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Abstract. In the present paper we show that the topology of the underlying graph
determines the domain and deficiency indices of a certain associated minimal symmet-
ric operator. We obtaine a criterion of simplicity for the minimal operator associated

with the graph.

Introduction

A number of authors in their recent papers, see, e.g., [9, 1, 11, 10, 4, 13, 5, 6], consider a
Laplace operator (Laplacian) defined on a metric graph. Such a graph, provided that it is
equipped with a differential operator acting on the edges and subject to certain matching
conditions at the vertices, is called [10] a quantum graph. Quantum graphs play a rôle of
natural intuitive models in mathematics, physics, chemistry, and engineering, when one
considers the phenomenon of wave propagation (e.g., electromagnetic, acoustic, etc.) in
some quasi one–dimensional system.

Matching conditions which determine the domain of the quantum graph comprise of
certain conditions for the value of the function and its normal derivatives at all graph
vertices. These conditions can be either local (linking the values of the function and its
normal derivatives at precisely one vertex) or non-local (when they link together these
values pertaining to more than one vertex).

In the paper of Yu. Ershova and A. V. Kiselev [3] the method of boundary triples
was successfully applied to the study of an inverse spectral problem on a graph with
local matching conditions. This method was suggested and developed by V. I. and
M. L. Gorbachuk [7], A. N. Kochubei [8], V. A. Derkach and M. M. Malamud [2]. Within
its framework the corresponding self-adjoint differential operator is considered as a proper
extension of some symmetric operator with equal deficiency indices. One might argue
that this method can be employed quite efficiently in the study of spectra of quantum
graphs with non–local matching conditions as well. Under the additional assumption
that the symmetric operator in question is simple (i.e., has no reducing subspace such
that on it the operator induces a self–adjoint operator), the Weyl-Titchmarsh matrix
function allows to investigate all of the spectrum of almost solvable extensions of this
operator.

In the present paper we show that the topology of the underlying graph determines
the domain and deficiency indices of a certain minimal symmetric operator which we call
associated to the graph and which plays a special rôle in its spectral analysis (Propo-
sition 1). Ershova and Kiselev [3] formulate some conditions sufficient for a minimal
operator corresponding to a quantum graph to be simple. Proposition 1 obtained by us
provides a criterion of simplicity for the minimal operator associated to the graph.
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1. Operator Amin associated to the graph Γ

Assume that the edge set E = {ek}nk=1 of a metric graph Γ = (V,E) consists of finite
intervals ek = [x2k−1, x2k] ⊂ R of lengths lk = x2k − x2k−1, and that the vertex set V
is a certain partition of the set {xj}2nj=1. Throughout the text of the paper we use the
terminology and notation of [12].

The Hilbert space L2(Γ) corresponding to the graph Γ is the space of measurable
square–summable functions defined on all graph edges and equipped with the standard
norm

‖f‖2L2(Γ)
=

∑

ek∈E

‖f‖2L2(ek)
,

i.e., it is nothing but an orthogonal sum of L2(ek) spaces, L2(Γ) =
⊕

e∈E L2(ek).

The Sobolev space W 2,2(Γ) =
⊕

ek∈E

W 2,2(ek) is introduced in an analogous fashion.

Here the space W 2,2(ek) consists of functions defined on the edge ek such that these
functions are absolutely continuous together with their first derivatives, and f ′′

ek
(x) ∈

L2(ek).
For functions f ∈ W 2,2(Γ) we define the normal derivative ∂nf(xj) at the endpoints

of each interval ek,

∂nf(xj) =

{

f ′(xj), if xj is the left endpoint of the interval,
−f ′(xj), if xj is the right endpoint of the interval.

Then it appears natural to introduce the following notation for the function f ∈ W 2,2(Γ)
at any vertex of the graph:

f(Vk) =
∑

xj∈Vk

f(xj), ∂nf(Vk) =
∑

xj∈Vk

∂nf(xj).

We assign a marK (either of the symbols δ or δ′, also referred to as type) to every
interior vertex of the graph Γ, i.e., to any vertex for which the degree is greater than
one, deg Vk > 1). The graph obtained as a result of this procedure will be referred to as
marked and denoted Γδ. A marked graph Γδ defines the linear manifold

D(Γδ) :=
{

f ∈ W 2,2(Γ)
∣

∣

∣

f is continuous at vertices of δ − type,
∂nf is continuous at the vertices of δ′ − type

}

.

