CONTINUITY OF OPERATOR-VALUED FUNCTIONS IN THE *-ALGEBRA OF LOCALLY MEASURABLE OPERATORS

V. I. CHILIN AND M. A. MURATOV

Dedicated to Yuryi Stevanofich Samoilenko on the occasion of his 70th birthday

ABSTRACT. In the present paper we establish sufficient conditions for a complexvalued function f defined on \mathbb{R} which guarantee continuity of an operator-function $T \mapsto f(T)$ w.r.t. the topology of local measure convergence in the *-algebra $LS(\mathcal{M})$ of all locally measurable operators affiliated to a von Neumann algebra \mathcal{M} .

1. INTRODUCTION

The development of integration theory for a faithful normal semifinite trace τ defined on a von Neumann algebra \mathcal{M} has led to a need for consideration of the *-algebra $S(\mathcal{M},\tau)$ of all τ -measurable operators affiliated with \mathcal{M} , see, e.g., [11]. This algebra is a solid *-subalgebra of the *-algebra $S(\mathcal{M})$ of all measurable operators affiliated with \mathcal{M} . The *-algebra $S(\mathcal{M})$ was introduced by I. Segal [13] in order to describe a "noncommutative version" of the *-algebra of measurable complex-valued functions. If \mathcal{M} is a commutative von Neumann algebra, then \mathcal{M} can be identified with the *-algebra $L_{\infty}(\Omega, \Sigma, \mu)$ of all essentially bounded measurable complex-valued functions defined on a measure space (Ω, Σ, μ) with a measure μ having the direct sum property. In this case, the *-algebra $S(\mathcal{M})$ is identified with the *-algebra $L_0(\Omega, \Sigma, \mu)$ of all measurable complex-valued functions defined on (Ω, Σ, μ) [13].

The *-algebras $S(\mathcal{M}, \tau)$ and $S(\mathcal{M})$ are substantive examples of EW^* -algebras E of closed linear operators, affiliated with the von Neumann algebra \mathcal{M} , which act on the same Hilbert space \mathcal{H} as \mathcal{M} and have the bounded part $E_b = E \cap \mathcal{B}(\mathcal{H})$ coinciding with \mathcal{M} [7], where $\mathcal{B}(\mathcal{H})$ is the *-algebra of all bounded linear operators on \mathcal{H} . A natural desire of obtaining a maximal EW^* -algebra E with $E_b = \mathcal{M}$ has led to a construction of the *-algebra $LS(\mathcal{M})$ of all locally measurable operators affiliated with the von Neumann algebra \mathcal{M} (see, for example, [17]). It was shown in [3] that any EW^* -algebra E satisfying $E_b = \mathcal{M}$ is a solid *-subalgebra of $LS(\mathcal{M})$.

In the case when there exists a faithful normal finite trace τ on \mathcal{M} , all three *-algebras $LS(\mathcal{M})$, $S(\mathcal{M})$, and $S(\mathcal{M}, \tau)$ coincide [10, § 2.6], and a natural topology that endows these *-algebras with the structure of a topological *-algebra is the measure topology t_{τ} induced by the trace τ [11]. If τ is a semifinite but not a finite trace, then one can consider the τ -local measure topology $t_{\tau l}$ and the weak τ -local measure topology $t_{w\tau l}$ [2]. However, in the case where \mathcal{M} is not of finite type, the multiplication is not jointly continuous in the two variables with respect to these topology $t(\mathcal{M})$, which was defined in [17] for any von Neumann algebras and which endows $LS(\mathcal{M})$ with the structure of a complete topological *-algebra [10, § 3.5].

 $^{2000\} Mathematics\ Subject\ Classification.\ 46H35,\ 46L51,\ 47L60.$

Key words and phrases. Von Neumann algebra, locally measurable operator, local measure topology.

It is known that for all $T \in LS_h(\mathcal{M}) = \{S \in LS(\mathcal{M}) : S^* = S\}$ and for any Borel complex function f defined on the set of real numbers \mathbb{R} and bounded on compact subsets of \mathbb{R} , a locally measurable operator $f(T) \in LS(\mathcal{M})$ is correctly defined [10, $\S 2.3$]. Therefore it is natural to consider an operator-function $T \mapsto f(T)$ from $LS_h(\mathcal{M})$ to $LS(\mathcal{M})$ and study the question of its continuity w.r.t. topology $t(\mathcal{M})$ of convergence locally in measure. In the case of strong operator topology, when $LS(\mathcal{M}) = \mathcal{M} = \mathcal{B}(\mathcal{H})$, this problem was investigated by I. Kaplansky [9], R. V. Kadison [8] and E. V. Davies [5]. In the case of the EW^* -algebra $S(\mathcal{M}, \tau)$ and measure topology t_{τ} this problem was investigated by O. E. Tikhonov [16].

In this paper we prove that, for $\{T_{\alpha}\} \subset LS_h(\mathcal{M}), T \in LS_h(\mathcal{M})$ and Borel function f continuous on the spectrum $\sigma(T)$ of the operator T, the convergence $T_{\alpha} \xrightarrow{t(\mathcal{M})} T$, implies the convergence $f(T_{\alpha}) \xrightarrow{t(\mathcal{M})} f(T)$.

We use the von Neumann algebra terminology, notations and results from [14, 15], and those that concern the theory of measurable and locally measurable operators from [10, 17].

2. Preliminaries

Let \mathcal{H} be a Hilbert space over the field \mathbb{C} of complex numbers, let $\mathcal{B}(\mathcal{H})$ be the *-algebra of all bounded linear operators on \mathcal{H} , let I be the identity operator on \mathcal{H} , \mathcal{M} be a von Neumann subalgebra of $\mathcal{B}(\mathcal{H})$, let $\mathcal{P}(\mathcal{M}) = \{P \in \mathcal{M} : P^2 = P = P^*\}$ be the lattice of all projections in \mathcal{M} , and let $\mathcal{P}_{\text{fin}}(\mathcal{M})$ be the sublattice of its finite projections. The center of a von Neumann algebra \mathcal{M} will be denoted by $\mathcal{Z}(\mathcal{M})$.

