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SOME REMARKS ON HILBERT REPRESENTATIONS OF POSETS

V. OSTROVSKYI AND S. RABANOVICH

To 70-th birthday of our Teacher Yu. S. Samoilenko

Abstract. For a certain class of finite posets, we prove that all their irreducible
orthoscalar representations are finite-dimensional and describe those, for which there
exist essential (non-degenerate) irreducible orthoscalar representations.

1. Introduction

Let S be a finite partially ordered set (poset). A representation of S in a linear space
V is a collection of subspaces Vg, g ∈ S, for which Vg ⊂ Vh if g < h, and one considers
representations Vg in V and V ′

g in V ′ to be equivalent if there exists an invertible operator
T : V → V ′ such that Vg = TVg, g ∈ S. Representations of posets have been extensively
studied by A. V. Roiter and his colleagues (see [1, 2] and others), in particular, classes
of posets of finite type, tame type and wild type were described.

In the case of a Hilbert spaceH, a representation of S is a collection of closed subspaces
Hg, g ∈ S, for which Hg ⊂ Hh if g < h, and they are studied up to a unitary equivalence:
representations Hg in H and H ′

g in H ′ are equivalent if there exists a unitary operator
U : H → H ′ such that Hg = UHg, g ∈ S. It appeared that posets of (Hilbert) tame
type (∗-tame type) have a very simple structure [3], — they are chains or semichains. In
Section 2 we provide a short description of them (Section 2.1). Also, in Section 2.2 we
introduce and describe a class of unitarily one-parameter poset (for them, the continuous
series of irreducible representations naturally depend on a single parameter) and calculate
the spectrum of a linear combination of the corresponding projections (Section 2.3).

On the other hand, it was discovered in several recent papers ([4, 5, 6] and others) that
in the case of primitive posets, an additional condition of orthoscalarity (see Section 3.1
for the definition of orthoscalar representations) leads to results very similar to the ones in
a linear representations theory. Moreover, it was shown in [7, 8] that this similarity can be
extended to some cases of non-primitive posets by using a unitarization technique; there
exists a correspondence between classes of linear representations in V and orthoscalar
representations in H.

Therefore, it is still a problem to develop results on orthoscalar representations of
posets in the non-primitive case. In this paper, we study orthoscalar representations of
the class of posets which can be decomposed into a union of two unitarily one-parameter
posets. We start with the simplest example of the primitive (1, 1, 1, 1) poset (Section 3.2),
orthoscalar representations of which are four-tuples of projections in H whose linear
combination is a scalar operator. Here we summarize some results of [9, 10, 11], and give
explicit formulas for representations similar to the ones established in [12]. The main
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result is that any irreducible orthoscalar representation of any poset which is a union of
two one-parameter posets, is finite-dimensional (Section 3.3).

In Section 5 we consider examples of such posets and their orthoscalar representations.

2. Posets of ∗-tame type

2.1. Description of ∗-tame posets. Recall that given a finite poset S, its (Hilbert)
representation is a collection of subspaces S ∋ g 7→ Hg of closed subspaces of some Hilbert
space H, such that Hg ⊂ Hh for g < h, g, h ∈ S. Obviously, each subspace Hg is uniquely
determined by an orthogonal projection Pg onto Hg, g ∈ S, therefore, representations
of a poset S are described by representations of a ∗-algebra generated by projections
Pg, g ∈ S, such that PgPh = Pg, g < h, and vice versa. Notions of indecomposable,
irreducible representations and unitary equivalence of representations are standard for
representations of ∗-algebras and thus can be applied to Hilbert representations of posets
as well.

For Hilbert representations of posets, it is well-known that (1) and (1, 1) are posets of
tame type, and the posets (1, 2) and (1, 1, 1) are of ∗-wild type.

Proposition 1. A poset S is of tame type if and only if its width is 1 or 2 and S does
not contain the (1, 2) poset.

Proof. If S contains the (1, 2) poset, it is evidently of ∗-wild type. If the width of S is 3
or more, it contains the (1, 1, 1) poset and is again of ∗-wild type [9].

