let λ ∈ σp(A).
1) Suppose

R(Π) ∩ (R(τPλ))
⊥ = {0}

and pose
KΠ

λ := {ψ ∈ Hλ : Πτψ = 0} .
Then

λ ∈ σp(A
Π,Θ) ⇐⇒ KΠ

λ 6= {0}
and

HΠ,Θ
λ = KΠ

λ .
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2) Suppose

R(Π) ∩ (R(τPλ))
⊥ 6= {0}

and let λ be isolated.
Let NΠ,Θ

λ be the set of couples (ψ, ξ) ∈ Hλ ⊕R(Π) such that

(2.5) ξ ∈ D(Θ) ∩ (R(τPλ))
⊥ ,

(2.6) Πτψ = (Θ + λΠG∗
0G

⊥
λΠ) ξ .

Then
λ ∈ σp(A

Π,Θ) ⇐⇒ NΠ,Θ
λ 6= {0} ,

dim(HΠ,Θ
λ ) = dim(NΠ,Θ

λ )

and

HΠ,Θ
λ = {φ ∈ H : φ = ψ +G⊥

λ ξ , (ψ, ξ) ∈ NΠ,Θ
λ } .

Remark 2.3. Notice that

(R(Π))⊥ ∩R(τPλ) 6= {0} =⇒ KΠ
λ 6= {0} .

Remark 2.4. Suppose λ ∈ σp(A) is isolated. Noticing that

KΠ
λ ⊕ (R(Π) ∩ (R(τPλ))

⊥ ∩ K(Θ + λΠG∗
0G

⊥
λΠ)) ⊆ NΠ,Θ

λ ,

one has

KΠ
λ 6= {0} =⇒ λ ∈ σp(A

Π,Θ) .

In particular, in the case λ is simple with eigenvector ψλ,

Πτψλ = 0 =⇒ λ ∈ σp(A
Π,Θ) .

Remark 2.5. Suppose R(τPλ) = {0}. Then KΠ
λ = Hλ and so, in case λ ∈ σp(A) is

isolated, λ ∈ σp(A
Π,Θ) and

HΠ,Θ
λ = {φ = ψλ +G⊥

λ ξ , ψλ ∈ Hλ , ξ ∈ R(Π) ∩ K(Θ + λΠG∗
0G

⊥
λΠ)} .

Remark 2.6. The papers [1] and [6] contain results related to the ones given by
Theorem 2.2 (see Theorem 3.6 in [6] and Theorem 4.7 in [1]). We thank Konstantin
Pankrashkin for the communication.

3. Examples

3.1. Rank-one singular perturbations. Suppose h = C. Then Π = 1, Θ = θ ∈ R

and either R(τPλ) = C or R(τPλ) = {0}.
If R(τPλ) = C then λ ∈ σp(A

θ) if and only if Kλ 6= {0}, where
Kλ := {ψ ∈ Hλ : τψ = 0} .

Since R(τPλ) = {0} if and only if Kλ = Hλ, when λ is isolated and R(τPλ) = {0} one
has

N θ
λ = Kλ ⊕ {ξ ∈ C : (θ + λ〈G0, G

⊥
λ 〉) ξ = 0}

and so
θ + λ〈G0, G

⊥
λ 〉 = 0 =⇒ N θ

λ = Kλ ⊕ C ≡ Hλ ⊕ C ,

θ + λ〈G0, G
⊥
λ 〉 6= 0 =⇒ N θ

λ = Kλ ⊕ {0} ≡ Hλ .

In conclusion when h = C and λ ∈ σp(A) is isolated,

(3.1) λ ∈ σp(A
θ) ⇐⇒ Kλ 6= {0}

and

Hθ
λ = {ψ = ψλ +G⊥

λ ξ , ψλ ∈ Hλ , (θ + λ〈G0, G
⊥
λ 〉)ξ = 0} .
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In particular if λ is a simple isolated eigenvalue of A with corresponding eigenfunction
ψλ, then λ ∈ σp(A

θ) if and only if τψλ = 0. For example, ifH = L2(Ω) and τ : D(A) → C

is the evaluation map at y ∈ Ω, τψ := ψ(y), then λ is preserved if and only if y belongs
to the nodal set (if any) of ψλ. Thus if A is (minus) the Dirichlet Laplacian on a
bounded open set Ω ⊂ Rd, d ≤ 3, its lowest eigenvalue is never preserved under a point
perturbation. Analogous results hold in the case A is the Laplace-Beltrami operator on a
compact d-dimensional Riemannian manifold M , d ≤ 3, thus reproducing the ones given
in [2], Theoreme 2, part 1.