A closed linear operator T affiliated with the von Neumann algebra \mathcal{M} with everywhere dense domain $\mathcal{D}(T) \subset \mathcal{H}$ is called *measurable* if there exists a sequence $\{P_n\}_{n=1}^{\infty} \subset \mathcal{P}(\mathcal{M})$ such that $P_n \uparrow I$, $P_n(\mathcal{H}) \subset \mathcal{D}(T)$, and $P_n^{\perp} = I - P_n \in \mathcal{P}_{\text{fin}}(\mathcal{M})$ for every $n \in \mathbb{N}$, where \mathbb{N} is the set of all natural numbers. The set $S(\mathcal{M})$ of all measurable operators is a *-algebra with identity I over the field \mathbb{C} with respect to the strong sum $\overline{T+S}$, strong product \overline{TS} and the adjoint operation T^* [13]. It is clear that \mathcal{M} is a *-subalgebra of $S(\mathcal{M})$.

A closed linear operator T affiliated with \mathcal{M} with everywhere dense domain $\mathcal{D}(T) \subset \mathcal{H}$ is called *locally measurable* with respect to \mathcal{M} if there exists a sequence $\{Z_n\}_{n=1}^{\infty}$ of central projections in \mathcal{M} such that $Z_n \uparrow I$ and $TZ_n \in S(\mathcal{M})$ for all $n \in \mathbb{N}$.

The set $LS(\mathcal{M})$ of all locally measurable operators with respect to \mathcal{M} is a *-algebra with identity I over the field \mathbb{C} with respect to the same algebraic operations as in $S(\mathcal{M})$ [12], [17], in addition $S(\mathcal{M})$ is a *-subalgebra of $LS(\mathcal{M})$. If \mathcal{M} is finite, or if \mathcal{M} is a factor, the algebras $S(\mathcal{M})$ and $LS(\mathcal{M})$ coincide.

For every subset $E \subset LS(\mathcal{M})$, the set of all selfadjoint (resp., positive) operators in E is denoted by E_h (resp., E_+). The partial order in $LS_h(\mathcal{M})$ defined by its cone $LS_+(\mathcal{M})$ is denoted by \leq .

Let T be a closed operator with dense domain $\mathcal{D}(T)$ in \mathcal{H} , let T = U|T| be the polar decomposition of the operator T, where $|T| = (T^*T)^{\frac{1}{2}}$ and U is the partial isometry in $\mathcal{B}(\mathcal{H})$ such that $r(T) = U^*U$ is the right support of T. It is known that $T \in LS(\mathcal{M})$ (respectively, $T \in S(\mathcal{M})$) if and only if $|T| \in LS(\mathcal{M})$ (respectively, $|T| \in S(\mathcal{M})$) and $U \in \mathcal{M}$ [10, § 2.3].

Denote by $\mathcal{B}(\mathbb{R})$ the C^* -algebra of all Borel complex-valued functions defined on \mathbb{R} and bounded on compact subsets of \mathbb{R} . It is know that $f(T) \in LS(\mathcal{M})$ for all $T \in LS_h(\mathcal{M})$ and $f \in \mathcal{B}(\mathbb{R})$ [10, §2.3]. In particular, for the real-value bounded Borel function φ_{λ} at \mathbb{R} , such that $\varphi_{\lambda}(t) = 1$ for $t \leq \lambda$ and $\varphi_{\lambda}(t) = 0$ for $t > \lambda$, where λ is a fixed number from \mathbb{R} , the inclusion $E_{\lambda}(T) := \varphi_{\lambda}(T) \in \mathcal{M}$ holds for all $T \in LS_h(\mathcal{M})$.

Denote by $\|\cdot\|_{\mathcal{M}}$ the C^* -norm in the von Neumann algebra \mathcal{M} . We need the following property of the partial order in the algebra $LS(\mathcal{M})$.

Proposition 1. ([1, Proposition 6.1]) Let \mathcal{M} be a von Neumann algebra, $T, S \in$ $LS_+(\mathcal{M})$ and $S \leq T$. Then $S^{1/2} = AT^{1/2}$ for some $A \in \mathcal{M}$, $||A||_{\mathcal{M}} \leq 1$, in particular, $S = ATA^*$.

Let us now recall the definition of the local measure topology. Firstly let \mathcal{M} be a commutative von Neumann algebra. Then \mathcal{M} is *-isomorphic to the *-algebra $L_{\infty}(\Omega, \Sigma, \mu)$ of all essentially bounded measurable complex-valued functions defined on a measure space (Ω, Σ, μ) with the measure μ satisfying the direct sum property (we identify functions that are equal almost everywhere). The direct sum property of a measure μ means that the Boolean algebra of all projections of the *-algebra $L_{\infty}(\Omega, \Sigma, \mu)$ is order complete, and for any nonzero $P \in \mathcal{P}(\mathcal{M})$ there exists a nonzero projection $Q \leq P$ such that $\mu(Q) < \infty$.

Consider the *-algebra $LS(\mathcal{M}) = S(\mathcal{M}) = L_0(\Omega, \Sigma, \mu)$ of all measurable almost everywhere finite complex-valued functions defined on (Ω, Σ, μ) (functions that are equal almost everywhere are identified). On $L_0(\Omega, \Sigma, \mu)$, define the local measure topology $t(\mathcal{M})$, that is, the linear Hausdorff topology, whose base of neighborhoods of zero is given by

 $W(B,\varepsilon,\delta) = \{f \in L_0(\Omega, \Sigma, \mu): \text{ there exists a set } E \in \Sigma \text{ such that}$

 $E \subseteq B, \ \mu(B \setminus E) \leq \delta, \ f\chi_E \in L_{\infty}(\Omega, \Sigma, \mu), \ \|f\chi_E\|_{L_{\infty}(\Omega, \Sigma, \mu)} \leq \varepsilon\},$ where ε , $\delta > 0$, $B \in \Sigma$, $\mu(B) < \infty$, and

$$\chi(\omega) = \begin{cases} 1, & \omega \in E \\ 0, & \omega \notin E \end{cases}$$

Convergence of a net $\{f_{\alpha}\}$ to f in the topology $t(\mathcal{M})$, denoted by $f_{\alpha} \xrightarrow{t(\mathcal{M})} f$, means that $f_{\alpha}\chi_B \longrightarrow f\chi_B$ in measure μ for any $B \in \Sigma$ with $\mu(B) < \infty$. It is clear that the topology $t(\mathcal{M})$ does not change if the measure μ is replaced with an equivalent measure.

