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METRIC GRAPHS WITH APPLICATIONS TO RECOVERING

MATCHING CONDITIONS

YULIA ERSHOVA AND ALEXANDER V. KISELEV

To Professor Yu. S. Samoilenko on the occasion of his 70th birthday

Abstract. The paper is a continuation of the study started in [8]. Schrödinger

operators on finite compact metric graphs are considered under the assumption that
the matching conditions at the graph vertices are of δ type. Either an infinite series of
trace formulae (provided that edge potentials are infinitely smooth) or a finite number
of such formulae (in the cases of L1 and CM edge potentials) are obtained which

link together two different quantum graphs under the assumption that their spectra
coincide. Applications are given to the problem of recovering matching conditions
for a quantum graph based on its spectrum.

1. Introduction

In the present paper we focus our attention on the so-called quantum graph, i.e., a
metric graph Γ coupled with an associated second-order differential operator acting on
the Hilbert space L2(Γ) of square summable functions on the graph with an additional
assumption that the functions belonging to the domain of the operator are coupled by
certain matching conditions at the graph vertices. These matching conditions reflect the
graph connectivity and usually are assumed to guarantee self-adjointness of the operator.
Recently these operators have attracted a considerable interest of both physicists and
mathematicians due to a number of important physical applications, e.g., to the study
of quantum wavequides. Extensive literature on the subject is surveyed in, e.g., [18].

The present paper is devoted to the study of an inverse spectral problem for Schrödinger
operators on finite compact metric graphs. One might classify the possible inverse prob-
lems on quantum graphs in the following way.

(i) Given spectral data, edge potentials and the matching conditions (usually one
assumes standard matching conditions, see below), to reconstruct the metric
graph;

(ii) Given the metric graph, edge potentials and spectral data, to reconstruct the
matching conditions;

(iii) Given the metric graph, the spectral data and the matching conditions, to re-
construct the edge potentials.

There exists an extensive literature devoted to the problem (i). To name just a few, we
would like to mention the pioneering works [25, 15, 12] and later contributions [19, 20,
1, 13]. These papers utilize an approach to the problem (i) based on the so-called trace
formula which relates the spectrum of the quantum graph to the set of closed paths on the
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underlying metric graph. Different approaches to the same problem were developed, e.g.,
in [24, 3, 4]. The problem (iii) is the generalization of the classical inverse problem for
Sturm-Liouville operators and thus unsurprisingly has attracted by far the most interest.
We don’t plan to dwell on this any further as it is far beyond the scope of the present
paper.

On the other hand, the problem (ii) has to the best of our knowledge surprisingly
attracted much less interest. We believe it was first treated in [6]. In the cited paper the
square of self-adjoint operator of the first derivative was treated (thus not allowing for
either δ− or δ′− coupling at the graph vertices) on a subset of metric graphs (although
cyclic graphs were allowed). Then, after being mentioned in [20], it was treated in [2],
but only in the case of star graphs. Then in our paper [8] we suggested an approach
based on the theory of boundary triplets which allowed us to derive an infinite series of
so-called trace formulae for graph Laplacians.

The present paper is devoted to the analysis of the same problem (ii) in an attempt
to generalize results of [8] to the general setting of quantum graphs with summable edge
potentials. Unlike [2], we consider the case of a general connected compact finite metric
graph (in particular, this graph is allowed to possess cycles), but only for two classes of
matching conditions at the graph vertices, namely, in either the case of δ type matching
conditions at the vertices or the case of δ′ type matching conditions (see Section 2 for
definitions). The approach utilized is the same as in our work [8], but the results obtained
unsurprisingly look and feel much more involved. The named two classes singled out by
us prove to be physically viable [9, 10].

In contrast to [2], where the spectral data used in order to reconstruct the matching
conditions it taken to be the Weyl-Titchmarsh M-function (or Dirichlet-to-Neumann
map) of the graph boundary, we use the spectrum of the Schrödinger operator on a
graph (counting multiplicities) as the data known to us from the outset.

The approach suggested is based on the celebrated theory of boundary triples [11].
The concept of a generalized Weyl-Titchmarsh M-function for a properly chosen maximal
(adjoint to a symmetric, which we refer to as minimal) operator allows us to reduce the
study of the spectrum of the Schrödinger operator on a metric graph to the study of
“zeroes” of the corresponding finite-dimensional analytic matrix function. In order to
achieve this goal, we surely have to construct an M-function for the whole graph rather
than consider the Dirichlet-to-Neumann map pertaining to the graph boundary. In sharp
contrast to the situation of graph Laplacians where we were able to come up with an
explicit formula for the M-function, in the situation of Schrödinger operators we are only
able to derive its asymptotic expansion (or rather, the first few terms of the latter if no
smoothness is required of edge potentials). Nevertheless, this limited information still
allows us to derive a (finite) series of trace formulae which link together two different
Schrödinger operators on the same graph provided that their spectra coincide. These
trace formulae surprisingly only involve the (diagonal) matrices of coupling constants
(i.e., constants appearing in matching conditions) and the asymptotics of diagonal entries
of the Weyl-Titchmarsh M-function of the graph Γ.

Moreover, the number of trace formulae available to us is limited by the smoothness
of edge potentials, i.e., the more derivatives of the latter can be taken, the more trace
formulae come to existence.

The paper is organized as follows.
Section 2 introduces the notation and contains a brief summary of the material on

the boundary triples used by us in the sequel. We continue by providing an explicit
asymptotic expansion of the Weyl-Titchmarsh M-function written down in what we would
like to think of as its “natural” form for the case of δ type matching conditions.
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Section 3 contains our main result, i.e., the trace formulae for quantum graphs with
δ type matching conditions. As a corollary, we are able to prove that if all the coupling
constants on a quantum graph are identical, then the spectrum of the operator uniquely
determines this universal coupling constant.