3.2. The Šeba billiard. Let

A = ∆ : D(A) ⊂ L2(R) → L2(R) ,

D(A) = {φ ∈ C(R) : ∆φ ∈ L2(R) , φ(x) = 0 , x ∈ ∂R} ,
be the Dirichlet Laplacian on the rectangle R = (0, a)× (0, b). Then

σ(A) = σd(A) =
{

λm,n , (m,n) ∈ N2
}

and

Hλm,n
= span{ψm′,n′ : λm′,n′ = λm,n} ,

where

λm,n := −π2

(

m2

a2
+
n2

b2

)

and

ψm,n(x) := sin
(mπx1

a

)

sin
(nπx2

b

)

, x ≡ (x1, x2) .

Let

τψ := ψ(y) ,

so that Aθ describes a “Šeba billiard”, i.e. the Dirichlet Laplacian on the rectangle R
with a point perturbation placed at the point y ≡ (y1, y2) (see [10]).

Since σ(A) = σd(A), by the invariance of the essential spectrum under finite rank
perturbations, one has σ(Aθ) = σd(A

θ) and, by (3.1), λm,n ∈ σ(A) ∩ σ(Aθ) if and only

∀ (m′, n′) s.t. λm′,n′ = λm,n , sin

(

m′πy1
a

)

sin

(

n′πy2
b

)

= 0 .

Equivalently

σ(A) ∩ σ(Aθ) = ∅ ⇐⇒
(y1
a
,
y2
b

)

/∈ Q2 .

If there exists relatively prime integers 1 ≤ p < q such that y1

a
= p

q
while y2

b
is irrational,

then

σ(A) ∩ σ(Aθ) = {λkq,n , (k, n) ∈ N2} .
Analogously if y1

a
is irrational and y2

b
= p

q
then

σ(A) ∩ σ(Aθ) = {λm,kq , (m, k) ∈ N2}

while if y1

a
= p

q
and y2

b
= r

s
, then

σ(A) ∩ σ(Aθ) = {λkq,n , (k, n) ∈ N2} ∪ {λm,ks , (m, k) ∈ N2} .
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3.3. Rank-two singular perturbations. Let h = C2. Then either Π = 1 or Π = w⊗w,
w ∈ C2, |w| = 1. Let λ ∈ σp(A).

1.1) R(τPλ) = C2, Π = 1. Then λ ∈ σp(A
Θ) if and only if there exists ψ ∈ Hλ\{0}

such that τψ = 0.
1.2) R(τPλ) = C2, Π = w ⊗ w. Then λ ∈ σp(A

Π,Θ) if and only if there exists
ψ ∈ Hλ\{0} such that w · τψ = 0.

Now suppose further that λ ∈ σp(A) is isolated.
2.1) R(τPλ) = span(ξλ) ≃ C, |ξλ| = 1, Π = 1. Decomposing equation (2.6) w.r.t.

the orthonormal base {ξλ, ξ⊥λ } one gets that NΘ
λ 6= {0} if and only if there exists ζ ≡

(ζ1, ζ2) ∈ C2\{0} solving
{

ζ1 = (ξλ · (Θ + λG∗
0G

⊥
λ )ξ

⊥
λ )ζ2,

0 = (ξ⊥λ · (Θ + λG∗
0G

⊥
λ )ξ

⊥
λ )ζ2 .

Hence

λ ∈ σp(A
Θ) ⇐⇒ (ξ⊥λ · (Θ + λG∗

0G
⊥
λ )ξ

⊥
λ ) = 0 .

2.2) R(τPλ) = span(ξλ) ≃ C, Π = w ⊗ w. Let us use the decomposition w = w|| + w⊥
w.r.t. the orthonormal base {ξλ, ξ⊥λ }. If w|| = 0 then KΠ

λ 6= {0} and so λ ∈ σp(A
Π,Θ). If

w|| 6= 0 then KΠ
λ = {0} and R(Π) ∩ (R(τPλ))

⊥ = {0}, thus λ /∈ σp(A
Π,Θ). In conclusion

λ ∈ σp(A
Π,Θ) ⇐⇒ w = ξ⊥λ .

3) R(τPλ) = {0}. In this case λ ∈ σp(A
Π,Θ).

3.4. The Laplacian on a bounded interval. Let

A : D(A) ⊆ L2(0, a) → L2(0, a) , Aφ = φ′′ ,

D(A) = {φ ∈ C1[0, a] : φ′′ ∈ L2(0, a) , φ(0) = φ(a) = 0},
be the Dirichlet Laplacian on the bounded interval (0, a) and pose

τ : D(A) → C2 , τφ ≡ γ1φ := (φ′(0),−φ′(a)) .
Therefore S = A|K(τ) is the minimal Laplacian with domain

D(S) = {φ ∈ C1[0, a] : φ′′ ∈ L2(0, a) , φ(0) = φ′(0) = φ(a) = φ′(a) = 0}
and the self-adjoint extensions of S are rank-two perturbations of the Dirichlet Lapla-
cian A. One has

σ(A) = σd(A) = {λn}∞1 , λn = −
(nπ

a

)2

and the normalized eigenvector corresponding to λn is

ψn(x) =

√

2

a
sin

(nπx

a

)

.

