ON THE COMMON POINT SPECTRUM OF PAIRS OF SELF-ADJOINT EXTENSIONS

ANDREA POSILICANO
Dedicated to Vladimir Koshmanenko on the occasion of his 70th birthday

Abstract

Given two different self-adjoint extensions of the same symmetric operator, we analyse the intersection of their point spectra. Some simple examples are provided.

1. Preliminaries

Given a linear closed operator L, we denote by

$$
\mathcal{D}(L), \quad \mathcal{K}(L), \quad \mathcal{R}(L), \quad \mathcal{G}(L), \quad \rho(L)
$$

its domain, kernel, range, graph and resolvent set respectively. \mathcal{H} denotes a Hilbert space with scalar product $\langle\cdot, \cdot\rangle$ and corresponding norm $\|\cdot\|$; we also make use of an auxiliary Hilbert space \mathfrak{h} with scalar product (\cdot, \cdot) and corresponding norm $|\cdot|$.

Given a closed, densely defined, symmetric operator

$$
S: \mathcal{D}(S) \subseteq \mathcal{H} \rightarrow \mathcal{H}
$$

with equal deficiency indices, by von Neumann's theory one has (here the direct sums are given w.r.t. the graph inner product of S^{*})

$$
\begin{gathered}
\mathcal{D}\left(S^{*}\right)=\mathcal{D}(S) \oplus \mathcal{K}_{+} \oplus \mathcal{K}_{-}, \quad \mathcal{K}_{ \pm}:=\mathcal{K}\left(-S^{*} \pm i\right), \\
S^{*}\left(\phi_{\circ} \oplus \phi_{+} \oplus \phi_{-}\right)=S \phi_{\circ}+i \phi_{+}-i \phi_{-},
\end{gathered}
$$

and any self-adjoint extension of S is of the kind $A_{U}=S^{*} \mid \mathcal{G}(U)$, the restriction of S^{*} to $\mathcal{G}(U)$, where $U: \mathcal{K}_{+} \rightarrow \mathcal{K}_{-}$is unitary. Therefore, fixing a unitary U_{\circ} and posing $A:=A_{U_{0}}$, one has

$$
S=A \mid \mathcal{K}\left(\tau_{\circ}\right), \quad \tau_{\circ}: \mathcal{D}(A) \rightarrow \mathfrak{h}_{\circ},
$$

where

$$
\mathfrak{h}_{\circ}=\mathcal{K}_{+}, \quad \tau_{\circ}=P_{+},
$$

and P_{+}is the orthogonal (w.r.t. the graph inner product of S^{*}) projection onto \mathcal{K}_{+}. Since $\mathcal{K}\left(\tau_{\circ}\right)=\mathcal{K}(\tau)$ where $\tau=M \tau_{\circ}$ and $M: \mathfrak{h}_{\circ} \rightarrow \mathfrak{h}$ is any continuous linear bijection, in the search of the self-adjoint extension of S, we can consider the following equivalent problem: determine all the self-adjoint extensions of $A \mid \mathcal{K}(\tau)$, where

$$
\tau: \mathcal{D}(A) \rightarrow \mathfrak{h}
$$

is a linear, continuous (with respect to the graph norm on $\mathcal{D}(A)$), surjective map onto an auxiliary Hilbert space \mathfrak{h} with its kernel $\mathcal{K}(\tau)$ dense in \mathcal{H}. Typically A is a differential operator, τ is some trace (restriction) operator along a null subset N and \mathfrak{h} is some function space over N

[^0]We suppose that the spectrum of A does not coincide with the whole real line and so, by eventually adding a constant to A, we make the following hypothesis:

$$
0 \in \rho(A)
$$

By the results provided in [9] and [7] (to which we refer for proofs and connections with equivalent formulations, in particular with boundary triplets theory) one has the following

Theorem 1.1. The set of all self-adjoint extensions of S is parametrized by the set $\mathrm{E}(\mathfrak{h})$ of couples (Π, Θ), where Π is an orthogonal projection in \mathfrak{h} and Θ is a self-adjoint operator in $\mathcal{R}(\Pi)$. If $A^{\Pi, \Theta}$ denotes the self-adjoint extension corresponding to $(\Pi, \Theta) \in \mathrm{E}(\mathfrak{h})$ then

$$
\begin{gathered}
A^{\Pi, \Theta}: \mathcal{D}\left(A^{\Pi, \Theta}\right) \subseteq \mathcal{H} \rightarrow \mathcal{H}, \quad A^{\Pi, \Theta} \phi:=A \phi_{0} \\
\mathcal{D}\left(A^{\Pi, \Theta}\right):=\left\{\phi=\phi_{0}+G_{0} \xi_{\phi}, \phi_{0} \in \mathcal{D}(A), \xi_{\phi} \in \mathcal{D}(\Theta), \Pi \tau \phi_{0}=\Theta \xi_{\phi}\right\}
\end{gathered}
$$

where

$$
G_{z}: \mathfrak{h} \rightarrow \mathcal{H}, \quad G_{z}:=\left(\tau(-A+\bar{z})^{-1}\right)^{*}, \quad z \in \rho(A)
$$

Moreover the resolvent of $A^{\Pi, \Theta}$ is given, for any $z \in \rho(A) \cap \rho\left(A^{\Pi, \Theta}\right)$, by the Kreĭn's type formula

$$
\left(-A^{\Pi, \Theta}+z\right)^{-1}=(-A+z)^{-1}+G_{z} \Pi\left(\Theta+z \Pi G_{0}^{*} G_{z} \Pi\right)^{-1} \Pi G_{\bar{z}}^{*}
$$

Remark 1.2. Notice that the extension corresponding to $\Pi=0$ is A itself. The extension corresponding to $(1, \Theta)$ is denoted by A^{Θ} and everywhere we omit the index Π in the case $\Pi=1$. By [8], Corollary 3.2 , the sub-family $\left\{A^{\Theta}: \Theta\right.$ self-adjoint $\}$ gives all singular perturbations of A, where we say that \hat{A} is a singular perturbation of A whenever the set $\{\phi \in \mathcal{D}(A) \cap \mathcal{D}(\hat{A}): A \phi=\hat{A} \phi\}$ is dense in \mathcal{H} (see [4]).

