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ON THE COMMON POINT SPECTRUM OF PAIRS OF
SELF-ADJOINT EXTENSIONS

ANDREA POSILICANO

Dedicated to Viadimir Koshmanenko on the occasion of his 70th birthday

ABSTRACT. Given two different self-adjoint extensions of the same symmetric ope-
rator, we analyse the intersection of their point spectra. Some simple examples are
provided.

1. PRELIMINARIES

Given a linear closed operator L, we denote by
D(L), K(L), R(L), G(L), p(L)

its domain, kernel, range, graph and resolvent set respectively. H denotes a Hilbert space
with scalar product (-,-) and corresponding norm || - ||; we also make use of an auxiliary
Hilbert space h with scalar product (-,-) and corresponding norm | - |.

Given a closed, densely defined, symmetric operator

S:DS)CH—H

with equal deficiency indices, by von Neumann’s theory one has (here the direct sums
are given w.r.t. the graph inner product of S*)

DS =D(S)e KL dK_, Ki:=K(-S*+1i),

5 (¢o @ oy ® ) = So +ipL —ig_,
and any self-adjoint extension of S is of the kind Ay = S*|G(U), the restriction of S*
to G(U), where U : Ky — K_ is unitary. Therefore, fixing a unitary U, and posing
A := Ay,, one has
S =AlK(1), To:D(A)— bho,
where
ho = ICJr y To = P+ )

and Py is the orthogonal (w.r.t. the graph inner product of S*) projection onto K.
Since K(7o) = K(7) where 7 = M7, and M : h, — b is any continuous linear bijection,
in the search of the self-adjoint extension of S, we can consider the following equivalent
problem: determine all the self-adjoint extensions of A|K(7), where

7:D(A) = h

is a linear, continuous (with respect to the graph norm on D(A)), surjective map onto
an auxiliary Hilbert space ) with its kernel KC(7) dense in ‘H. Typically A is a differential
operator, T is some trace (restriction) operator along a null subset N and b is some
function space over N.
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We suppose that the spectrum of A does not coincide with the whole real line and so,
by eventually adding a constant to A, we make the following hypothesis:

0€p(A).

By the results provided in [9] and [7] (to which we refer for proofs and connections
with equivalent formulations, in particular with boundary triplets theory) one has the
following

Theorem 1.1. The set of all self-adjoint extensions of S is parametrized by the set E(b)
of couples (I1, ©), where I is an orthogonal projection in'h and © is a self-adjoint operator
in R(IT). If A™® denotes the self-adjoint extension corresponding to (I1,0) € E(h) then

A DATOY CH M, ATC¢ = Agy,

D(AN®) 1= {¢ = do + Goy, b0 € D(A), & € D(O), Ty = Oy} ,
where
G.:h—=H, G,:= (T(—A—i—Z)_l)* , z€p(A).

Moreover the resolvent of A™® is given, for any z € p(A) N p(A™®), by the Krein’s type
formula
(—A™® £ 2)7 = (A4 2)7! + G.IN(O + MGG IT) ~HIGE .

Remark 1.2. Notice that the extension corresponding to IT = 0 is A itself. The extension
corresponding to (1,©) is denoted by A® and everywhere we omit the index II in the
case Il = 1. By [8], Corollary 3.2, the sub-family {A® : © self-adjoint} gives all singular

perturbations of A, yvhere we say that A is a singular perturbation of A whenever the
set {p € D(A)ND(A) : Ap = A¢p} is dense in H (see [4]).

Remark 1.3. The operator G, is injective (by surjectivity of 7) and for any z € p(A)
one has (see [7], Remark 2.8)

(11) R(G-) ND(4) = {0},
so that the decomposition appearing in D(A™®) is unique. Moreover (see [7], Lemma 2.1)

(1.2) Gw—G,=(z—w)(-A+w)'G,.

2. THE COMMON POINT SPECTRUM

Given a self-adjoint operator A let us denote by
o(A), op(A), oa(A)

its full, point and discrete spectrum respectively.

