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ARENS ALGEBRAS OF MEASURABLE OPERATORS FOR

MAHARAM TRACES

A. A. ALIMOV

Abstract. We study order and topological properties of the non-commutative Arens
algebra associated with arbitrary Maharam trace.

1. Introduction

The integration theory for traces and weights, given on von Neumann algebras, is
one of the central objects for numerous investigations connected with operator algebras
and their applications. Development of the non-commutative theory begun with the
work by I. Segal [22], where the author introduced the ∗-algebra S(M) of all measurable
operators affiliated with a von Neumann algebra M being a non-commutative analog of
the ∗-algebra L0(Ω,Σ, µ) of all measurable complex functions given on a measurable space
(Ω,Σ, µ). This algebra S(M) has became a base for construction of the general theory of
non-commutative Lp spaces associated with a faithful normal semi-finite trace µ given
on M (see, for example, [25, 13, 19]. The Banach spaces Lp(M, τ), p ≥ 1, are ideal linear
subspaces in the ∗-algebra S(M, τ) of all τ -measurable operators affiliated withM. The ∗-
algebra S(M, τ), introduced in [18], is itself a ∗-subalgebra in S(M) and it coincides with
the completion of M with respect to the topology of convergence in measure generated
by the trace τ. It should be noted, both ∗-algebras S(M) and S(M, τ) are used for
meaningful examples of EW ∗-algebras of unbounded operators that are important in
the general theory of algebras of unbounded operators (see, for example [3]). Interesting
examples of EW ∗-algebras are also the Arens ∗-algebras Lω(M, τ) =

⋂
p≥1

Lp(M, τ). The

Arens algebras Lω(M, τ) were considered at first in [4] for the case ofM = L∞(0, 1). Non-
commutative Arens algebras were introduced by A. Inoue in [15], and then properties of
such algebras were studied in [1, 27].

Due to presence of center-valued traces on finite von Neumann algebras, it is natural to
extend the integration theory for traces with values in a complex order-complete lattices
FC = F ⊕ iF.

If the original von Neumann algebra is commutative, then constructing of FC-valued
integration for it is a component part of investigations of properties of order-continuous
positive mappings of vector lattices. The theory of such mappings was described in details
in [16], chapter 4. Operators, having the Maharam property, are important among these
mappings. Lp-spaces associated with such operators are significant examples of Banach-
Kantorovich vector lattices.

For non-commutative von Neumann algebras M, properties of the spaces

(Lp(M,Φ), ‖ · ‖p),
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constructed from a FC-valued trace Φ, were considered in [14] and [6] in the case where
FC is a von Neumann subalgebra in the center of the algebra, and the trace Φ has the
following modularity property: Φ(zx) = zΦ(x) for all z ∈ FC, x ∈M.

The modularity property implies immediately that if 0 ≤ f ≤ Φ(x), f ∈ F , x ∈ M,
then there exists y ∈ M, 0 ≤ y ≤ x, such that Φ(y) = f. It means that the trace Φ
possesses the Maharam property (compare [16], 3.4.1).

Faithful normal traces Φ on a von Neumann algebra M with values in arbitrary com-
plex order-complete vector lattice were considered in [9], where, in particular, a full
description of such traces is given for the case when Φ is a Maharam trace. In [9], the
non-commutative L1-space L1(M,Φ) ⊂ S(M) associated with a Maharam trace Φ was
constructed with the help of topology of convergence in measure, and it was established
that L1(M,Φ) is a Banach-Kantorovich space. Later in [10], non-commutative Lp-spaces
Lp(M,Φ) were defined for all p > 1. The problem of construction and description of prop-
erties of the Arens algebras Lω(M,Φ), associated with a Maharam trace Φ has arisen
naturally. Such a problem is solved in [2] for the case where Φ takes values in S(A),
where A is a von Neumann subalgebra in the center Z(M) of an algebra M.

In the present paper, we study order and topological properties of the Arens algebra
Lω(M,Φ) associated with an arbitrary Maharam trace Φ.

Necessary and sufficient conditions are determined that provide local convexity of
the topology τω(M,Φ) in Lω(M,Φ) generated by the system of norms {‖ · ‖p}p≥1. A
criterion for coincidence of the topology τω(M,Φ) with the (o)-topology in the ordered
linear space Lω

h(M,Φ) = {x ∈ Lω(M,Φ) : x = x∗} is established.
We use terminology and notations of the theory of von Neumann algebras from [23,

24], the theory of measurable operators from [22, 17] and the theory of vector lattices
from [16].

2. Preliminaries

Let H be a Hilbert space over the field of complex numbers C, B(H) be a ∗-algebra
of all bounded linear operators acting in H, 1 be an identical operator in H, and let M
be a von Neumann subalgebra in B(H). Denote by P (M) = {p ∈ M : p2 = p = p∗}
the lattice of all projects from M, and by Pfin(M) the sublattice of all finite projections
from M.

A closed linear operator x, affiliated with the von Neumann algebraM, having a dense
domain D(x) ⊂ H, is called measurable with respect to M if there exists a sequence
{pn}

∞
n=1 ⊂ P (M) such that pn ↑ 1, pn(H) ⊂ D(x) and p⊥n = 1− pn ∈ Pfin(M) for each

n = 1, 2, . . .
The set S(M) of all measurable operators with respect to M is a ∗-algebra with the

unit 1 over C with respect to the natural involution, multiplication on a scalar, and
operations of the strong addition and strong multiplication obtained by closure of the
usual operations [22]. It is clear, M is a ∗-subalgebra in S(M).