As for the case of δ′ type matching conditions, we formulate the analogous result
without any further discussion as the proof of it can be easily obtained along the same
lines.

We would also like to mention that in contrast to our work [8], in the present paper
we do not allow the underlying metric graph to possess loops. Although the machinery
developed by us allows for the consideration of graphs with loops and the corresponding
results will have almost the same form, we have refrained from considering them here in
view of keeping the paper transparent and as easily readable as possible.

2. Boundary triples approach

Definition of the Schrödinger operator on a quantum graph. In order to define the quan-
tum graph, i.e., the Schrödinger operator on a metric graph, we begin with the following

Definition 2.1. We call Γ = Γ(EΓ, σ) a finite compact metric graph, if it is a collection of
a finite non-empty set EΓ of finite closed intervals ∆j = [x2j−1, x2j ], j = 1, 2, . . . , n, called

edges, and of a partition σ of the set of endpoints {xk}2nk=1 intoN classes, VΓ =
⋃N
m=1 Vm.

The equivalence classes Vm, m = 1, 2, . . . , N will be called vertices and the number of
elements belonging to the set Vm will be called the valence of the vertex Vm.

With a finite compact metric graph Γ we associate the Hilbert space

L2(Γ) =
n
⊕
j=1

L2(∆j).

This Hilbert space obviously doesn’t feel the connectivity of the graph, being the same
for each graph with the same number of edges of the same lengths.

In what follows, we single out two natural [9] classes of so-called matching condi-
tions which lead to a properly defined self-adjoint operator on the graph Γ, namely, the
matching conditions of δ and δ′ types. In order to describe these, we will introduce the
following notation. For a smooth enough function f ∈ L2(Γ), we will use throughout the
following definition of the normal derivative on a finite compact metric graph:

∂nf(xj) =

{

f ′(xj), if xj is the left endpoint of the edge,
−f ′(xj), if xj is the right endpoint of the edge.

Definition 2.2. If f ∈ ⊕nj=1W
2
2 (∆j) and αm is a complex number (referred to below as

a coupling constant),

(δ) the condition of continuity of the function f through the vertex Vm (i.e., f(xj) =
f(xk) if xj , xk ∈ Vm) together with the condition

∑

xj∈Vm

∂nf(xj) = αmf(Vm)

is called δ-type matching at the vertex Vm;
(δ′) the condition of continuity of the normal derivative ∂nf through the vertex Vm

(i.e., ∂nf(xj) = ∂nf(xk) if xj , xk ∈ Vm) together with the condition
∑

xj∈Vm

f(xj) = αm∂nf(Vm)

is called δ′-type matching at the vertex Vm.
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Remark 2.3. Note that the δ-type matching condition in a particular case when αm = 0
reduces to the so-called standard, or Kirchhoff, matching condition at the vertex Vm.
Note also that at the graph boundary (i.e., at the set of vertices of valence equal to 1)
the δ- and δ′-type conditions reduce to the usual 3rd type ones, whereas the standard
matching conditions lead to the Neumann condition at the graph boundary.

We are all set now to define the Schrödinger operator on the graph Γ with δ- or δ′-type
matching conditions.

Definition 2.4. The Schrödinger operator A on a graph Γ with δ-type (δ′-type, re-
spectively) matching conditions is the operator defined by the differential expression

− d2

dx2 + q(x) on L2(Γ), where real-valued q(x)|∆j
≡ qj(x) ∈ L1(∆j) are referred to as

edge potentials, in the Hilbert space L2(Γ) on the domain of functions belonging to the
Sobolev space ⊕nj=1W

2
2 (∆j) and satisfying δ-type (δ′-type, respectively) matching con-

ditions at every vertex Vm, m = 1, 2, . . . , N.

Remark 2.5. Note that the matching conditions reflect the graph connectivity: if two
graphs with the same edges have different topology, the resulting operators are different.

Provided that all coupling constants αm, m = 1, . . . , N , are real, it is easy to verify
that the operator A is self-adjoint in the Hilbert space L2(Γ) [9, 14]. Throughout the
present paper, we are going to consider this self-adjoint situation only, although it has
to be noted that the approach developed can be used for the purpose of analysis of the
general non-self-adjoint situation as well (under the additional assumption that all edge
potentials are still real-valued).

Clearly, the self-adjoint operator thus defined on a finite compact metric graph has
purely discrete spectrum that might accumulate to +∞ only. In order to ascertain this,
one only has to note that the operator considered is a finite-dimensional perturbation
in the resolvent sense of the direct sum of Sturm-Liouville operators on the individual
edges.

Remark 2.6. Note that w.l.o.g. each edge ∆j of the graph Γ can be considered to be an
interval [0, lj ], where lj = x2j − x2j−1, j = 1, . . . , n is the length of the corresponding
edge. Indeed, performing the corresponding linear change of variable one reduces the
general situation to the one where all the operator properties depend on the lengths of
the edges rather than on the actual edge endpoints. Throughout the present paper we
will therefore only consider this situation.

Remark 2.7. Note that unlike the case of graph Laplacians, in general case of Schrödinger
operators the underlying metric graph has to be thought of as oriented, i.e., each edge ∆i

has a starting point and an endpoint (0 and li, respectively, following our convention).

In order to treat the inverse spectral problem (ii) for graph Schrödinger operators, we
will first need to get some in-depth information on the generalized Weyl-Titchmarsh M-
function of the operator considered. The most elegant and straightforward way to do so
is in our view by utilizing the apparatus of boundary triples developed in [11, 16, 17, 7].
We briefly recall the results essential for our work.