Remark 1.3. The operator G_{z} is injective (by surjectivity of τ) and for any $z \in \rho(A)$ one has (see [7], Remark 2.8)

$$
\begin{equation*}
\mathcal{R}\left(G_{z}\right) \cap \mathcal{D}(A)=\{0\} \tag{1.1}
\end{equation*}
$$

so that the decomposition appearing in $\mathcal{D}\left(A^{\Pi, \Theta}\right)$ is unique. Moreover (see [7], Lemma 2.1)

$$
\begin{equation*}
G_{w}-G_{z}=(z-w)(-A+w)^{-1} G_{z} . \tag{1.2}
\end{equation*}
$$

2. The common point spectrum

Given a self-adjoint operator A let us denote by

$$
\sigma(A), \quad \sigma_{p}(A), \quad \sigma_{d}(A)
$$

its full, point and discrete spectrum respectively.
Given $\lambda \in \sigma_{p}(A)$, we denote by P_{λ} the orthogonal projector onto the corresponding eigenspace $\mathcal{H}_{\lambda} \subseteq \mathcal{D}(A)$ and pose $P_{\lambda}^{\perp}:=1-P_{\lambda}$.

Given $\lambda \in \sigma_{p}\left(A^{\Pi, \Theta}\right)$, we denote by $\mathcal{H}_{\lambda}^{\Pi, \Theta} \subseteq \mathcal{D}\left(A^{\Pi, \Theta}\right)$ the corresponding eigenspace.
As regards the eigenvalues of $A^{\Pi, \Theta}$ which are not in the spectrum of A a complete answer is given by the following result which is consequence of Kreın's resolvent formula (see [3], Section 2, Propositions 1 and 2, and [8], Theorem 3.4):

Lemma 2.1.

$$
\begin{gathered}
\lambda \in \rho(A) \cap \sigma_{p}\left(A^{\Pi, \Theta}\right) \quad \Longleftrightarrow \quad 0 \in \sigma_{p}\left(\Theta+\lambda \Pi G_{0}^{*} G_{\lambda} \Pi\right), \\
\mathcal{H}_{\lambda}^{\Pi, \Theta}=\left\{G_{\lambda} \xi, \quad \xi \in \mathcal{K}\left(\Theta+\lambda \Pi G_{0}^{*} G_{\lambda} \Pi\right)\right\} .
\end{gathered}
$$

Here we are interested in the common eigenvalues, i.e. in the points in $\sigma_{p}(A) \cap$ $\sigma_{p}\left(A^{\Pi, \Theta}\right)$. Therefore we take $\lambda \in \sigma_{p}(A)$ and we look for solutions $\phi \in \mathcal{D}\left(A^{\Pi, \Theta}\right)$ of the eigenvalue equation

$$
A^{\Pi, \Theta} \phi=\lambda \phi
$$

i.e., by Theorem 1.1,

$$
(A-\lambda) \phi_{0}=\lambda G_{0} \xi_{\phi}
$$

By

$$
(A-\lambda) P_{\lambda} \phi_{0}=0, \quad(A-\lambda) P_{\lambda}^{\perp} \phi_{0} \in \mathcal{R}\left(P_{\lambda}^{\perp}\right),
$$

this is equivalent to the couple of equations

$$
\begin{gather*}
P_{\lambda} G_{0} \xi_{\phi}=0 \tag{2.1}\\
(A-\lambda) P_{\lambda}^{\perp} \phi_{0}=\lambda P_{\lambda}^{\perp} G_{0} \xi_{\phi} \tag{2.2}
\end{gather*}
$$

together with the constraint

$$
\begin{equation*}
\xi_{\phi} \in \mathcal{D}(\Theta) \subseteq \mathcal{R}(\Pi), \quad \Pi \tau \phi_{0}=\Theta \xi_{\phi} \tag{2.3}
\end{equation*}
$$

Equation (2.1) gives, for all $\psi \in \mathcal{H}$,

$$
0=\left\langle G_{0} \xi_{\phi}, P_{\lambda} \psi\right\rangle=-\left\langle\xi_{\phi}, \tau A^{-1} P_{\lambda} \psi\right\rangle=-\frac{1}{\lambda}\left\langle\xi_{\phi}, \tau P_{\lambda} \psi\right\rangle
$$

and so

$$
\xi_{\phi} \in\left(\mathcal{R}\left(\tau P_{\lambda}\right)\right)^{\perp}
$$

If $\mathcal{R}(\Pi) \cap\left(\mathcal{R}\left(\tau P_{\lambda}\right)\right)^{\perp}=\{0\}$ then, since G_{0} is injective, one has that in this case ϕ is an eigenvector with eigenvalue λ if and only if $\phi \in \mathcal{H}_{\lambda}$ and $\Pi \tau \phi=0$.

Conversely suppose that $\mathcal{R}(\Pi) \cap\left(\mathcal{R}\left(\tau P_{\lambda}\right)\right)^{\perp} \neq\{0\}$ and moreover that λ is an isolated eigenvalue. Then $\lambda \in \rho\left(A \mid \mathcal{H}_{\lambda}^{\perp}\right)$ and (2.2) gives

$$
P_{\lambda}^{\perp} \phi_{0}=-\lambda(-A+\lambda)^{-1} P_{\lambda}^{\perp} G_{0} \xi_{\phi} .
$$

By $\Pi \tau \phi_{0}=\Theta \xi_{\phi}$ then one gets

$$
\begin{equation*}
\Pi \tau P_{\lambda} \phi_{0}=\Theta \xi_{\phi}-\Pi \tau P_{\lambda}^{\perp} \phi_{0}=\left(\Theta+\lambda \Pi \tau(-A+\lambda)^{-1} P_{\lambda}^{\perp} G_{0} \Pi\right) \xi \tag{2.4}
\end{equation*}
$$