Let now \mathcal{M} be an arbitrary von Neumann algebra and let φ be a *-isomorphism from $\mathcal{Z}(\mathcal{M})$ onto the *-algebra $L_{\infty}(\Omega, \Sigma, \mu)$, where μ is a measure satisfying the direct sum property. Denote by $L_+(\Omega, \Sigma, m)$ the set of all measurable real-valued functions defined on (Ω, Σ, μ) and taking values in the extended half-line $[0, \infty]$ (functions that are equal almost everywhere are identified). It was shown in [13] that there exists a mapping

$$d\colon \mathcal{P}(\mathcal{M}) \to L_+(\Omega, \Sigma, \mu)$$

that possesses the following properties:

(i) d(P) = 0 if and only if P = 0;

(ii) $d(P) \in L_0(\Omega, \Sigma, \mu) \iff P \in \mathcal{P}_{fin}(\mathcal{M});$

(iii) $d(P \lor Q) = d(P) + d(Q)$ if PQ = 0;

(iv) $d(U^*U) = d(UU^*)$ for any partial isometry $U \in \mathcal{M}$; (v) $d(ZP) = \omega(Z)d(P)$ for any $Z \in \mathcal{P}(\mathcal{Z}(\mathcal{M}))$ and $P \in \mathcal{P}(\mathcal{M})$:

(v)
$$d(ZP) = \varphi(Z)d(P)$$
 for any $Z \in \mathcal{P}(\mathcal{Z}(\mathcal{M}))$ and $P \in \mathcal{P}(\mathcal{M})$

A mapping $d: \mathcal{P}(\mathcal{M}) \to L_+(\Omega, \Sigma, \mu)$ that satisfies properties (i)-(vi) is called a *dimen*sion function on $\mathcal{P}(\mathcal{M})$.

For arbitrary numbers $\varepsilon, \delta > 0$ and a set $B \in \Sigma, \mu(B) < \infty$, we set

$$V(B,\varepsilon,\delta) = \{T \in LS(\mathcal{M}): \text{ there exist } P \in \mathcal{P}(\mathcal{M}), \ Z \in \mathcal{P}(\mathcal{Z}(\mathcal{M})), \}$$

such that $TP \in \mathcal{M}, ||TP||_{\mathcal{M}} \leq \varepsilon, \ \varphi(Z^{\perp}) \in W(B, \varepsilon, \delta), \ d(ZP^{\perp}) \leq \varepsilon \varphi(Z) \}.$ It was shown in [17] that the system of sets

 $\{\{T + V(B, \varepsilon, \delta)\}: T \in LS(\mathcal{M}), \varepsilon, \delta > 0, B \in \Sigma, \mu(B) < \infty\}$ (1)

defines the Hausdorff vector topology $t(\mathcal{M})$ on $LS(\mathcal{M})$ such that sets (1) form a neighborhood base of the operator $T \in LS(\mathcal{M})$. The topology $t(\mathcal{M})$ is called the *local mea*sure topology (or the topology of convergence locally in measure). It is known that $(LS(\mathcal{M}), t(\mathcal{M}))$ is a complete topological *-algebra, and the topology $t(\mathcal{M})$ does not depend on a choice of dimension function \mathcal{D} and on a choice of *-isomorphism φ [10, §3.5], [17].

We need the following criterion for convergence of nets with respect to this topology.

Proposition 2. $([10, \S 3.5])$

- (i) A net $\{P_{\alpha}\}_{\alpha \in A} \subset \mathcal{P}(\mathcal{M})$ converges to zero with respect to the topology $t(\mathcal{M})$ if and only if there exists a net $\{Z_{\alpha}\}_{\alpha \in A} \subset \mathcal{P}(\mathcal{Z}(\mathcal{M}))$ such that $Z_{\alpha}P_{\alpha} \in \mathcal{P}_{\mathrm{fin}}(\mathcal{M})$ for all $\alpha \in A$, $\varphi(Z_{\alpha}^{\perp}) \xrightarrow{t(L_{0}(\Omega))} 0$, and $d(Z_{\alpha}P_{\alpha}) \xrightarrow{t(L_{0}(\Omega))} 0$, where $t(L_{0}(\Omega))$ is the local measure topology on $L_{0}(\Omega, \Sigma, \mu)$, and φ is a *-isomorphism of $\mathcal{Z}(\mathcal{M})$ onto $L_{\infty}(\Omega, \Sigma, \mu)$.
- (ii) A net $\{T_{\alpha}\}_{\alpha \in A} \subset LS(\mathcal{M})$ converges to zero with respect to the topology $t(\mathcal{M})$ if and only if $E_{\lambda}^{\perp}(|T_{\alpha}|) \xrightarrow{t(\mathcal{M})} 0$ for every $\lambda > 0$, where $\{E_{\lambda}^{\perp}(|T_{\alpha}|)\}$ is the spectral family for the operator $|T_{\alpha}|$.

It follows from Proposition 2 that the topology $t(\mathcal{M})$ induces the topology $t(\mathcal{Z}(\mathcal{M}))$ on $LS(\mathcal{Z}(\mathcal{M}))$; hence, $S(\mathcal{Z}(\mathcal{M}))$ is a closed *-subalgebra of $(LS(\mathcal{M}), t(\mathcal{M}))$.

It is clear that

$$X \cdot V(B,\varepsilon,\delta) \subset V(B,\varepsilon,\delta)$$

for any $X \in \mathcal{M}$ with $||X||_{\mathcal{M}} \leq 1$. Since $V^*(B,\varepsilon,\delta) \subset V(B,2\varepsilon,\delta)$ [10, §3.5], we have $V(B,\varepsilon,\delta) : Y \subset V(B,4\varepsilon,\delta)$

$$V(B,\varepsilon,\delta)\cdot Y \subset V(B,4\varepsilon,\delta)$$

for all $Y \in \mathcal{M}$ satisfying $||Y||_{\mathcal{M}} \leq 1$. Hence,

(2)
$$X \cdot V(B,\varepsilon,\delta) \cdot Y \subset V(B,4\varepsilon,\delta)$$

for any $\varepsilon, \delta > 0, B \in \Sigma, \mu(B) < \infty, X, Y \in \mathcal{M}$ with $||X||_{\mathcal{M}} \le 1, ||Y||_{\mathcal{M}} \le 1$.

Since the involution is continuous in the topology $t(\mathcal{M})$, the set $LS_h(\mathcal{M})$ is closed in $(LS(\mathcal{M}), t(\mathcal{M}))$. The cone $LS_+(\mathcal{M})$ of positive elements is also closed in $(LS(\mathcal{M}), t(\mathcal{M}))$ [17].