Boundary triplets and the Weyl-Titchmarsh matrix M-function. Suppose that Amin is a
symmetric densely defined closed linear operator acting in the Hilbert spaceH(D(Amin)≡
DAmin

and R(Amin) ≡ RAmin
denoting its domain and range respectively; D(Amax) ≡

DAmax
, R(Amax) ≡ RAmax

denoting the domain and range of operator Amax adjoint to
Amin). Assume that Amin is completely nonselfadjoint (simple)1, i.e., there exists no

1It is easy to see that all the results of the present paper still hold even if the underlying minimal
operator is not simple. Nevertheless, the problem of its simplicity is of an independent interest, and we
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reducing subspace H0 in H such that the restriction Amin|H0 is a selfadjoint operator
in H0. Further assume that the deficiency indices of Amin (probably being infinite) are
equal: n+(Amin) = n−(Amin) ≤ ∞.

Definition 2.8. ([11, 16, 7]). Let Γ0, Γ1 be linear mappings of DAmax
to H – a separable

Hilbert space. The triple (H,Γ0,Γ1) is called a boundary triple for the operator Amax if:

(1) for all f, g ∈ DAmax

(Amaxf, g)H − (f,Amaxg)H = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H.

(2) the mapping γ defined as f 7−→ (Γ0f ; Γ1f), f ∈ DAmax
is surjective, i.e., for all

Y0, Y1 ∈ H there exists such y ∈ DAmax
that Γ0y = Y0, Γ1y = Y1.

A boundary triple can be constructed for any operator Amin of the class considered.
Moreover, the space H can be chosen in a way such that dimH = n+ = n−.

Definition 2.9. ([11, 7]). A nontrivial extension AB of the operator Amin such that
Amin ⊂ AB ⊂ Amax is called almost solvable if there exists a boundary triple (H,Γ0,Γ1)
for Amax and a bounded linear operator B defined everywhere on H such that for every
f ∈ DAmax

f ∈ DAB
if and only if Γ1f = BΓ0f.

It can be shown that if an extension AB of Amin, Amin ⊂ AB ⊂ Amax, has regular
points (i.e., the points belonging to the resolvent set) in both upper and lower half-planes
of the complex plane, then this extension is almost solvable.

The following theorem holds:

Theorem 2.10. ([11, 7]). Let Amin be a closed densely defined symmetric operator with
n+(Amin) = n−(Amin), let (H,Γ0,Γ1) be a boundary triple of Amax. Consider the almost
solvable extension AB of Amin corresponding to the bounded operator B in H. Then

(1) y ∈ DAmin
if and only if Γ0y = Γ1y = 0,

(2) AB is maximal, i.e., ρ(AB) 6= ∅,
(3) (AB)

∗ ⊂ Amax, (AB)
∗ = AB∗ ,

(4) operator AB is dissipative if and only if B is dissipative,
(5) (AB)

∗ = AB if and only if B∗ = B.

The generalized Weyl-Titchmarsh M-function is then defined as follows.

Definition 2.11. ([7, 11, 17]). Let Amin be a closed densely defined symmetric operator,
n+(Amin) = n−(Amin), (H,Γ0,Γ1) is its space of boundary values. The operator-function
M(λ), defined by

(1) M(λ)Γ0fλ = Γ1fλ, fλ ∈ ker(Amax − λ), λ ∈ C±,

is called the Weyl-Titchmarsh M-function of a symmetric operator Amin.

The following Theorem describing the properties of the M-function clarifies its me-
aning.

Theorem 2.12. ([11, 7], in the form adopted in [26]). Let M(λ) be the M-function of
a symmetric operator Amin with equal deficiency indices (n+(Amin) = n−(Amin) < ∞).
Let AB be an almost solvable extension of Amin corresponding to a bounded operator B.
Then for every λ ∈ C :

(1) M(λ) is analytic operator-function when Imλ 6= 0, its values being bounded linear
operators in H.

(2) (ImM(λ))Imλ > 0 when Imλ 6= 0.

refer the reader to our paper [8] where this question was studied for graph Laplacians. The situation of
Schodinger operators can be analyzed along the same lines.
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(3) M(λ)∗ =M(λ) when Imλ 6= 0.
(4) λ0 ∈ ρ(AB) if and only if (B −M(λ))−1 admits bounded analytic continuation

into the point λ0.

In view of the last Theorem, one is tempted to reduce the study of the spectral
properties of the Schrödinger operator on a metric graph to the study of the corresponding
Weyl-Titchmarsh M-function. Indeed, if one considers the operator under investigation
as an extension of a properly chosen symmetric operator defined on the same graph and
constructs a boundary triple for the latter, one might utilize all the might of the complex
analysis and the theory of analytic matrix R-functions, since in this new setting the (pure
point) spectrum of the quantum Laplacian is located exactly at the points into which
the matrix-function (B −M(λ))−1 cannot be extended analytically (vaguely speaking,
these are “zeroes” of the named matrix-function).

It might appear as if the non-uniqueness of the space of boundary values and the
resulting non-uniqueness of the Weyl-Titchmarsh M-function leads to some problems on
this path; but on the contrary, this flexibility of the apparatus is an advantage of the
theory rather than its weakness. Indeed, as we are going to show below, this allows us to
“separate” the data describing the metric graph (this information will be carried by the
M-function) from the data describing the matching conditions at the vertices (this bit of
information will be taken care of by the matrix B that parametrizes the extension). In
turn, this “separation” proves to be quite fruitful in view of applications that we have in
mind.

Following [8], we proceed with an explicit construction of the “natural” boundary
triple for quantum graphs.