By defining

$$
G_{\lambda}^{\perp}: \mathfrak{h} \rightarrow \mathcal{H}, \quad G_{\lambda}^{\perp}:=\left(\tau(-A+\lambda)^{-1} P_{\lambda}^{\perp}\right)^{*},
$$

and by $\left(G_{\lambda}^{\perp}\right)^{*} G_{0}=G_{0}^{*} G_{\lambda}^{\perp}$ (this relation is consequence of (1.2)), (2.4) is equivalent to

$$
\Pi \tau P_{\lambda} \phi_{0}=\left(\Theta+\lambda \Pi G_{0}^{*} G_{\lambda}^{\perp} \Pi\right) \xi
$$

Moreover by $(-A+\lambda)^{-1} P_{\lambda}^{\perp} G_{0}=-A^{-1} G_{\lambda}^{\perp}$ one has

$$
\begin{aligned}
P_{\lambda} \phi_{0}+P_{\lambda}^{\perp} \phi_{0}+G_{0} \xi_{\phi} & =P_{\lambda} \phi_{0}+\left(-\lambda(-A+\lambda)^{-1} P_{\lambda}^{\perp}+P_{\lambda}^{\perp}\right) G_{0} \xi_{\phi} \\
& =P_{\lambda} \phi_{0}-A(-A+\lambda)^{-1} P_{\lambda}^{\perp} G_{0} \xi_{\phi} \\
& =P_{\lambda} \phi_{0}+G_{\lambda}^{\perp} \xi_{\phi} .
\end{aligned}
$$

In conclusion we have proven the following
Theorem 2.2. Let $\lambda \in \sigma_{p}(A)$.

1) Suppose

$$
\mathcal{R}(\Pi) \cap\left(\mathcal{R}\left(\tau P_{\lambda}\right)\right)^{\perp}=\{0\}
$$

and pose

$$
\mathcal{K}_{\lambda}^{\Pi}:=\left\{\psi \in \mathcal{H}_{\lambda}: \Pi \tau \psi=0\right\}
$$

Then

$$
\lambda \in \sigma_{p}\left(A^{\Pi, \Theta}\right) \quad \Longleftrightarrow \quad \mathcal{K}_{\lambda}^{\Pi} \neq\{0\}
$$

and

$$
\mathcal{H}_{\lambda}^{\Pi, \Theta}=\mathcal{K}_{\lambda}^{\Pi} .
$$

2) Suppose

$$
\mathcal{R}(\Pi) \cap\left(\mathcal{R}\left(\tau P_{\lambda}\right)\right)^{\perp} \neq\{0\}
$$

and let λ be isolated.
Let $\mathcal{N}_{\lambda}^{\Pi, \Theta}$ be the set of couples $(\psi, \xi) \in \mathcal{H}_{\lambda} \oplus \mathcal{R}(\Pi)$ such that

$$
\begin{gather*}
\xi \in D(\Theta) \cap\left(\mathcal{R}\left(\tau P_{\lambda}\right)\right)^{\perp} \tag{2.5}\\
\Pi \tau \psi=\left(\Theta+\lambda \Pi G_{0}^{*} G_{\lambda}^{\perp} \Pi\right) \xi \tag{2.6}
\end{gather*}
$$

Then

$$
\begin{aligned}
\lambda \in \sigma_{p}\left(A^{\Pi, \Theta}\right) & \Longleftrightarrow \quad \mathcal{N}_{\lambda}^{\Pi, \Theta} \neq\{0\} \\
\operatorname{dim}\left(\mathcal{H}_{\lambda}^{\Pi, \Theta}\right) & =\operatorname{dim}\left(\mathcal{N}_{\lambda}^{\Pi, \Theta}\right)
\end{aligned}
$$

and

$$
\mathcal{H}_{\lambda}^{\Pi, \Theta}=\left\{\phi \in \mathcal{H}: \phi=\psi+G_{\lambda}^{\perp} \xi, \quad(\psi, \xi) \in \mathcal{N}_{\lambda}^{\Pi, \Theta}\right\} .
$$

Remark 2.3. Notice that

$$
(\mathcal{R}(\Pi))^{\perp} \cap \mathcal{R}\left(\tau P_{\lambda}\right) \neq\{0\} \quad \Longrightarrow \quad \mathcal{K}_{\lambda}^{\Pi} \neq\{0\}
$$

Remark 2.4. Suppose $\lambda \in \sigma_{p}(A)$ is isolated. Noticing that

$$
\mathcal{K}_{\lambda}^{\Pi} \oplus\left(\mathcal{R}(\Pi) \cap\left(\mathcal{R}\left(\tau P_{\lambda}\right)\right)^{\perp} \cap \mathcal{K}\left(\Theta+\lambda \Pi G_{0}^{*} G_{\lambda}^{\perp} \Pi\right)\right) \subseteq \mathcal{N}_{\lambda}^{\Pi, \Theta}
$$

one has

$$
\mathcal{K}_{\lambda}^{\Pi} \neq\{0\} \quad \Longrightarrow \quad \lambda \in \sigma_{p}\left(A^{\Pi, \Theta}\right)
$$

In particular, in the case λ is simple with eigenvector ψ_{λ},

$$
\Pi \tau \psi_{\lambda}=0 \quad \Longrightarrow \quad \lambda \in \sigma_{p}\left(A^{\Pi, \Theta}\right)
$$

Remark 2.5. Suppose $\mathcal{R}\left(\tau P_{\lambda}\right)=\{0\}$. Then $\mathcal{K}_{\lambda}^{\Pi}=\mathcal{H}_{\lambda}$ and so, in case $\lambda \in \sigma_{p}(A)$ is isolated, $\lambda \in \sigma_{p}\left(A^{\Pi, \Theta}\right)$ and

$$
\mathcal{H}_{\lambda}^{\Pi, \Theta}=\left\{\phi=\psi_{\lambda}+G_{\lambda}^{\perp} \xi, \psi_{\lambda} \in \mathcal{H}_{\lambda}, \xi \in \mathcal{R}(\Pi) \cap \mathcal{K}\left(\Theta+\lambda \Pi G_{0}^{*} G_{\lambda}^{\perp} \Pi\right)\right\}
$$

Remark 2.6. The papers [1] and [6] contain results related to the ones given by Theorem 2.2 (see Theorem 3.6 in [6] and Theorem 4.7 in [1]). We thank Konstantin Pankrashkin for the communication.