It S is of width 1, the corresponding algebra is commutative, therefore S is of tame
type.

Let S be of width 2 and does not contain (1, 2). It is easy to see that in this case
S = S1 ∪ · · · ∪ Sm such that each Si is either (1) or (1, 1), i = 1, . . . , m, and Sj > Sk,
j < k. The latter means that and for any f ∈ Sj , g ∈ Sk we have g < f . But in this case
any representation of S is a tensor product of representations of Si, i = 1, . . . , m. �

It is easy to see that any irreducible representation of a poset of ∗-tame type is one-
or two-dimensional (see, e.g., [3]), moreover, two-dimensional irreducible representations
exist if and only if the poset is of width 2. As noticed above, any poset S of tame type
can be represented as

(1) S = S1 ∪ · · · ∪ Sm,

such that each Si is either (1) or (1, 1), i = 1, . . . , m, and Sj > Sk, j < k.

2.2. One-parameter posets. We introduce the class of one-parameter posets. For
these posets, the set of irreducible representations consists of a finite number of one-
dimensional and a one-parameter continuous family of two-dimensional representations.

Definition 1. We say that S is a (unitarily) one-parameter poset if it is of tame type
and in its decomposition (1) exactly one set Si is of width 2.

In other words, unitarily one-parameter posets are those having the following Hasse
diagrams:
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Remark 1. In the theory of linear (non-unitary) representations of poset, the class of one-
parameter posets is defined in other terms and differs from the one introduced above.
Below, speaking of one-parameter posets we mean unitarily one-parameter posets unless
specified explicitly.

The description of irreducible representations given in [3] in the case of one-parameter
posets can be specified as follows.

Let S be a one-parameter poset, and let k be the unique index for which Sk in (1)
is of width 2. Then Sj , j 6= k consists of a single element gj , while Sk consists of two
elements gk,1, gk,2.

Proposition 2. Any irreducible representation of S ∋ g 7→ Pg has dimension one or
two. There exists a finite number of one-dimensional irreducible representations, Pg =
pg ∈ {0, 1}, where

p1 ≤ · · · ≤ pk−1 ≤ pk,1 + pk,2
2

≤ pk+1 ≤ · · · ≤ pm,

and a one-parameter family of two-dimensional irreducible non-equivalent representa-
tions,

P1 = · · · = Pk−1 = 0,

Pk,1 =

(
1 0
0 0

)

, Pk,2 =

(
τ

√

τ(1− τ)
√

τ(1− τ) 1− τ

)

, 0 < τ < 1,

Pk+1 = · · · = Pm = I.

2.3. Linear combinations of projections. The latter proposition enables one to ob-
tain in a standard way a spectral decomposition of an arbitrary (reducible) representation
into a direct sum or integral of irreducible ones. We use such a decomposition to describe
the spectrum of the operator

∑

gs∈S αsPs, which will be used below.

Proposition 3. Let S ∋ g 7→ Pg be a Hilbert representation of a one-parameter poset S.
Denote

∑

gs∈S

αsPs.

Then

σ(A) ⊂ ∆ = ∆d ∪
Σ± (|αk,1 − αk,2|, αk,1 + αk,2)

2
,

where

∆d = {0, αm, αm−1 + αm, . . . , αk+1 + · · ·+ αm,(2)

αk,1 + αk+1 + · · ·+ αm, αk,2 + αk+1 + · · ·+ αm, αk,1 + αk,2 + αk+1 + · · ·+ αm,

αk−1 + αk,1 + αk,2 + αk+1 + · · ·+ αm, . . .

α1 + · · ·+ αk−1 + αk,1 + αk,2 + αk+1 + · · ·+ αm},
Σ = αk,1 + αk,2 + 2

∑

j>k

αj .(3)

Moreover, the parts of the spectrum in the continuous area corresponding to the plus and
minus signs have the same type and multiplicity. In particular, the number (Σ + λ)/2,
|αk,1 −αk,2| < λ < αk,1 +αk,2, is an eigenvalue if and only if (Σ−λ)/2 is an eigenvalue
of the same multiplicity.
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Proof. In the case of a two-dimensional irreducible representation, by routine calculations
we obtain that the spectrum σ(

∑

gs∈S αsPs) consists of two points,

λ =
(αk,1 + αk,2)±

√

α2
k,1 + α2

k,2 + 2αk,1αk,2(2τ − 1)

2
+

∑

j>k

αj .