Given A € 0,(A), we denote by Py the orthogonal projector onto the corresponding
eigenspace Hy C D(A) and pose Pi- :=1— P.

Given A € 0,(A™9), we denote by ’H?’@ C D(A™9) the corresponding eigenspace.

As regards the eigenvalues of A'™® which are not in the spectrum of A a complete
answer is given by the following result which is consequence of Krein’s resolvent formula
(see [3], Section 2, Propositions 1 and 2, and [8], Theorem 3.4):

Lemma 2.1.

AeEp(A)No,(AT®) = 0€0,(0+ NIGHG,IT),

HIO =[G, €€ K(O + MIGEG,ID)} .
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Here we are interested in the common eigenvalues, i.e. in the points in o,(A4) N
0, (A™©). Therefore we take A € 0,(A) and we look for solutions ¢ € D(A™®) of the
eigenvalue equation

ATOG = \p.,
i.e., by Theorem 1.1,
(A — /\)¢0 = /\G0§¢ .
By
(A=XN)Prgo =0, (A=NPioo€R(PY),
this is equivalent to the couple of equations

(2.1) P \Goép =0,

(2.2) (A= XN)Pido = APy Goy
together with the constraint

(2.3) £y €D(O) CRAI), Ity =0O&.

Equation (2.1) gives, for all ¢ € H,

0= (o, Prb) = ~(€, A~ Pr) = =3 (66, 7PA)

and so
€5 € (R(TPy))™T.
If R(IT) N (R(7Py))t = {0} then, since Gy is injective, one has that in this case ¢ is an
eigenvector with eigenvalue A if and only if ¢ € H, and Il7¢ = 0.
Conversely suppose that R(IT) N (R(7Py))* # {0} and moreover that ) is an isolated
eigenvalue. Then A € p(A|H5) and (2.2) gives

Pigo = —M(—A+\) "' PEGog, .
By IIT¢y = ©&, then one gets
(2.4) [T Pygpo =O&s — TITPi-¢p = (O + AIT(—A + \) ' Pi-GoII)¢ .
By defining
Gy :h—=MH, Gy:=((—A+)N7'PH)*,
and by (G3)*Go = GGy (this relation is consequence of (1.2)), (2.4) is equivalent to
[T Pyo = (O + NIGHGRI)E .
Moreover by (—A + A\)71PGy = —A~1Gy one has
Pago + Pi o + Goby =Pado + (=A(—=A+ N) "' Pi + Py)Goby
=Pagy — A(=A+ N) " Py Goty
=Pao +Gr&y -
In conclusion we have proven the following

Theorem 2.2. Let A € 0,(A).

1) Suppose
R(I) N (R(TPy))* = {0}
and pose
K = {p € Hy : TIrep = 0}
Then
NEa,(ATO) e KT # {0}
and

I, _ 411
,H)\ *]C)\.
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2) Suppose
R(I) N (R(TPy))~ # {0}
and let A be isolated.
Let NP’G be the set of couples (1,&) € Hy ® R(II) such that

(2.5) £ € D(O)N(R(TPy))*,
(2.6) Mrep = (0 + MIGHGYTI) €.
Then

AEap(ATO) = MO {0},
dim(’HE\[’@) = dim(./\/')l\T’@)
and
HYC ={peH : 9=V +GLE, (1,6 e NIC}.
Remark 2.3. Notice that
(RAD)T NR(TPy) # {0} = K #{0}.
Remark 2.4. Suppose A € 0,(A) is isolated. Noticing that
K@ (R(I) N (R(TPy)) NK(O + AIGHGHIT)) € NC

one has

Kl #£{0} = Xeo,(A™"®).
In particular, in the case A is simple with eigenvector iy,

My =0 = \€o,(A™9).
Remark 2.5. Suppose R(7Py) = {0}. Then Kl = H, and so, in case A € 0,(A) is
isolated, A € 0,(A1®) and

HYO = {p=un + GEe, ¥ € Ha, € € R(ID) NK(O + AIGHGYID)} .