3. Examples

3.1. Rank-one singular perturbations. Suppose $\mathfrak{h}=\mathbb{C}$. Then $\Pi=1, \Theta=\theta \in \mathbb{R}$ and either $\mathcal{R}\left(\tau P_{\lambda}\right)=\mathbb{C}$ or $\mathcal{R}\left(\tau P_{\lambda}\right)=\{0\}$.

If $\mathcal{R}\left(\tau P_{\lambda}\right)=\mathbb{C}$ then $\lambda \in \sigma_{p}\left(A^{\theta}\right)$ if and only if $\mathcal{K}_{\lambda} \neq\{0\}$, where

$$
\mathcal{K}_{\lambda}:=\left\{\psi \in \mathcal{H}_{\lambda}: \tau \psi=0\right\} .
$$

Since $\mathcal{R}\left(\tau P_{\lambda}\right)=\{0\}$ if and only if $\mathcal{K}_{\lambda}=\mathcal{H}_{\lambda}$, when λ is isolated and $\mathcal{R}\left(\tau P_{\lambda}\right)=\{0\}$ one has

$$
\mathcal{N}_{\lambda}^{\theta}=\mathcal{K}_{\lambda} \oplus\left\{\xi \in \mathbb{C}:\left(\theta+\lambda\left\langle G_{0}, G_{\lambda}^{\perp}\right\rangle\right) \xi=0\right\}
$$

and so

$$
\begin{aligned}
\theta+\lambda\left\langle G_{0}, G_{\lambda}^{\perp}\right\rangle=0 & \Longrightarrow \quad \mathcal{N}_{\lambda}^{\theta}=\mathcal{K}_{\lambda} \oplus \mathbb{C} \equiv \mathcal{H}_{\lambda} \oplus \mathbb{C} \\
\theta+\lambda\left\langle G_{0}, G_{\lambda}^{\perp}\right\rangle \neq 0 & \Longrightarrow \quad \mathcal{N}_{\lambda}^{\theta}=\mathcal{K}_{\lambda} \oplus\{0\} \equiv \mathcal{H}_{\lambda}
\end{aligned}
$$

In conclusion when $\mathfrak{h}=\mathbb{C}$ and $\lambda \in \sigma_{p}(A)$ is isolated,

$$
\begin{equation*}
\lambda \in \sigma_{p}\left(A^{\theta}\right) \Longleftrightarrow \mathcal{K}_{\lambda} \neq\{0\} \tag{3.1}
\end{equation*}
$$

and

$$
\mathcal{H}_{\lambda}^{\theta}=\left\{\psi=\psi_{\lambda}+G_{\lambda}^{\perp} \xi, \psi_{\lambda} \in \mathcal{H}_{\lambda},\left(\theta+\lambda\left\langle G_{0}, G_{\lambda}^{\perp}\right\rangle\right) \xi=0\right\}
$$

In particular if λ is a simple isolated eigenvalue of A with corresponding eigenfunction ψ_{λ}, then $\lambda \in \sigma_{p}\left(A^{\theta}\right)$ if and only if $\tau \psi_{\lambda}=0$. For example, if $\mathcal{H}=L^{2}(\Omega)$ and $\tau: \mathcal{D}(A) \rightarrow \mathbb{C}$ is the evaluation map at $y \in \Omega, \tau \psi:=\psi(y)$, then λ is preserved if and only if y belongs to the nodal set (if any) of ψ_{λ}. Thus if A is (minus) the Dirichlet Laplacian on a bounded open set $\Omega \subset \mathbb{R}^{d}, d \leq 3$, its lowest eigenvalue is never preserved under a point perturbation. Analogous results hold in the case A is the Laplace-Beltrami operator on a compact d-dimensional Riemannian manifold $M, d \leq 3$, thus reproducing the ones given in [2], Theoreme 2, part 1.

3.2. The Šeba billiard. Let

$$
\begin{gathered}
A=\Delta: \mathcal{D}(A) \subset L^{2}(R) \rightarrow L^{2}(R) \\
\mathcal{D}(A)=\left\{\phi \in C(\bar{R}): \Delta \phi \in L^{2}(R), \phi(\mathrm{x})=0, \mathrm{x} \in \partial R\right\},
\end{gathered}
$$

be the Dirichlet Laplacian on the rectangle $R=(0, a) \times(0, b)$. Then

$$
\sigma(A)=\sigma_{d}(A)=\left\{\lambda_{m, n},(m, n) \in \mathbb{N}^{2}\right\}
$$

and

$$
\mathcal{H}_{\lambda_{m, n}}=\operatorname{span}\left\{\psi_{m^{\prime}, n^{\prime}}: \lambda_{m^{\prime}, n^{\prime}}=\lambda_{m, n}\right\}
$$

where

$$
\lambda_{m, n}:=-\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)
$$

and

$$
\psi_{m, n}(\mathrm{x}):=\sin \left(\frac{m \pi x_{1}}{a}\right) \sin \left(\frac{n \pi x_{2}}{b}\right), \quad \mathrm{x} \equiv\left(x_{1}, x_{2}\right)
$$

Let

$$
\tau \psi:=\psi(\mathrm{y})
$$

so that A^{θ} describes a "Šeba billiard", i.e. the Dirichlet Laplacian on the rectangle R with a point perturbation placed at the point $\mathrm{y} \equiv\left(y_{1}, y_{2}\right)$ (see [10]).