It follows from the definition of the topology $t(\mathcal{M})$ that the convergence locally in measure of a net $\{T_{\alpha}\}_{\alpha \in J}$ to T means that for any $\varepsilon, \delta > 0$ and $B \in \Sigma$, $\mu(B) < \infty$, there exists $\alpha_0 = \alpha(B, \varepsilon, \delta)$ such that, for each $\alpha \geq \alpha_0$, there exists a projection $P(\alpha) \in P(\mathcal{M})$, $Z(\alpha) \in P(\mathcal{Z}(\mathcal{M})), Z(\alpha)P^{\perp}(\alpha) \in \mathcal{P}_{\text{fin}}(\mathcal{M})$ satisfying

(3)
$$\|(T_{\alpha} - T)P(\alpha)\|_{\mathcal{M}} \le \varepsilon$$

and

$$\varphi(Z^{\perp}(\alpha)) \in W(B,\varepsilon,\delta), \quad d(Z(\alpha)P^{\perp}(\alpha)) \le \varepsilon\varphi(Z(\alpha)).$$

If inequality (3) is replaced with the inequality

(3')
$$||P(\alpha)(T_{\alpha} - T)P(\alpha)||_{\mathcal{M}} \le \varepsilon,$$

then it is said that the net $\{T_{\alpha}\}_{\alpha \in J}$ converges to T two-sided locally in measure.

It is easy to see that the two-sided convergence locally in measure is equivalent to the convergence in the vector topology in $LS(\mathcal{M})$, with the base of neighborhoods of zero formed by the sets

$$\begin{split} U(B,\,\varepsilon,\delta) &= \{T \in LS(\mathcal{M}): \text{ there exists } P \in \mathcal{P}(\mathcal{M}), Z \in \mathcal{P}(\mathcal{Z}(\mathcal{M})), \\ ZP^{\perp} \in \mathcal{P}_{\mathrm{fin}}(\mathcal{M}), \text{ such that } PTP \in \mathcal{M}, \ \|PTP\|_{\mathcal{M}} \leq \varepsilon, \\ \varphi(Z^{\perp}) \in W(B,\varepsilon,\delta), \ d(ZP^{\perp}) \leq \varepsilon\varphi(Z)\}, \end{split}$$

where $\varepsilon, \delta > 0, B \in \Sigma, \mu(B) < \infty$. In fact, this vector topology coincides with the topology $t(\mathcal{M})$, which is directly implied by the following inclusions:

$$V(B,\varepsilon,\delta) \subseteq U(B,\varepsilon,\delta) \subseteq V(A,2\varepsilon,\delta)$$

for any $\varepsilon, \delta > 0, B \in \Sigma, \mu(B) < \infty$ [10, § 3.5].

We need the following criterion for the local measure topology $t(\mathcal{M})$ on $LS(\mathcal{M})$ to be metrizable. Remind that the center $\mathcal{Z}(\mathcal{M})$ of a von Neumann algebra \mathcal{M} is σ -finite if any family of nonzero mutually orthogonal projections in $\mathcal{P}(\mathcal{Z}(\mathcal{M}))$ is at most countable.

Proposition 3. ([10, Theorem 3.5.2]) Local measure topology $t(\mathcal{M})$ on $LS(\mathcal{M})$ is metrizable if and only if there center $\mathcal{Z}(\mathcal{M})$ is σ -finite.

Remark 1. As we have already noted, the center $\mathcal{Z}(\mathcal{M})$ of an arbitrary von Neumann algebra \mathcal{M} is *-isomorphic to the commutative von Neumann algebra $L_{\infty}(\Omega, \Sigma, \mu)$, with measure μ satisfying the direct sum property. It means that there exists a family of nonzero mutually orthogonal central projections $\{Z_j\}_{j\in J} \subset P(\mathcal{Z}(\mathcal{M}))$ such that $\sup_{j\in J} Z_j = I$ and the von Neumann algebra $Z_j\mathcal{Z}(\mathcal{M})$ is σ -finite for all $j \in J$.

Using Proposition 2, Remark 1 and [4, Proposition 8] we obtain the following corollary.

Corollary 1. Let $\{Z_j\}_{j\in J} \subset P(\mathcal{Z}(\mathcal{M}))$ be a family of nonzero mutually orthogonal central projections such that $\sup_{j\in J} Z_j = I$. For $\{T_\alpha\}_{\alpha\in A} \subset LS(\mathcal{M})$ and $T \in LS(\mathcal{M})$ the following conditions are equivalent:

(i) $T_{\alpha} \xrightarrow{t(\mathcal{M})} T;$ (ii) $Z_j T_{\alpha} \xrightarrow{t(\mathcal{M})} Z_j T$ for all $j \in J;$ (iii) $Z_j T_{\alpha} \xrightarrow{t(Z_j \mathcal{M})} Z_j T$ for all $j \in J.$

3. Continuity of operator-valued functions

This section contains the main results of the paper concerning continuity of an operatorfunction $T \mapsto f(T)$ from $LS_h(\mathcal{M})$ to $LS(\mathcal{M})$ w.r.t. the local measure topology.

Theorem 1. Let $f \in \mathcal{B}(\mathbb{R})$ be a continuous function on the spectrum $\sigma(T)$ of operator $T \in LS_h(\mathcal{M})$. If the net of operators $\{T_\alpha\} \subset LS_h(\mathcal{M})$ converges to T in the topology $t(\mathcal{M})$, then $f(T_\alpha) \xrightarrow{t(\mathcal{M})} f(T)$.

To prove Theorem 1, we need several lemmas.

Note, from the definition of the operator f(T) [10, §2.3] and Proposition 2.3.17 [10] it follows that Zf(T) = f(ZT) for all $f \in \mathcal{B}(\mathbb{R}), Z \in \mathcal{P}(Z(\mathcal{M}))$ and $T \in LS_h(\mathcal{M})$. Remark 1 and Corollary 1 implies that for the proof of Theorem 1 it is sufficient to consider the case of σ -finite center $\mathcal{Z}(\mathcal{M})$ of the von Neumann algebra \mathcal{M} only. And therefore, by Proposition 3, we need only to verify the implication

$$(T_n \xrightarrow{t(\mathcal{M})} T) \Rightarrow (f(T_n) \xrightarrow{t(\mathcal{M})} f(T)).$$

Lemma 1. Let $T_k, T \in LS_h(\mathcal{M})$, and let $f, f_n \in \mathcal{B}(\mathbb{R}), k, n \in \mathbb{N}$ be such that

$$\lim_{n \to \infty} \sup_{t \in \mathbb{R}} |f_n(t) - f(t)| = 0$$

and $f_n(T_k) \xrightarrow{t(\mathcal{M})} f_n(T)$ for $k \to \infty$ and for all $n \in \mathbb{N}$. Then $f(T_k) \xrightarrow{t(\mathcal{M})} f(T)$ for $k \to \infty$.

