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AN EXPONENTIAL REPRESENTATION FOR SOME INTEGRALS

WITH RESPECT TO LEBESGUE-POISSON MEASURE

V. A. BOLUH AND A. L. REBENKO

Abstract. We prove a theorem that allows to simplify some combinatorial calcula-
tions. An example of application of this theorem in statistical mechanics is given.

1. Introduction

This short article is devoted to one mathematical aspect of infinite dimensional ana-
lysis which is used in solving problems of statistical mechanics. This aspect is a use of
mathematical properties of integrals with respect to a Poisson measure (more exactly with
respect to a so-called Lebesgue-Poisson measure λzσ which we define later). A Poisson
measure is defined on the space of locally finite configurations of the Euclidean space
Rd (see, e.g., [3, 9, 10, 15, 11, 12, 29]) and used in the construction of a Gibbs measure
for infinite systems of point particles. Different aspects of analysis on the configuration
space as well as the problems of construction of different measures were developed in
numerous publications (see, e.g., [17, 18, 1, 2, 16, 13, 4, 5], see also the latest review [14])
and references therein.

The Poisson measure belongs to the class of measures that have the property of infinite
divisibility ([6], Chapter 4.4, see also [19]). A similar property can be written also for the
integrals with respect to Lebesgue-Poisson measures (see, e.g., [26], Eq. (2.15)). It has
been an extremely useful technical tool for constructing new types of cluster expansions
[23, 7, 8, 24], the use of which has made it possible to simplify the proof of superstable
estimates for correlation functions (see [25, 21, 22]).

In this paper, we want to show another advantage of application of integrals with
respect to the Lebesgue-Poisson measure, which greatly simplified cumbersome combi-
natorial formulas for summation with constraints. Of course, formula (2.10), which we
prove in Section 3. is not new. In statistical mechanics, the proof goes back to the alge-
braic technique used by Ruelle [27], Chapter 4.4 (see also [30, 31] and details in [28] or in
the latest article [5]). It also follows from [16] (Corollary 2.1.4), but with additional com-
binatorial resummation. In this article we propose another very short proof of formula
(2.10) using the well known integral identity (3.11). An application to representation of
grand partition function in statistical mechanics is given.

2. Definitions and main result

Let Rd be a d-dimensional Euclidean space. By B(Rd) we denote the family of all
Borel sets and by Bc(R

d) denote the systems of all sets in B(Rd) which are bounded.
The set of locally finite subsets in Rd we call the configuration space,

(2.1) Γ = ΓRd :=
{

γ ⊂ Rd
∣

∣ |γ ∩ Λ| < ∞, for all Λ ∈ Bc(R
d)
}

,
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where |A| denotes the cardinality of the set A. For any Λ ∈ Bc(R
d) we denote by γΛ

the intersection of γ and Λ. We also need to define the space of finite configurations Γ0

in Rd,

(2.2) Γ0 =
⊔

n∈N0

Γ(n), Γ(n) := {η ∈ Γ | |η| = n}, N0 = N ∪ {0},

and the space of finite configurations in Λ,

(2.3) ΓΛ := {γ ∈ Γ0| γ ⊂ Λ} .

The corresponding σ-algebras of these spaces will be denoted by B(Γ0) and B(ΓΛ) (see,
e.g., details in [1]).

Let σ be the Lebesgue measure on B(Rd) and for any n ∈ N the product measure σ⊗n

can be considered as a measure on

(̃Rd)n =
{

(x1, . . . , xn) ∈ (Rd)n
∣

∣ xk 6= xl if k 6= l
}

and hence as a measure σ(n) on Γ(n) through the map

symn : (̃Rd)n ∋ (x1, . . . , xn) 7→ {x1, . . . , xn} ∈ Γ(n).

For any z > 0 define the Lebesgue-Poisson measure λzσ on B(Γ0) by the formula

(2.4) λzσ :=
∑

n≥0

zn

n!
σ(n).

The restriction of λzσ to B(ΓΛ) we also denote by λzσ. For any B(ΓΛ)-measurable
bounded function F an integral with respect to the measure λzσ can be def ind by the
formula

(2.5)

∫

ΓΛ

F (γ)λzσ(dγ) =

∞
∑

n=0

zn

n!

∫

Λ

· · ·

∫

Λ

F ({x1, . . . , xn})σ(dx1) · · ·σ(dxn).