If x ∈ S(M), and x = u | x | is the polar decomposition of the operator x where

| x |= (x∗x)
1

2 , u is the corresponding partial isometry from B(H) for which u∗u is the
right support for x, then u ∈ M and | x |∈ S(M). The spectral family of projectors
{Eλ(x)}λ∈R of the self-adjoint operator x ∈ S(M) is always contained in P (M).

For any subset E ⊂ S(M), we denote by Eh (E+, respectively) the set of all self-adjoint
(positive, respectively) operators from E.

Let M be a commutative von Neumann algebra. In this case, there exists a faithful
normal semi-finite trace τ on M, and M is ∗-isomorphic to the W ∗-algebra L∞(Ω,Σ, µ)
of all essentially bounded complex measurable functions given on a measurable space
(Ω,Σ, µ) with a locally finite measure µ having the direct sum property (almost every-
where equal functions are identified). Moreover, µ(A) = τ(χ̃A), A ∈ Σ where χ̃A is



ARENS ALGEBRAS OF MEASURABLE OPERATORS FOR MAHARAM TRACES 177

the equivalence class containing the function χA (recall that χA(ω) = 1 for ω ∈ A, and
χA(ω) = 0 if ω /∈ A). In addition, the ∗-algebra S(M) is identified with the ∗-algebra
L0(Ω,Σ, µ) of all measurable complex functions given on (Ω,Σ, µ) (almost everywhere
equal functions are identified) [22]. Let us consider in L0(Ω,Σ, µ) the topology t(M)
of convergence locally in the measure, i.e., the Hausdorff topology endowing L0(Ω,Σ, µ)
with the structure of a complete topological ∗-algebra, the base of zero neighborhoods of
which is formed by the sets in the form of

(2.1)
W (B, ε, δ) =

{
f ∈ L0(Ω,Σ, µ) : there exists a set E ∈ Σ such that

E ⊆ B,µ(B \ E) ≤ δ, fχE ∈ L∞(Ω,Σ, µ), ‖fχE‖L∞(Ω,Σ,µ) ≤ ε
}
,

where ε, δ > 0, B ∈ Σ, µ(B) <∞, ‖ · ‖L∞(Ω,Σ,µ) is the C
∗-norm in L∞(Ω,Σ, µ). The sets

W (B, ε, δ) have the following ideality property: if g ∈ L0(Ω,Σ, µ), f ∈ W (B, ε, δ), and
|g| ≤ |f |, then g ∈W (B, ε, δ).

Convergence of the net fα to f in the topology t(M) (notation: fα
t(M)
−−−→ f) means

that fαχB → fχB by the measure µ for any B ∈ Σ with µ(B) < ∞. Evidently, the
topology t(M) is not changed if the trace τ is replaced with another faithful normal
semi-finite trace on M. Therefore the topology is uniquely defined by the von Neumann
algebraM itself. It is clear that the topology t(M) is metrizable if and only if the algebra
M is σ-finite, i.e., any set of nonzero mutually orthogonal projections at most countable.

Now let M be an arbitrary finite von Neumann algebra, Z(M) be the center in M,
and ΦM : M → Z(M) be a center-valued trace on M ([23], 7.11). Identify the center
Z(M) with the ∗-algebra L∞(Ω,Σ, µ) and S(Z(M)) with the ∗-algebra L0(Ω,Σ, µ). For
arbitrary numbers ε, δ > 0 and arbitrary set B ∈ Σ with the measure µ(B) <∞, set

V (B, ε, δ) =
{
x ∈ S(M) : there exist p ∈ P (M), z ∈ P (Z(M)) such that

xp ∈M, ‖xp‖M ≤ ε, z⊥ ∈W (B, ε, δ), and ΦM (zp⊥) ≤ εz
}
,

where ‖ · ‖M is the C∗-norm in M. In [17], § 3.5, it is shown that the system of sets

(2.2)
{
{x+ V (B, ε, δ)} : x ∈ S(M), ε, δ > 0, B ∈ Σ, µ(B) <∞

}

defines in S(M) a Hausdorff vector topology t(M), in which the sets (2.2) form a base
of neighborhoods for the operator x ∈ S(M). In addition, (S(M), t(M)) is a complete
topological ∗-algebra. The topology t(M) is called the topology of convergence locally in
measure [1]. It is clear, the topology t(M) induces in S(Z(M)) the topology t(Z(M)).
Moreover, if Z(M) is a σ-finite algebra, then t(M) is metrizable.

The following criterion for convergence of nets in the topology t(M) follows from
[17], § 3.5.

Proposition 2.1. A net {xα}α∈A ⊂ S(M) converges to zero in the topology t(M) if and

only if ΦM (E⊥
λ (| xα |))

t(M)
−−−→ 0 for any λ > 0.

Let F be an order complete vector lattice, FC = F ⊕ iF be the complexification of
F, where i is the imaginary unit. As usual, for an element z = α + iβ ∈ FC, α, β ∈ F,
the adjoint element is defined as z̄ = α − iβ, and the module | z | is defined as | z |:=
sup{Re(eiθz) : 0 ≤ θ < 2π} ([16], 1.3.13).

A linear mapping Φ from a von Neumann algebraM into FC is said to be an FC-valued
trace if Φ(x∗x) = Φ(xx∗) ≥ 0 for all x ∈ M. It is clear, Φ(Mh) ⊂ F, Φ(M+) ⊂ F+ =
{a ∈ F, a ≥ 0}.