Construction of a boundary triple and asymptotics of the Weyl-Titchmarsh M-function
for quantum graphs. Let Γ be a fixed finite compact metric graph. Let us denote by ∂Γ
the graph boundary, i.e., all the vertices of the graph which have valence 1. We further
assume that at all the vertices the matching conditions are of δ type.

As the operator Amax rather then Amin is crucial from the point of view of construction
of a boundary triple, we start with this maximal operator and explicitly describe its action

and domain: Amax = − d2

dx2 + q(x),

(2) D(Amax) =

{

f ∈
n

⊕

j=1

W 2
2 (∆j) | ∀ Vm ∈ VΓ\∂Γf is continuous at Vm

}

.

Remark 2.13. Note that the operator chosen is not the “most maximal” maximal one: one
could of course skip the condition of continuity through internal vertices; nevertheless,
the choice made proves to be the most natural from the point of view expressed above.
This is exactly due to the fact that the graph connectivity is thus reflected in the domain
of the maximal operator and therefore propels itself into the expression for the M-matrix.
Moreover, it should be noted that this choice is also natural since the dimension of the
M-matrix will be exactly equal to the number of graph vertices.

The choice of the operators Γ0 and Γ1, acting onto CN , N = |VΓ| is made as follows
(cf., e.g., [21] where a similar choice is suggested, but only for the graph boundary):

(3) Γ0f =









f(V1)
f(V2)
. . .

f(VN )









, Γ1f =









∑

xj :xj∈V1
∂nf(xj)

∑

xj :xj∈V2
∂nf(xj)

. . .
∑

xj :xj∈VN
∂nf(xj)









.

Here the symbol f(Vj) denotes the value of the function f(x) at the vertex Vj . The latter
is meaningful because of the choice of the domain of the maximal operator.
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One can prove [8], that the triple (CN ; Γ0,Γ1), N = |VΓ| is a boundary triple for the
operator Amax in the sense of Definition 2.8.

Remark 2.14. If one considers a graph Laplacian with matching conditions of δ′ type,
the choice of the maximal operator and the corresponding boundary triple has to change

accordingly: Amax = − d2

dx2 + q(x),

D(Amax) =

{

f ∈
n

⊕

j=1

W 2
2 (∆j)|∀ Vm ∈ VΓ\∂Γ ∂nf is continuous at Vm

}

,(4)

Γ0f =









∂nf(V1)
∂nf(V2)
. . .

∂nf(VN )









, Γ1f = −









∑

xj :xj∈V1
f(xj)

∑

xj :xj∈V2
f(xj)

. . .
∑

xj :xj∈VN
f(xj)









.(5)

In order to establish the asymptotic behavior of the Weyl-Titchmarsh M-matrix in the
case of Schrödinger operator on a metric graph, we first consider the following auxiliary
problem on the interval [0, l] (here l will be any of the edge lengths of the graph Γ. We
have elected to drop the lower index altogether to simplify the notation in the hope that
this will not lead to any ambiguity):

(6) −y′′ + q(x)y = k2y

with δ type conditions at both ends, which in our setting amounts to y′(0) = β1y(0);
−y′(l) = β2y(l).

The problem of finding the M -matrix function asymptotics as λ → −∞ for a given
graph Γ with matching conditions of δ type reduces to finding asymptotics of solutions
to our auxiliary problem with boundary conditions y(0) = 0; y(l) = 1 and y(0) = 1;
y(l) = 0, respectively. Indeed, given our choice of boundary triple for Γ, it is sufficient to
consider only solutions uj ∈ Ker(Amax − λ), j = 1, . . . , n such that Γ0uj is the all-zero
vector but for 1 in the j-th position. Then the j-th column of M(λ) will coincide with
the vector Γ1uj and henceforth, the asymptotics of the corresponding matrix elements
will be given by the corresponding asymptotics of Γ1uj .

On the other hand, the vector uj defined above due to the choice of Γ0 is nothing
but a set of solutions of our auxiliary problem on each edge containing the vertex Vj
(in fact, the solution to the auxiliary problem (6) with boundary conditions y(0) = 1;
y(l) = 0 if Vj is the left endpoint of the named edge and with y(0) = 0; y(l) = 1 in
the opposite case), whereas on all the other edges it is clearly identically zero if k2 is
not in the spectrum of the auxiliary problem on the corresponding edge with Dirichlet
boundary conditions, which is clearly the case when the potential is summable and k2 is
sufficiently large negative number.

As we are going to assume λ → −∞, it proves worthwhile to put
√
λ ≡ k = iτ ,

τ → +∞. This convention will be used throughout.
Denote by φ(x, k) the solution to the equation 6 with Cauchy data ψ(0, k) = 0,

ψ′(0, k) = 1 (the so-called sine-type solution). This standard solution clearly exists and
satisfies the integral equation [23]

(7) ψ(x, k) =
sin kx

k
+

1

k

∫ x

0

sin (k(x− t))q(t)ψ(t, k) dt.

We will then put f1(x, k) =
ψ(x,k)
ψ(l,k) for the solution f1 with boundary conditions f1(0, k) =

0 and f1(l, k) = 1, provided that we are not on the spectrum of the corresponding
Dirichlet problem which can be safely assumed to be granted.

Now assume τ large enough. Then the only condition that q is summable over the
interval leads to the standard way of obtaining the full asymptotic expansion of ψ(x, iτ)
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in τ based on the first term which is known [23] to be ψ(x, iτ) = eτx

2τ +O
(

eτx

τ2

)

. For the
sake of completeness we briefly recall the corresponding details.