Since the parameter τ can take arbitrary value in (0, 1), in the general case these repre-

sentations give two segments symmetric with respect to the point
(αk,1+αk,2)

2 +
∑

j>k αj ,

1

2

(

(αk,1 + αk,2)± (|αk,1 − αk,2|, αk,1 + αk,2)
)

+
∑

j>k

αj .

The rest of the possible points of σ(
∑

gs∈S αsPs) arise from one-dimensional representa-
tions. �

Given λ ∈ σ(A), λ ∈ (Σ ± (|αk,1 − αk,2|, αk,1 + αk,2))/2, we can restore the corres-
ponding projections. Indeed, let

τ =
(
∑

j>k αj + αk,1 − λ)(
∑

j>k αj + αk,2 − λ)

αk,1αk,2
.

If λ ∈ σ(A) is an eigenvalue corresponding to the continuous part of ∆, then in the
corresponding eigen-basis of A, we have

Pk,1 =
1

2

(
1 + ǫ1 −

√

1− ǫ21
−
√

1− ǫ21 1− ǫ1

)

, Pk,2 =
1

2

(
1 + ǫ2

√

1− ǫ22√

1− ǫ22 1− ǫ2

)

,

where after routine calculations,

ǫ1 =
2µ2 − (2µ− αk,1)(αk,1 + αk,2)

αk,1(2µ− αk,1 − αk,2)
, ǫ2 =

2µ2 − (2µ− αk,2)(αk,1 + αk,2)

αk,2(2µ− αk,1 − αk,2)
.

Here µ = λ−∑

j>k αj .

3. Orthoscalar representations of finite posets

3.1. Definition of orthoscalarity. Let S be a finite poset, S ∋ g 7→ Pg be a collection
of orthoprojections which form its representation, i.e., PgPh = Pg, g < h.

We use the term character for a positive function on S, S ∋ g 7→ αg > 0.

Definition 2. We say that a representation S ∋ g 7→ Pg, PgPh = Pg, g < h, is
orthoscalar with a character α = (αg)g∈S, if

∑

g∈S

αgPg = I.

Orthoscalar representations of primitive posets (in terms of orthoscalar representations
of graphs or quivers) were studied in [4, 5, 6] and other papers, some results for the non-
primitive case are obtained in [7, 8] and others.

Notice the following simple properties of orthoscalar representations.
1. If

∑

g∈S αg < 1, there are no representations.

2. If
∑

g∈S αg = 1, then all Pg = I, g ∈ S.
3. If αg > 1 for some g ∈ S, then Pg = 0.
4. If αg = 1 for some g ∈ S, then in any irreducible representation either Pg = 0 or

Pg = I.
To exclude these degenerated cases, in what follows we assume that 0 < αg < 1, g ∈ S,

and
∑

g∈S αg > 1.
In this paper we study the class of finite posets S, such that S = S1 ∪ S2, where S1

and S2 are unitarily one-parameter posets of tame type. We admit that some elements of
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S1 can be comparable with some elements of S2, however, we do not use such relations,
and they should be taken into account to narrow the result obtained without them.

3.2. Orthoscalar four-tuples of projections. The simplest case of poset of such a
kind is the (1, 1, 1, 1) poset that is a primitive poset consisting of four elements, any two
of which are non-comparable. An orthoscalar representation of this poset with character
α = (α1, α2, α3, α4) is a four-tuples of projections, P1, . . . , P4, in some Hilbert space H,
for which

(4) α1P1 + α2P4 + α3P3 + α4P4 = I.

Such four-tuples have been studied in [9, 12, 10, 11] and others. In particular, the
following theorem has been proved (see also [13]).

Theorem 1. Any orthoscalar irreducible four-tuple of projections is finite-dimensional.

