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CONTINUOUS DUAL OF c◦(Z, X, λ̄, p̄) AND c(Z, X, λ̄, p̄)

RITI AGRAWAL AND J. K. SRIVASTAVA

Abstract. A bilateral sequence is a function whose domain is the set Z of all integers
with natural ordering. In this paper we study the continuous dual of the Banach space

of X-valued bilateral sequence spaces c◦(Z, X, λ̄, p̄) and c(Z, X, λ̄, p̄).

1. Introduction

We know that bilateral sequences play a vital role in various branches of mathema-
tical analysis, for instance, in theories connected to the representation of the functions by
hypergeometric series, Laurent series and Fourier series which are among many others.
Saavedra and Rodriguez, in [13] has worked on the complex bilateral sequence space ℓ2(Z)
to obtain various results on hyper-cyclic bilateral weighted shift. In [9], Menet generalized
this result to the complex bilateral sequence spaces ℓp(Z) with 1 ≤ p < ∞ and c◦(Z) and
afterward, to the complex weighted spaces ℓp(v,Z) and c◦(v,Z). Shkarin, in [12] and [11]
used the bilateral sequence spaces ℓ∞(Z), ℓp(Z) with 1 ≤ p < ∞ and c◦(Z) to obtain
various results associated with weighted bilateral shift on these spaces and also used
{fj}j∈Z, a sequence of elements of B where B is a Banach space. Further utility of bilateral
sequences can be found in Simon and Marko [4] which deals with the characterization of
various types of operators connected to the Banach space X−valued bilateral sequence
spaces c◦(Z

n, X), ℓp(Z
n, X) and ℓ∞(Zn, X) where the domain of bilateral sequences is Zn

(see also [1, 8, 10, 14, 15, 16]). In this direction, we have also introduced and developed
certain vector valued sequence spaces in [5, 6]. Also we find it interesting that our
spaces c◦(Z, X, λ̄, p̄) and c(Z, X, λ̄, p̄) reduce to Maddox paranorm spaces c◦(p) and c(p)

if Z, X, λ̄ = (λ
k
)
∞

−∞

and p̄ = (p
k
)
∞

−∞

are replaced by N, C, λ̄ = e = (1, 1, 1, . . . ) and

p̄ = (pk)0
∞
.

2. Preliminaries

A bilateral sequence is usually denoted by ā = (a
k
)
∞

−∞

. Let p̄ = (p
k
)
∞

−∞

be a bilateral

sequence of strictly positive real numbers, λ̄ = (λ
k
)
∞

−∞

be a bilateral sequence of non-
zero complex numbers, X and Y be Banach spaces over the field C of complex numbers
and B(X,Y ) be Banach space of all bounded linear operators from X into Y . For
T ∈ B(X,Y ), the operator norm of T is defined to be

||T || = sup{||Tx|| : x ∈ S},

where S = {x ∈ X : ||x|| ≤ 1}. The zero element of the Banach spaces X,Y and B(X,Y )
will be denoted by θ and X⋆ denotes the continuous dual of X, i.e., B(X,C) = X⋆.

By the convergence of the bilateral series
∑∞

−∞ ak to s written as
∑∞

−∞ ak = s, we

mean the convergence of the sequence (sn)
∞
n=1

to s, where sn =
∑n

−n ak is the n-th partial

sum of the bilateral series
∑∞

−∞ ak.
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The following classes of Banach space X-valued bilateral sequences have been intro-
duced by the authors in [5]:

c◦(Z, X, λ̄, p̄) ={x̄ = (x
k
)
∞

−∞

: xk ∈ X, k ∈ Z, ||λkxk||
p
k→ 0,

as k → −∞ as well as k → ∞}

and

c(Z, X, λ̄, p̄) ={x̄ = (x
k
)
∞

−∞

: xk ∈ X, k ∈ Z and there exist l1, l2 ∈ X such that

||λkxk − l1||
p
k→ 0 as k → −∞ and ||λkxk − l2||

p
k→ 0 as k → ∞}.

Also we shall frequently use

ℓ∞(Z,R) = {ā = (a
k
)
∞

−∞

: ak ∈ R, k ∈ Z, sup
k

|ak| < ∞}.