The integral equation (7) assumes the form

(8) ψ(x, iτ) =
eτx

2τ

− e−τx

2τ
+
eτx

2τ

∫ x

0

e−τtq(t)ψ(t, iτ) dt− e−τx

2τ

∫ x

0

eτtq(t)ψ(t, iτ) dt

=
eτx

2τ
+
eτx

2τ
Y1 −

eτx

2τ
Y2 + o(e−τx),

where Y1 =
∫ x

0
e−τtq(t)ψ(t, iτ) dt, Y2 =

∫ x

0
eτ(t−2x)q(t)ψ(t, iτ) dt. Taking the first term

asymptotics for ψ(x, iτ) into account, one immediately obtains

eτx

2τ
Y1 =

eτx

(2τ)2
Q(x) +O

(

eτx

τ3

)

,

eτx

2τ
Y2 = o

(

eτx

τ2

)

,

where Q(x) =
∫ x

0
q(t) dt and since clearly

Y2 =
1

2τ

∫ x

0

e2τ(t−x)q(t) dt+O

(

1

τ2

)∫ x

0

e2τ(t−x)q(t) dt = o(1/τ).

Therefore,

ψ(x, iτ) =
eτx

2τ
+

eτx

(2τ)2
Q(x) + o

(

eτx

τ2

)

.

Substituting this asymptotic formula into the integral equation (8) again, one now
obtains by induction

(9) ψ(x, iτ) = eτx
n
∑

j=1

Qj−1(x)

(j − 1)!

1

(2τ)
j
+ o

(

eτx

τn

)

,

where the following explicit calculation has been used:

∫ x

0

e−τtq(t)



eτt
n−1
∑

j=1

Qj−1(t)

(j − 1)!

1

(2τ)
j
+ o

(

eτt

τn−1

)



 dt

=

n−1
∑

j=1

1

(j − 1)!

1

(2τ)
j

∫ x

0

Qj−1(t) dQ(t) +

∫ x

0

q(t)o

(

1

τn−1

)

dt

=

n−1
∑

j=1

1

j!

1

(2τ)
j
Qj(x) + o

(

1

τn−1

)

.

Our next task is to compute the corresponding asymptotic expansion for ψ′(x, k).
Together with (9) this will yield the full asymptotic expansion in τ of the solution f1(x, iτ)
which is sufficient for our purposes (see the definition of Γ1 (3)).

Differentiating (7), one obtains for the named derivative
(10)

ψ′
x(x, iτ)=cos kx+

∫ x

0

cos k(x−t)q(t)ψ(t, k) dt

=
eτx

2
+
eτx

2

∫ x

0

e−τtq(t)ψ(t, iτ) dt+
e−τx

2

∫ x

0

eτtq(t)ψ(t, iτ) dt+O(e−τx).
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Putting the asymptotic expansion (9) into (10), we easily obtain from the first two terms

eτx

2
+
eτx

2

∫ x

0

e−τtq(t)ψ(t, iτ) dt =
eτx

2

n
∑

j=0

Qj(x)

(j)!

1

(2τ)
j
+ o

(

eτx

τn

)

.

The third term proves to be harder to deal with. What’s more, obtaining the full asymp-
totic expansion of it appears to be only possible under additional smoothness restrictions
imposed on the potential. We proceed as follows:

e−τx

2

∫ x

0

eτtq(t)

[

eτt
n
∑

j=1

Qj−1(t)

(j − 1)!

1

(2τ)
j
+ o

(

eτt

τn

)]

dt

=
e−τx

2

[ n
∑

j=1

Ij
1

(2τ)
j

]

+ o

(

1

τn

)

,

where Ij :=
1

(j−1)!

∫ x

0
e2τtq(t)Qj−1(t) dt.

Denote Qj(x) =
d
dx

1
j
Qj(x), then using Q′(x) = q(x) we obtain

Ij =
1

(j − 1)!

∫ x

0

e2τtQj(t) dt.

If q ∈ Cn−1([0, l]), for every j = 1, . . . , n and n ≥ 2 multiple integration by parts
yields

Ij =

n−j−1
∑

m=0

e2τx
(−1)mQ

(m)
j

(2τ)m+1
+ o

(

e2τx

τn−j

)

.

Thus,

e−τx

2

[ n
∑

j=1

Ij
1

(2τ)
j

]

=

n
∑

j=1

eτx

2(j − 1)!

n−j−1
∑

m=0

(−1)mQ
(m)(x)
j

(2τ)m+j+1

=
eτx

2

n
∑

k=0

1

(2τ)k

k−1
∑

j=1

(−1)k−j−1

(j − 1)!
Q

(k−j−1)
j (x) + o

(

eτx

τn

)

.

Note, that in the last sum there are actually no terms for k = 0, 1; we have elected to
start the summation from k = 0 for notational convenience reasons.

Now one finally gets the following asymptotic expansion for ψ′(x, iτ):

(11) ψ′(x, iτ) =
1

2
eτx

n
∑

k=0

1

(2τ)k

[

1

k!
Qk(x) +

k−1
∑

j=1

(−1)k−j−1

(j − 1)!
Q

(k−j−1)
j (x)

]

+ o

(

eτx

τn

)

,

where, as before, Q(x) =
∫ x

0
q(t) dt, Qj(x) =

1
j
d
dx
Qj(x) and in particular, Q1(x) ≡ q(x).

We now turn our attention to finding the asymptotic expansion in τ of the solution
f2(x, k) of (6) satisfying boundary conditions f(0, k) = 1, f(l, k) = 0. Again, this

solution is nothing but f2(x, k) = φ(x,k)
φ(0,k) , where φ is the solution of Cauchy problem

with the following data: φ(l, k) = 0, φ′(l, k) = 1. For φ one has the following integral
equation, similar to (7)

φ(x, k) =
sin(k(x− l))

k
− 1

k

∫ l

x

sin(k(x− t))q(t)φ(t, iτ) dt.