If Vk is a vertex of δ-type then evidently f(Vk) = deg Vkf(xj), xj ∈ Vk. In the same
way, for a vertex Vk of δ′-type ∂nf(Vk) = deg Vk∂nf(xj), xj ∈ Vk.

In the Hilbert space L2(Γ) =
n
⊕

k=1

L2(ek) we now define the operator Amin, which acts

on every graph edge as the differential expression

(1) Amin = − d2

dx2

on the domain dom(Amin) which is the set of functions f ∈ D(Γδ) subject to conditions

f(Vk) = 0, ∂nf(Vk) = 0 (∀k).(2)

This operator Amin and the graph Γδ will henceforth be called associated. For instance,
if Amin is associated to the graph Γδ in which every vertex is of δ–type, then the domain
of the operator consists of functions f ∈ D(Γδ) which satisfy the following conditions:

f(xk) = 0 (∀xk),
∑

xk∈Vi

∂nf(xk) = 0 (∀Vi).

Henceforth we will always assume that the graph Γδ and the operator Amin are associated.
Note that Amin is a closed symmetric operator. Adjoint to it, Amax := A∗

min, is defined
by the same differential expression on the domain D(Γδ).
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Back to the symmetric operator, we formulate the following

Proposition 1. Deficiency indices of the operator Amin associated to the graph Γδ are
equal to the number of graph vertices.

Proof. Let n be the number of graph edges, m – the number of graph vertices. For
Imλ 6= 0 the general solution of the equation

(3) (Amax − λI)f = 0

on every edge is of the form fk(x) = C+
k cos

√
λx+C−

k sin
√
λx, i.e., is determined by 2n

parameters {C+
k , C−

k , k = 1, n.}. Moreover, at every vertex and for all xi, xj ∈ Vk the
following matching conditions hold:

f(xi) = f(xj), if Vk is a vertex of δ-type,

∂nf(xi) = ∂nf(xj), if Vk is a vertex of δ′-type.

The total number of these relations pertaining to each vertex is exactly deg Vk−1. Then
for the number of free parameters of the general solution of (3) one obtains

2n−
m
∑

k=1

(deg Vk − 1) = 2n+m−
m
∑

k=1

deg Vk.

Since due to the handshakes lemma
m
∑

k=1

deg Vk = 2n, the dimension of ker(Amax − λI)

is exactly m. �

2. Criterion of simplicity for the operator Amin

The question of whether the operator Amin associated to the graph Γδ is simple can be
reduced to the question of whether this operator has any point spectrum. Detailed proof
of the fact that Amin is simple provided that its point spectrum is empty is contained
in [3]. As it will be shown below, the property of simplicity for the operator Amin is
completely determined by the structure and marking of the metric graph Γδ.

Lemma 1. If the graph Γδ contains a loop, the operator Amin associated to the graph Γδ

is not simple.

Proof. In order to simplify the required calculations, accept without loss of generality the
following convention. Assume that the left endpoint of each interval [x2k−1, x2k], k = 1, n
is shifted to the point zero, whereas the right endpoint is then at lk = x2k − x2k−1.

Let now graph Γδ have a loop ek = [0, lk] attached to the vertex Vk.

s lk

Vk

0

Solutions to the equation Aminf = λf are subject to conditions (2) at the vertex Vk.
Moreover, the conditions corresponding to the type of the vertex (δ or δ′) have to be
satisfied:

f(0) = f(lk) = 0, f ′(0)− f ′(lk) = 0, if Vk is of δ-type,
f ′(0) = f ′(lk) = 0, f(0) + f(lk) = 0, if Vk is of δ′-type.

Let λ 6= 0. Then on ek the solution assumes the form

fk(x) = C+
k cosµx+ C−

k sinµx, where µ =
√
λ.
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Taking into account the above–mentioned conditions, we obtain the following relations
for C+

k , C−

k :

C+
k = 0, C−

k sinµlk = 0, C−

k (1− cosµlk) = 0, if Vk is a δ-vertex,
C−

k = 0, C+
k sinµlk = 0, C+

k (1 + cosµlk) = 0, if Vk is a δ′-vertex.

Obviously, in either case there exists a non–trivial solution on the edge ek for

µ = 2kπ/lk, k ∈ Z, if Vk is a δ-vertex,
µ = (2k + 1)π/lk, k ∈ Z, if Vk is a δ′-vertex.