Since $\sigma(A)=\sigma_{d}(A)$, by the invariance of the essential spectrum under finite rank perturbations, one has $\sigma\left(A^{\theta}\right)=\sigma_{d}\left(A^{\theta}\right)$ and, by (3.1), $\lambda_{m, n} \in \sigma(A) \cap \sigma\left(A^{\theta}\right)$ if and only

$$
\forall\left(m^{\prime}, n^{\prime}\right) \text { s.t. } \lambda_{m^{\prime}, n^{\prime}}=\lambda_{m, n}, \quad \sin \left(\frac{m^{\prime} \pi y_{1}}{a}\right) \sin \left(\frac{n^{\prime} \pi y_{2}}{b}\right)=0
$$

Equivalently

$$
\sigma(A) \cap \sigma\left(A^{\theta}\right)=\emptyset \quad \Longleftrightarrow \quad\left(\frac{y_{1}}{a}, \frac{y_{2}}{b}\right) \notin \mathbb{Q}^{2} .
$$

If there exists relatively prime integers $1 \leq p<q$ such that $\frac{y_{1}}{a}=\frac{p}{q}$ while $\frac{y_{2}}{b}$ is irrational, then

$$
\sigma(A) \cap \sigma\left(A^{\theta}\right)=\left\{\lambda_{k q, n}, \quad(k, n) \in \mathbb{N}^{2}\right\}
$$

Analogously if $\frac{y_{1}}{a}$ is irrational and $\frac{y_{2}}{b}=\frac{p}{q}$ then

$$
\sigma(A) \cap \sigma\left(A_{\theta}\right)=\left\{\lambda_{m, k q}, \quad(m, k) \in \mathbb{N}^{2}\right\}
$$

while if $\frac{y_{1}}{a}=\frac{p}{q}$ and $\frac{y_{2}}{b}=\frac{r}{s}$, then

$$
\sigma(A) \cap \sigma\left(A^{\theta}\right)=\left\{\lambda_{k q, n},(k, n) \in \mathbb{N}^{2}\right\} \cup\left\{\lambda_{m, k s},(m, k) \in \mathbb{N}^{2}\right\}
$$

3.3. Rank-two singular perturbations. Let $\mathfrak{h}=\mathbb{C}^{2}$. Then either $\Pi=1$ or $\Pi=w \otimes w$, $w \in \mathbb{C}^{2},|w|=1$. Let $\lambda \in \sigma_{p}(A)$.
1.1) $\mathcal{R}\left(\tau P_{\lambda}\right)=\mathbb{C}^{2}, \Pi=1$. Then $\lambda \in \sigma_{p}\left(A^{\Theta}\right)$ if and only if there exists $\psi \in \mathcal{H}_{\lambda} \backslash\{0\}$ such that $\tau \psi=0$.
1.2) $\mathcal{R}\left(\tau P_{\lambda}\right)=\mathbb{C}^{2}, \Pi=w \otimes w$. Then $\lambda \in \sigma_{p}\left(A^{\Pi, \Theta}\right)$ if and only if there exists $\psi \in \mathcal{H}_{\lambda} \backslash\{0\}$ such that $w \cdot \tau \psi=0$.

Now suppose further that $\lambda \in \sigma_{p}(A)$ is isolated.
2.1) $\mathcal{R}\left(\tau P_{\lambda}\right)=\operatorname{span}\left(\xi_{\lambda}\right) \simeq \mathbb{C},\left|\xi_{\lambda}\right|=1, \Pi=1$. Decomposing equation (2.6) w.r.t. the orthonormal base $\left\{\xi_{\lambda}, \xi_{\lambda}^{\perp}\right\}$ one gets that $\mathcal{N}_{\lambda}^{\Theta} \neq\{0\}$ if and only if there exists $\zeta \equiv$ $\left(\zeta_{1}, \zeta_{2}\right) \in \mathbb{C}^{2} \backslash\{0\}$ solving

$$
\left\{\begin{array}{l}
\zeta_{1}=\left(\xi_{\lambda} \cdot\left(\Theta+\lambda G_{0}^{*} G_{\lambda}^{\perp}\right) \xi_{\lambda}^{\perp}\right) \zeta_{2} \\
0=\left(\xi_{\lambda}^{\perp} \cdot\left(\Theta+\lambda G_{0}^{*} G_{\lambda}^{\perp}\right) \xi_{\lambda}^{\perp}\right) \zeta_{2}
\end{array}\right.
$$

Hence

$$
\lambda \in \sigma_{p}\left(A^{\Theta}\right) \Longleftrightarrow\left(\xi_{\lambda}^{\perp} \cdot\left(\Theta+\lambda G_{0}^{*} G_{\lambda}^{\perp}\right) \xi_{\lambda}^{\perp}\right)=0
$$

2.2) $\mathcal{R}\left(\tau P_{\lambda}\right)=\operatorname{span}\left(\xi_{\lambda}\right) \simeq \mathbb{C}, \Pi=w \otimes w$. Let us use the decomposition $w=w_{\|}+w_{\perp}$ w.r.t. the orthonormal base $\left\{\xi_{\lambda}, \xi_{\lambda}^{\perp}\right\}$. If $w_{\|}=0$ then $\mathcal{K}_{\lambda}^{\Pi} \neq\{0\}$ and so $\lambda \in \sigma_{p}\left(A^{\Pi, \Theta}\right)$. If $w_{\|} \neq 0$ then $\mathcal{K}_{\lambda}^{\Pi}=\{0\}$ and $\mathcal{R}(\Pi) \cap\left(\mathcal{R}\left(\tau P_{\lambda}\right)\right)^{\perp}=\{0\}$, thus $\lambda \notin \sigma_{p}\left(A^{\Pi, \Theta}\right)$. In conclusion

$$
\lambda \in \sigma_{p}\left(A^{\Pi, \Theta}\right) \quad \Longleftrightarrow \quad w=\xi_{\lambda}^{\perp}
$$

3) $\mathcal{R}\left(\tau P_{\lambda}\right)=\{0\}$. In this case $\lambda \in \sigma_{p}\left(A^{\Pi, \Theta}\right)$.