This paper is in continuation of our papers [5] and [7]. In [7] we have introduced
the Köthe-Toeplitz duals of a class of vector valued bilateral sequences. Here our aim
is to investigate the continuous dual of c◦(Z, X, λ̄, p̄) and c(Z, X, λ̄, p̄) with the help of
Köthe-Toeplitz duals, characterized in [7]. The related results are as follows.

Throughout the work, we denote p−1
k = rk and M = max(1, supkpk). We shall denote

by Z(m,n), the open integer interval defined as

Z(m,n) =

{

{m+ 1,m+ 2, . . . , n− 2, n− 1}, if m+ 1 ≤ n− 1,

φ, otherwise

and its complement by Z\Z(m,n).

Definition 2.1. Let X and Y be Banach spaces and (A
k
)
∞

−∞

a bilateral sequence of

linear, but not necessarily bounded operators Ak on X into Y . Suppose E(X) is a
non-empty set of X-valued bilateral sequences. Then the α-dual of E(X) is defined by

Eα(X) =
{

Ā = (A
k
)
∞

−∞

:

∞
∑

−∞

||Akxk|| converges for all x̄ = (x
k
)
∞

−∞

∈ E(X)
}

and the β-dual is defined by

Eβ(X) =
{

Ā = (A
k
)
∞

−∞

:
∞
∑

−∞

Akxk converges in the norm of Y, for all x̄ ∈ E(X)
}

.

Now corresponding to K-space and AK-spaces for scalar sequences (see Wilansky [3]
and Kamthan and Gupta [2]), we define their generalized versions as follows:

Definition 2.2. Let E(X) be the linear space of the normed space of X-valued bilateral

sequences x̄ = (x
k
)
∞

−∞

and x ∈ X. We define

(i) δ
n
(x) = (. . . , θ, x, θ, . . . ), where x is at nth place, n ∈ Z;

(ii) E(X) equipped with the linear topology T is said to be a GK-space if the map
P

n
: E(X) → X,P

n
(x̄) = x

n
, is continuous for each n ∈ Z.

A GK-space is called
(iii) a GAK-space if for each x̄ ∈ E(X), s̄

n

(x̄) → x̄ as n → ∞ with respect to T ,
where s̄

n

(x̄) = (. . . , θ, x
−n

, . . . , x
−1
, x

0
, x

1
, . . . , x

n
, θ, . . . ).

Theorem 2.3. Ā ∈ cα◦ (Z, X, λ̄, p̄) if and only if

(i) there exist m,n ∈ Z such that Ak ∈ B(X,Y ) for all k ∈ Z\Z(m,n),
(ii) there exists an integer N > 1 such that

∑

k∈Z\Z(m,n) |λk|
−1||Ak||N

−r
k < ∞.

Proof. Suppose (i) and (ii) hold and x̄ ∈ c◦(Z, X, λ̄, p̄). We choose integers q and r,
where q ≤ m < n ≤ r such that ||λkxk||

p
k ≤ 1

N for all k ∈ Z\Z(q, r). Now, we easily get

that
∑∞

−∞ ||Akxk|| is convergent and hence Ā ∈ cα◦ (Z, X, λ̄, p̄).
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Conversely suppose that Ā ∈ cα◦ (Z, X, λ̄, p̄). If (i) fails, then there exists a sequence
(k(i)) such that k(i) ∈ Z\Z(m,n) and Ak(i) /∈ B(X,Y ). For our convenience we assume
that for each i ≥ 1, k(i) > 0. Thus for each i ≥ 1, we can find zk(i) ∈ S such that

||Ak(i)zk(i)|| > |λk(i)|i
r
k(i) . Now we define x̄ = (x

k
)
∞

−∞

by

xk =

{

λ−1
k(i)i

−r
k(i) zk(i), if k = k(i), i ≥ 1,

θ, otherwise.

We easily see that x̄ ∈ c◦(Z, X, λ̄, p̄). But for each i ≥ 1, ||Ak(i)xk(i)|| > 1 and so
∑∞

−∞||Akxk|| = ∞ which contradicts that Ā ∈ cα◦ (Z, X, λ̄, p̄).
Similarly we can prove (ii). This completes the proof. �

If in the above theorem (Theorem 2.3) Ak ∈ B(X,Y ) for all k ∈ Z then we have

Corollary 2.4. If Ak ∈ B(X,Y ) for all k ∈ Z then

cα◦ (Z, X, λ̄, p̄) = M◦(Z, B(X,Y ), λ̄, p̄),

where

M◦(Z, B(X,Y ), λ̄, p̄) =
⋃

N>1

{

Ā = (A
k
)
∞

−∞

:Ak ∈ B(X,Y ), k ∈ Z,

∞
∑

−∞

|λk|
−1||Ak||N

−r
k < ∞

}

.