Here we give an independent proof of this fact, which involves constructions which we
will apply in a more general case.

3.2.1. Case of α1 + α2 + α3 + α4 = 2. Continuous series.

Proposition 4. Let P1, . . . , P4 be an irreducible family of projections in H satisfying
(4), for which kerPj ∩ kerPk = {0}, ranPj ∩ ranPk = {0}, kerPj ∩ ranPk = {0}, j 6= k.
Then α1 + α2 + α3 + α4 = 2 and dimH = 2.

Proof. Introduce operators A1 = α1P1 + α2P2, A2 = α3P3 + α4P4. The orthoscalarity
condition means that A1+A2 = I. The conditions that the kernels and the ranges of the
projections are zero imply, due to the structure theorem for a pair of projections, that
the space H can be decomposed as H = H⊕H = C

2 ⊗H so that

(5) A1 =
α1 + α2

2
I +

(
1 0
0 −1

)

⊗ C1, A2 =
2− α1 − α2

2
I +

(
−1 0
0 1

)

⊗ C1,

where |α1−α2|
2 I < C1 < α1+α2

2 I, is a self-adjoint operator in H. Applying the same
structure theorem to P3, P4, we conclude that A2 can be represented (probably for
another decomposition H = C

2 ⊗H′) as

A2 =
α3 + α4

2
I +

(
−1 0
0 1

)

⊗ C2,
|α3 − α4|

2
I < C2 <

α3 + α4

2
I.

Comparing this to (5), we have α1 + α2 + α3 + α4 = 2.

It is easy to see that the operator
(

A1 − α1+α2

2 I
)2

= I ⊗ C2
1 commutes with P1 and

P2. In the same way, the operator (A2 − α3+α4

2 I)2 = I ⊗ C2
1 commutes with P3, P4.

Therefore, I ⊗ C2
1 commutes with P1, . . . , P4, and therefore, is a scalar operator in an

irreducible representation. Thus, C1 = cI for some

c ∈
( |α1 − α2|

2
,
α1 + α2

2

)

∩
( |α3 − α4|

2
,
α3 + α4

2

)

,

and the irreducibility implies H = C. �

Remark 2. One can obtain explicit formulas for the corresponding two-dimensional re-
presentations. Write the projections P1, P2 in the form

P1 =
1

2

(
1 + λ1

√

1− λ21√

1− λ21 1− λ1

)

, P2 =
1

2

(
1 + λ2 −

√

1− λ22
−
√

1− λ22 1− λ2

)

,(6)

with

λ1 =
α2
1 − α2

2 + 4c2

4cα1
, λ2 =

α2
2 − α2

1 + 4c2

4cα2
,
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so that A1 = α1P1 + α2P2 = c
(
1 0
0 −1

)
. The projections P3 and P4 can be represented as

(7) P3 =
1

2

(
1 + λ3 γ

√

1− λ23
γ̄
√

1− λ23 1− λ3

)

, P4 =
1

2

(
1 + λ4 −γ

√

1− λ24
−γ̄

√

1− λ24 1− λ4

)

,

with

λ3 =
α2
3 − α2

4 + 4c2

4cα3
, λ4 =

α2
4 − α2

3 + 4c2

4cα4
, |γ| = 1.

Therefore, the set of two-dimensional irreducible representations, for which kerPj ∩
kerPk = {0}, ranPj ∩ ranPk = {0}, kerPj ∩ ranPk = {0}, j 6= k, is described by
two continuous parameters, c and γ.

3.2.2. Case α1 + α2 + α3 + α4 = 2. Discrete series. Now consider the case where at
least one of the subspaces kerPj ∩kerPk, ranPj ∩ ranPk, kerPj ∩ ranPk, ranPj ∩kerPk,
j 6= k, is nonzero. We obviously can assume j = 1, k = 2. Introduce sets

∆1,d = {0, α1, α2, α1 + α2}, ∆1,c = (0, α1) ∪ (α2, α1 + α2),

∆2,d = {0, α3, α4, α3 + α4}, ∆2,c = (0, α3) ∪ (α4, α3 + α4),

∆1 = [0, α1] ∪ [α2, α1 + α2], ∆2 = [0, α3] ∪ [α4, α3 + α4],

so that ∆1 = ∆1,d ∪∆1,c, ∆2 = ∆2,d ∪∆2,c.
Then there exists a number λ0 ∈ ∆1,d which is an eigenvalue of the operator A1. Let

f0 be the corresponding unit eigenvector. Since A1 + A2 = I, f0 is also an eigenvector
of A2, A2f0 = µ0f0, where µ0 = 1− λ0. The following two cases can arise.

