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Dedicated to Yuryi Stevanofich Samoilenko on the occasion of his 70th birthday

ABSTRACT. In the present paper we establish sufficient conditions for a complex-
valued function f defined on R which guarantee continuity of an operator-function
T — f(T) w.r.t. the topology of local measure convergence in the *-algebra LS(M)
of all locally measurable operators affiliated to a von Neumann algebra M.

1. INTRODUCTION

The development of integration theory for a faithful normal semifinite trace 7 defined
on a von Neumann algebra M has led to a need for consideration of the x-algebra
S(M, 1) of all T-measurable operators affiliated with M, see, e.g., [11]. This algebra is
a solid x-subalgebra of the x-algebra S(M) of all measurable operators affiliated with
M. The x-algebra S(M) was introduced by I. Segal [13] in order to describe a “noncom-
mutative version” of the x-algebra of measurable complex-valued functions. If M is
a commutative von Neumann algebra, then M can be identified with the x-algebra
Loo (9,2, 1) of all essentially bounded measurable complex-valued functions defined on
a measure space (,%, ) with a measure p having the direct sum property. In this
case, the x-algebra S(M) is identified with the x-algebra Lo(£2, X, 1) of all measurable
complex-valued functions defined on (9,3, i) [13].

The *-algebras S(M,7) and S(M) are substantive examples of EW *-algebras E of
closed linear operators, affiliated with the von Neumann algebra M, which act on the
same Hilbert space H as M and have the bounded part E, = E N B(H) coinciding with
M [7], where B(H) is the x-algebra of all bounded linear operators on H. A natural
desire of obtaining a maximal EW *-algebra FE with E, = M has led to a construction of
the x-algebra LS(M) of all locally measurable operators affiliated with the von Neumann
algebra M (see, for example, [17]). It was shown in [3] that any ETW*-algebra E satisfying
E, = M is a solid *-subalgebra of LS(M).

In the case when there exists a faithful normal finite trace 7 on M, all three x-algebras
LS(M), S(M), and S(M,7) coincide [10, §2.6], and a natural topology that endows
these x-algebras with the structure of a topological x-algebra is the measure topology
t; induced by the trace 7 [11]. If 7 is a semifinite but not a finite trace, then one
can consider the 7-local measure topology t.; and the weak 7-local measure topology
twr1 [2]. However, in the case where M is not of finite type, the multiplication is not
jointly continuous in the two variables with respect to these topologies. In this respect,
it makes sense to use, for the x-algebra LS(M), the local measure topology t(M), which
was defined in [17] for any von Neumann algebras and which endows LS(M) with the
structure of a complete topological *-algebra [10, § 3.5].
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It is known that for all T' € LSp(M) = {S € LS(M) : §* = S} and for any Borel
complex function f defined on the set of real numbers R and bounded on compact
subsets of R, a locally measurable operator f(T) € LS(M) is correctly defined [10,
§2.3]. Therefore it is natural to consider an operator-function T' +— f(T') from LSj(M)
to LS(M) and study the question of its continuity w.r.t. topology t(M) of convergence
locally in measure. In the case of strong operator topology, when LS(M) = M = B(H),
this problem was investigated by I. Kaplansky [9], R. V. Kadison [8] and E. V. Davies [5].
In the case of the EW*-algebra S(M,7) and measure topology ¢, this problem was
investigated by O. E. Tikhonov [16].

In this paper we prove that, for {T,} C LS,(M), T € LSy(M) and Borel function f

continuous on the spectrum o(T") of the operator T, the convergence T, t(*>) T, implies

the convergence f(Ty) M F(T).

We use the von Neumann algebra terminology, notations and results from [14, 15],

and those that concern the theory of measurable and locally measurable operators from
[10, 17].