Theorem 2.5. Let p̄ ∈ ℓ∞(Z,R). Then Ā ∈ cβ◦ (Z, X, λ̄, p̄) if and only if

(i) there exist m,n ∈ Z such that Ak ∈ B(X,Y ) for all k ∈ Z\Z(m,n),
(ii) ||Rm,n(λ,N)|| < ∞ for some N > 1, where

Rm,n(λ,N) = (. . . , λ−1
m−1N

−rm−1Am−1, λ
−1
m N−rmAm,λ−1

n N−rnAn,

λ−1
n+1N

−rn+1An+1, . . . ).

Proof. Suppose (i) and (ii) hold and ||Rm,n(λ,N)|| = H < ∞. Let x̄ ∈ c◦(Z, X, λ̄, p̄). For
a given ǫ > 0 choose 0 < η < 1 so that ηH < ∞. Then there exist K1,K2 ∈ Z\Z(m,n)
where K1 ≤ m and K2 ≥ n such that ||λkxk||

p
k < ηM/N for k ∈ Z\Z(K1,K2). Now for

q, r such that q ≤ K1, r ≥ K2 we have

||
∑

k∈Z(q−i,r+j)\Z(q,r)

Akxk|| ≤ ||Rq,r(λ,N)||max |λk|N
r
k ||xk|| ≤ Hη < ǫ.

Now by the completeness of Y , we easily get that
∑∞

−∞ Akxk is convergent in Y and

hence Ā ∈ cβ◦ (Z, X, λ̄, p̄).

Conversely, (i) can easily be proved. Now suppose that Ā ∈ cβ◦ (Z, X, λ̄, p̄) but
||Rm,n(λ,N)|| = ∞, for each N > 1. Then ||Rq,r(λ,N)|| = ∞ for each N > 1 and
for every q, r such that q ≤ m and r ≥ n. Thus we can find a sequence (k(N)), N ≥ 1
in Z\Z(m,n) and k(N) ≤ k(N + 1). Without loss of generality we can assume that
n = k(1) < k(2) < k(3) < · · · such that

(2.1) ||
∑

k∈S(N)

λ−1
k N−r

kAkzk|| ≥ 1

for each N > 1 where zk ∈ S, k ∈ Z and S(N) = {k(N − 1), k(N − 1)+ 1, . . . , k(N)− 1},

N > 1. Now the sequence x̄ = (x
k
)
∞

−∞

defined by

xk =

{

λ−1
k N−r

k zk, if k ∈ S(N), N > 1,

θ, otherwise
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belongs to c◦(Z, X, λ̄, p̄) as ||λkxk||
p
k = 1

N , k ∈ S(N), N > 1, but from (2.1) for
each N ≥ 2, ||

∑

k∈S(N) Akxk|| > 1 shows that
∑∞

n Akxk does not converge in Y , and

consequently
∑∞

−∞ Akxk does not converge. Hence Ā /∈ cβ◦ (Z, X, λ̄, p̄), a contradiction.
This completes the proof. �

If we take Y = C, i.e., B(X,C) = X⋆, the space of all bounded (continuous) linear
functionals on X. we define

M◦(Z, X
⋆, λ̄, p̄) =

⋃

N>1

{

f̄ = (f
k
)
∞

−∞

: fk ∈ X⋆,
∞
∑

−∞

|λk|
−1||fk||N

−r
k < ∞

}

.

Theorem 2.6. If fk ∈ X⋆ for all k ∈ Z then we have

cα◦ (Z, X, λ̄, p̄) = cβ◦ (Z, X, λ̄, p̄) = M◦(Z, X
⋆, λ̄, p̄),

where

M◦(Z, X
⋆, λ̄, p̄) =

⋃

N>1

{

f̄ = (f
k
)
∞

−∞

: fk ∈ X⋆,

∞
∑

−∞

|λk|
−1||fk||N

−r
k < ∞

}

.