The trace Φ is said to be faithful if the equality Φ(x∗x) = 0 implies x = 0. As well
as for numerical traces (see, for example, ([24], chapter V , § 2), it is established that if
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there is a faithful FC-valued trace on a von Neumann algebra M, then this algebra is
finite. Let us list some necessary properties of faithful traces Φ :M → FC.

Proposition 2.2. ([8]). For any x, y, a, b ∈M the following relations hold:

1. Φ(x∗) = Φ(x);
2. Φ(xy) = Φ(yx);
3. Φ(| x∗ |) = Φ(| x |);
4. | Φ(axb) |≤‖ a ‖M‖ b ‖M Φ(| x |);
5. If xn, x ∈ M, and ‖ xn − x ‖M→ 0, then | Φ(xn) − Φ(x) | converges in F to zero

with the regulator Φ(1);
6. Φ(| x+ y |) ≤ Φ(| x |) + Φ(| y |).

We say that a trace Φ :M → FC possesses the Maharam property if for any x ∈M+,
0 ≤ f ≤ Φ(x), f ∈ F , there exists y ∈M+ such that y ≤ x and Φ(y) = f.

A trace Φ is said to be normal if xα, x ∈Mh, xα ↑ x, imply Φ(xα) ↑ Φ(x). A faithful
normal FC-valued trace Φ possessing the Maharam property is said to be the Maharam
trace ([8, 9]).

Let 1F be a weak unit in F. Denote by B(F ) the complete Boolean algebra of unit
elements in F with respect to 1F . LetQ be the Stone compact for B(F ), and let C∞(Q) be
an extended order complete vector lattice of all continuous functions f : Q→ [−∞; +∞]
taking the values ±∞ on nowhere dense sets from Q. Identify F with the fundament in
the lattice C∞(Q) consisting of the algebra C(Q) of all continuous functions on Q, in
addition 1F is identified with the function which is identically equal to the unit ([16],
1.4.4).

The following theorem from [9] gives description of Maharam traces.

Theorem 2.1. ([9]). Let Φ be a FC-valued trace on a von Neumann algebra M. Then
there exist a von Neumann subalgebra A in the center of Z(M), an ∗-isomorphism ψ
from A onto the ∗-algebra C(Q)C = C(Q) ⊕ iC(Q), a positive normal linear operator E
from Z(M) onto A with E(1) = (1), E2 = E , such that

1. Φ(x) = Φ(1) · ψ(E(ΦM (x))) for all x ∈M ;
2. Φ(zy) = Φ(zE(y)) for all z, y ∈ Z(M);
3. Φ(zy) = ψ(z)Φ(y) for all z ∈ A, y ∈M.

Theorem 2.1 implies that the ∗-algebra B = C(Q)C is a commutative von Neumann
algebra and the ∗-algebra (C∞(Q))C is identified with the ∗-algebra S(B). We denote
the unit of the algebra B by 1B (it coincides with the weak unit 1F ).

Let Φ be S(B)-valued Maharam trace on the von Neumann algebra M. Recall defini-
tion of the space L1(M,Φ) [11]. We say that a net {xα} ⊂ S(M) converges to x ∈ S(M)

by a trace Φ (notation: xα
Φ
−→ x) if

Φ(E⊥
λ (| xα − x |))

t(B)
−−−→ 0

for λ > 0. It was shown in [11] that xα
Φ
−→ x ⇔ xα

t(M)
−−−→ x (compare with Proposi-

tion 2.1).
An operator x ∈ S(M) is said to be Φ-integrable if there exists a sequence {xn} ⊂M

such that xn
Φ
−→ x and Φ(| xn − xm |)

t(B)
−−−→ 0 at n,m → ∞. It follows from inequa-

lities | Φ(xn) − Φ(xm) |≤ Φ(| xn − xm |) and completeness of the topological ∗-algebra

(S(M), t(M)) that there exists an element Φ̂(x) ∈ S(B) such that Φ(xn)
t(B)
−−−→ Φ̂(x). It is

shown in [9] that this limit Φ̂(x) does not depend on the choice of a sequence {xn} ⊂M,

for which xn
Φ
−→ x and Φ(| xn − xm |)

t(B)
−−−→ 0. It is clear, any operator x from M is

Φ-integrable and Φ̂(x) = Φ(x).
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Denote by L1(M,Φ) the set of all Φ-integrable operators from S(M), and for each

x ∈ L1(M,Φ), set ‖ x ‖1,Φ= Φ̂(| x |). It is proved in [15] that L1(M,Φ) is a linear space
in S(M), in addition the following statement holds.

Theorem 2.2. ([8, 9]).

(i) The mapping Φ̂ : L1(M,Φ) → S(B) has the following properties:

1) Φ̂ is a linear positive mapping, in particular, Φ̂(x∗) = (Φ̂)∗;

2) Φ̂(xy) = Φ̂(yx) and | Φ̂(xy) |≤‖ x ‖M Φ̂(y) for any x ∈M, y ∈ L1(M,Φ);

3) x ∈ L1(M,Φ) ⇔ |x| ∈ L1(M,Φ), moreover Φ̂(| x∗ |) = Φ̂(| x |) and Φ̂(| x |) = 0 ⇔
x = 0;

4) Φ̂(| x+ y |) ≤ Φ̂(| x |) + Φ̂(| y |);
5) If | y |≤| x |, y ∈ S(M), x ∈ L1(M,Φ), then y ∈ L1(M,Φ) and ‖y‖1,Φ ≤ ‖x‖1,Φ.