2. PRELIMINARIES

Let H be a Hilbert space over the field C of complex numbers, let B(#) be the x-algebra
of all bounded linear operators on H, let I be the identity operator on H, M be a von
Neumann subalgebra of B(H), let P(M) = {P € M : P? = P = P*} be the lattice of all
projections in M, and let Pg, (M) be the sublattice of its finite projections. The center
of a von Neumann algebra M will be denoted by Z(M).

A closed linear operator T affiliated with the von Neumann algebra M with everywhere
dense domain D(T') C H is called measurable if there exists a sequence { P, }5°; C P(M)
such that P, 1 I, P,(H) C D(T), and P;- = I — P,, € Pgn(M) for every n € N, where N
is the set of all natural numbers. The set S(M) of all measurable operators is a x-algebra
with identity I over the field C with respect to the strong sum T + S, strong product
TS and the adjoint operation T* [13]. It is clear that M is a x-subalgebra of S(M).

A closed linear operator T affiliated with M with everywhere dense domain D(T") C H
is called locally measurable with respect to M if there exists a sequence {Z,, }22; of central
projections in M such that Z,, 1 I and TZ,, € S(M) for all n € N.

The set LS(M) of all locally measurable operators with respect to M is a x-algebra
with identity I over the field C with respect to the same algebraic operations as in
S(M) [12], [17], in addition S(M) is a #-subalgebra of LS(M). If M is finite, or if M
is a factor, the algebras S(M) and LS(M) coincide.

For every subset E C LS(M), the set of all selfadjoint (resp., positive) operators in F
is denoted by Ej, (resp., E, ). The partial order in LSy (M) defined by its cone LS, (M)
is denoted by <.

Let T be a closed operator with dense domain D(T') in H, let T = U|T| be the polar
decomposition of the operator T, where |T'| = (T*T )% and U is the partial isometry in
B(H) such that r(T") = U*U is the right support of T It is known that T' € LS(M)
(respectively, T' € S(M)) if and only if |T| € LS(M) (respectively, |T| € S(M)) and
U e M|10, §2.3].

Denote by B(R) the C*-algebra of all Borel complex-valued functions defined on R and
bounded on compact subsets of R. It is know that f(7T) € LS(M) for all T € LS} (M)
and f € B(R) [10, §2.3]. In particular, for the real-value bounded Borel function ¢, at
R, such that @y (t) = 1 for t < X and @, (t) = 0 for t > A, where X is a fixed number from
R, the inclusion E)(T) := ¢x(T) € M holds for all T € LS,(M).

Denote by || || a4 the C*-norm in the von Neumann algebra M. We need the following
property of the partial order in the algebra LS(M).
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Proposition 1. ([1, Proposition 6.1]) Let M be a von Neumann algebra, T,S €
LS. (M) and S < T. Then S'/? = ATY? for some A € M, ||Allpm < 1, in parti-
cular, S = AT A*.

Let us now recall the definition of the local measure topology. Firstly let M be a com-
mutative von Neumann algebra. Then M is #-isomorphic to the #-algebra L. (9, %, ) of
all essentially bounded measurable complex-valued functions defined on a measure space
(Q,%, ) with the measure p satisfying the direct sum property (we identify functions
that are equal almost everywhere). The direct sum property of a measure p means that
the Boolean algebra of all projections of the x-algebra Lo, (€2, ¥, 1) is order complete, and
for any nonzero P € P(M) there exists a nonzero projection < P such that u(Q) < occ.

Consider the #-algebra LS(M) = S(M) = Lo(,3, ) of all measurable almost
everywhere finite complex-valued functions defined on (Q, %, ) (functions that are equal
almost everywhere are identified). On Lg(€Q, 3, 1), define the local measure topology
t(M), that is, the linear Hausdorff topology, whose base of neighborhoods of zero is
given by

W(B,e,0) ={f € Lo(Q, £, u): there exists a set E € ¥ such that

E c B7 /U(B\E) < 67 fXE € LOO(QaE7u)? HfXE||Loo(Q,E7M) < 6}7
where e, 6 >0, B€ X, u(B) < oo, and

1, wekF,
X(w){ 0, wekE.