Proof. By Corollary 2.4, we immediately get cα◦ (Z, X, λ̄, p̄) = M◦(Z, X
⋆, λ̄, p̄). Fur-

ther since C is complete therefore cα◦ (Z, X, λ̄, p̄) ⊂ cβ◦ (Z, X, λ̄, p̄). We now prove that

cβ◦ (Z, X, λ̄, p̄) = M◦(Z, X
⋆, λ̄, p̄). Suppose on the contrary f̄ ∈ cβ◦ (Z, X, λ̄, p̄) but f̄ /∈

M◦(Z, X
⋆, λ̄, p̄) and so

∑∞
−∞ |λk|

−1||fk||N
−r

k = ∞ for each N > 1. Then we can

choose n = k(1) < k(2) < k(3) < · · · such that
∑

k∈S(N) |λk|
−1||fk||N

−r
k > 2 where

S(N) = {k(N − 1), k(N − 1) + 1, . . . , k(N)− 1}, N > 1.
Moreover for each k ∈ Z, there exists zk ∈ S such that ||fk|| < 2|fk(zk)|. Thus the

bilateral sequence x̄ = (x
k
)
∞

−∞

defined by

xk =

{

sgn(fk(zk))|λk|
−1N−r

k zk, if k ∈ S(N), N > 1,

θ, otherwise

is in c◦(Z, X, λ̄, p̄) but
∑∞

k=−∞ fk(xk) >
∑∞

N=2 1. This shows that f̄ /∈ cβ◦ (Z, X, λ̄, p̄).

Hence cβ◦ (Z, X, λ̄, p̄) ⊂ M◦(Z, X
⋆, λ̄, p̄) and it completes the proof. �

Theorem 2.7. Ā ∈ cα(Z, X, λ̄, p̄) if and only if

(i) there exist m,n ∈ Z such that Ak ∈ B(X,Y ) for all k ∈ Z\Z(m,n),
(ii)

∑

k∈Z\Z(m,n) |λk|
−1||Ak||N

−r
k < ∞ for each N > 1,

(iii)
∑

k∈Z\Z(m,n) |λk|
−1||Ak(x)|| < ∞ for every x ∈ X.

Proof. Since cα(Z, X, λ̄, p̄) ⊂ cα◦ (Z, X, λ̄, p̄) therefore the necessity of (i) and (ii) follows
from Theorem 2.3 and necessity of (iii) follows from the fact that for every x ∈ X, x̄ =
(λ−1

k x)
∞

−∞ ∈ c(Z, X, λ̄, p̄). Now suppose (i), (ii) and (iii) hold. Then from (i) and (ii)

we get that Ā ∈ cα◦ (Z, X, λ̄, p̄) (see Theorem 2.3). Let x̄ ∈ c(Z, X, λ̄, p̄). Suppose for
l1, l2 ∈ X we have ||λkxk − l1||

p
k → 0 as k → −∞ and ||λkxk − l2||

p
k → 0 as k → ∞.

Thus for given N > 1 there exists K1 ≤ m and K2 ≥ n such that

||λkxk − l1||
p
k <

1

N
, for all k ≤ K1 and ||xk − λ−1

k l1||
p
k <

1

N |λk|
p
k

,

||λkxk − l2||
p
k <

1

N
, for all k ≥ K2 and ||xk − λ−1

k l2||
p
k <

1

N |λk|
p
k

.

Hence
∑∞

−∞ ||Akxk|| =
∑K1

−∞ ||Akxk||+
∑K2

K1
||Akxk||+

∑∞
K2

||Akxk||

≤
∑K1

−∞ ||Ak(xk − λ−1
k l1)||+

∑K1

−∞ ||Akλ
−1
k l1||+

∑K2

K1
||Akxk||

+
∑∞

K2
||Ak(xk − λ−1

k l2)||+
∑∞

K2
||Akλ

−1
k l2|| < ∞.

Hence Ā ∈ cα(Z, X, λ̄, p̄). This completes the proof. �
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Theorem 2.8. Ā ∈ cβ(Z, X, λ̄, p̄), if and only if

(i) there exist m,n ∈ Z such that Ak ∈ B(X,Y ) for all k ∈ Z\Z(m,n),

(ii)
∑−∞

m λ−1
k Ak(x) and

∑∞
n λ−1

k Ak(x) are convergent in Y for every x ∈ X.