(i) µ0 ∈ ∆2,d. Then the space spanned by f0 is invariant w.r.t. P1, . . . , P4, and due
to the irreducibility, is the whole H, dimH = 1, and

(8) P1 = δ1, P2 = δ2, P3 = δ3, P4 = δ4, δ1, δ2, δ3, δ4 ∈ {0, 1}.
Notice that in this case there exists such permutation σ of indexes, that

ασ(1) + ασ(2) = ασ(3) + ασ(4) = 1.

(ii) µ0 ∈ ∆2,c. Then µ1 = α3 + α4 − µ0 is also an eigenvalue of A2 with some unit
eigenvector f1.

In the latter case, since A1 + A2 = I, the vector f1 is an eigenvector of A1 as well,
A1f = (I − A2)f = λ1f1, λ1 = 1 − µ1. Since α1 + α2 + α3 + α4 = 2, one can see that
λ1 ∈ ∆1,d. Indeed, otherwise λ1 ∈ ∆1,c and α1 + α2 − λ1 = λ0 ∈ ∆1.c which contradicts
the initial setting λ0 ∈ ∆1,d. Therefore, H is spanned by (f0, f1). The projections are

(9)

P1 =

(
δ1 0
0 1− δ1

)

, P3 =
1

2

(
1 + τ1

√

1− τ21√

1− τ21 1− τ1

)

,

P2 =

(
δ2 0
0 1− δ2

)

, P4 =
1

2

(
1 + τ2 −

√

1− τ22
−
√

1− τ22 1− τ2

)

,

where δ1, δ2 ∈ {0, 1} are defined from α1δ1 + α2δ2 = λ0 ∈ ∆1,d, and

τ1 =
2µ2

0 − (2µ0 − α3)(α3 + α4)

α3(2µ0 − α3 − α4)
, τ2 =

2µ2
0 − (2µ0 − α4)(α3 + α4)

α4(2µ0 − α3 − α4)
,

µ0 = 1− λ0 ∈ ∆2,c.

3.2.3. Case α1+α2+α3+α4 6= 2. In the case where α1+α2+α3+α4 6= 2, for λ1 there
can be two possibilities.

(i) λ1 ∈ ∆1,d. Then the space spanned by (f0, f1) is invariant w.r.t. P1, . . . , P4, and
due to the irreducibility, is the whole H, dimH = 2, the projections are given by (9).

(ii) λ1 ∈ ∆1,c. In this case, λ2 = α1 + α2 − λ1 is also an eigenvalue of A1 with some
unit eigenvector f2.
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In the latter case, since A1 + A2 = I, the vector f2 is an eigenvector of A2 and we
proceed as above.

Consider two sequences, λ0, λ1, . . . , and µ0, µ1, . . . , constructed from λ0 by the fol-
lowing rules. For j = 2k, k ≥ 0 let µj = 1− λj , µj+1 = α3 + α4 − µj , λj+1 = 1− µj+1,
λj+2 = α1 + α2 − λj+1. We have

λ2k = λ0 + k(α1 + α2 + α3 + α4 − 2),

λ2k+1 = α1 + α2 − λ0 − (k + 1)(α1 + α2 + α3 + α4 − 2),

µ2k = 1− λ0 − k(α1 + α2 + α3 + α4 − 2),

µ2k+1 = λ0 + α3 + α4 − 1 + k(α1 + α2 + α3 + α4 − 2), k ≥ 0.