(ii) S(A) · L1(M,Φ) ⊂ L1(M,Φ), moreover, Φ̂(zx) = ψ(z)Φ̂(x) for all z ∈ S(A),
x ∈ L1(M,Φ), where ψ is an extension of the ∗-isomorphism from Theorem 2.1 to an
∗-isomorphism from S(A) onto S(B).

(iii) (L1(M,Φ), ‖ · ‖1,Φ) is a Banach-Kantorovich space.

For any p > 1, set Lp(M,Φ) = {x ∈ S(M) : | x |p∈ L1(M,Φ)} and ‖ x ‖p,Φ=

Φ̂(| x |p)1/p if x ∈ Lp(M,Φ).
We need the following properties of the spaces (Lp(M,Φ), ‖ x ‖p,Φ) from [10].

Theorem 2.3. ([10]). (i) If an element x belongs to Lp(M,Φ), then the elements x∗

and | x | also belong to Lp(M,Φ) and ‖ x∗ ‖p,Φ=‖| x |‖p,Φ=‖ x ‖p,Φ;
(ii) If p, q > 1, 1

p + 1
q = 1, x ∈ Lp(M,Φ), y ∈ Lq(M,Φ) then xy ∈ L1(M,Φ) and

‖ xy ‖1,Φ≤‖ x ‖p,Φ‖ y ‖q,Φ;
(iii) MLp(M,Φ)M ⊂ Lp(M,Φ) and ‖ axb ‖p,Φ≤‖ a ‖M‖ b ‖M‖ x ‖p,Φ for all a, b ∈

M, x ∈ Lp(M,Φ);
(iv) If | y |≤| x |, y ∈ S(M), x ∈ Lp(M,Φ), then y ∈ Lp(M,Φ) and ‖ y ‖p,Φ≤‖ x ‖p,Φ;
(v) Lp(M,Φ) is a linear subspace in S(M), moreover, M ⊂ Lp(M,Φ) and (Lp(M,Φ),

‖ · ‖p,Φ) is a Banach-Kantorovich space;
(vi) S(A)Lp(M,Φ) ⊂ Lp(M,Φ), moreover, ‖ zx ‖p,Φ= ψ(z) ‖ x ‖p,Φ for all z ∈ S(A),

x ∈ Lp(M,Φ), where ψ is the ∗-isomorphism from Theorem 2.2 (ii);
(vii) If {xα} ⊂ Lp

+(M,Φ), {xα} ↓ 0, then ‖ x ‖p,Φ↓ 0.

3. The Arens algebras Lω(M,Φ)

Let Φ be a Maharam trace on a von Neumann algebra M with values in S(B). To
define the Arens algebras associated with the trace Φ, we need the following version of
the Hölder inequality.

Theorem 3.1. If p, q, r > 1, 1
p + 1

q = 1
r , x ∈ Lp(M,Φ), y ∈ Lq(M,Φ), then xy ∈

Lr(M,Φ) and ‖ xy ‖r,Φ≤‖ x ‖p,Φ‖ y ‖q,Φ .

Proof. Let Q be the Stone compact corresponding to a complete Boolean algebra P (B) of
all project from B. Identify the algebra Sh(B) with the algebra C∞(Q) of all continuous
functions f : Q→ [−∞,+∞] taking values ±∞ only on nowhere dense sets from Q. As
well as in [10], one can show that the element Φ(1) is reversible in S(B), and a finite trace
is defined on M for each t ∈ Q by the equality ϕt(x) = (Φ(1)−1Φ(x))(t). According to
([12], 6.2.2), the set Nt = {x ∈ M : ϕt(x

∗x) = 0} is a two-sided ∗-ideal in M . Consider
the factor space M/Nt with the scalar product ([x], [y]) = ϕt(y

∗x) where [x], [y] are the
equivalence classes from M/Nt with representatives x and y, respectively.

Denote by (Ht, (·, ·)t) the Hilbert space being the completion of (M/Nt, (·, ·)t). Define
the ∗-homomorphism πt : M → B(Ht), setting πt(x)([y]) = [xy], x, y ∈ M . Denote by
Ut(M) the von Neumann algebra in B(Ht) generated by the operators πt(x), x ∈M .
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According to ([11], 6.2), there exists a faithful normal semi-finite trace τt on (Ut(M))+
such that

τt(πt(x
2)) = ([x], [x]) = ϕt(x

∗x)

for all x ∈M+. Hence, τt(πt(y)) = ϕt(y) for all y ∈M+, moreover, τt(1B(Ht)) = ϕt(1) <
∞, i.e. τt is a faithful normal finite trace on Ut(M).

Let Lp(Ut(M), τt) be a noncommutative Lp-space associated with a numerical trace
τt. According to ([13], Theorem 4.9), we have

τt(|πt(xy)|
r)

1

r ≤ τt(|πt(x)|
p)

1

p τ(|πt(y)|
q)

1

q

for all x, y ∈M.
Since πt(| x |) =| πt(x) | for all x ∈M, then by virtue of ([11],1.5.3) we have πt(| x |p) =

(πt(| x |))p. Hence,

ϕt(| xy |r)
1

r ≤ ϕt(| x |p)
1

pϕt(| y |q)
1

q

or

[(Φ(1))−1Φ(| xy |r))(t)]
1

r ≤ [((Φ(1))−1Φ(| x |)p)(t)]
1

p [((Φ(1))−1Φ(| y |)q))(t)]
1

q

for all t ∈ Q and x, y ∈M. It means that

((Φ(1))−1Φ(| xy |r))
1

r ≤ ((Φ(1))−1Φ(| x |p))
1

p ((Φ(1))−1Φ(| y |q))
1

q .