Proof. To show (ii) is necessary, let x ∈ X. Then considering the bilateral sequences

x̄ = (x
k
)
∞

−∞

and ȳ = (y
k
)
∞

−∞

defined by

xk =

{

λ−1
k x, if k ≤ m,

θ, otherwise,

and

yk =

{

λ−1
k x, if k ≥ n,

θ, otherwise.

We see that x̄ = (x
k
)
∞

−∞

and ȳ = (y
k
)
∞

−∞

are in c(Z, X, λ̄, p̄), and we immediately get the

necessity of (ii).
For the converse part let x̄ ∈ c(Z, X, λ̄, p̄). Then there exist l1, l2 ∈ X such that

||λkxk− l1||
p
k → 0 as k → −∞ and ||λkxk− l2||

p
k → 0 as k → ∞. Consider the sequence

ū = (u
k
)
∞

−∞

, defined by

uk =











xk − λ−1
k l1, if k ≤ m,

θ, m < k < n,

xk − λ−1
k l2, if k ≥ n.

Clearly ū ∈ c◦(Z, X, λ̄, p̄) and therefore by Corollary 2.4
∑∞

−∞ Akuk is convergent in Y .

Further by (ii) we have
∑−∞

m λ−1
k Ak(l1) and

∑∞
n λ−1

k Ak(l2) are convergent in Y . We
now easily get that

∑∞
−∞ Akxk is convergent in Y because

∞
∑

−∞

Akxk =

∞
∑

−∞

Akuk +

n−1
∑

m+1

Akxk +

−∞
∑

m

λ−1
k Ak(l1) +

∞
∑

n

λ−1
k Ak(l2)

and all the four series on the right hand side are convergent. This completes the proof. �

Corollary 2.9. Let Y = C and fk ∈ X⋆ for all k ∈ Z. If

(a) f̄ ∈ M◦(Z, X
⋆, λ̄, p̄),

(b)
∑∞

−∞ |λk|
−1|fk(x)| < ∞ for every x ∈ X,

(c)
∑∞

−∞ λ−1
k fk(x) < ∞ for every x ∈ X.

Then

(i) f̄ ∈ cα(Z, X, λ̄, p̄) if and only if (a) and (b) hold and
(ii) f̄ ∈ cβ(Z, X, λ̄, p̄) if and only if (a) and (c) hold.

Proof. It can easily be proved with the help of the Theorems 2.7 and 2.8. �

The topological linear space structures of c◦(Z, X, λ̄, p̄) and c(Z, X, λ̄, p̄) have been
studied in [5], when the topology is induced by the natural paranorm

Pλ̄,p̄(x̄) = sup
k

||λkxk||
p
k
/M .

Lemma 2.10. c◦(Z, X, λ̄, p̄) is a linear space with co-ordinate-wise vector operations
i.e., x̄+ ȳ == (xk + yk)

∞

−
∞

and αx̄ = (αxk)
∞

−
∞

if and only if p̄ ∈ ℓ∞(Z,R).
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Proof. Let p̄ ∈ ℓ∞(Z,R) and x̄ = (x
k
)
∞

−∞

, ȳ = (y
k
)
∞

−∞

∈ c◦(Z, X, λ̄, p̄). Then

||λkxk||
p
k→ 0 as k → −∞ as well as k → ∞. Now considering

||λk(xk + yk)||
p
k
/M ≤ ||λkxk||

p
k
/M + ||λkyk||

p
k
/M

we see that ||λk(xk + yk)||
p
k
/M → 0 as k → −∞ as well as k → ∞ and hence x̄ + ȳ ∈

c◦(Z, X, λ̄, p̄). Also, it is clear that, for any scalar α, αx̄ ∈ c◦(Z, X, λ̄, p̄), since

||αλkxk||
p
k
/M = |α|pk

/M ||λkxk||
p
k
/M ≤ A(α)||λkxk||

p
k
/M

for each k ∈ Z. Conversely if p̄ /∈ ℓ∞(Z,R), then without loss of generality we can find a
sequence (k(n)), k(n+1) ≥ k(n) such that for each n ≥ 1, p

k(n)
> n. Now taking z ∈ X,

we define a sequence x̄ = (x
k
)
∞

−∞

by

xk =

{

λ−1
k(n)n

−r
k(n) z, if k = k(n), n ≥ 1 and

θ, otherwise.