Any function F : ΓΛ 7→ R or F : Γ0 7→ R can be defined by an infinite sequence of
symmetric functions {Fn}n≥0, so that for any γ = {x1, . . . , xn} ∈ (Rd)⊗n we have

(2.6) F (γ)=F ({x1, . . . , xn})=Fn(x1, . . . , xn)=F (xπ(1), . . . , xπ(n)), F (∅)=F0 ∈ R,

where π ∈ Pn and Pn is the group of permutations of n elements.
We consider functions on the configuration space ΓΛ, which have the form

(2.7) Φ(γ) =

|γ|
∑

k=1

∗
∑

{γ1,...,γk}⊂γ

F (γ1)F (γ2) · · ·F (γk), Φ(∅) = 1,

where the asterisk over the sum means that the sum is taken over all partitions of the
set γ into k non-empty disjoint subsets, i.e.,

(2.8)

k
⋃

j=1

γj = γ, γi
⋂

γj = ∅ for all i 6= j, γi 6= ∅, i, j ∈ {1, . . . , k}.

The main result of the work is the following theorem.

Theorem 2.1. Let the function Φ have the form as in (2.7) and the functions Fn (see
(2.6)) satisfy the following estimates:

(2.9)

∫

Λ

. . .

∫

Λ

Fn(x1, . . . , xn) dx1 · · · dxn ≤ cnCΛn!,

where the constant c does not depend on Λ. Then

(2.10)

∫

ΓΛ

Φ(γ)λzσ(dγ) = e
∫
ΓΛ\{∅}

F (γ)λzσ(dγ),

for 0 < z < 1/2c.



188 V. A. BOLUH AND A. L. REBENKO

3. Proof of Theorem 2.1

Let us introduce the following function:

(3.1) Φ(α; γ) =

|γ|
∑

k=1

αk

k!
Φk(γ), α ∈ R,

where

(3.2) Φk(γ) =

∗
∑

(γ1,...,γk)⊂γ

Fn(γ1)Fn(γ2) · · ·Fn(γk)

and the functions Fn are as in (2.7)–(2.10). Unlike formula (2.7) in the formula (3.2)
the summation is taken over all ordered collections of partitions which satisfy (2.8). It
is clear that Φ(γ) = Φ(1; γ). We start the proof with the following lemma.

Lemma 3.1. Let the function F in the definition (2.7) satisfy the assumption (2.9).
Then, for any α ∈ R the function Φ(α; ·) is integrable on ΓΛ with respect to the measure
λzσ and, moreover, for any 0 < z < 1/2c the function I given by the formula

(3.3) I(α) =

∫

ΓΛ

Φ(α; γ)λzσ(dγ), α ∈ R

is analytic and can be represented by a Maclaurin series for any α ∈ (−R,R), and R > 0.

Proof. It is easy to calculate that

(3.4)

I(m)(α)=
dmI(α)

dαm
=

∫

ΓΛ

11Am
(γ)

|γ|
∑

k=m

αk−m

(k −m)!
Φk(γ)λzσ(dγ)

=

∞
∑

N=m

zN

N !

N
∑

k=m

αk−m

(k −m)!

∫

ΛN

(dx)N
∗

∑

(γ1,...,γk)⊂{x1,...,xN}

F (γ1)F (γ2) . . . F (γk),

where 11Am
(γ) is an indicator of the set

(3.5) Am := {γ ∈ ΓΛ | |γ| ≥ m}.

Denote |γj | = nj , j = 1, k. Then the sum with asterisk in (3.4) is a sum over all
possible partitions of the configuration {x1, . . . , xN} into k disjoint configurations with
a fixed number of elements. n1, . . . , nk, and a sum over all possible values nj ≥ 1 with
the constraint n1 + · · · + nk = N . The sum over all possible partitions is a classic
combinatorial problem and it has N !/n1! · · ·nk! elements, and

∑

{n1,...,nk≥1}
n1+···+nk=N

1 ≤
∑

{n1,...,nk≥0}
n1+···+nk=N

1 = CN
N+k−1 < 2N+k.

Then, taking into account (2.9) we obtain

(3.6) |I(m)(α)| ≤
∞
∑

N=m

(2cz)N
N
∑

k=m

|α|k−m(2CΛ)
k

(k −m)!
<

(4czCΛR)m

(1− 2cz)Rm
e2|α|CΛ < M

m!

Rm

with

(3.7) M = M(R) =
e2(1+2cz)RCΛ

1− 2cz
,

and any R > 0. �

Therefore, we can write for the function I(α)

(3.8) I(α) =

∞
∑

m=0

αm

m!
I(m)(0), |α| < R.