3.4. The Laplacian on a bounded interval. Let

$$
\begin{gathered}
A: \mathcal{D}(A) \subseteq L^{2}(0, a) \rightarrow L^{2}(0, a), \quad A \phi=\phi^{\prime \prime} \\
\mathcal{D}(A)=\left\{\phi \in C^{1}[0, a]: \phi^{\prime \prime} \in L^{2}(0, a), \phi(0)=\phi(a)=0\right\}
\end{gathered}
$$

be the Dirichlet Laplacian on the bounded interval $(0, a)$ and pose

$$
\tau: \mathcal{D}(A) \rightarrow \mathbb{C}^{2}, \quad \tau \phi \equiv \gamma_{1} \phi:=\left(\phi^{\prime}(0),-\phi^{\prime}(a)\right)
$$

Therefore $S=A \mid \mathcal{K}(\tau)$ is the minimal Laplacian with domain

$$
\mathcal{D}(S)=\left\{\phi \in C^{1}[0, a]: \phi^{\prime \prime} \in L^{2}(0, a), \phi(0)=\phi^{\prime}(0)=\phi(a)=\phi^{\prime}(a)=0\right\}
$$

and the self-adjoint extensions of S are rank-two perturbations of the Dirichlet Lapla$\operatorname{cian} A$. One has

$$
\sigma(A)=\sigma_{d}(A)=\left\{\lambda_{n}\right\}_{1}^{\infty}, \quad \lambda_{n}=-\left(\frac{n \pi}{a}\right)^{2}
$$

and the normalized eigenvector corresponding to λ_{n} is

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)
$$

By Theorem 1.1 and by the change of extension parameter (here P_{0} represents the Dirichlet-to-Neumann operator)

$$
(\Pi, \Theta) \mapsto(\Pi, B), \quad B:=\Theta-\Pi P_{0} \Pi, \quad P_{0} \equiv \frac{1}{a}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

any self-adjoint extension of the minimal Laplacian S is of the kind $A^{\Pi, B},(\Pi, B) \in \mathrm{E}\left(\mathbb{C}^{2}\right)$, where

$$
\begin{gathered}
A^{\Pi, B}: \mathcal{D}\left(A^{\Pi, B}\right) \subset L^{2}(0, a) \rightarrow L^{2}(0, a), \quad A^{\Pi, B} \phi=\phi^{\prime \prime} \\
\mathcal{D}\left(A^{\Pi, B}\right)=\left\{\phi \in C^{1}[0, a]: \phi^{\prime \prime} \in L^{2}(0, a), \gamma_{0} \phi \in \mathcal{R}(\Pi), \Pi \gamma_{1} \phi=B \gamma_{0} \phi\right\}
\end{gathered}
$$

(see e.g. [9], Example 5.1). Here $\gamma_{0} \phi:=(\phi(0), \phi(a))$.

The case $\Pi=0$ reproduces A itself, the case $\Pi=1, B=\left(\begin{array}{ll}b_{11} & b_{12} \\ \bar{b}_{12} & b_{22}\end{array}\right), b_{11}, b_{22} \in \mathbb{R}$, $b_{12} \in \mathbb{C}$, gives the boundary conditions

$$
\left\{\begin{array}{l}
b_{11} \phi(0)-\phi^{\prime}(0)+b_{12} \phi(a)=0 \\
\bar{b}_{12} \phi(0)+b_{22} \phi(a)+\phi^{\prime}(a)=0
\end{array}\right.
$$

and the case $\Pi=w \otimes w, w \equiv\left(w_{1}, w_{2}\right) \in \mathbb{C}^{2},\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}=1, B \equiv b \in \mathbb{R}$, gives the boundary conditions

$$
\left\{\begin{array}{l}
w_{2} \phi(0)-w_{1} \phi(a)=0 \\
\bar{w}_{1}\left(b \phi(0)-\phi^{\prime}(0)\right)+\bar{w}_{2}\left(b \phi(a)+\phi^{\prime}(a)\right)=0
\end{array}\right.
$$

By the invariance of the essential spectrum under finite rank perturbations, $\sigma\left(A^{\Pi, B}\right)=$ $\sigma_{d}\left(A^{\Pi, B}\right)$. Now we use the results given in subsection 3.3. One has

$$
\mathcal{R}\left(\tau P_{\lambda_{n}}\right)=\operatorname{span}\left(\hat{\xi}_{n}\right), \quad \hat{\xi}_{n} \equiv \frac{1}{\sqrt{2}}\left(1,(-1)^{n-1}\right) .
$$

Let $\Pi=1$ and $\hat{\xi}_{n}^{\perp} \equiv \frac{1}{\sqrt{2}}\left(1,(-1)^{n}\right)$. By point 2.1 in subsection 3.3 we known that $\lambda_{n} \in \sigma\left(A^{B}\right)$ if and only if $\hat{\xi}_{n}^{\perp} \cdot\left(B+P_{0}+\lambda_{n} G_{0}^{*} G_{\lambda_{n}}^{\perp}\right) \hat{\xi}_{n}^{\perp}=0$. Since the resolvent of A is explicitly known, $\hat{\xi}_{n}^{\perp} \cdot\left(B+P_{0}+\lambda_{n} G_{0}^{*} G_{\lambda_{n}}^{\perp}\right) \hat{\xi}_{n}^{\perp}$ can be calculated. However we use here a short cut which avoids any calculation: the Neumann Laplacian corresponds to $B=0$ and we know that its spectrum is $\{0\} \cup \sigma(A)$, thus

$$
\begin{equation*}
\hat{\xi}_{n}^{\perp} \cdot\left(P_{0}+\lambda_{n} G_{0}^{*} G_{\lambda_{n}}^{\perp}\right) \hat{\xi}_{n}^{\perp}=0 \tag{3.2}
\end{equation*}
$$

Therefore we obtain

$$
\lambda_{n} \in \sigma\left(A^{B}\right) \quad \Longleftrightarrow \quad b_{11}+b_{22}+2(-1)^{n} \operatorname{Re}\left(b_{12}\right)=0
$$

If $\Pi=w \otimes w$ by point 2.2 in subsection 3.3 one has

$$
\lambda_{n} \in \sigma\left(A^{\Pi, B}\right) \quad \Longleftrightarrow \quad w=\hat{\xi}_{n}^{\perp}
$$

In both cases

$$
\lambda_{n} \in \sigma\left(A^{\Pi, B}\right) \quad \Longleftrightarrow \lambda_{n+2} \in \sigma\left(A^{\Pi, B}\right)
$$

Moreover

$$
\sigma(A) \subseteq \sigma\left(A^{\Pi, B}\right) \quad \Longleftrightarrow \quad \Pi=1 \text { and } b_{11}+b_{22}=0, \operatorname{Re}\left(b_{12}\right)=0
$$