Multiplying the both parts of the last inequality by Φ(1), we obtain

‖ xy ‖r,Φ≤‖ x ‖p,Φ‖ y ‖q,Φ

for any x, y ∈M.
Let now x ∈ Lp(M,Φ), y ∈ Lq(M,Φ). Let us show that xy ∈ Lr(M,Φ) and ‖ xy ‖r,Φ≤

‖ x ‖p,Φ‖ y ‖q,Φ . Set an = En(|x|)|x|, bn = En(|y|)|y|. We have an, bn ∈ M+ and

an ↑ |x|, bn ↑ |y|, moreover, an
Φ
−→ |x|, bn

Φ
−→ |y|.

Let x = u | x | (y = v | y |, respectively) be the polar decomposition for x (for y,

respectively) with the unitary u ∈ M(v ∈ M). It is clear, uan
Φ
−→ x, vbn

Φ
−→ y, and

therefore uanvbn
Φ
−→ xy, in addition, uanvbn ∈M for all n. Since the operations z 7→ |z|,

v 7→ vr, v ≥ 0 are continuous in the topology t(M), we get |uanvbn|
r t(M)
−−−→ |xy|r. The

Fatou theorem [11, Theorem 3.2 (iv)] implies that xy ∈ Lω(M,Φ) and

‖ xy ‖rr,Φ = Φ̂(| xy |r) ≤ sup
n≥1

Φ̂(| uanvbn |r) = sup
n≥1

{‖ (uan)(vbn) ‖
r
r,Φ}

≤ sup
n≥1

‖ uan ‖rp,Φ‖ vbn ‖rq,Φ= sup
n≥1

‖ an ‖rp,Φ‖ bn ‖rq,Φ≤‖ x ‖rp,Φ‖ y ‖rq,Φ,

i.e. ‖ xy ‖r,Φ≤‖ x ‖p,Φ‖ y ‖q,Φ . �

Suppose Lω(M,Φ) =
⋂
p≥1

Lp(M,Φ). Theorems 2.3 and 3.1 imply the following

Corollary 3.1. (i) Lω(M,Φ) is a ∗-subalgebra in S(M), and M ⊂ Lω(M,Φ);
(ii) If y ∈ S(M), x ∈ Lω(M,Φ), |y| ≤ |x|, then y ∈ Lω(M,Φ);
(iii) S(A) ⊂ S(A)Lω(M,Φ) ⊂ Lω(M,Φ) where A is a ∗-subalgebra in Z(M), ∗-isomorphic
to B (see Theorem 3.1), i.e. Lω(M,Φ) is left and right S(A)-module.

An ∗-algebra Lω(M,Φ) is said to be the Arens algebra associated with the von Neu-
mann algebra M and the Maharam trace Φ. If dimM < ∞, then M = S(M), and
therefore M = Lω(M,Φ). The converse assertion is also true.

Proposition 3.1. If M = Lω(M,Φ), then dimM <∞.
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Proof. Suppose that dimM = ∞. Then there exists a countable set of mutually orthogo-

nal nonzero projections {qn}
∞
n=1 ⊂ P (M) for which sup{qn} = 1. Since Φ(1) =

∞∑
n=1

Φ(qn),

the sequence Φ(qn) (o)-converges to zero in Sh(B). Consider the spectral family of pro-
jections {Eλ(Φ(qn))}λ>0 and, using the inequality λE⊥

λ (Φ(qn)) ≤ Φ(qn), choose the se-
quence of numbers n1 < · · · < nk < · · · such that ek = E 1

k2

(Φ(qnk
)) 6= 0, k = 1, 2 . . . Let

ψ : A → B be the ∗-isomorphism from Theorem 2.1. Set x =
∞∑
k=1

(ln(k))qnk
ψ−1(ek)

(the series converges in the topology t(M)). It is clear, x ∈ S+(M) and Φ(xp) =
∞∑
k=1

(ln(k)p)Φ(qnk
)ek ≤

∞∑
k=1

(ln(k))p

k2 ek ≤ (
∞∑
k=1

(ln(k))p

k2 )1B ∈ B, i.e. x ∈ Lp(M,Φ) for

all p ≥ 1. It means that x ∈ Lω(M,Φ). Since Φ(qnk
ψ−1(ek)) = ekΦ(qnk

) 6= 0, we get
qnk

ψ−1(ek) 6= 0 for all k = 1, 2, . . . , i.e. x /∈M. �

Remark 3.1. If M = Z(M) = A, then by Corollary 3.1, (iii), S(M) = Lω(M,Φ).

Denote by U the base of zero neighborhoods in (S(B), t(B)) consisting of ideal sets
in the form (2.1). For any V ∈ U, p ≥ 1, set

W (V, p) = {x ∈ Lp(M,Φ) : ‖ x ‖p,Φ∈W}.

According to ([24], chapter I, § 1), there exists a topology τp(M,Φ) in Lp(M,Φ), with
respect to which Lp(M,Φ) is a Hausdorff topological vector space, and the system of sets

{x+W (V, p) : V ∈ U}

forms the base of neighborhoods of the operator x ∈ Lp(M,Φ). Convergence of the net

{xα} ⊂ Lp(M,Φ) to the operator x ∈ Lp(M,Φ) (notation: xα
τp(M,Φ)
−−−−−→ x,) means that

‖xα − x‖p,Φ
t(B)
−−−→ 0.