Then we see that x̄ ∈ c◦(Z, X, λ̄, p̄) but for the scalar α = 2

||λk(n)(αxk(n))||
pk(n) = |2|pk(n)

1

n
>

2n

n
> 1, for each n ≥ 1.

This shows that αx̄ /∈ c◦(Z, X, λ̄, p̄). This completes the proof. �

Similarly we can prove that p̄ ∈ ℓ∞(Z,R) is a necessary and sufficient condition for
the linearity of c(Z, X, λ̄, p̄) also. Therefore throughout the next section we shall take
p̄ ∈ ℓ∞(Z,R).

3. Continuous dual of c0(Z, X, λ, p) and c(Z, X, λ, p)

In this section we shall investigate continuous dual of the spaces c◦(Z, X, λ̄, p̄) and
c(Z, X, λ̄, p̄).

Theorem 3.1. Let p̄ ∈ ℓ∞(Z,R). Then c⋆◦(Z, X, λ̄, p̄), the continuous dual of
(c◦(Z, X, λ̄, p̄), Pλ̄,p̄), is isomorphic to M◦(Z, X

⋆, λ̄, p̄).

Proof. Let F ∈ c⋆◦(Z, X, λ̄, p̄) and x̄ ∈ c◦(Z, X, λ̄, p̄). Since (c◦(Z, X, λ̄, p̄), Pλ̄,p̄) is aGAK-

space therefore s̄(n) → x̄ as n → ∞ where s̄(n) = (. . . , θ, x−n, x−n+1, . . . , x−1, x0, x1, . . . ,
xn, θ, . . . ). Hence for δk(x)=(. . . , θ, x, θ, . . . ), x ∈ X is at kth-place, s̄(n)=

∑n
k=−n δk(xk)

and

(3.1) F (x̄) = lim
n→∞

F (s̄(n)) = lim
n→∞

n
∑

−n

F (δk(xk)) =

∞
∑

−∞

fk(xk),

where we write F (δk(x)) = fk(x), k ∈ Z. Clearly for each k ∈ Z, fk is a linear functional
on X.

Further if xi → θ in X as i → ∞ then δk(xi) → δk(θ) = θ̄ in c◦(Z, X, λ̄, p̄) with respect
to Pλ̄,p̄ and so F (δk(xi)) → F (θ̄) = 0 i.e., fk(xi) → 0 as i → ∞ whence fk ∈ X⋆, for

all k ∈ Z. Thus f̄ = (f
k
)
∞

−∞

is a bilateral sequence in X⋆ and by (3.1)
∑∞

−∞ fk(xk) is

convergent for every x̄ ∈ c◦(Z, X, λ̄, p̄) i.e., f̄ ∈ cβ◦ (Z, X, λ̄, p̄), so by Theorem 2.6, we have
f̄ ∈ M◦(Z, X

⋆, λ̄, p̄). Hence each F ∈ c⋆◦(Z, X, λ̄, p̄) determines an f̄ ∈ M◦(Z, X
⋆, λ̄, p̄).

On the other hand if f̄ ∈ M◦(Z, X
⋆, λ̄, p̄), i.e., there exists N > 1 such that

∑∞
−∞ |λk|

−1 ||fk|| N−r
k < ∞, then by Theorem 2.6,

∑∞
−∞ fk(xk) is convergent for

every x̄ ∈ c◦(Z, X, λ̄, p̄). Now define F on c◦(Z, X, λ̄, p̄) by F (x̄) =
∑∞

−∞ fk(xk). Clearly

F is linear. For the continuity of F , let (x̄(n)) be a sequence in c◦(Z, X, λ̄, p̄) converging
to θ̄ with respect to Pλ̄,p̄. Now for ǫ > 0 and N > 1 choose 0 < η < 1 such that
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η
∑∞

−∞ |λk|
−1||fk|| N

−r
k < ǫ. Thus for η N−1/M > 0, (M = max(1, supk pk)) there

exists n◦ such that for all n ≥ n◦

Pλ̄,p̄(x̄
(n)) = sup

k
||λkx

(n)
k ||pk

/M < ηN−1/M .