By Theorem 1.1 and by the change of extension parameter (here P0 represents the
Dirichlet-to-Neumann operator)

(Π,Θ) 7→ (Π, B) , B := Θ−ΠP0Π , P0 ≡ 1

a

(

1 −1
−1 1

)

any self-adjoint extension of the minimal Laplacian S is of the kind AΠ,B , (Π, B) ∈ E(C2),
where

AΠ,B : D(AΠ,B) ⊂ L2(0, a) → L2(0, a) , AΠ,Bφ = φ′′ ,

D(AΠ,B) = {φ ∈ C1[0, a] : φ′′ ∈ L2(0, a) , γ0φ ∈ R(Π) , Πγ1φ = Bγ0φ}
(see e.g. [9], Example 5.1). Here γ0φ := (φ(0), φ(a)).
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The case Π = 0 reproduces A itself, the case Π = 1, B =

(

b11 b12
b̄12 b22

)

, b11, b22 ∈ R,

b12 ∈ C, gives the boundary conditions
{

b11 φ(0)− φ′(0) + b12 φ(a) = 0 ,

b̄12 φ(0) + b22 φ(a) + φ′(a) = 0 ,

and the case Π = w ⊗ w, w ≡ (w1, w2) ∈ C2, |w1|2 + |w2|2 = 1, B ≡ b ∈ R, gives the
boundary conditions

{

w2 φ(0)− w1 φ(a) = 0 ,

w̄1 (b φ(0)− φ′(0)) + w̄2 (b φ(a) + φ′(a)) = 0 .

By the invariance of the essential spectrum under finite rank perturbations, σ(AΠ,B) =
σd(A

Π,B). Now we use the results given in subsection 3.3. One has

R(τPλn
) = span(ξ̂n) , ξ̂n ≡ 1√

2

(

1, (−1)n−1
)

.

Let Π = 1 and ξ̂⊥n ≡ 1√
2
(1, (−1)n). By point 2.1 in subsection 3.3 we known that

λn ∈ σ(AB) if and only if ξ̂⊥n · (B + P0 + λnG
∗
0G

⊥
λn

)ξ̂⊥n = 0. Since the resolvent of A is

explicitly known, ξ̂⊥n · (B + P0 + λnG
∗
0G

⊥
λn

)ξ̂⊥n can be calculated. However we use here
a short cut which avoids any calculation: the Neumann Laplacian corresponds to B = 0
and we know that its spectrum is {0} ∪ σ(A), thus
(3.2) ξ̂⊥n · (P0 + λnG

∗
0G

⊥
λn

)ξ̂⊥n = 0.

Therefore we obtain

λn ∈ σ(AB) ⇐⇒ b11 + b22 + 2 (−1)nRe(b12) = 0 .

If Π = w ⊗ w by point 2.2 in subsection 3.3 one has

λn ∈ σ(AΠ,B) ⇐⇒ w = ξ̂⊥n .

In both cases
λn ∈ σ(AΠ,B) ⇐⇒ λn+2 ∈ σ(AΠ,B) .

Moreover

σ(A) ⊆ σ(AΠ,B) ⇐⇒ Π = 1 and b11 + b22 = 0, Re(b12) = 0 .

3.5. Equilateral quantum graphs. LetH = ⊕N
k=1L

2(0, a) and AN = ⊕N
k=1A, where A

is defined as in subsection 3.4 (to which we refer for notations). Then σ(AN ) = σd(AN ) =
σ(A) and the eigenfunctions corresponding to the N -fold degenerate eigenvalue λn are

Ψk,n = ⊕N
i=1ψi,k,n, k = 1, . . . , N , ψi,k,n =

{

0 , i 6= k,

ψn , i = k .

By taking

τ : D(AN ) ≡ ⊕N
k=1D(A) → ⊕N

k=1C
2 ≡ C2N , τ = ⊕N

k=1γ1 ,

one gets, by Theorem 1.1, self-adjoint extensions describing quantum graphs (see e.g.
[5]) with N edges of the same length a . By Theorem 1.1 and by the change of extension
parameter

(Π,Θ) 7→ (Π, B) , B := Θ−Π(⊕N
k=1P0)Π ,

such extensions are of the kind AΠ,B , (Π, B) ∈ E(C2N ), where (see [9], Example 5.2).