Hence the point spectrum of Amin is non–empty and this operator is not simple. �

Lemma 2. The operator Amin associated to the graph Γδ is not simple if the graph Γδ

contains one of the following subgraphs, all vertices of which are of δ′-type:
(i) a cycle with an even number of edges;
(ii) a subgraph consisting of two cycles with odd numbers of edges each which are

connected by a chain or have exactly one common vertex.

Proof. (i) If the graph Γδ contains a cycle with an even number of edges and all of the
cycle’s vertices are of δ′-type, then on this cycle there exists a non-trivial solution to
the equation Aminf = 0. Here is an example of the cycle of four edges, on which four
constants are shown forming such solution:

s

s

s

s

−a −a

a

a

Therefore, the operator Amin is not simple.
(ii) If the graph has a subgraph consisting of two cycles with odd numbers of edges

and all vertices of which are of δ′-type, then on these edges there also exists a non-
trivial solution to Aminf = 0 and hence the operator Amin is not simple. The figure
below demonstrates an example of such eigenfunction which is a collection of constants,
defined on a graph with two cycles of three edges each. This example admits a natural
generalization to the case of arbitrary cycles of odd lengths.
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Lemma 3. The equation Aminf = λf, λ 6= 0, has a non-trivial solution on a cycle of
the graph Γδ iff all the lengths of this cycles’ edges are pairwise rationally dependent.

Proof. Let the cycle C = 〈e1, e2, . . . , en〉 belong to the graph Γδ. Consider the vertex Vk

of the cycle C which is incident to the edges ek−1 and ek.
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1) Suppose that Vk is the vertex of δ-type. Then eigenvectors are subject to the following
conditions:

fk−1(lk−1) = fk(0) = 0,

−f ′

k−1(lk−1) + f ′

k(0) = 0.
(4)

Since λ 6= 0, solutions on these edges assume the form

fj(x) = C+
j cosµx+ C−

j sinµx, where µ =
√
λ, j = k − 1, k.

Due to (4) one obtains the following relations for the coefficients:

C+
k = 0,

C+
k−1 cosµlk−1 + C−

k−1 sinµlk−1 = 0,

C+
k−1 sinµlk−1 − C−

k−1 cosµlk−1 + C−

k = 0.

Therefore,

(5)
fk−1(x) = C−

k sinµ(x− lk−1),

fk(x) = C−

k sinµx, where µ =
√
λ.

Note that from the expressions obtained it follows that on the two neighboring edges of
the cycle the solution to the equation Aminf = λf, λ 6= 0, is either non-trivial on both
or is necessarily trivial on both.

Two vertices, adjacent to Vk, can also be of either δ or δ′-type. Consider all possible
situations one by one.

1.1) If both Vk−1 and Vk+1 are of δ-type, the matching conditions at them are of the
form fk−1(0) = 0, fk(lk) = 0, that is, taking into account (5),

C−

k sinµlk−1 = 0, C−

k sinµlk = 0.

1.2) If Vk−1 is a δ-vertex, whereas Vk+1 is of δ′-type, fk−1(0) = 0, f ′

k(lk) = 0, which
yields the following conditions:

C−

k sinµlk−1 = 0, C−

k cosµlk = 0.

1.3) Let the vertex Vk−1 be of δ′-type, the vertex Vk – of δ-type. Then the conditions
at these vertices lead to the following relations:

C−

k cosµlk−1 = 0, C−

k sinµlk = 0.

1.4) If the vertices Vk−1 and Vk are of δ′-type, the corresponding matching conditions
lead to:

C−

k cosµlk−1 = 0, C−

k cosµlk = 0.

It is quite obvious that in each of these four cases the condition, necessary and sufficient
for existence of non-trivial solution, is rational dependence of the lengths lk−1 and lk.

2) Having assumed that Vk is a vertex of δ′-type, one gets the following solutions in
place of (5):

fk−1(x) = C+
k cosµ(x− lk−1),

fk(x) = C+
k cosµx.

Suppose that Vk−1 and Vk+1 are δ-vertices. Then matching conditions at these vertices
yield

C+
k cosµlk−1 = 0, C+

k cosµlk = 0.

Therefore in this case as well the solution is non-trivial iff the lengths lk−1 and lk are
rationally dependent.