This implies that for all n ≥ n◦

|F (x̄(n))| ≤

∞
∑

−∞

|fk(x
(n)
k )| ≤

∞
∑

−∞

||fk|| ||x
(n)
k ||

≤

∞
∑

−∞

|λk|
−1||fk|| N

−r
k ηM/p

k ≤ η

∞
∑

−∞

|λk|
−1||fk||N

−r
k < ǫ,

i.e., |F (x̄(n))| < ǫ, for all n ≥ n◦. Thus F (x̄(n)) → 0 as n → ∞ and hence F ∈
c⋆◦(Z, X, λ̄, p̄). This shows that each f̄ ∈ M◦(Z, X

⋆, λ̄, p̄) corresponds to an F ∈ c⋆◦(Z, X,
λ̄, p̄). Now, φ : c⋆◦(Z, X, λ̄, p̄) → M◦(Z, X

⋆, λ̄, p̄) defined by φ(F ) = f̄ clearly defines an
isomorphism of c⋆◦(Z, X, λ̄, p̄) onto M◦(Z, X

⋆, λ̄, p̄). This completes the proof. �

Theorem 3.2. Let p̄ ∈ ℓ∞(Z,R) with d = infk pk > 0. Then F ∈ c⋆(Z, X, λ̄, p̄), the

continuous dual of (c(Z, X, λ̄, p̄), Pλ̄,p̄), if and only if there exists f̄ ∈ M◦(Z, X
⋆, λ̄, p̄) and

g and h ∈ X⋆ such that

F (x̄) = g(l1) + h(l2) +

∞
∑

−∞

fk(xk)

for every x̄ ∈ c(Z, X, λ̄, p̄), where l1, l2 ∈ X satisfy ||λkxk − l1||
pk → 0 as k → −∞ and

||λkxk − l2||
pk → 0 as k → ∞.

Proof. Let F ∈ c⋆(Z, X, λ̄, p̄), x̄ ∈ c(Z, X, λ̄, p̄) and l1, l2 ∈ X satisfying ||λkxk− l1||
p
k →

0 as k → −∞ and ||λkxk − l2||
p
k → 0 as k → ∞. We know that c⋆(Z, X, λ̄, p̄) ⊂

c⋆◦(Z, X, λ̄, p̄) and therefore F ∈ c⋆◦(Z, X, λ̄, p̄). Consider z̄ = (z
k
)
∞

−∞

such that

zk =

{

xk − λ−1
k l1, k ≤ 0,

xk − λ−1
k l2, k > 0,

clearly z̄ ∈ c◦(Z, X, λ̄, p̄). Now the existence of f̄ ∈ M◦(Z, X
⋆, λ̄, p̄) such that F (ȳ) =

∑∞
−∞ fkyk is convergent for all ȳ ∈ c◦(Z, X, λ̄, p̄) follows from Theorem 3.1 and so in

particular for z̄ = (z
k
)
∞

−∞

∈ c◦(Z, X, λ̄, p̄), F (z̄) =
∞
∑

−∞

fkzk is convergent.

Further since f̄ ∈ M◦(Z, X
⋆, λ̄, p̄) therefore

∑∞
−∞ |λk|

−1 ||fk|| N
−r

k < ∞, for some

N > 1 and hence using infk pk = d > 0, we have
∑∞

−∞ |λ−1
k fk(x)| < ∞, i.e.,

∑∞
−∞ fk(λ

−1
k x)

is convergent for each x ∈ X. Now consider ū = (u
k
)
∞

−∞

and v̄ = (v
k
)
∞

−∞

defined by

uk =

{

λ−1
k l1, k ≤ 0,

θ, k > 0,
vk =

{

θ, k ≤ 0,

λ−1
k l2, k > 0.

We easily see that x̄ = z̄ + ū + v̄ where z̄, ū and v̄ ∈ c(Z, X, λ̄, p̄). Further since F is
linear we get

F (x̄) = F (z̄) + F (ū) + F (v̄)

= F (ū) + F (v̄) +
∞
∑

−∞

fkxk −
−∞
∑

0

fk(λ
−1
k l1)−

∞
∑

1

fk(λ
−1
k l2)
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=
[

F (ū)−

−∞
∑

0

fk(λ
−1
k l1)

]

+
[

F (v̄)−

∞
∑

1

fk(λ
−1
k l2)

]

+

∞
∑

−∞

fkxk

= g(l1) + h(l2) +

∞
∑

−∞

fkxk,

where we write g(l1) = F (ū)−
∑−∞

0 fk(λ
−1
k l1) and h(l2) = F (v̄)−

∑∞
1 fk(λ

−1
k l2).