Since Lp(M,Φ) is a Banach-Kantorovich space (Theorem 2.3 (v)), we have that
Lp(M,Φ) − τp(M,Φ) is complete [7], i.e. any τp(M,Φ)-fundamental net from Lp(M,Φ)
converges in (Lp(M,Φ), τp(M,Φ)).

Now consider the set Wω(V, p) = Lω(M,Φ) ∩W (V, p) and denote by τω(M,Φ) the
Hausdorff vector topology in Lω(M,Φ), in which the system of sets

{x+W (V, p) : V ∈ U, p ≥ 1}

forms the base of neighborhoods of the element x ∈ Lω(M,Φ). For a net{xα} ∈ Lω(M,Φ),

its convergence xα
τω(M,Φ)
−−−−−→ x ∈ Lω(M,Φ) means that ‖xα − x‖p,Φ

t(B)
−−−→ 0 for all p ≥ 1.

If 1 ≤ r < p <∞, q = rp
p−r , then

1
p + 1

q = 1
r , and by Theorem 3.1, we have

(3.1) ‖x‖r,Φ ≤ ‖x‖p,Φ‖1‖q,Φ = Φ(1)
p−r

rp ‖x‖p,Φ

for all x ∈ Lω(M,Φ). It means that the topology τω(M,Φ) has the base of zero neigh-
borhoods consisting of sets in the form of Wω(V, n), where V ∈ U, n ∈ N, N is the set of
all natural numbers, i.e. the following statement is valid.

Proposition 3.2. If B is a σ-finite von Neumann algebra, then τω(M,Φ) is a metrizable
topology.

Let A be a von Neumann subalgebra in Z(M) and let ψ be an ∗-isomorphism from
S(A) onto S(B) being the extension of the isomorphism from Theorem 2.1. If xα, x ∈
S(A), then xα, x ∈ Lω(M,Φ) (Corollary 3.1 (iii)), and by virtue of the equality

‖xα − x‖P,Φ = ψ(xα − x)‖1‖P,Φ (Theorem 2.3 (vi)), the convergence xα
τω(M,Φ)
−−−−−→ x

is equivalent to the convergence ψ(xα)
t(B)
−−−→ ψ(x). Hence,

(3.2) xα
τω(M,Φ)
−−−−−→ x⇐⇒ xα

t(A)
−−−→ x,
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i.e. the topology τω(M,Φ) induces on S(A) the topology t(A). Therefore metrizability
of the topology τω(M,Φ) implies metrizability of the topology t(A), that is equivalent to
σ-finiteness of the von Neumann algebra B. Thus, taking into account Proposition 3.2,
we obtain the following criterion for metrizability of τω(M,Φ).

Theorem 3.2. The following conditions are equivalent for the Arens algebra Lω(M,Φ)
associated with the von Neumann algebra M and an S(M)-valued trace Φ :

(i). The topology τω(M,Φ) is metrizable;
(ii). The von Neumann algebra B is σ-finite;
(iii). The von Neumann algebra M is σ-finite.

Proof. Implications (i) ⇔ (ii) are already proved. Implication (iii) =⇒ (ii) is evident,
since the σ-finiteness of the algebra B is equivalent to σ-finiteness of the von Neumann
algebra A ⊂ Z(M) . Implication (ii) =⇒ (iii) is proved as well as in [1], where σ-
finiteness of the algebra M is obtained using a center-valued trace ΦM : M −→ Z(M)
and σ-finiteness of the center of Z(M). �

Proposition 3.3. (Lω(M,Φ), τω(M,Φ)) is a complete topological ∗-algebra.

Proof. Since (Lp(M,Φ), τp(M,Φ)) is complete [7], for any τω(M,Φ)-fundamental net

{xα} ⊂ Lω(M,Φ) there exists xp ∈ Lω(M,Φ) such that xα
τp(M,Φ)
−−−−−→ xp. The inequality

(3.1) implies that for 1 ≤ q < p <∞ the topology τq(M,Φ) is majorized on Lω(M,Φ) by

the topology τp(M,Φ). Therefore the convergence xα
τp(M,Φ)
−−−−−→ xp implies the convergence

xα
τq(M,Φ)
−−−−−→ xp, what implies the equality xp = xq at 1 ≤ q < p < ∞. Hence, x := xp

is an element from Lω(M,Φ), and xα
τω(M,Φ)
−−−−−→ xp. It means that (Lω(M,Φ), τω(M,Φ))

is complete. Further, the equality ‖x‖p,Φ = ‖x∗‖p,Φ (Theorem 2.3 (i)) and inequality
‖xy‖p ≤ ‖x‖2p‖y‖2p (Theorem 3.1), imply that the involution operation is continuous in
(Lω(M,Φ), τp(M,Φ)), and the multiplication operation is continuous in both variables.
Thus, (Lω(M,Φ), τω(M,Φ)) is a complete topological ∗-algebra. �

Theorem 3.2 and Proposition 3.3 imply the following

Corollary 3.2. If B is a σ-finite von Neumann algebra, then (Lω(M,Φ), τω(M,Φ))
is a complete metrizable topological ∗-algebra, in particular, (Lω(M,Φ), τω(M,Φ)) is a
F -space.