Convergence of a net {f,} to f in the topology t(M), denoted by f, M) f, means
that foxp — fxp in measure p for any B € ¥ with u(B) < oo. It is clear that the
topology (M) does not change if the measure p is replaced with an equivalent measure.

Let now M be an arbitrary von Neumann algebra and let ¢ be a *-isomorphism from
Z(M) onto the x-algebra L. (2, %, 1), where p is a measure satisfying the direct sum
property. Denote by L, (€2, 3, m) the set of all measurable real-valued functions defined

on (92,%, 1) and taking values in the extended half-line [0, co] (functions that are equal
almost everywhere are identified). It was shown in [13] that there exists a mapping

d: PIM) — Ly (2,5, 1)
that possesses the following properties:

(i) d(P) =0 if and only if P = 0;

i

(ii) d(P) € Lo(2, X, u) <= P € Pan(M);

(iii) d(P VvV Q) =d(P)+d(Q) if PQ = 0;

(iv) d(U*U) = d(UU*) for any partial isometry U € M;

(v% d(ZP) = o(Z)d(P) for any Z € P(Z(M)) and P € P(M);

f{Pa}oca, P € P(M) and P, 1 P, then d(P) = sup d(P,).
acA

A mapping d: P(M) — L (Q, %, p) that satisfies properties (i)-(vi) is called a dimen-
sion function on P(M).
For arbitrary numbers €,5 > 0 and a set B € ¥, u(B) < oo, we set
V(B,e,6) ={T € LS(M): there exist P € P(M), Z € P(Z(M)),
such that TP € M, |TP|m < ¢, o(Z+) € W(B,¢,6), d(ZP*) < ep(Z)}.
It was shown in [17] that the system of sets
(1) {T+V(B,e, )} TeLSM), e, 6§ >0, BeX, u(B) < oo}

defines the Hausdorff vector topology ¢(M) on LS(M) such that sets (1) form a neigh-
borhood base of the operator T' € LS(M). The topology t(M) is called the local mea-
sure topology (or the topology of convergence locally in measure). It is known that
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(LS(M),t(M)) is a complete topological x-algebra, and the topology t(M) does not
depend on a choice of dimension function D and on a choice of x-isomorphism ¢ [10,
§3.5], [17].

We need the following criterion for convergence of nets with respect to this topology.

Proposition 2. ([10, §3.5])

(i) A net {Py}aca C P(M) converges to zero with respect to the topology t(M) if
and only if there exists a net {Za}aca C P(Z(M)) such that Zo Py € Pan(M)
for all o € A, p(Z3) HEo(Q)) 0, and d(Z,P,) HLo(Q)) 0, where t(Lo(R2)) is the
local measure topology on Lo(Q, 3, 1), and ¢ is a x-isomorphism of Z(M) onto
Loo(, 5, ).

(ii) A net {Ta}aca C LS(M) converges to zero with respect to the topology t(M) if
and only if Ey-(|T,|) My for every X > 0, where {E(|T.|)} is the spectral
family for the operator |T,|.

It follows from Proposition 2 that the topology t(M) induces the topology t(Z(M))
on LS(Z(M)); hence, S(Z(M)) is a closed *-subalgebra of (LS(M),t(M)).

It is clear that

X -V(B,e,0) C V(B,¢,0)

for any X € M with || X||a¢ < 1. Since V*(B,¢,d) C V(B,2¢,6) [10, §3.5], we have
V(B,¢e,8) Y C V(B,4e,4)

for all Y € M satisfying ||Y || < 1. Hence,

(2) X -V(B,e,d) Y C V(B,4e,9)

for any £,6 >0, Be€ X, u(B) < o0, X, Y € M with | X||m <1, |[Y||lm < 1.

Since the involution is continuous in the topology t(M), the set LS} (M) is closed in
(LS(M),t(M)). The cone LS+ (M) of positive elements is also closed in (LS(M), t(M))
[17].