Clearly g and h are linear on X. Now we prove continuity of h. Suppose wn → θ in
X as n → ∞. Consider w̄(n) where

w
(n)
k =

{

λ−1
k wn, if k = n,

0, otherwise.

Then we easily see that w̄(n) ∈ c(Z, X, λ̄, p̄) for each n ≥ 1 and

Pλ̄,p̄(w̄
(n)) = sup

k
||λkλ

−1
k wn||

p
k
/M ≤ ||wn||

p
k
/M ≤ ||wn||

d/M

shows that w̄(n) converges to θ̄ in (c(Z, X, λ̄, p̄), Pλ̄,p̄) and hence F (w̄(n)) will converge to
0 as n → ∞. Moreover

∣

∣

∣

∞
∑

1

λ−1
k fk(wn)

∣

∣

∣
≤ ||wn||

(

N1/d
∞
∑

1

|λk|
−1||fk||N

−rk
)

implies that
∑∞

1 λ−1
k fk(wn) converges to 0 as n → ∞. Thus h(wn) → 0 as n → ∞ and

hence h is continuous on X. Similarly we can prove that g is continuous on X.
For converse suppose that g and h ∈ X⋆ and f̄ ∈ M◦(Z, X

⋆, λ̄, p̄). Then there exists
an integer N > 1 such that

∑∞
−∞ |λk|

−1||fk||N
−r

k < ∞. Now define F on c(Z, X, λ̄, p̄)
by

F (x̄) = g(l1) + h(l2) +
∞
∑

−∞

fk(xk),

where for x̄ ∈ c(Z, X, λ̄, p̄), ||λkxk − l1||
p
k → 0 as k → −∞ and ||λkxk − l2||

pk → 0
as k → ∞. By Corollary 2.9, F is well defined and F is linear. Let 0 < ǫ < 1 and
x̄ ∈ c(Z, X, λ̄, p̄). Suppose that Pλ̄,p̄(x̄) = supk ||λkxk||

p
k
/M < ǫ

2 , ||λkxk − l1||
p
k
/M < ǫ

2 ,

for all k ≤ K0 and ||λkxk − l2||
p
k
/M < ǫ

2 for all k ≥ G0. Then for k ≤ K0

||l1||
p
k
/M ≤ ||λkxk − l1||

p
k
/M + ||λkxk||

p
k
/M <

ǫ

2
+

ǫ

2
= ǫ

implies that ||l1|| < ǫ. Similarly we can show that ||l2|| < ǫ. Therefore

|F (x̄)| ≤ |g(l1)|+ |h(l2)|+
∣

∣

∣

∞
∑

−∞

fk(xk)
∣

∣

∣

≤ ||g|| ||l1||+ ||h|| ||l2||+

∞
∑

−∞

||fk|| ||xk|| |λk| |λk|
−1N−r

kNr
k

≤ ||g|| ||l1||+ ||h|| ||l2||+
(

∞
∑

−∞

|λk|
−1||fk||N

−r
k

)

sup
k
(||λkxk|| N

r
k )

≤ ǫ||g||+ ǫ||h||+N1/dǫ
(

∞
∑

−∞

|λk|
−1||fk||N

−r
k

)

≤ ǫ
[

||g||+ ||h||+N1/d
(

∞
∑

−∞

|λk|
−1||fk||N

−r
k

)]

.
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Thus taking L =
[

||g|| + ||h|| + N1/d
(

∑∞
−∞ |λk|

−1||fk||N
−r

k

)]

, we see |F (x̄)| < ǫL,

where L is independent of x̄. This shows that F is continuous on (c(Z, X, λ̄, p̄), Pλ̄,p̄)

whence F ∈ c⋆(Z, X, λ̄, p̄). This completes the proof. �

4. Conclusion

In this paper we have generalized the conventional Maddox type sequence spaces in
which sequences are defined on the set of natural number to the bilateral sequence spaces
in which the sequences are defined on the set of integers. We have investigated their linear
space structures and have also characterized their α- and β- duals in our other papers.
With the help of these properties, in this paper we have investigated continuous dual of
the above defined spaces.

Further we may obtain matrix transformation for these bilateral sequence spaces. We
may study these spaces in the theory of weighted bilateral shifts and also in the operator
theory in future.
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