Remark 2.6. The papers [1] and [6] contain results related to the ones given by
Theorem 2.2 (see Theorem 3.6 in [6] and Theorem 4.7 in [1]). We thank Konstantin
Pankrashkin for the communication.

3. EXAMPLES

3.1. Rank-one singular perturbations. Suppose h = C. Then I =1, 8 =0 € R
and either R(7Py) = C or R(7Py) = {0}.
If R(TPy) = C then \ € 0,(A?) if and only if Ky # {0}, where
Kyx:={¢YeH\: =0}
Since R(7Py) = {0} if and only if Ky = H,, when X is isolated and R(7Py) = {0} one
has

N =Kx@{£€C: (0+\Go,Gy)) € =0}

and so
0+ MG, Gy)=0 — N =K,®oC=H,aC,

04+ MGo,Gy)#0 — N{ =K@ {0} =H,.
In conclusion when h = C and X € g,(A) is isolated,
(3.1) A€ o,(A%) = K # {0}

and

HY = {4 = by + GXE, by € Ha, (0+ N Go,GE))E = 0}.



ON THE COMMON POINT SPECTRUM OF SELF-ADJOINT EXTENSIONS 63

In particular if A is a simple isolated eigenvalue of A with corresponding eigenfunction
¥y, then X € 0,(A%) if and only if 795 = 0. For example, if H = L2(Q) and 7 : D(A) — C
is the evaluation map at y € Q, 7¢ := ¥ (y), then X is preserved if and only if y belongs
to the nodal set (if any) of 1. Thus if A is (minus) the Dirichlet Laplacian on a
bounded open set Q C R?, d < 3, its lowest eigenvalue is never preserved under a point
perturbation. Analogous results hold in the case A is the Laplace-Beltrami operator on a
compact d-dimensional Riemannian manifold M, d < 3, thus reproducing the ones given
in [2], Theoreme 2, part 1.

3.2. The Seba billiard. Let
A=A:D(A) c L*(R) = L*(R),
D(A) ={p € C(R): Ap € L*(R), ¢(x) =0, x € IR},
be the Dirichlet Laplacian on the rectangle R = (0,a) x (0,b). Then
o(A) = oa(A) = {Ann, (m,n) € N*}

and
H/\m,n = Span{wm’7n’ : )\m’7n’ = )\m,n}a
where
2 2
. 5 (M n
>\m,n =T (a2 + 1)2)
and
Y n(X) := sin (mmm) sin (mrx2> , X =(z1,22).

a b

Let

T = Y(y),

so that A? describes a “Seba billiard”, i.e. the Dirichlet Laplacian on the rectangle R
with a point perturbation placed at the point y = (y1,y2) (see [10]).

Since 0(A) = 04(A), by the invariance of the essential spectrum under finite rank
perturbations, one has o(A?) = 04(A%) and, by (3.1), Ap.n € 0(A) N (A?) if and only

/ !/
V(m’,n’) st. Ay = Amn,  sin (m 7ry1> sin (n 7;7;2) —0.

a

Equivalently
s(A)ne(A) =0 (&yf;) ¢ Q.
a
If there exists relatively prime integers 1 < p < ¢ such that £ = %’ while %2 is irrational,
then

o(A)Na(A%) = { Mg, (k,n) € N?}.
Analogously if £ is irrational and ¥ = % then
o(A)No(Ag) = {Amkg, (m,k) € N*}

while if & = 2 and 2 = Z then
a q b s

o(A)Na(A%) = Mrgn, (k1) € N>} U{N\pis, (m,k) € N2},
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3.3. Rank-two singular perturbations. Let h = C2. Then either Il = 1 or Il = w®w,
we C?, |lw| =1. Let A € 0,(A).

1.1) R(TPy) = C%, 11 = 1. Then X € 0,(A®) if and only if there exists 1/ € H)\{0}
such that ¢ = 0.

1.2) R(rPy) = C?, 1T = w ® w. Then A € 0,(A™®) if and only if there exists
1 € H)\{0} such that w - 79 = 0.