It follows from the definition of the topology t(M) that the convergence locally in
measure of a net {T,, }ocs to T means that for any £,0 > 0 and B € 3, p(B) < 0o, there
exists ap = (B, €,d) such that, for each & > ay, there exists a projection P(a) € P(M),
Z(a) € P(Z(M)), Z(a)P*(a) € Pan(M) satisfying
(3) [(Ta = T)P(a)llm <€
and

p(Z+ (o)) € W(B,e,6), d(Z(a)P*()) < ep(Z(a)).

If inequality (3) is replaced with the inequality
(3 [1P(a)(Ta = T)P(a)|lm <,
then it is said that the net {T,}ocs converges to T two-sided locally in measure.

It is easy to see that the two-sided convergence locally in measure is equivalent to the

convergence in the vector topology in LS(M), with the base of neighborhoods of zero
formed by the sets

U(B,e,0) ={T € LS(M) : there exists P € P(M),Z € P(Z(M)),
ZP* € Pgn(M), such that PTP € M, |[PTP|m <,
¢(Z4) € W(B,e,8), d(ZP*) <ep(Z)},

where £,0 > 0, B € X, pu(B) < oo. In fact, this vector topology coincides with the
topology t(M), which is directly implied by the following inclusions:

V(Bagvé) - U(B,€,§) c V(A725a6)
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for any £,0 >0, B€ X, u(B) < oo [10, §3.5].

We need the following criterion for the local measure topology (M) on LS(M) to be
metrizable. Remind that the center Z(M) of a von Neumann algebra M is o-finite if
any family of nonzero mutually orthogonal projections in P(Z(M)) is at most countable.

Proposition 3. ([10, Theorem 3.5.2 ]) Local measure topology t(M) on LS(M) is
metrizable if and only if there center Z(M) is o-finite.

Remark 1. As we have already noted, the center Z(M) of an arbitrary von Neu-
mann algebra M is x-isomorphic to the commutative von Neumann algebra L. (2, %, u),
with measure p satisfying the direct sum property. It means that there exists a fa-
mily of nonzero mutually orthogonal central projections {Z;};e; C P(Z(M)) such that
sup Z; = I and the von Neumann algebra Z;Z(M) is o-finite for all j € J.
JjeJ

Using Proposition 2, Remark 1 and [4, Proposition 8] we obtain the following corollary.

Corollary 1. Let {Z;}jc; C P(Z(M)) be a family of nonzero mutually orthogonal
central projections such that sup Z; = I. For {To}aca C LS(M) and T € LS(M) the

jeJ
following conditions are equivalent:
(i) To " T
(i) Z,Tn "™ Z.T for all j € J;
t(Z; M)

(iil) 2,Tn =5 Z;T for all j € J.
3. CONTINUITY OF OPERATOR-VALUED FUNCTIONS

This section contains the main results of the paper concerning continuity of an operator-
function T' — f(T') from LS,(M) to LS(M) w.r.t. the local measure topology.

Theorem 1. Let f € B(R) be a continuous function on the spectrum o(T) of operator

T € LSp,(M). If the net of operators {T,} C LSp(M) converges to T in the topology

HM), then f(Ta) "™ £(1).

To prove Theorem 1, we need several lemmas.

Note, from the definition of the operator f(7') [10, §2.3] and Proposition 2.3.17 [10] it
follows that Zf(T) = f(ZT) for all f € B(R), Z € P(Z(M)) and T € LS,(M). Remark
1 and Corollary 1 implies that for the proof of Theorem 1 it is sufficient to consider the
case of o-finite center Z(M) of the von Neumann algebra M only. And therefore, by
Proposition 3, we need only to verify the implication

(T, " 1) = (F(1) Y p(m)).

Lemma 1. Let Ty, T € LS, (M), and let f, f,, € BR),k,n € N be such that
lim sup | fn(t) — f()] =0
n—oo teR

and fn(Ty) M) fu(T) for k — oo and for alln € N. Then f(T%) e f(T) for k — .