The same result will hold in all other possible cases for the vertices Vk−1 and Vk+1.
Now let some pair of the cycles’ edges have rationally independent lengths. This

means, that there has to exist a pair of neighboring rationally independent edges. Indeed,
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if es, es+1, . . . , es+k is the maximal sequence of pairwise rationally dependent edges, then
for all i = 0, k ls+i = αils, αi ∈ Q. Hence, k is less then the length of the cycle and the
edges es+k and es+k+1 are rationally independent. On these edges one gets the trivial
solution only of the equation Aminf = λf, λ 6= 0, which taking into account the remark
made above leads to the trivial solution only on all edges forming the cycle. �

Lemma 4. If an edge of the graph Γδ is incident to a boundary vertex, then on this edge
the equation Aminf = λf admits only the trivial solution for any λ.

Proof. Suppose that the edge e1 is incident to the boundary vertex V1. Without loss of
generality we can assume that the vertex V1 is the left endpoint of the edge e1. Then
on this edge one gets the Cauchy problem with zero initial data which has no non-trivial
solutions. �

Corollary 1. If the graph Γδ is a tree, the operator Amin is simple.

The proof follows immediately from Lemma 4.

Lemma 5. If an edge of the graph Γδ is incident to a vertex of δ-type, then on this edge
the equation Aminf = 0 admits only the trivial solution.

Proof. Let Vk be a vertex of δ-type and let the edge ek be incident to this vertex. Without
loss of generality one assumes that the vertex Vk is the left endpoint of the edge ek. Then
the general solution on this edge is fk(x) = C−

k x. If the right endpoint of the edge ek
is a vertex of δ-type, the equality C−

k lk = 0 must hold; if on the other hand the right

endpoint of the edge ek is a vertex of δ′-type, one has C−

k = 0. In both cases obviously
fk(x) = 0. �

These results allow to receive the criterion of simplicity for a symmetric operator
associated with a graph.

Theorem 1. The operator Amin associated with the graph Γδ is not simple iff Γδ contains
at least one of the following subgraphs:

1) a loop;
2) a cycle, all edges of which have pairwise rationally dependent lengths;
3) a cycle with an even number of edges, all vertices of which are of δ′-type;
4) a subgraph with all vertices of δ′-type, consisting of two cycles with odd numbers of

edges each which are connected by a chain or have exactly one common vertex.

Proof. First observe that the operator Amin is simple iff it is simple on every connected
component of the graph. Therefore henceforth without loss of generality consider a
connected graph Γδ.

If the graph Γδ contains the subgraph of the form (1)–(4) of Theorem, then according
to Lemmas 1–3 the operator Amin associated with the graph Γδ is not simple.

Now assume that the graph Γδ doesn’t contain the subgraphs of the form (1)–(4) of
Theorem. Let us analyze solutions to the equation Aminf = λf on the graph Γδ.

a) First consider solutions for λ 6= 0. Since the lengths of at least two edges of every
cycle belonging to the graph Γδ are rationally independent, by Lemma 3 one gets only
the trivial solution on every cycle. After removal of all cycles, the graph breaks up into
a collection of trees. On each of these the solution must be trivial by Corollary 1.

b) Consider the case λ = 0. By Lemma 5, the equation Aminf = 0 admits only the
trivial solution on all edges incident to vertices of δ-type. Therefore we can assume
that the graph Γδ breaks up into connected components having vertices of δ′-type only.
Cutting away in accordance with Lemma 4 all edges containing pendant vertices, one
ends up with isolated cycles with odd numbers of edges (see the conditions (3) and (4) of
Theorem). Observe that the cycles cannot have adjacent edges since otherwise one could
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single out a cycle having an even number of edges, which is impossible by assumptions
of Theorem.

Consider a solution to the equation Aminf = 0 on a cycle with an odd number of
edges n. This solution must be of the form fk(x) = Ck on each of the edges of this
graph, and constants Cj at every vertex Vk are subject to the following conditions:

Ck−1 + Ck = 0, k = 2, n, C1 + Cn = 0.

It is easy to see that this system of linear equations admits no solution but the trivial
one. Hence for λ = 0 there exist no non–trivial solutions of the equation Aminf = λf as
well. Therefore the operator Amin associated to the graph Γδ has no point spectrum and
is thus simple [3]. �

We are grateful to A. V. Kiselev for suggesting the problem and useful advices.
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