Now suppose further that A € o,,(A4) is isolated.

2.1) R(rPy\) = span(§y) ~ C, [\ = 1, IT = 1. Decomposing equation (2.6) w.r.t.
the orthonormal base {£y, &5} one gets that NP # {0} if and only if there exists ¢ =
(¢1,¢2) € C*\{0} solving

G = (&x- (O + AGHGR)EN )G,
0= (& - (O + AGEGR)EN )G -

Hence
NE a0, (A9) = (6 - (O +AGIGHED) = 0.
2.2) R(TPy) =span({y) ~ C, Il = w ® w. Let us use the decomposition w = wy + w.
w.r.t. the orthonormal base {£x, &3}, If w)) = 0 then K # {0} and so A € 0,,(A™©). If
wy; # 0 then K = {0} and R(II) N (R(7Py))* = {0}, thus A ¢ 5,(A™®). In conclusion
A€o, (A1®) =  w=¢r.
3) R(7Py) = {0}. In this case \ € o, (AL®).
3.4. The Laplacian on a bounded interval. Let
A:D(A) C L*(0,a) — L*(0,a), A¢p=¢",
D(A) ={¢ € C'[0,q] : ¢" € L*(0,a), ¢(0) = ¢(a) = 0},
be the Dirichlet Laplacian on the bounded interval (0, a) and pose
7:D(A) = C*, 19 =m¢:=(¢'(0),~¢'(a)) -
Therefore S = A|K(7) is the minimal Laplacian with domain
D(S) = {¢ € C[0,a] : ¢" € L*(0,a), ¢(0) = ¢'(0) = ¢(a) = ¢'(a) = 0}

and the self-adjoint extensions of S are rank-two perturbations of the Dirichlet Lapla-
cian A. One has

o(4) = 0a(A) = )i, d=— (1)

a
and the normalized eigenvector corresponding to A, is

ot = o (7).

By Theorem 1.1 and by the change of extension parameter (here P, represents the
Dirichlet-to-Neumann operator)

(ILO) s (II,B), B:=0O IR, Pozi(_i _D

any self-adjoint extension of the minimal Laplacian S is of the kind A5, (1, B) € E(C?),
where
AB L D(AMBY € 12(0,a) — L*(0,a), AMBo=¢",
D(A™E) = {¢ € C'[0,a] : ¢" € L*(0,a), Y06 € R(II), Iy1¢ = By}
(see e.g. [9], Example 5.1). Here vo¢ := (¢(0), ¢(a)).
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bi1 b1z

The case IT = 0 reproduces A itself, the case [l = 1, B =
bi2 b2

), bi1,b22 € R,
b1z € C, gives the boundary conditions
b11 ¢(O) — d)/(O) + b12 d)(a) = O7
bi2 #(0) + b2z (a) + ¢'(a) =0,
and the case Il = w ® w, w = (w1, w2) € C?, |wi|? + |wa|? = 1, B = b € R, gives the
boundary conditions
w2 ¢(0) —wy ¢(a) =0,
w1 (bp(0) — ¢'(0)) + w2 (bg(a) + ¢'(a)) = 0.

By the invariance of the essential spectrum under finite rank perturbations, o(A™?) =
oq(A™B). Now we use the results given in subsection 3.3. One has

A 1 n—1
fn = \7@ (13(71) ) .

Let II = 1 and &- = % (1,(—=1)™). By point 2.1 in subsection 3.3 we known that
An € 0(AB) if and only if &- - (B + Py + )\nGE‘)Gt’)fﬁ = 0. Since the resolvent of A is
explicitly known, & - (B + Py + )\nGSan)f} can be calculated. However we use here
a short cut which avoids any calculation: the Neumann Laplacian corresponds to B = 0
and we know that its spectrum is {0} Uo(A), thus
(3.2) £ (Po+ MGG )ER = 0.
Therefore we obtain

A €0(AP) = b1 +bx+2(—1)"Re(b2) =0.
If I = w ® w by point 2.2 in subsection 3.3 one has

A€ o(ANP) —  w=¢r.