Proof. Since the topology of convergence locally in measure (M) and the topology of
two-sided convergence locally in measure coincide, it is sufficient to show that for all
e>0,0>0, Be3X ulB) < oo there exists K = K(B,e,0) € N, such that for any
k > K there exist projections P, € P(M) and Z;, € P(Z(M)), such that

Pe(f(Tk) = (1) Pw € M, |[Pe(f(Tk) = f(T)) Prllm <,

QO(ZIj_) € W(B75a5)7 d(ZkPkL) < 5@(Zk)'
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Since lim sup |f,(t) — f(t)] = 0, there exists a number ng, such that
n—oo teR

€
sup g (1) — (0] < .
teR
This means that (f,,(T) — f(T)) € M, (fno(Tk) — f(Tk)) € M, and
€ €

1o (T) = F(D)llm < 3 and | fng (Th) = F(Ti)llm < 5 forall keN.
Since fin, (Tk) “M fno(T), there exists K = K(B,e,d) € N, such that for any k£ > K
there exist projections Py € P(M) and Z; € P(Z(M)), such that
)

Bre(fuo (Tk) = fno (T)) P € M [[Pi(fng (Th)) = fng (T)) Prellma <

P(ZE) € W(B.Z,0), d(ZiP) <

w | m

3
39(Zk).

Since

there exist partial isometries U,V and W of the von Neumann algebra M ([10, Theo-
rem 2.4.5]), such that

Pel f(Tk) = (D) [Py < UP|f(Tk) = fro (Th) | PU”
T VB fro (Tk) = fro (T)| PV + W B frg (T) = f(T)|PLW™.
Thus, the inclusion Py (f(Tx) — f(T))Pi € M and conditions

€
1Pe(f(Te) — f(T)Pellm < e, @(Zi) € W(B, 575) C W(B,¢,9),
d(Z, Py < 3<P(Zk) < ep(Zk)
hold for any k£ > K. This means, that

1T "™ 1(1), k= .

Lemma 2. If A€ C\R, T,,,T € LS,(M),n € N and T, M T, then

(T, — M)~ (7 At
Proof. The operators T;, and T are self-adjoint, and therefore o(7T') C R and o(T},) C R,
and for all A € C\ R there exist operators (T,, — A\I)~! and (T — AI)~!. These operators
are operator-value functions for the continuous function f(t) = (¢t — \)71,t € R of
operators T;, and T respectively. In addition, (T,, — X)L, (T — M)~ € LS(M) [10,
Propositions 2.3.17 (iii)]. Since

F(8)] = ! - ! <!
~t=ReA—dilm)|  \/(t — ReA)? + (ImA)2 ~ [TmA[’

we have that (T, — AXI)~!, (T — AI)~! € M and

(T = AI)~ (T = AI)™

1 1 1 1

The equalities
(T, = AX)™' = (T = X)) = (T = XI)"*[(T — X) — (T,, — A\D](T;, — A\I)™*
= (T = A)7H T =T (T, — M)~

and the convergence T}, t(ﬂg T imply that

1 t(M)

(T, = M)V 225 (T - A7, nooo. O
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Lemma 3. Let f be a continuous function on R such that f(z) — 0 for |z| = +oo. If

T, T € LSy(M),n €N and T, Y T, then

f(T)

t(M)

= f(T).

Proof. If the function f(z) = pgzi is rational, with ¢(z) having no real root, then f(z)
q(z

is the sum of a polynomial r(z) and finite number of summands of the form

b

Since T, M7 and (LS(M),t(M)) is a topological #-algebra [10, §3.5], we have
r(T,) M) r(T). Continuity of multiplication with respect to topology t(M) and
Lemma 2 we obtain ¢(T,) ) ©(T). Therefore
H(M)
F(Tn) — f(T).