Proof. Since the topology of convergence locally in measure $t(\mathcal{M})$ and the topology of two-sided convergence locally in measure coincide, it is sufficient to show that for all $\varepsilon > 0, \delta > 0, B \in \Sigma, \mu(B) < \infty$ there exists $K = K(B, \varepsilon, \delta) \in \mathbb{N}$, such that for any $k \geq K$ there exist projections $P_k \in \mathcal{P}(\mathcal{M})$ and $Z_k \in \mathcal{P}(\mathcal{Z}(\mathcal{M}))$, such that

$$P_k(f(T_k) - f(T))P_k \in \mathcal{M}, \quad \|P_k(f(T_k) - f(T))P_k\|_{\mathcal{M}} \le \varepsilon,$$
$$\varphi(Z_k^{\perp}) \in W(B, \varepsilon, \delta), \quad d(Z_k P_k^{\perp}) \le \varepsilon\varphi(Z_k).$$

128

Since $\lim_{n\to\infty} \sup_{t\in\mathbb{R}} |f_n(t) - f(t)| = 0$, there exists a number n_0 , such that

$$\sup_{t\in\mathbb{R}}|f_{n_0}(t)-f(t)|<\frac{\varepsilon}{3}.$$

This means that $(f_{n_0}(T) - f(T)) \in \mathcal{M}, (f_{n_0}(T_k) - f(T_k)) \in \mathcal{M}$, and

$$||f_{n_0}(T) - f(T)||_{\mathcal{M}} < \frac{\varepsilon}{3}$$
 and $||f_{n_0}(T_k) - f(T_k)||_{\mathcal{M}} < \frac{\varepsilon}{3}$ for all $k \in \mathbb{N}$.

Since $f_{n_0}(T_k) \xrightarrow{t(\mathcal{M})} f_{n_0}(T)$, there exists $K = K(B, \varepsilon, \delta) \in \mathbb{N}$, such that for any $k \geq K$ there exist projections $P_k \in \mathcal{P}(\mathcal{M})$ and $Z_k \in \mathcal{P}(\mathcal{Z}(\mathcal{M}))$, such that

$$P_k(f_{n_0}(T_k) - f_{n_0}(T))P_k \in \mathcal{M}, \quad \|P_k(f_{n_0}(T_k) - f_{n_0}(T))P_k\|_{\mathcal{M}} \le \frac{\varepsilon}{3}$$
$$\varphi(Z_k^{\perp}) \in W(B, \frac{\varepsilon}{3}, \delta), \quad d(Z_k P_k^{\perp}) \le \frac{\varepsilon}{3}\varphi(Z_k).$$

Since

$$f(T_k) - f(T) = [f(T_k) - f_{n_0}(T_k)] + [f_{n_0}(T_k) - f_{n_0}(T)] + [f_{n_0}(T) - f(T)]$$

there exist partial isometries U, V and W of the von Neumann algebra \mathcal{M} ([10, Theorem 2.4.5]), such that

$$\begin{aligned} P_k |f(T_k) - f(T)| P_k &\leq U P_k |f(T_k) - f_{n_0}(T_k)| P_k U^* \\ &+ V P_k |f_{n_0}(T_k) - f_{n_0}(T)| P_k V^* + W P_k |f_{n_0}(T) - f(T)| P_k W^*. \end{aligned}$$

Thus, the inclusion $P_k(f(T_k) - f(T))P_k \in \mathcal{M}$ and conditions

$$\begin{aligned} \|P_k(f(T_k) - f(T))P_k\|_{\mathcal{M}} &\leq \varepsilon, \quad \varphi(Z_k^{\perp}) \in W(B, \frac{\varepsilon}{3}, \delta) \subset W(B, \varepsilon, \delta), \\ d(Z_k P_k^{\perp}) &\leq \frac{\varepsilon}{3} \varphi(Z_k) \leq \varepsilon \varphi(Z_k) \end{aligned}$$

hold for any $k \geq K$. This means, that

$$f(T_k) \xrightarrow{t(\mathcal{M})} f(T), \quad k \to \infty$$

Lemma 2. If $\lambda \in \mathbb{C} \setminus \mathbb{R}$, $T_n, T \in LS_h(\mathcal{M}), n \in \mathbb{N}$ and $T_n \xrightarrow{t(\mathcal{M})} T$, then

$$(T_n - \lambda I)^{-1} \stackrel{t(\mathcal{M})}{\longrightarrow} (T - \lambda I)^{-1}.$$

Proof. The operators T_n and T are self-adjoint, and therefore $\sigma(T) \subset \mathbb{R}$ and $\sigma(T_n) \subset \mathbb{R}$, and for all $\lambda \in \mathbb{C} \setminus \mathbb{R}$ there exist operators $(T_n - \lambda I)^{-1}$ and $(T - \lambda I)^{-1}$. These operators are operator-value functions for the continuous function $f(t) = (t - \lambda)^{-1}, t \in \mathbb{R}$ of operators T_n and T respectively. In addition, $(T_n - \lambda I)^{-1}, (T - \lambda I)^{-1} \in LS(\mathcal{M})$ [10, Propositions 2.3.17 (iii)]. Since

$$|f(t)| = \frac{1}{|t - \operatorname{Re}\lambda - i\operatorname{Im}\lambda|} = \frac{1}{\sqrt{(t - \operatorname{Re}\lambda)^2 + (\operatorname{Im}\lambda)^2}} \le \frac{1}{|\operatorname{Im}\lambda|}$$

we have that $(T_n - \lambda I)^{-1}, (T - \lambda I)^{-1} \in \mathcal{M}$ and

$$\|(T_n - \lambda I)^{-1}\|_{\mathcal{M}} \le \frac{1}{|\mathrm{Im}\lambda|}, \quad \|(T - \lambda I)^{-1}\|_{\mathcal{M}} \le \frac{1}{|\mathrm{Im}\lambda|}.$$

The equalities

$$(T_n - \lambda I)^{-1} - (T - \lambda I)^{-1} = (T - \lambda I)^{-1} [(T - \lambda I) - (T_n - \lambda I)](T_n - \lambda I)^{-1}$$
$$= (T - \lambda I)^{-1} [T - T_n](T_n - \lambda I)^{-1}$$

and the convergence $T_n \xrightarrow{t(\mathcal{M})} T$ imply that

$$(T_n - \lambda I)^{-1} \xrightarrow{t(\mathcal{M})} (T - \lambda I)^{-1}, \quad n \to \infty.$$