R(TPy,) = span(fn) ,

In both cases
Ay € (ALY = N, 5 € 0(ALB).
Moreover

O'(A) - O’(AH’B) < II =1 and by1 + by = 0, Re(blg) =0.

3.5. Equilateral quantum graphs. Let # = &}, L%*(0,a) and Ay = &5_, A, where A
is defined as in subsection 3.4 (to which we refer for notations). Then o(Ay) = 04(An) =
o(A) and the eigenfunctions corresponding to the N-fold degenerate eigenvalue A, are
0 1#k
\Ijn:@i\i i,k,m k:L"'aN7 i kn — ’ ’
k, —1Vi,k, ik, {wm itk
By taking
7:D(AN) = @) D(A) » o C?*=C?N, =0 7,
one gets, by Theorem 1.1, self-adjoint extensions describing quantum graphs (see e.g.
[5]) with N edges of the same length a . By Theorem 1.1 and by the change of extension
parameter
(I,6) —~ (I, B), B:=06 —II(&,_,P)II,
such extensions are of the kind A5 (I, B) € E(C*V), where (see [9], Example 5.2).
ALB . D(ATEY ¢ N L%(0,a) — ®p_,L*(0,a),

AH’B(®£[:1¢I<) = @g:ﬁbga



66 ANDREA POSILICANO
D(ALB) = { &N, b1 b € C0,a], ¢} € L2(0,a),

(SRL17000) € R, TSN men) = BEN17000) |

The couple (II, B) represents the connectivity of the quantum graph.
1) I = 1. Given A, € D(A), we pose

(CﬁN = @N_span(é,) ~CN, C* .= @} span(ch) ~CV,
so that R(TPy,) = (CﬁN, (R(TPy,)* = (CﬁN, C2N = (CﬁN @ C*V and for any linear

operator L : C2N — C2V we can consider the block decomposition L = <( Ly ) II:HL>.
[|L €1

By using such decompositions in equation (2.6) one gets that Ng # {0}, © = B+
®n_, Po, if and only if there exists ¢ # {0}, ( = ¢ ® (L € (CﬁN @® C2N solving

{C| = (B+ @2, Po + MGHGy )L €L
0=(B+& 1P+ MGiGx )L (L.
By (3.2) one obtains (®;_; Py + AnG§Gy )L = 0. Therefore one gets
A €0(AP) = det(B.)=0.
2) IT #£ 1. Given \,, € D(A) we pose
R == R(D) N (&7 span(&,)),  R(I).1 = R(TD) N (&1 span(&y)

so that R(H) n ’R,(TP)\R) = R(H)H, R(H) n ('R(TP)\"))J‘ = R(H)l, R(H) = R(H)H D
R(II), and for any linear operator L : R(II) — R(II) we can consider the block decom-

position L = ( Ly LH‘).

S\t Ly ) )
Define &, = @7 &5 € C2N and &F, = @r_ &4 € CN k=1,...,N, by
e o i # k, e o, i # k,
TG, i=k, MR\, i=k.

If TIEj-, = 0 for all k then R(IT), = {0} and in this case
A€o, (ATB) = Tkst Hékm =0.

If there exists k' such that ka%n # 0 then R(II), # {0}. By Remark 2.3
st e, =0 = Aeo,(ALF).

Suppose now H{Akvn # 0 for all k, i.e. ICRL = {0}. Then, using the above decompositions
in equation (2.6) one gets that Ngf@ # {0}, © = B+ 1II(&}_, Py)II, if and only if there
exists ¢ # 0, ¢ = (|| ® (1L € R(II);; ® R(II) L solving

G = (B+1I(®71, Po + A GGy )DL (s
0= (B + H(EB{CVZIPO + /\nGSGin)H)L (1.

By (3.2) one obtains (II(&}_, Py + A, GGy )II) 1 = 0. Therefore one gets, in case there
exists k' such that Hékl,n # 0 and Hék,n # 0 for all k

A€ o(ATBY = det(BL)=0.
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