Proof of the Theorem 2.1.
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It is clear from (3.3) that I(1) is the left-hand side of (2.10). So, to prove the theorem
we need to show that right-hand side of (3.8) is the exponent (2.10) at α = 1. From the
equation (3.4),

(3.9) I(m)(0) =

∫

ΓΛ

11Am
(γ)Φm(γ)λzσ(dγ).

Wright the function Φm(γ) (see (3.2)) in the form

(3.10) Φm(γ) =
∑

η⊆γ

11A1
(η)F (η)11Am−1

(γ \ η)Φm−1(γ \ η).

Note that in (3.10) the sum starts from the empty configuration η = ∅, but the corres-
ponding term is equal to zero as 11A1

(∅) = 0 by definition. Inserting (3.10) into the
right-hand side of (3.9) we use the formula (see, e.g., [16], Lemma 2.1.3)

(3.11)

∫

ΓΛ

G(γ)
∑

η⊆γ

H(η, γ \ η)λzσ(dγ) =

∫

ΓΛ

∫

ΓΛ

G(η ∪ γ)H(η, γ)λzσ(dη)λzσ(dγ),

which is true for any G,H ∈ L1(ΓΛ, λzσ). It is easy to obtain this formula using the
definition of the measure λzσ (see (2.5)). Then taking

(3.12) G(γ) = 11Am
(γ), and H(η, γ \ η) = 11A1

(η)F (η)11Am−1
(γ \ η)Φm−1(γ \ η),

and taking into account that 11Am
(γ ∪ η)11A1

(η)11Am−1
(γ) = 11A1

(η)11Am−1
(γ) we obtain

(3.13)

I(m)(0) =

∫

ΓΛ

∫

ΓΛ

11Am
(γ ∪ η)11A1

(η)F (η)11Am−1
(γ)Φm−1(γ)λzσ(dη)λzσ(dγ)

=

∫

ΓΛ

11A1
(η)F (η)λzσ(dη)

∫

ΓΛ

11Am−1
(γ)Φm−1(γ)λzσ(dγ).

Therefore

(3.14) I(m)(0) =

(
∫

ΓΛ

11A1
(η)F (η)λzσ(dη)

)

I(m−1)(0).

Iterating this equation we obtain with (3.8) and for α = 1 the proof of the Theorem 2.1.

4. Application to statistical mechanics

We will use Theorem 2.1 to obtain so-called Mayer expansions for pressure and density
of an infinite system of point particles interacting via a pair potential φ which is a
continuous function on R+ \ {0} and which satisfies the following conditions of stability
and regularity.

(A1) Stability: the potential φ is called stable, if the energy of any configuration
γ ∈ ΓΛ satisfies the following inequality:

(4.1) U(γ) =
∑

{x,y}⊂γ

φ(|x− y|) ≥ −B|γ|, |γ| ≥ 2

with some constant B ≥ 0.
(A2) Regularity:

(4.2) C(β) :=

∫

Rd

|e−βφ(|x|) − 1|dx < ∞.

Pressure in the system is a function of activity z and inverse temperature β = 1/kT ,
where k is Boltzmann’s constant and is given by the following formula (see, e.g., [28],
Theorem 4.3.1):

(4.3) p(z, β) = lim
Λ↑Rd

pΛ(z, β) := lim
Λ↑Rd

1

βσ(Λ)
logZΛ(z, β),
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where ZΛ(z, β) is the great partition function. It can be written as the Lebesgue-Poisson
measure integral of the Boltzmann functional (see, e.g., [28], Chapter 4),

(4.4) ZΛ(z, β) :=

∫

ΓΛ

e−βU(γ)λzσ(dγ),

where

(4.5) U(γ) =

{

0, for |γ| = 0 ∨ 1,
∑

{x,y}⊂γ φ(|x− y|) :=
∑

{x,y}⊂γ φxy, for |γ| ≥ 2.

In order to apply Theorem 2.1 we can write the functional e−βU(γ) in the form

(4.6) e−βU(γ) =

{

1, for |γ| = 0 ∨ 1,
∏

{x,y}⊂γ(Cxy + 1), for |γ| ≥ 2,

where Cxy := e−βφxy − 1.
The product in (4.6) can be conveniently written as a sum of contributions from the

graph whose vertices are points of the configuration γ. The contribution from the vertex
is one, and the contribution of the line l = lxy connecting the two points x, y ∈ γ is the
function Cxy. So, the contribution of any graph is a product of the functions Clxy

= Cxy

over all internal lines L(G) of the graph G. It is clear that for any configuration γ ∈ ΓΛ

the product in (4.6) includes 2N(N−1)/2 graphs, where N = |γ|. If we denote any graph
by G = G(γ), and the whole set of such graphs by G(γ), the Boltzmann function can be
represented as the following sum:

(4.7) e−βU(γ) =
∑

G∈G(γ)

∏

{x,y}∈L(G)

Cxy.