3.5. Equilateral quantum graphs. Let $\mathcal{H}=\oplus_{k=1}^{N} L^{2}(0, a)$ and $A_{N}=\oplus_{k=1}^{N} A$, where A is defined as in subsection 3.4 (to which we refer for notations). Then $\sigma\left(A_{N}\right)=\sigma_{d}\left(A_{N}\right)=$ $\sigma(A)$ and the eigenfunctions corresponding to the N-fold degenerate eigenvalue λ_{n} are

$$
\Psi_{k, n}=\oplus_{i=1}^{N} \psi_{i, k, n}, \quad k=1, \ldots, N, \quad \psi_{i, k, n}= \begin{cases}0, & i \neq k \\ \psi_{n}, & i=k\end{cases}
$$

By taking

$$
\tau: \mathcal{D}\left(A_{N}\right) \equiv \oplus_{k=1}^{N} \mathcal{D}(A) \rightarrow \oplus_{k=1}^{N} \mathbb{C}^{2} \equiv \mathbb{C}^{2 N}, \quad \tau=\oplus_{k=1}^{N} \gamma_{1}
$$

one gets, by Theorem 1.1, self-adjoint extensions describing quantum graphs (see e.g. [5]) with N edges of the same length a. By Theorem 1.1 and by the change of extension parameter

$$
(\Pi, \Theta) \mapsto(\Pi, B), \quad B:=\Theta-\Pi\left(\oplus_{k=1}^{N} P_{0}\right) \Pi
$$

such extensions are of the kind $A^{\Pi, B},(\Pi, B) \in \mathrm{E}\left(\mathbb{C}^{2 N}\right)$, where (see [9], Example 5.2).

$$
\begin{gathered}
A^{\Pi, B}: \mathcal{D}\left(A^{\Pi, B}\right) \subset \oplus_{k=1}^{N} L^{2}(0, a) \rightarrow \oplus_{k=1}^{N} L^{2}(0, a), \\
A^{\Pi, B}\left(\oplus_{k=1}^{N} \phi_{k}\right)=\oplus_{k=1}^{N} \phi_{k}^{\prime \prime}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{D}\left(A^{\Pi, B}\right)=\left\{\oplus_{k=1}^{N} \phi_{k}: \phi_{k} \in C^{1}[0, a], \phi_{k}^{\prime \prime} \in L^{2}(0, a)\right. \\
\left.\left(\oplus_{k=1}^{N} \gamma_{0} \phi_{k}\right) \in \mathcal{R}(\Pi), \Pi\left(\oplus_{k=1}^{N} \gamma_{1} \phi_{k}\right)=B\left(\oplus_{k=1}^{N} \gamma_{0} \phi_{k}\right)\right\}
\end{gathered}
$$

The couple (Π, B) represents the connectivity of the quantum graph.

1) $\Pi=1$. Given $\lambda_{n} \in \mathcal{D}(A)$, we pose

$$
\mathbb{C}_{\|}^{2 N}:=\oplus_{k=1}^{N} \operatorname{span}\left(\hat{\xi}_{n}\right) \simeq \mathbb{C}^{N}, \quad \mathbb{C}_{\perp}^{2 N}:=\oplus_{k=1}^{N} \operatorname{span}\left(\hat{\xi}_{n}^{\perp}\right) \simeq \mathbb{C}^{N}
$$

so that $\mathcal{R}\left(\tau P_{\lambda_{n}}\right)=\mathbb{C}_{\|}^{2 N},\left(\mathcal{R}\left(\tau P_{\lambda_{n}}\right)\right)^{\perp}=\mathbb{C}_{\|}^{2 N}, \mathbb{C}^{2 N}=\mathbb{C}_{\|}^{2 N} \oplus \mathbb{C}_{\perp}^{2 N}$ and for any linear operator $L: \mathbb{C}^{2 N} \rightarrow \mathbb{C}^{2 N}$ we can consider the block decomposition $L=\left(\begin{array}{cc}L_{\| \|} & L_{\| \perp} \\ \left(L_{\| \perp}\right)^{*} & L_{\perp}\end{array}\right)$. By using such decompositions in equation (2.6) one gets that $\mathcal{N}_{\lambda_{n}}^{\Theta} \neq\{0\}, \Theta=B+$ $\oplus_{k=1}^{N} P_{0}$, if and only if there exists $\zeta \neq\{0\}, \zeta=\zeta_{\|} \oplus \zeta_{\perp} \in \mathbb{C}_{\|}^{2 N} \oplus \mathbb{C}_{\perp}^{2 N}$ solving

$$
\left\{\begin{array}{l}
\zeta_{\|}=\left(B+\oplus_{k=1}^{N} P_{0}+\lambda_{n} G_{0}^{*} G_{\lambda_{n}}^{\perp}\right)_{\| \perp} \zeta_{\perp}, \\
0=\left(B+\oplus_{k=1}^{N} P_{0}+\lambda_{n} G_{0}^{*} G_{\lambda_{n}}^{\perp}\right)_{\perp} \zeta_{\perp}
\end{array}\right.
$$

By (3.2) one obtains $\left(\oplus_{k=1}^{N} P_{0}+\lambda_{n} G_{0}^{*} G_{\lambda_{n}}^{\perp}\right)_{\perp}=0$. Therefore one gets

$$
\lambda_{n} \in \sigma\left(A^{B}\right) \quad \Longleftrightarrow \quad \operatorname{det}\left(B_{\perp}\right)=0
$$

2) $\Pi \neq 1$. Given $\lambda_{n} \in \mathcal{D}(A)$ we pose

$$
\mathcal{R}(\Pi)_{\|}:=\mathcal{R}(\Pi) \cap\left(\oplus_{k=1}^{N} \operatorname{span}\left(\hat{\xi}_{n}\right)\right), \quad \mathcal{R}(\Pi)_{\perp}:=\mathcal{R}(\Pi) \cap\left(\oplus_{k=1}^{N} \operatorname{span}\left(\hat{\xi}_{n}^{\perp}\right)\right)
$$

so that $\mathcal{R}(\Pi) \cap \mathcal{R}\left(\tau P_{\lambda_{n}}\right)=\mathcal{R}(\Pi)_{\|}, \mathcal{R}(\Pi) \cap\left(\mathcal{R}\left(\tau P_{\lambda_{n}}\right)\right)^{\perp}=\mathcal{R}(\Pi)_{\perp}, \mathcal{R}(\Pi)=\mathcal{R}(\Pi)_{\|} \oplus$ $\mathcal{R}(\Pi)_{\perp}$ and for any linear operator $L: \mathcal{R}(\Pi) \rightarrow \mathcal{R}(\Pi)$ we can consider the block decomposition $L=\left(\begin{array}{cc}L_{\|} & L_{\| \perp} \\ \left(L_{\| \perp}\right)^{*} & L_{\perp}\end{array}\right)$.