Denote by tω(M) the topology on Lω(M,Φ) induced by the topology t(M) from S(M).

Proposition 3.4. (i) tω(M) ≤ τω(M,Φ);
(ii) If tω(M) = τω(M,Φ), then Lω(M,Φ) = S(M).

Proof. (i). Let {xα} ⊂ Lω(M,Φ), and xα
τω(M,Φ)
−−−−−→ 0, i.e. ‖xα‖p,Φ

t(B)
−−−→ 0 for all p ≥ 1.

Since ‖ |x| ‖=‖ x ‖p,Φ (Theorem 2.3 (i)), we obtain ‖ |xα| ‖p,Φ
t(B)
−−−→ 0. Let

{Eλ(|xα|)}λ>0 be the spectral family of projections for | xα | . By virtue of the inequality

Φ(E⊥
λ (| xα |)) ≤

1

λ
‖|x|α‖1,Φ, λ > 0,

we have xα
Φ
−→ 0, and therefore xα

t(M)
−−−→ 0 [8].

(ii). Suppose that tω(M) = τω(M,Φ). Since (Lω(M,Φ), τω(M,Φ)) is complete,
Lω(M,Φ) is a closed subalgebra in (S(M), t(M)). Let x ∈ S+(M), xn = En(x)x, n ∈ N.

It is clear that xn ∈M, and λE⊥
λ (x−xn) ≤ (x−xn) ↓ 0, that’s why Φ(E⊥

λ (x−xn))
t(B)
−−−→ 0

at n → ∞ for all λ > 0. The means that xn
Φ
−→ x, and therefore xn

t(M)
−−−→ x. Hence,

x ∈ Lω(M,Φ). Since each element from S(M) is a linear combination of four elements
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from S+(M), we have x ∈ Lω(M,Φ) for all x ∈ S(M), which implies the equality
Lω(M,Φ) = S(M). �

Remark 3.2. If dimM <∞, then Lω(M,Φ) =M = S(M), and the both vector topolo-
gies τω(M, t) and t(M) coincide on Lω(M,Φ), moreover they are equal to the topology
generated by the C∗-norm ‖ · ‖M .

4. Disjunct completeness of Arens algebras

Let Lω(M,Φ) be an Arens algebra associated with the von Neumann algebra M and
S(B)-valued Maharam trace Φ, and let A be a von Neumann subalgebra in Z(M),
and ψ be an ∗-isomorphism from S(A) onto S(B) from Theorem 2.2 (ii). Consider
arbitrary decomposition {ei}i∈I of the unit 1B of the complete Boolean algebra P (B)
of all projections from the commutative von Neumann algebra B. It is clear that qi =
ψ−1(ei), i ∈ I, is decomposition of the unit 1A = 1M of the Boolean algebra P (M). For
each qix ∈ qiM, we have Φ(qix) = ψ(qi)Φ(x) = eiΦ(x) ∈ eiS(B) = S(eiB). Hence, the
restriction Φi of the Maharam trace Φ on eiM is an S(eiB)-valued Maharam trace on
the von Neumann algebra eiM for all i ∈ I. If p ≥ 1 and x ∈ Lp(M,Φ), then, evidently,
qix ∈ Lp(qiM,Φi), and ei‖x‖P,Φ = ‖qix‖P,Φi

for all i ∈ I. Since (Lp(M,Φ), ‖ · ‖P,Φ) is
a Banach-Kantorovich space (Theorem 2.3), then Lp(M,Φ) is disjunct complete ([16],
2.1.5, 2.2.1), i.e. the following assertion is valid.

Proposition 4.1. If xi ∈ Lp(qiM,Φi) for all i ∈ I, a there exists the unique element
x ∈ Lp(M,Φ), for which qix = xi at all i ∈ I.

The following property of disjunct completeness for the Arens algebra Lω(M,Φ) fol-
lows immediately from Proposition 4.1.

Corollary 4.1. Let {ei}i∈I be arbitrary decomposition of the unit of the Boolean algebra
P (B), qi = ψ−1(ei), xi ∈ Lω(qiM,Φi), i ∈ I. Then there exists a unique x ∈ Lω(M,Φ)
such that qix = xi for all i ∈ I.

Consider the direct product
∏
i∈I

Lω(qiM,Φi) of ∗-algebras L
ω(qiM,Φi) with coordinate-

wise algebraic operations and involution. Define the mappings

U : Lω(M,Φ) −→
∏

k∈I

Lω(qiM,Φi),

setting U(x) = {qix}i∈I . According to Corollary 4.1, the mapping U is an ∗-isomorphism
from Lω(M,Φ) onto the ∗-algebra

∏
i∈I

Lω(qiM,Φi). Denote by t ({qi}) the Tychonoff

product of topologies τω(qiM,Φi) in
∏
i∈I

Lω(qiM,Φi). By virtue of properties of Tychonoff

topologies, the pair

(∏
i∈I

Lω (qiM,Φi) , t ({qi})

)
is a complete topological ∗-algebra.

Proposition 4.2. The mapping

U : (Lω(M,Φ), τω(M,Φ)) −→

(
∏

i∈I

Lω(qiM,Φi), t({qi})

)

is a homeomorphism, in particular, xα
τω(M,Φ)
−−−−−→ x, xα, x ∈ Lω(M,Φ) iff qixα

τω(qiM,Φi)
−−−−−−−→

qix for all i ∈ I.