Each graph G can be represented as the composition of k graphs GT
i (i ∈ {1, . . . , k})

which are connected graphs,

(4.8) G = GT
1 ∗ · · · ∗GT

k .

The number k is called the order of disconnectedness of the graph G (1 ≤ k N = |γ|).
Graphs with the order of disconnectedness k = 1 are connected graphs. The contribution
of any graph G with the order of disconnectedness k > 1 is the product of k contributions
from every graph GT

i , i = 1, k. With every such graph G ∈ G one can connect a
partition configuration γ on subconfigurations {γ1, . . . , γk}, which satisfy the conditions
(2.8), but for every such partition there are many graphs G with the same order k of
disconnectedness.

One can perform in the sum (4.7) the following resummation. We split the sum (4.7)
into N = |γ| groups with a fixed order of disconnectedness. Then, set of graphs with
fixed k is divided into groups, the set of graphs in which is based on fixed vertices that
correspond to the partition configuration γ on k subconfigurations {γ1, . . . , γk}. The
last step in this resummation is the following. First we sum all graphs that have the
same contributions, corresponding to partitions {γ2, . . . , γk} and different contributions
corresponding to γ1. As a result, we obtain a sum of contributions, each term of which
will have the same first factor

(4.9) ΦT (γ1) =

{

1, for |γ1| = 1,
∑

GT∈GT (γ1)

∏

{x,y}∈L(GT ) Cxy, for |γ1| ≥ 2,

where GT (γ1) is the set of all connected graphs with vertices in the points of the configu-
ration γ1. The functions ΦT (γ) are called Ursell functions (see, e.g., [28], Chapter 4.4.2)
which is connected with truncated correlation functions (see, e.g., [20]. Then we sum
all graphs that have the same contributions corresponding to the partitions {γ3, . . . , γk}
and different contributions corresponding to γ2 and so on. As a result, we finally get

(4.10) e−βU(γ) =

|γ|
∑

k=1

∗
∑

{γ1,...,γk}⊂γ

ΦT (γ1) · · ·Φ
T (γk),
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where the sum with asterisk has the same meaning as in (2.7), and for the great partition
function we have the following representation:

(4.11) ZΛ(z, β) :=

∫

ΓΛ

|γ|
∑

k=1

∗
∑

{γ1,...,γk}⊂γ

ΦT (γ1) · · ·Φ
T (γk)λzσ(dγ).

To apply Theorem 2.1 with F (γ) = ΦT (γ) we need an estimate for ΦT (γ). One can
find bounds on these functions in [28], Chapter 4, Sec. 4.4.6, which is

(4.12)

∫

Λ

. . .

∫

Λ

|ΦT ({x1, . . . , xn})|dx2 · · · dxn ≤ (n− 1)!e−2βB
(

e2βB+1C(β)
)n−1

.

Now we can apply the theorem 2.1 with CΛ = σ(Λ)C(β)−1e−4βB−1 and c = e2βB+1C(β)
to obtain the following representation for great partition function:

(4.13) ZΛ(z, β) = e
∫
ΓΛ\{∅}

ΦT (γ)λzσ(dγ).

This formula and estimate (4.12) prove the existence and analyticity of the pressure.
Indeed, using definition (4.3) we have

pΛ(z, β) =
1

βσ(Λ)
logZΛ(z, β) =

1

βσ(Λ)

∫

ΓΛ\{∅}

ΦT (γ)λzσ(dγ)

=
1

βσ(Λ)

∞
∑

n=1

zn

n!

∫

Λ

. . .

∫

Λ

|ΦT ({x1, . . . , xn})| dx1 · · · dxn.

As a result the existence and analyticity of the pressure follows from the existence of
integrals of the function ΦT ({x1, . . . , xn}) with respect to the variables x2, . . . , xn (see
(4.12)). A similar result holds also for the density of the infinite system. This follows
from the expression for the density (see [28], Chapter 4, Sec. 4.4.7)

(4.14) ρ = z +
∞
∑

n=2

zn

(n− 1)!

∫

Rd

. . .

∫

Rd

|ΦT ({x1, . . . , xn})| dx2 · · · dxn

and estimate (4.12).
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