AΠ,B : D(AΠ,B) ⊂ ⊕N
k=1L

2(0, a) → ⊕N
k=1L

2(0, a) ,

AΠ,B(⊕N
k=1φk) = ⊕N

k=1φ
′′
k ,
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D(AΠ,B) =
{

⊕N
k=1 φk : φk ∈ C1[0, a] , φ′′k ∈ L2(0, a) ,

(⊕N
k=1γ0φk) ∈ R(Π) , Π(⊕N

k=1γ1φk) = B(⊕N
k=1γ0φk)

}

.

The couple (Π, B) represents the connectivity of the quantum graph.
1) Π = 1. Given λn ∈ D(A), we pose

C2N
|| := ⊕N

k=1span(ξ̂n) ≃ CN , C2N
⊥ := ⊕N

k=1span(ξ̂
⊥
n ) ≃ CN ,

so that R(τPλn
) = C2N

|| , (R(τPλn
))⊥ = C2N

|| , C2N = C2N
|| ⊕ C2N

⊥ and for any linear

operator L : C2N → C2N we can consider the block decomposition L =

(

L|| L||⊥
(L||⊥)

∗ L⊥

)

.

By using such decompositions in equation (2.6) one gets that NΘ
λn

6= {0}, Θ = B +

⊕N
k=1P0, if and only if there exists ζ 6= {0}, ζ = ζ|| ⊕ ζ⊥ ∈ C2N

|| ⊕ C2N
⊥ solving

{

ζ|| = (B +⊕N
k=1P0 + λnG

∗
0G

⊥
λn

)||⊥ ζ⊥,

0 = (B +⊕N
k=1P0 + λnG

∗
0G

⊥
λn

)⊥ ζ⊥ .

By (3.2) one obtains (⊕N
k=1P0 + λnG

∗
0G

⊥
λn

)⊥ = 0. Therefore one gets

λn ∈ σ(AB) ⇐⇒ det(B⊥) = 0 .

2) Π 6= 1. Given λn ∈ D(A) we pose

R(Π)|| := R(Π) ∩ (⊕N
k=1span(ξ̂n)), R(Π)⊥ := R(Π) ∩ (⊕N

k=1span(ξ̂
⊥
n )) ,

so that R(Π) ∩ R(τPλn
) = R(Π)||, R(Π) ∩ (R(τPλn

))⊥ = R(Π)⊥, R(Π) = R(Π)|| ⊕
R(Π)⊥ and for any linear operator L : R(Π) → R(Π) we can consider the block decom-

position L =

(

L|| L||⊥
(L||⊥)

∗ L⊥

)

.

Define ξ̂k,n = ⊕n
i=1ξ̂i,k,n ∈ C2N and ξ̂⊥k,n = ⊕n

i=1ξ̂
⊥
i,k,n ∈ C2N , k = 1, . . . , N , by

ξ̂i,k,n :=

{

0 , i 6= k,

ξ̂n , i = k ,
ξ̂⊥i,k,n :=

{

0 , i 6= k,

ξ̂⊥n , i = k .

If Πξ̂⊥k,n = 0 for all k then R(Π)⊥ = {0} and in this case

λ ∈ σp(A
Π,B) ⇐⇒ ∃k s.t Πξ̂k,n = 0 .

If there exists k′ such that Πξ̂⊥k′,n 6= 0 then R(Π)⊥ 6= {0}. By Remark 2.3

∃k s.t Πξ̂k,n = 0 =⇒ λ ∈ σp(A
Π,B) .

Suppose now Πξ̂k,n 6= 0 for all k, i.e. KΠ
λn

= {0}. Then, using the above decompositions

in equation (2.6) one gets that NΠ,Θ
λn

6= {0}, Θ = B + Π(⊕N
k=1P0)Π, if and only if there

exists ζ 6= 0, ζ = ζ|| ⊕ ζ⊥ ∈ R(Π)|| ⊕R(Π)⊥ solving
{

ζ|| = (B +Π(⊕N
k=1P0 + λnG

∗
0G

⊥
λn

)Π)||⊥ ζ⊥,

0 = (B +Π(⊕N
k=1P0 + λnG

∗
0G

⊥
λn

)Π)⊥ ζ⊥ .

By (3.2) one obtains (Π(⊕N
k=1P0 + λnG

∗
0G

⊥
λn

)Π)⊥ = 0. Therefore one gets, in case there

exists k′ such that Πξ̂⊥k′,n 6= 0 and Πξ̂k,n 6= 0 for all k

λn ∈ σ(AΠ,B) ⇐⇒ det(B⊥) = 0 .
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