Proceeding analogously to the treatment of the solution ψ(x, k), it is not hard to
obtain the following asymptotic expansion of the solution φ:

(12) φ(x, iτ) = −eτ(l−x)
n
∑

j=1

Rj−1(x)

(j − 1)!

1

(2τ)j
+ o

(

eτ(l−x)

τn

)

.
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Here the following notation has been adopted: R(x) :=
∫ l

x
q(t) dt.

Moreover, a similar analysis leads to the following asymptotics for the function φ′(x, iτ):

(13) φ′(x, iτ) =
1

2
eτ(l−x)

n
∑

k=0

1

(2τ)k

[

1

k!
Rk(x)+

k−1
∑

j=1

1

(j − 1)!
R

(k−j−1)
j (x)

]

+o

(

eτ(l−x)

τn

)

,

where Rj(x) := − 1
j
d
dx
Rj(x) and in particular, R1(x) ≡ q(x).

The analysis carried out above leads to the following

Theorem 2.15. Let Γ be a finite compact metric graph with no loops. Let the operator
Amax be the Schrödinger operator on the domain (2) with potentials {qj}nj=1, n being the

number of edges of the graph Γ. For all j let qj ∈ CM (∆j) for some natural M . Let the
boundary triple for Amax be chosen as (CN ,Γ0,Γ1), where N is the number of vertices of
Γ and the operators Γ0 and Γ1 are defined by (3). Then the generalized Weyl-Titchmarsh
M-function is an N ×N matrix with matrix elements admitting the following asymptotic
expansions as λ→ −∞:

(14) mjp =































τ
∑

∆t∈Ej

∑M+1
j=0

b
(t)
j

τj +τ
∑

∆t∈E′
j

∑M+1
j=0

a
(t)
j

τj +o( 1

τM ), j=p,

o( 1

τM̃
) for all M̃>0, j 6=p,vertices Vjand Vp

are connected by an edge,

0, j 6=p, verticesVj andVp

are not connected by an edge.

Here k =
√
λ (the branch of the square root is fixed so that Imk ≥ 0), τ = −ik; Ej is

the set of graph edges such that their left endpoints belong to the vertex Vj; E
′
j is the

set of graph edges such that their right endpoints belong to the vertex Vj; and finally,

{a(t)j }j=0,...,M+1 and {b(t)j }j=0,...,M+1 are two sets of real numbers which are uniquely

determined by the potentials on the edges belonging to E′
j and Ej, respectively.

Proof. The statement follows immediately from asymptotic expansions (12),(13),(9) and
(11). Indeed, consider the vertex Vj . Then the j-th column of the matrix M(λ) is given
by Γ1uj , where uj ∈ Ker(Amax − λ) is such that Γ0uj = (0, . . . , 1, 0, . . . , 0) with 1 in
the j-th position. As λ is assumed to be sufficiently large negative, uj is identically
zero on every edge not belonging to either Ej or E′

j . Then, the matrix elements mij

are identically zero for such vertices Vi. Next, if vertices Vi and Vj are connected by an
edge, the corresponding matrix element is either of the form f ′1(0, k) = ψ′(0, k)/ψ(l, k) ≡
1/ψ(l, k) or of the form f ′2(l, k) = φ′(l, k)/φ(0, k) ≡ 1/φ(0, k) (depending on the direction
of the edge connecting Vi and Vj) and thus decays faster than 1/τM for any positive
M (see (12), (9)). Finally, the diagonal element mjj is the sum of terms of the form
−f ′1(l, k) = −ψ′(l, k)/ψ(l, k) over all edges belonging to E′

j and of terms of the form
f ′2(0, k) = φ′(0, k)/φ(0, k) over all edges belonging to Ej , from where the claim follows
almost immediately. �

We remark that all the constants {a(t)j }j=0,...,M+1 and {b(t)j }j=0,...,M+1 for t : ∆t ∈ Ej
and t : ∆t ∈ E′

j , respectively, appearing in the statement of the latter Theorem, can
be computed explicitly based on the asymptotic expansions (12),(13),(9) and (11). We
have elected not to include the corresponding rather trivial but lengthy calculations in
the present paper in view of its better readability.

We would also like to point out that essentially the just proven Theorem reads: “The
more smooth the edge potentials are, the more terms of the asymptotic expansion of the
Weyl-Titchmarsh matrix-function one gets”. Comparing this situation with what one
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faces in the case of graph Laplacian, where one always gets a full asymptotic expansion,
one ends up with the question: “Is this how the world is made, or is our method of
proof deficient?”. In fact, the paper [27] suggests that given edge potentials in the class
CM one should be able to get at least one more term in the asymptotics, compared to
our answer. However, A. A. Shkalikov [28] comes to the conclusion that this is the end
of the story, i.e., a full asymptotic expansion is only possible for infinitely smooth edge
potentials. This question in fact turns to be crucial, see Section 3 below.

Theorem 2.15 can be made more transparent in two special cases which in view of
what follows are of high importance to us. First, we assume that mean values of all
potentials {qj}nj=1 are zero. Then the asymptotic expansions obtained above simplify
drastically.

Theorem 2.16. Let Γ be a finite compact metric graph with no loops. Let the operator
Amax be the Schrödinger operator on the domain (2) with potentials {qj}nj=1, n being the

number of edges of the graph Γ. For all j let qj ∈ CM (∆j) for some natural M . Assume
further that the mean values of all the potentials qj are zero. Let the boundary triple for
Amax be chosen as in Theorem 2.15. Then the generalized Weyl-Titchmarsh M-function
is an N ×N matrix with matrix elements admitting the following asymptotic expansions
as λ→ −∞

(15) mjp =



















































∑

∆t∈Ej

(

−τ−τ
∑M+1

k=2
1

(2τ)k

∑k−1
j=1

1
(j−1)!