Lemma 3. Let f be a continuous function on \mathbb{R} such that $f(z) \to 0$ for $|z| \to +\infty$. If $T_n, T \in LS_h(\mathcal{M}), n \in \mathbb{N}$ and $T_n \xrightarrow{t(\mathcal{M})} T$, then

$$f(T_n) \stackrel{t(\mathcal{M})}{\longrightarrow} f(T).$$

Proof. If the function $f(z) = \frac{p(z)}{q(z)}$ is rational, with q(z) having no real root, then f(z) is the sum of a polynomial r(z) and finite number of summands of the form

$$\varphi(z) = \frac{b}{(z-\lambda)^k}, \quad b \in \mathbb{C}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}.$$

Since $T_n \xrightarrow{t(\mathcal{M})} T$ and $(LS(\mathcal{M}), t(\mathcal{M}))$ is a topological *-algebra [10, §3.5], we have $r(T_n) \xrightarrow{t(\mathcal{M})} r(T)$. Continuity of multiplication with respect to topology $t(\mathcal{M})$ and Lemma 2 we obtain $\varphi(T_n) \xrightarrow{t(\mathcal{M})} \varphi(T)$. Therefore

$$f(T_n) \stackrel{t(\mathcal{M})}{\longrightarrow} f(T).$$

If $f \in \mathcal{B}(\mathbb{R})$ is an arbitrary continuous function, such that $f(z) \to 0$ for $|z| \to +\infty$, then there exists a sequence of rational functions $f_n(z) = \frac{p_n(z)}{q_n(z)}$, such that $q_n(z) \neq 0$ for $z \in \mathbb{R}$ and f_n converges uniformly to f on \mathbb{R} . Then, by Lemma 1, we obtain

$$f(T_n) \stackrel{t(\mathcal{M})}{\longrightarrow} f(T).$$

Lemma 4. If $T_n, T \in LS_h(\mathcal{M}), n \in \mathbb{N}$ and $T_n \xrightarrow{t(\mathcal{M})} T$, then for $\lambda \to +\infty$

$$E_{\lambda}^{\perp}(|T_n|) \stackrel{t(\mathcal{M})}{\longrightarrow} 0$$

uniformly with respect to n, where $\{E_{\lambda}(|T_n|)\}_{\lambda \in \mathbb{R}}$ is the spectral family for the operator $|T_n|$.

Proof. We denote $S = T^2$, $S_n = T_n^2$ and fix an arbitrary neighborhood of zero $V(B, \varepsilon, \delta)$ of the topology $t(\mathcal{M})$. Since $S \in LS(\mathcal{M})$, by Proposition 2 and Proposition 2.3.4 from [10] we have $E_{\lambda}^{\perp}(S) \xrightarrow{t(\mathcal{M})} 0$ for $\lambda \to +\infty$. Then there exists $\lambda_{\varepsilon} > 0$ such that $E_{\frac{\lambda_{\varepsilon}}{2}}^{\perp}(S) \in$ $V(B, \frac{\varepsilon}{2}, \frac{\delta}{2})$.

$$V\left(B,\frac{5}{2},\frac{5}{2}\right).$$

Since $T_n \xrightarrow{t(\mathcal{M})} T$, it follows that $S_n \xrightarrow{t(\mathcal{M})} S$. Then, by Proposition 2, we have that

$$E_{\lambda}^{\perp}(|S_n - S|) \stackrel{t(\mathcal{M})}{\longrightarrow} 0$$

for $n \to \infty$ for all $\lambda > 0$. Therefore there exists a number n_{ε} such that $E_{\frac{\lambda_{\varepsilon}}{2}}^{\perp}(|S_n - S|) \in V(B, \frac{\varepsilon}{2}, \frac{\delta}{2})$ for all $n \ge n_{\varepsilon}$.

Suppose $Q_{\lambda} = E_{\frac{\lambda}{2}}(|S_n - S|) \wedge E_{\frac{\lambda}{2}}(S)$. From the inequalities

$$-\frac{\lambda}{2}Q_{\lambda} \le Q_{\lambda}(S_n - S)Q_{\lambda} \le \frac{\lambda}{2}Q_{\lambda}, \quad 0 \le Q_{\lambda}SQ_{\lambda} \le \frac{\lambda}{2}Q_{\lambda}$$

we obtain

$$-\lambda Q_{\lambda} \leq Q_{\lambda}(S_n - S)Q_{\lambda} + Q_{\lambda}SQ_{\lambda} = Q_{\lambda}S_nQ_{\lambda} = Q_{\lambda}(S_n - S)Q_{\lambda} + Q_{\lambda}SQ_{\lambda} \leq \lambda Q_{\lambda}.$$

Consequently, $Q_{\lambda}S_nQ_{\lambda} \in \mathcal{M}$ and $||Q_{\lambda}S_nQ_{\lambda}||_{\mathcal{M}} \leq \lambda$. It means that $T_nQ_{\lambda} \in \mathcal{M}$ and $||T_nQ_{\lambda}||_{\mathcal{M}} \leq \lambda$. Therefore, by Lemma 2.2.4 [10], we have

$$E_{\lambda}^{\perp}(|T_n|) \precsim Q_{\lambda}^{\perp} = E_{\frac{\lambda}{2}}(|S_n - S|) \lor E_{\frac{\lambda}{2}}(S) \le E_{\frac{\lambda}{2}}(|S_n - S|) + E_{\frac{\lambda}{2}}(S) \in V(B, \varepsilon, \delta)$$

for all $\lambda \geq \lambda_{\varepsilon}$ and $n \geq n_{\varepsilon}$. It remain to use the property $d(E_{\lambda}^{\perp}(|T_n|)) \leq d(Q_{\lambda}^{\perp})$ of dimension function d, which implies the inclusion

$$E_{\lambda}^{\perp}(|T_n|) \in V(B,\varepsilon,\delta)$$

for $\lambda \geq \lambda_{\varepsilon}$ and $n \geq n_{\varepsilon}$. Since $E_{\lambda}^{\perp}(T_n) \xrightarrow{t(\mathcal{M})} 0$ for $\lambda \to +\infty$ for all fixed $n \in \mathbb{N}$, there exists $\lambda_{\varepsilon}' \geq \lambda_{\varepsilon}$ such that $E_{\lambda}^{\perp}(|T_n|) \in V(B,\varepsilon,\delta)$ for all $\lambda \geq \lambda_{\varepsilon}'$ and for all fixed $n \in \mathbb{N}$. \Box