The proof of this statement follows from the definition of the Tychonoff topology and
equalities ‖qix‖P,Φ = ei‖x‖P,Φi

for all i ∈ I, p ≥ 1, x ∈ Lω(M,Φ) (see Theorem 2.3 (vi)).
The following theorem gives necessary and sufficient conditions for locally convexity

of the topology τω(M,Φ).
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Theorem 4.1. Let Lω(M,Φ) be an Arens algebra associated with a von Neumann algebra
M and an S(B)-valued Maharam trace Φ. The following conditions are equivalent:

(i). The topology τω(M,Φ) is locally convex;
(ii). B is an atomic von Neumann algebra.

Proof. (i) ⇒ (ii). Let τω(M,Φ) is a locally convex topology. According to (3.2), the
topology t(A) is also locally convex. Hence, by Proposition 2 from ([20], chapter V, § 3],
the von Neumann algebra A is atomic, what implies atomicity of the von Neumann
algebra B.

(ii) ⇒ (i). If B is an atomic von Neumann algebra, then there exists in P (B) a
decomposition {ei}i∈I of the unit such that ei is an atom in P (B) for each i ∈ I.
Therefore eiS(B) = C and S(B) = C

I . In this case, for gi = ψ−1(ei), the function
Φi(gix) = eiΦ(x) is a faithful normal finite trace on the von Neumann algebra giM, and
thus the topology τω(giM,Φi) is locally convex [27]. Hence, the Tychonoff topology is
also locally convex. It remains to use Proposition 3.2, by virtue of which, the topology
τω(M,Φ) is also locally convex. �

Remark 4.1. If the topology τω(M,Φ) is normable, then the topology t(A) is also
normable (see (3.2)), what implies finite dimensionality of the algebra A (see Propo-
sition 4 from ([27], chapter V , § 3)). Hence, the algebra B is also finite-dimensional,

and therefore there is a finite collection of atoms {ei}
n
i=1 P (B), for which

n∑
i=1

ei = 1B .

In this case the ∗-algebra is B − ∗-isomorphic to C
n, and τ(x) =

n∑
i=1

eiΦ(x) is a faithful

normal finite numeric trace on M , for which Lω(M,Φ) = Lω(M, τ).

5. Comparison of the (o)-topology and the topology τω(M,Φ)

Let Lω(M,Φ) be the Arens algebra associated with a von Neumann algebra M
and an S(B)-valued Maharam trace Φ. Since the involution in Lω(M,Φ) is continuous
with respect to the topology τω(M,Φ) (Proposition 3.3), the set Lω

h(M,Φ) is closed in
(Lω(M,Φ), τω(M,Φ)). It was proved in [26] that the set S+(M) is closed in (S(M), t(M)).
Therefore, according to Proposition 3.4 (i), the set Lω

+(M,Φ) is closed in (Lω(M,Φ),
τω(M,Φ)). Denote by τωh(M,Φ) the topology in Lω

h(M,Φ) induced by the topology
τω(M,h) from Lω(M,Φ), and by τo(M,Φ) – the (o)-topology in Lω

h(M,Φ), i.e. the
strongest topology in an ordered linear space Lω

h(M,Φ), for which (o)-convergence of
nets implies their topological convergence.

Theorem 5.1. (i). τω,h(M,Φ) ≤ τo(M,Φ);
(ii). τωh(M,h) = τo(M,Φ) if and only if a von Neumann algebra B is σ-finite.

Proof. (i). If {xα}α∈A ⊂ Lω
h(M,Φ), and {xα} (o)-converges in Lω

h(M,Φ) to an element
x ∈ Lω

h(M,Φ), then by definition there exist nets {yα}α∈A, {zα}α∈A from Lω
h(M,Φ) such

that yα ≤ xα ≤ zα for all α ∈ A yα ↑ x, zα ↑ x. Since yα − x ≤ xα − x ≤ zα − x, we
have

0 ≤ (xα − x) + (x− yα) ≤ (zα − x) + (x− yα).

Using convergences (zα − x) ↓ 0, (x− yα) ↓ 0, and Theorem 2.3 (iv), (vii), we obtain

‖xα − x‖p,Φ ≤ ‖(xα − x) + (x− yα)‖p,Φ + ‖x− yα‖p,Φ ≤

≤ ‖zα − x‖p,Φ + 2‖x− yα‖p,Φ
t(B)
−−−→ 0

for all p ≥ 1. Therefore xα
τω(M,Φ)
−−−−−→ x, which implies of the inequality

τω,h(M,Φ) ≤ τo(M,Φ).

(ii). If the von Neumann algebra B is σ-finite, then the topology τω(M,Φ) is metrizable
(Theorem 3.2). Repeating the proof of Theorem 2 from [2], we obtain τo(M,Φ) ≤
τωh(M,Φ). Therefore, according to (i), the equality τo(M,Φ) = τωh(M,Φ) is valid.
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Now suppose that τo(M,Φ) = τωh(M,Φ). Let A and ψ by the same as in Theorem 2.2.
(ii). Since S(A) ⊂ Lω(M,Φ), and the topology τω,h(M,Φ) induces on S(A) the topology
t(A) (see (3.2)), repeating the proof of Theorem 2 from [5], we obtain that the (o)-
topology in Sh(A) coincides with the topology th(A), where th(A) is the topology Sh(M)
induced by the topology t(A) from S(A). Hence, by Theorem 2 from [5] the von Neumann
algebra A is σ-finite. Since ψ is ∗-isomorphism from A onto B, the algebra B is also
σ-finite. �
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