If f € B(R) is an arbitrary continuous function, such that f(z) — 0 for |z| — 400,
Pal2) such that ¢, (z) # 0 for

qn(2)’

z € R and f,, converges uniformly to f on R. Then, by Lemma 1, we obtain

F(T) " f(1).

then there exists a sequence of rational functions f,(z) =

Lemma 4. If T,,,T € LSy(M),n € N and T, ¥ T, then for A — +oo

t(/\/l)
Ex(ITal) —

uniformly with respect to n, where {EX(|Tn|)}rer s the spectral family for the opera-
tor |Th,|.

Proof. We denote S = T?, S,, = T? and fix an arbitrary neighborhood of zero V (B, ¢, §)

of the topology t(M). Since S € LS(M), by Proposition 2 and Proposition 2.3.4 from
[10] we have E3(S) ") 0 for A — +oo. Then there exists Ae > 0 such that E+ (S) €

2
V(B,5,9).

1’9299
(M) . t(

Since T, 4 T, it follows that S, M) S Then, by Proposition 2, we have that

t(/\/l)
Ex (1S, — S)) —

for n — oo for all A > 0. Therefore there exists a number n. such that E4 (]S, — S|) €
2

1% (B, o 2) for all n > n..
Suppose @ = Ey (|Sn = S|) A By (S). From the inequalities

A A A
—§Q>\ <Qr(Sn —9)Qx < 5@)\7 0<@QX\SQN < §Q>\
we obtain

—AQ\ < Qr(Sn — 9)Qx + QASQ\ = Qx5nQx = Qx(Sn — 5)Qx + QASQx\ < AQ.

Consequently, QxS,@x € M and [|QxS,Qx||m < A It means that T,,Q) € M and
(IT@x|lam < A. Therefore, by Lemma 2.2.4 [10], we have

Ex(ITul) 3 Qx = Ex (IS0 = S|) V Ex(S) < Ex (IS, — SI) + E5(S) € V(B,&,4)
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for all A > A\. and n > n.. It remain to use the property d(Ey(|T,])) < d(Qy) of
dimension function d, which implies the inclusion

Ex(|T.|) € V(B,¢,9)

for A > \; and n > n.. Since E)% (T) tﬂ)) 0 for A — +oo for all fixed n € N, there exists
AL > ). such that E-(|T,]) € V(B,¢,6) for all A > AL and for all fixed n € N. O

Proof of Theorem 1. Let T,,,T € LS,(M),n € N and let T,, M) Firstly, suppose
that f is a real continuous function on R, then
t(M)

f(Tn) — f(T).

Fix an arbitrary neighborhood of zero V (B, ¢,d) of the topology t(M), 0 < e < 1. By
Lemma 4, there exists Ay > 0 such that Ey (|T,,|) € V (B,5,3) for all A > Ay and
n € N. Furthermore, by the convergence E5-(|T|) M0 for A - ~+00, we can choose the
number Ay so that Ex-(|T|) € V (B, £,2) for all A > Ay.

Let g(t) be a real continuous function on R such that g(t) = f(t) for t € [-Ay, Ay]
and g(t) — 0 for |t| — +o00. Let p(t) = f(t) — g(t). Since

f(Tn) = f(T) = g(Tn) — 9(T) + @(Tr) — »(T),

there exist partial isometries U, V and W of the von Neumann algebra M ([10, Theorem
2.4.5]), such that

(4) [f(Tn) = F(D < Ulg(Th) = 9(DU™ + Vip(Ta) V" + Wlp(T)|W™.