Proof of Theorem 1. Let $T_n, T \in LS_h(\mathcal{M}), n \in \mathbb{N}$ and let $T_n \xrightarrow{t(\mathcal{M})} T$. Firstly, suppose that f is a real continuous function on \mathbb{R} , then

$$f(T_n) \stackrel{t(\mathcal{M})}{\longrightarrow} f(T).$$

Fix an arbitrary neighborhood of zero $V(B, \varepsilon, \delta)$ of the topology $t(\mathcal{M})$, $0 < \varepsilon < 1$. By Lemma 4, there exists $\lambda_V > 0$ such that $E_{\lambda}^{\perp}(|T_n|) \in V(B, \frac{\varepsilon}{3}, \frac{\delta}{3})$ for all $\lambda \geq \lambda_V$ and $n \in \mathbb{N}$. Furthermore, by the convergence $E_{\lambda}^{\perp}(|T|) \xrightarrow{t(\mathcal{M})} 0$ for $\lambda \to +\infty$, we can choose the number λ_V so that $E_{\lambda}^{\perp}(|T|) \in V(B, \frac{\varepsilon}{3}, \frac{\delta}{3})$ for all $\lambda \geq \lambda_V$.

Let g(t) be a real continuous function on \mathbb{R} such that g(t) = f(t) for $t \in [-\lambda_V, \lambda_V]$ and $g(t) \to 0$ for $|t| \to +\infty$. Let $\varphi(t) = f(t) - g(t)$. Since

$$f(T_n) - f(T) = g(T_n) - g(T) + \varphi(T_n) - \varphi(T),$$

there exist partial isometries U, V and W of the von Neumann algebra \mathcal{M} ([10, Theorem 2.4.5]), such that

(4)
$$|f(T_n) - f(T)| \le U|g(T_n) - g(T)|U^* + V|\varphi(T_n)|V^* + W|\varphi(T)|W^*$$

By Lemma 3, we have $g(T_n) \xrightarrow{t(\mathcal{M})} g(T)$. Consequently, by inclusion (2), there exists a number n_V such that

$$U|g(T_n) - g(T)|U^* \in V\left(B, \frac{\varepsilon}{3}, \frac{\delta}{3}\right)$$

for all $n \geq n_V$.

Since $\varphi(t) = 0$ for $t \in [-\lambda_V, \lambda_V]$ we have

$$\varphi(|T|) = \varphi(|T|(E_{\lambda_V}(|T|) + E_{\lambda_V}^{\perp}(|T|)) = \varphi(|T|E_{\lambda_V}^{\perp}(|T|)) = \varphi(|T|)E_{\lambda_V}^{\perp}(|T|)).$$

The definition of the neighborhoods $V(B, \varepsilon, \delta)$, the inclusion

$$Q \in V(B,\varepsilon,\delta) \cap \mathcal{P}(\mathcal{M})$$

for $0 < \varepsilon < 1$ implies the following inclusion $TQ \in V(B, \varepsilon, \delta)$ for all $T \in LS(\mathcal{M})$. Hence, from inclusion $E_{\lambda_V}^{\perp}(|T|) \in V(B, \frac{\varepsilon}{3}, \frac{\delta}{3})$ we infer the inclusion $\varphi(|T|) \in V(B, \frac{\varepsilon}{3}, \frac{\delta}{3})$. Similarly, $\varphi(|T_n|) \in V(B, \frac{\varepsilon}{3}, \frac{\delta}{3})$ for all $n \in \mathbb{N}$. Now, by inequality (4), Proposition 2 and inclusion (2), we obtain that $|f(T_n) - f(T)| \in V(B, \varepsilon, \delta)$ for all $n \ge n_V$. This means that $f(T_n) \xrightarrow{t(\mathcal{M})} f(T)$.

Now, let f be an arbitrary continuous function on $\sigma(T)$ from $\mathcal{B}(\mathbb{R})$. Let us show that in this case the convergence

$$f(T_n) \stackrel{t(\mathcal{M})}{\longrightarrow} f(T)$$

also holds. Since algebraic operations are continuous on $(LS(\mathcal{M}), t(\mathcal{M}))$ and

$$tf(S) = (\operatorname{Re} f)(S) + (i \operatorname{Im} f)(S)$$

for all $S \in LS_h(\mathcal{M})$, without loss of generality we may assume that the function f is real-valued from $\mathcal{B}(\mathbb{R})$.

Suppose first that $|f(t)| \leq 1$ for all $t \in \mathbb{R}$. Since the spectrum $\sigma(T)$ of the operator T is closed in \mathbb{R} , by Tietze-Uryson Theorem on extension (see., for example, [6], Theorem

4.5.1), there exists a continuous function $g : \mathbb{R} \to [-1, +1]$ such that g(t) = f(t) for all $t \in \sigma(T)$. Let

$$\sigma_n = \left\{ t \in \mathbb{R} : |f(t) - g(t)| \ge \frac{1}{2^n} \right\}.$$

It is clear, that $\sigma(T) \cap \sigma_n = \emptyset$ for all $n \in \mathbb{N}$. Since the function g is continuous on \mathbb{R} , and the function f is continuous on $\sigma(T)$, then $\sigma(T) \cap \overline{\sigma_n} = \emptyset$. For $t \in \mathbb{R}$ and $A \subset \mathbb{R}$ denote by $\rho(t, A) = \inf_{a \in A} |t - a|$ the distance from the point t to the set A. Consider the following function:

$$h(t) = \sum_{n=0}^{\infty} \frac{2^{-n} \rho(t, \sigma(T))}{\rho(t, \sigma(T)) + \rho(t, \overline{\sigma_n})}$$

Since the distance $\rho(t, A)$ is a continuous function on \mathbb{R} , the function h(t) is also continuous on \mathbb{R} . Moreover,

$$0 \le h(t) \le \sum_{n=0}^{\infty} 2^{-n} = 2, \ h(t) = 0 \text{ for all } t \in \sigma(T)$$

and

$$g-h \le f \le g+h$$

Since the functions g(t) and h(t) are continuous on \mathbb{R} , by the proven above, we have

$$h(T_n) \stackrel{t(\mathcal{M})}{\longrightarrow} h(T) = 0$$

and

$$g(T_n) \stackrel{t(\mathcal{M})}{\longrightarrow} g(T) = f(T).$$

Using the inequality $0 \le f - g + h \le 2h$, we obtain

$$0 \le (f - g + h)(T_n) \le 2h(T_n) \stackrel{t(\mathcal{M})}{\longrightarrow} 0.$$

Therefore, $(f - g + h)(T_n) \xrightarrow{t(\mathcal{M})} 0$ and

$$f(T_n) = (f - g + h)(T_n) + g(T_n) - h(T_n) \stackrel{t(\mathcal{M})}{\longrightarrow} f(T).$$

Thus, Theorem 1 is proven in the case, when $|f(t)| \leq 1, t \in \mathbb{R}$.