Bt
jk

)

+
∑

∆t∈E′
j

(

−τ−τ
∑M+1

k=2
1

(2τ)k

∑k−1
j=1

(−1)k−j−1

(j−1)!
At

jk

)

+o( 1

τM ), j=p,

o( 1

τM̃
) for all M̃>0, j 6=p,vertices Vjand Vp

are connected by an edge,

0, j 6=p, verticesVj andVp

are not connected by an edge.

Here k =
√
λ (the branch of the square root is fixed so that Imk ≥ 0), τ = −ik; Ej is the

set of the graph edges such that their left endpoints belongs to the vertex Vj; E
′
j is the set

of the graph edges such that their right endpoints belongs to the vertex Vj. Finally,

Atjk =
1

j

dk−j

dxk−j

(

∫ x

0

qt(y) dy
)j∣

∣

∣

x=lt
,

Btjk = −1

j

dk−j

dxk−j

(

∫ lt

x

qt(y) dy
)j∣

∣

∣

x=0
.

Proof. Again, the statement follows immediately from asymptotic expansions (12),(13),
(9) and (11). One only has to take into account that the condition of zero means for
the potentials qj implies that Q(l) = R(0) = 0 for all edges belonging to E′

j and Ej ,
respectively. �

We remark that under the assumptions of the latter Theorem the first two terms of
the asymptotic expansion of M(λ) as λ→ −∞ turn out to be exactly the same as in the
situation of zero potentials, cf. [8]. What’s even more revealing, one might prove that the
picture remains unchanged even when the edge potentials are no longer required to have
zero means. Moreover, this fact holds in the most general case considered in the present
paper, i.e., in the case when the edge potentials are only assumed to be summable.

Theorem 2.17. Let Γ be a finite compact metric graph with no loops. Let the operator
Amax be the Schrödinger operator on the domain (2) with potentials {qj}nj=1, n being the
number of edges of the graph Γ. For all j let qj ∈ L1(∆j). Let the boundary triple for
Amax be chosen as in Theorem 2.15. Then the generalized Weyl-Titchmarsh M-function
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is an N ×N matrix with matrix elements admitting the following asymptotic expansions
as λ→ −∞.

(16) mjp =































−γjτ+o(1), j=p,

o( 1

τM ) for any M>0, j 6=p,vertices Vjand Vp

are connected by an edge,

0, j 6=p, verticesVj andVp

are not connected by an edge.

Here k =
√
λ (the branch of the square root is fixed so that Imk ≥ 0), τ = −ik; finally,

γj is the valence of the vertex Ej.

The proof is again a straightforward computation based on asymptotic expansions
(12),(13),(9) and (11). One has to notice that in order to get the first two terms of
asymptotic expansions (13) and (11), which are the only necessary terms to write down
the asymptotic formula forM(λ) up to o(1) as λ→ −∞, all integrations by parts become
redundant and thus there is no need to assume that the edge potentials are smooth.

Notice also that Theorems 2.16 and 2.17 in fact state that the first two terms of the
asymptotic expansion of Titchmarsh-Weyl M-matrix (O(τ) and O(1)) do not “feel” the
edge potentials as both are exactly the same as in the case of a graph Laplacian. This
fact will be a cornerstone of the analysis presented in the next Section.

3. Trace formulae for a pair of Schrödinger operators on the same

metric graph

In the present section, we apply the mathematical apparatus developed in Section 2
in order to study isospectral (i.e., having the same spectrum, counting multiplicities)
Schrödinger operators defined on a finite compact metric graph Γ. In order to do so, we
will assume that the graph itself is given. Moreover, we will assume that the matching
conditions at all its vertices are of δ type (δ′ type case can be treated analogously, and
we formulate the corresponding result towards the end of the Section).

Theorem 3.1. Let Γ be a finite compact metric graph with no loops having N vertices.
Let AB1

and AB2
be two Schrödinger operators on the graph Γ with δ-type matching

conditions (B1 = diag{α̃1, . . . , α̃N} and B2 = diag{α1, . . . , αN}, where both sets {α̃m}
and {αm} are the sets of coupling constants in the sense of Definition 2.2). Let the edge
potentials qj be the same for both Schrödinger operators, and let further qj ∈ CM (∆j)
for all j = 1, . . . , n for some integer constant M ≥ 0 (for notational convenience, we
imply C0 ≡ L1). Let the (point) spectra of these two operators (counting multiplicities)
be equal, σ(AB1

) = σ(AB2
).

Then the following formula holds for every s = 1, . . . ,M + 1:

(17)

N
∑

i=1

M+1
∑

m=1

∑

∑M+1
p=1 jp=m;

∑M+1
p=1 pjp=s

(−1)m−j1m!

j1! · · · jM+1!

1

γmi
α̃j1i (δ

(i)
1 )j2 · · · (δ(i)M )jM+1

=

N
∑

i=1

M+1
∑

m=1

∑

∑M+1
p=1 jp=m;

∑M+1
p=1 pjp=s

(−1)m−j1m!

j1! · · · jM+1!

1

γmi
αj1i (δ

(i)
1 )j2 · · · (δ(i)M )jM+1 ,

where γi, i = 1, . . . , N are valences of the vertices in the graph Γ; real constants δ
(i)
k are

uniquely determined by the underlying metric graph and the edge potentials.

Remark 3.2. Note that the formulae (17) are a system of non-linear equations linking
together two sets of coupling constants, {α̃i} and {αi}. In general, we are unable to
tell whether or not these for some M large enough reduce to the uniqueness result, i.e.,
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αi = α̃i ∀i. This appears generally not true even in the much simpler case of quantum
Laplacian, although in the latter case the infinite series of such formulae can be shown
to almost yield uniqueness.