By Lemma 3, we have g(7T),) t(ﬁg g(T). Consequently, by inclusion (2), there exists a

number ny such that

Ulo(r) ~ om0 e v (£.5.5)

for all n > ny.
Since ¢(t) = 0 for t € [—Ay, Ay] we have

e(IT]) = ¢(IT|(Ex, (IT]) + Ex, (IT])) = o(IT|Ex, (IT])) = «(IT)Ex, (IT])-
The definition of the neighborhoods V (B, ¢, d), the inclusion
Q e V(B,e,6)NP(M)

for 0 < € < 1 implies the following inclusion TQ € V (B,¢,0) for all T € LS(M).
Hence, from inclusion Ey, (|T]) € V (B, %, %) we infer the inclusion o(|T|) € V (B, §, g)
Similarly, ¢(|T,]) € V (B, £, g) for all n € N. Now, by inequality (4), Proposition 2 and
inclusion (2), we obtain that |f(T,,) — f(T)| € V(B,¢,9) for all n > ny. This means that
H(M)

Now, let f be an arbitrary continuous function on o(7T) from B(R). Let us show that
in this case the convergence
t(M)

f(Tn) — f(T)
also holds. Since algebraic operations are continuous on (LS(M),#(M)) and

tf(S) = (Ref)(S)+(imf)(S)

for all S € LSy(M), without loss of generality we may assume that the function f is
real-valued from B(R).

Suppose first that |f(¢t)] <1 for all ¢ € R. Since the spectrum o(T') of the operator T
is closed in R, by Tietze-Uryson Theorem on extension (see., for example, [6], Theorem
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4.5.1), there exists a continuous function g : R — [—1, +1] such that g(¢t) = f(¢) for all
teo(T). Let

oo ={reR: 170 - 0] 2 55 |

It is clear, that o(T) N o, = 0 for all n € N. Since the function g is continuous on R,

and the function f is continuous on o(7T'), then o(T) N7, = 0. Fort € Rand A C R

denote by p(t, A) = ing |t — a| the distance from the point ¢ to the set A. Consider the
ac

following function:
oo

27"p(t,o(T
h(t):Z p(t, o ))7
= p(t,o(T)) + p(t,on)
Since the distance p(t, A) is a continuous function on R, the function h(t) is also conti-
nuous on R. Moreover,

0<h(t)<> 27" =2 h(t)=0 forall teo(T)
n=0

and
g—h<f<g+h
Since the functions g(¢) and h(t) are continuous on R, by the proven above, we have

(T, " ) =0
and
t(M)
9(Tn) — g(T) = f(T).
Using the inequality 0 < f — g + h < 2h, we obtain

0< (f —g+h)(Tn) < 20(T,) “Ho.

Therefore, (f — g+ h)(Ty) M and

F(T) = (f — g+ h)(T) + g(To) — W(T) "8 £(1).

Thus, Theorem 1 is proven in the case, when |f(t)] <1,¢ € R.
Let now, the condition |f(¢)| <1, ¢t € R is not realized. Since

sup |f(t)] <oo forall neN,
te[n,n+1]

we can choose a piecewise-linear continuous function ¢(¢) on R so that

o(t) > |fH)|+1 forall teR.

By the proven above, for the function % we obtain the convergence

(=2 ()

On the other hand, continuity of the function ¢ implies that

o(Tn) " o(1).

Since (LS(M),t(M)) is a topological *-algebra [10, § 3.5], we have

1@ = (e L) @y = o) (L) @ “V o) (L) 0 = ).

Thus Theorem 1 is proven. (]

Theorem 1 immediately implies two following useful Corollaries.
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Corollary 2. If {T,} is a net of operators from LS(M), T € LS(M) and T, e T,

then |Ty|P M) |T|P for all p > 0.

Proof. Since (LS(M),t(M)) is a complete topological x-algebra, it follows that

a2 = 11, ) o = 72,
Using Theorem 1 for the continuous function f(t) = ||’/ we obtain that |T,|? a0 |TP
for all p > 0. (]

Denote by {Ex(T)}rer the a spectral family of projections for the operator T €
LSp(M). Since E)\(T) = ox(T), where p)(t) = 1 for t < X and ¢y (t) = 0 for t > A\,
Theorem 1 gives the following

Corollary 3. If XA does not belong to the spectrum of the operator T € LSyp(M), {Ta}
be a net of operators from LSp(M) such that Ty “M T, then Ex(Ty) “M E\(T).
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