Let now, the condition $|f(t)| \leq 1, t \in \mathbb{R}$ is not realized. Since

$$\sup_{t \in [n,n+1]} |f(t)| < \infty \quad \text{for all} \quad n \in \mathbb{N},$$

we can choose a piecewise-linear continuous function $\varphi(t)$ on \mathbb{R} so that

$$\varphi(t) \ge |f(t)| + 1$$
 for all $t \in \mathbb{R}$.

By the proven above, for the function $\frac{f(t)}{\varphi(t)}$ we obtain the convergence

$$\left(\frac{f}{\varphi}\right)(T_n) \stackrel{t(\mathcal{M})}{\longrightarrow} \left(\frac{f}{\varphi}\right)(T).$$

On the other hand, continuity of the function φ implies that

$$\varphi(T_n) \xrightarrow{t(\mathcal{M})} \varphi(T).$$

Since $(LS(\mathcal{M}), t(\mathcal{M}))$ is a topological *-algebra [10, § 3.5], we have

$$f(T_n) = \left(\varphi \cdot \frac{f}{\varphi}\right)(T_n) = \varphi(T_n)\left(\frac{f}{\varphi}\right)(T_n) \xrightarrow{t(\mathcal{M})} \varphi(T) \cdot \left(\frac{f}{\varphi}\right)(T) = f(T).$$
Theorem 1 is proved

Thus Theorem 1 is proven.

Theorem 1 immediately implies two following useful Corollaries.

132

Corollary 2. If $\{T_{\alpha}\}$ is a net of operators from $LS(\mathcal{M}), T \in LS(\mathcal{M})$ and $T_{\alpha} \xrightarrow{t(\mathcal{M})} T$, then $|T_{\alpha}|^p \xrightarrow{t(\mathcal{M})} |T|^p$ for all p > 0.

Proof. Since $(LS(\mathcal{M}), t(\mathcal{M}))$ is a complete topological *-algebra, it follows that

$$|T_{\alpha}|^2 = T_{\alpha}^* T_{\alpha} \xrightarrow{t(\mathcal{M})} T^* T = |T|^2$$

Using Theorem 1 for the continuous function $f(t) = |t|^{p/2}$ we obtain that $|T_{\alpha}|^p \xrightarrow{t(\mathcal{M})} |T|^p$ for all p > 0.

Denote by $\{E_{\lambda}(T)\}_{\lambda \in \mathbb{R}}$ the a spectral family of projections for the operator $T \in LS_h(\mathcal{M})$. Since $E_{\lambda}(T) = \varphi_{\lambda}(T)$, where $\varphi_{\lambda}(t) = 1$ for $t \leq \lambda$ and $\varphi_{\lambda}(t) = 0$ for $t > \lambda$, Theorem 1 gives the following

Corollary 3. If λ does not belong to the spectrum of the operator $T \in LS_h(\mathcal{M})$, $\{T_\alpha\}$ be a net of operators from $LS_h(\mathcal{M})$ such that $T_\alpha \xrightarrow{t(\mathcal{M})} T$, then $E_\lambda(T_\alpha) \xrightarrow{t(\mathcal{M})} E_\lambda(T)$.

Acknowledgments. The authors are grateful to Professor Yu. S. Samoilenko for constant attention to this work and useful discussions.

References

- A. F. Ber, V. I. Chilin, F. A. Sukochev, Innerness of continuous derivations on the algebra of locally measurable operators, Arxiv: 1302.4883v2 [math.OA], 8 Apr 2013, 31 pp.
- A. M. Bikchentaev, Local convergence in measure on semifinite von Neumann algebras, Tr. Mat. Inst. Steklova 255 (2006), 41–54. (Russian)
- V. I. Chilin, B. S. Zakirov, Abstract characterization of EW*-algebras, Funktsional. Anal. i Prilozhen. 25 (1991), no. 1, 76–78. (Russian)
- V. I. Chilin, M. A. Muratov, Comparison of topologies on *-algebras of locally measurable operators, Positivity 17 (2013), no. 1, 111–132.
- 5. E. B. Davies, A generalization of Kaplasky's theorem, J. London Math. Soc. 4 (1972), 435–436.
- 6. J. Dieudonne, Foundations of Modern Analysis, Acad. Press, New York—London, 1960.
- 7. P. G. Dixon, Unbounded operator algebras, Proc. London Math. Soc. 23 (1973), no. 3, 53–59.
- 8. R. V. Kadison, Strong continuity of operator functions, Pacific J. Math. 26 (1968), 121-129.
- 9. I. Kaplansky, A theorem on rings operators, Pacific J. Math. 1 (1951), 227–232.
- M. A. Muratov, V. I. Chilin, Algebras of measurable and locally measurable operators, Proc. Inst. Math. of Nat. Acad. Sci. of Ukraine, vol. 69, Kyiv, 2007. (Russian)
- 11. E. Nelson, Notes on noncommutative integration, J. Funct. Anal. 15 (1974), 103-116.
- S. Sankaran, The *-algebra of unbounded operators, J. London Math. Soc. (1959), no. 34, 337– 344.
- I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (1953), no. 57, 401–457.
- S. Stratila, L. Zsido, Lectures on von Neumann Algebras, Abacus Press, Tunridge Wells, Kent, 1979.
- 15. M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979.
- O. E. Tikhonov, Continuity of operator functions in topologies connected with a trace on a von Neumann algebra, Izv. Vyssh. Uchebn. Zaved., Mat. (1987), no. 1, 77–79. (Russian)
- F. J. Yeadon, Convergence of measurable operators, Proc. Camb. Phil. Soc. (1974), no. 74, 257–268.

NATIONAL UNIVERSITY OF UZBEKISTAN, TASHKENT, 100174, REPUBLIC OF UZBEKISTAN *E-mail address*: chilin@ucd.uz

TAURIDA NATIONAL V. I. VERNADSKY UNIVERSITY, 4 ACADEMICIAN VERNADSKY AVE., SIMFEROPOL, 95007, UKRAINE

E-mail address: mamuratov@gmail.com

Received 24/10/2013