Proof. We will use the apparatus developed in Section 2. Namely, we choose the maximal
operator Amax as in (2), the boundary triple (3) and use the asymptotic expansion for
the Weyl-Titchmarsh M-function of Amax obtained in Theorem 2.15. Then w.r.t. the
chosen boundary triple the operators AB1

and AB2
are both almost solvable extensions

of the operator Amin = A∗
max, parameterized by the matrices B1 and B2, respectively.

Throughout we of course assume that B1 −B2 6= 0.
We will now show that provided that the spectra of both given operators coincide,

det(B1−M(λ))(B2−M(λ))−1 ≡ 1. This is done by a Liouville-like argument in exactly
the same way as in [8]. We first verify that the named determinant is in fact a ratio of
two scalar analytic entire functions F1 and F2. Moreover, by Theorem 2.12 their fraction
F1/F2 has no poles and no zeroes, since the spectra of operators AB1

and AB2
coincide.

Now it can be easily ascertained that both F1 and F2 are of normal type and of order
at least not greater than 1 [22, 23]. Then their fraction is again an entire function of
order not greater than 1 [22]. Finally, by Hadamard’s theorem F1

F2
= eaλ+b.

It remains to be seen that a = b = 0. This follows immediately from the asymptotic
behavior of the matrix-function M(λ) as λ→ −∞ (see Theorem 2.17).

We have thus obtained the following identity:

1 ≡ det(B1 −M(λ))(B2 −M(λ))−1.

On the other hand, from Theorems 2.15 and 2.17 it follows, that within the assumptions
of the Theorem the diagonal entries of M(λ) admit the following asymptotic expansion
as λ→ −∞: for all i = 1, . . . , N

mii(τ) = γiτ +
δ
(i)
1

τ
+ · · ·+ δ

(i)
M

τM
+ o

( 1

τM

)

,

where all the coefficients δ
(i)
k , i = 1, . . . , N , k = 1, . . . ,M are uniquely determined by

the metric graph Γ and edge potentials. As for non-diagonal entries, these are irrelevant
since they are either identically zero or decaying in τ faster than any inverse power. Then

det(M(−τ2)−B1)

det(M(−τ2)−B2)
=

∏n
i=1

(

1− α̃i

γiτ
+

δ
(i)
1

γiτ2 + · · ·+ δ
(i)
M

γiτM+1

)

+ o( 1
τM+1 )

∏n
i=1

(

1− αi

γiτ
+

δ
(i)
1

γiτ2 + · · ·+ δ
(i)
M

γiτM+1

)

+ o( 1
τM+1 )

.

Take logarithm of both sides of this identity, taking into account that the fraction of
determinants on the left hand side is identically equal to 1. Thus, all the coefficients
of asymptotic expansion of the right hand side of the equation in inverse powers of τ
have to be necessarily equal to zero. A straightforward calculation then completes the
proof. �

The formulae (17) seem to be quite involved; what’s even worse, at the first sight
they give impression of being formulated in a very implicit form. In fact, this is not so
since by Theorems of the preceding Section one knows how to calculate somewhat cryptic

looking constants δ
(i)
k explicitly. Nevertheless, the next Theorem demonstrates that these

formulae are quite usable, at least in the situation when all the coupling constants at all
vertices are assumed to be equal.

Theorem 3.3. Let Γ be a finite compact metric graph with no loops having N vertices.
Let Aα̃ and Aα be two Schrödinger operators on the graph Γ with δ-type matching condi-
tions with common for all vertices coupling constants α̃ and α, respectively. Let all edge
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potentials2 q
(1)
i , q

(2)
i ∈ L1(∆i) for all i = 1, . . . , N. Let the (point) spectra of these two

operators (counting multiplicities) be equal, σ(AB1
) = σ(AB2

). Then α̃ = α.

The proof of the Theorem is a direct corollary of Theorem 2.17 and is essentially a
simplified version of the proof of previous Theorem. In the case considered one actually
only needs the first formula of (17) (s = 1), which reads

N
∑

i=1

α̃

γi
=

N
∑

i=1

α

γi

(exactly the same as in the case of graph Laplacians) and quite obviously yields the
claim. The fact that the edge potentials can be safely assumed to be different for the
two operators considered follows from the fact emphasized on the page 144, that the
first two terms of the asymptotic expansion of M(λ) at minus infinity are absolutely the
same as in the case of graph Laplacian, i.e., carry absolutely no information on the edge
potentials.

For the sake of completeness, we formulate without a proof (which can be however
quite easily obtained along the line of arguments presented in the present paper, starting
with the definition of a maximal operator (4) and of an associated “natural” boundary
triple (5)) the corresponding result for the case of Schrödinger operators on metric graphs
with δ′ type matching conditions.

Theorem 3.4. Let Γ be a finite compact metric graph with no loops having N vertices.
Let Aα̃ and Aα be two Schrödinger operators on the graph Γ with δ′-type matching condi-
tions with common for all vertices coupling constants α̃ and α, respectively. Let all edge

potentials3 q
(1)
i , q

(2)
i ∈ L1(∆i) for all i = 1, . . . , N . Let the (point) spectra of these two

operators (counting multiplicities) be equal, σ(AB1
) = σ(AB2

). Then α̃ = α.

We have elected to postpone the presentation of examples to our next paper devoted
to the same subject due to the fact that although the trace formulae derived above bring
us very close to proving uniqueness in the general case of different coupling constants
at the graph vertices, additional information in fact needs to be taken into account in
order to achieve this goal. Namely, one needs to consider the poles of the matrix-function
M(λ) − B and in particular the residues of its determinant. The corresponding rather
lengthy analysis will be presented elsewhere, accompanied by some examples.
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