Define $\hat{\xi}_{k, n}=\oplus_{i=1}^{n} \hat{\xi}_{i, k, n} \in \mathbb{C}^{2 N}$ and $\hat{\xi}_{k, n}^{\perp}=\oplus_{i=1}^{n} \hat{\xi}_{i, k, n}^{\perp} \in \mathbb{C}^{2 N}, k=1, \ldots, N$, by

$$
\hat{\xi}_{i, k, n}:=\left\{\begin{array}{ll}
0, & i \neq k, \\
\hat{\xi}_{n}, & i=k,
\end{array} \quad \hat{\xi}_{i, k, n}^{\perp}:= \begin{cases}0, & i \neq k \\
\hat{\xi}_{n}^{\perp}, & i=k\end{cases}\right.
$$

If $\Pi \hat{\xi}_{k, n}^{\perp}=0$ for all k then $\mathcal{R}(\Pi)_{\perp}=\{0\}$ and in this case

$$
\lambda \in \sigma_{p}\left(A^{\Pi, B}\right) \quad \Longleftrightarrow \quad \exists k \text { s.t } \Pi \hat{\xi}_{k, n}=0
$$

If there exists k^{\prime} such that $\Pi \hat{\xi}_{k^{\prime}, n}^{\perp} \neq 0$ then $\mathcal{R}(\Pi)_{\perp} \neq\{0\}$. By Remark 2.3

$$
\exists k \text { s.t } \Pi \hat{\xi}_{k, n}=0 \quad \Longrightarrow \quad \lambda \in \sigma_{p}\left(A^{\Pi, B}\right)
$$

Suppose now $\Pi \hat{\xi}_{k, n} \neq 0$ for all k, i.e. $\mathcal{K}_{\lambda_{n}}^{\Pi}=\{0\}$. Then, using the above decompositions in equation (2.6) one gets that $\mathcal{N}_{\lambda_{n}}^{\Pi, \Theta} \neq\{0\}, \Theta=B+\Pi\left(\oplus_{k=1}^{N} P_{0}\right) \Pi$, if and only if there exists $\zeta \neq 0, \zeta=\zeta_{\|} \oplus \zeta_{\perp} \in \mathcal{R}(\Pi)_{\|} \oplus \mathcal{R}(\Pi)_{\perp}$ solving

$$
\left\{\begin{array}{l}
\zeta_{\|}=\left(B+\Pi\left(\oplus_{k=1}^{N} P_{0}+\lambda_{n} G_{0}^{*} G_{\lambda_{n}}^{\perp}\right) \Pi\right)_{\| \perp} \zeta_{\perp} \\
0=\left(B+\Pi\left(\oplus_{k=1}^{N} P_{0}+\lambda_{n} G_{0}^{*} G_{\lambda_{n}}^{\perp}\right) \Pi\right)_{\perp} \zeta_{\perp}
\end{array}\right.
$$

By (3.2) one obtains $\left(\Pi\left(\oplus_{k=1}^{N} P_{0}+\lambda_{n} G_{0}^{*} G_{\lambda_{n}}^{\perp}\right) \Pi\right)_{\perp}=0$. Therefore one gets, in case there exists k^{\prime} such that $\Pi \hat{\xi}_{k^{\prime}, n}^{\perp} \neq 0$ and $\Pi \hat{\xi}_{k, n} \neq 0$ for all k

$$
\lambda_{n} \in \sigma\left(A^{\Pi, B}\right) \quad \Longleftrightarrow \quad \operatorname{det}\left(B_{\perp}\right)=0
$$

References

1. J. Brüning, V. Geyler, K. Pankrashkin, Spectra of self-adjoint extensions and applications to solvable Schrödinger operators, Rev. Math. Phys. 20 (2008), 1-70.
2. Y. Colin De Verdiere, Pseudo-Laplaciens I, Ann. Inst. Fourier 32 (1982), 275-286.
3. V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problem for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), 1-95.
4. V. Koshmanenko, Singular operators as a parameter of self-adjoint extensions, Oper. Theory Adv. Appl. 118 (2000), 205-223.
5. P. Kuchment, Quantum graphs: I. Some basic structures, Waves in Random Media 14 (2004), S107-S128.
6. V.A. Mikhailets, A.V. Sobolev, Common eigenvalue problem and periodic Schrödinger operators, J. Funct. Anal. 165 (1999), 150-172.
7. A. Posilicano, A Kreĭn-like formula for singular perturbations of self-adjoint operators and applications, J. Funct. Anal. 183 (2001), 109-147.
8. A. Posilicano, Boundary triples and Weyl functions for singular perturbations of self-adjoint operators, Methods Funct. Anal. Topology 10 (2004), no. 2, 57-63.
9. A. Posilicano, Self-adjoint extensions of restrictions, Operators and Matrices 2 (2008), 483-506.
10. P. Šeba, Wave chaos in quantum billiard, Phys. Rev. Lett. 64 (1990), 1855-1858.

DiSAT - Sezione di Matematica, Università dell'Insubria, I-22100 Como, Italy
E-mail address: posilicano@uninsubria.it

[^0]: 2000 Mathematics Subject Classification. Primary 47B25; Secondary 47B40, 35P99.
 Key words and phrases. Self-adjoint extensions, Krein's resolvent formula, point spectrum.