Then the arguments above imply that σ(A1) ⊂ (λk)
∞
k=0, σ(A2) ⊂ (µk)

∞
k=0. Since σ(A1) ⊂

∆1, σ(A2) ⊂ ∆2, then for α1+α2+α3+α4−2 6= 0 only finite number of λk may belong
to σ(A1), and the same number of µk may belong to σ(A2).

Therefore for α1 + α2 + α3 + α4 − 2 6= 0, σ(A1) = (λk)
m
k=0, σ(A2) = (µk)

m
k=0, where

m ≥ 0 is determined by the following conditions:

m = 2l: λk ∈ ∆1,c, 1 ≤ k ≤ m,(10)

µk ∈ ∆2,c, 0 ≤ k ≤ m− 1, µm ∈ ∆2,d;

m = 2l + 1: λk ∈ ∆1,c, 1 ≤ k ≤ m− 1, λm ∈ ∆1,d,(11)

µk ∈ ∆2,c, 0 ≤ k ≤ m.

The dimension of the space H is equal to m+ 1.

3.2.4. Description of representations. As we already shown, in the case where α1 +α2 +
α3 + α4 − 2 = 0, or α1 + α2 + α3 + α4 − 2 6= 0, dimH ≤ 2, the projections are given by
the formulas (6), (7), (8) or (9). Now assume α1 + α2 + α3 + α4 − 2 6= 0, dimH > 2. In
order to give explicit formulas for the projections, let us introduce projections in C

2

(12) Pτ =
1

2

(
1 + τ

√
1− τ2√

1− τ2 1− τ

)

, Qτ =
1

2

(
1 + τ −

√
1− τ2

−
√
1− τ2 1− τ

)

, τ ∈ (0, 1).

In the case m = 2l, l ≥ 1, the space H = C
m+1 spanned by the joint eigenvectors f0,

. . . , fm, of A1 and A2, can be written as C⊕C
2 ⊕ · · · ⊕ C

2

︸ ︷︷ ︸

l times

, or as C2 ⊕ · · · ⊕ C
2

︸ ︷︷ ︸

l times

⊕C, so

that the projections take the form

P1 = δ1 ⊕ Pp1
⊕ · · · ⊕ Ppl

, P2 = δ2 ⊕Qq1 ⊕ · · · ⊕Qql , H = C⊕ C
2 ⊕ · · · ⊕ C

2

︸ ︷︷ ︸

l times

,

(13)

P3 = Pr0 ⊕ · · · ⊕ Prl−1
⊕ δ3, P4 = Qs0 ⊕ · · · ⊕Qsl−1

⊕ δ4, H = C
2 ⊕ · · · ⊕ C

2

︸ ︷︷ ︸

l times

⊕ C,

where δ1, δ2, δ3, δ4 ∈ {0, 1} are defined from the conditions

α1δ1 + α2δ2 = λ0 ∈ ∆1,d, α3δ3 + α4δ4 = µm ∈ ∆2,d,

and

pj =
2λ22j−1 − (2λ2j−1 − α1)(α1 + α2)

α1(2λ2j−1 − α1 − α2)
, qj =

2λ22j−1 − (2λ2j−1 − α2)(α1 + α2)

α2(2λ2j−1 − α1 − α2)
,

1 ≤ j ≤ l,

rj =
2µ2

2j − (2µ2j − α3)(α3 + α4)

α3(2µ2j − α3 − α4)
, sj =

2µ2
2j − (2µ2j − α4)(α3 + α4)

α4(2µ2j − α3 − α4)
,

0 ≤ j ≤ l − 1.
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The conditions (10) are equivalent to

α1 + α2 + α3 + α4 − 2 = (1− λ0 − µ2l)/l,

λ0 +
k

l
(1− λ0 − µm) ∈ ∆1,c,

µm +
k

l
(1− λ0 − µm) ∈ ∆2.c, 1 ≤ k ≤ l,

where λ0 ∈ ∆1,d, µm ∈ ∆2,d (total of 16 possibilities).
In the case m = 2l − 1, l ≥ 1, the space H spanned by f0, . . . , fm can be written as

C⊕ C
2 ⊕ · · · ⊕ C

2

︸ ︷︷ ︸

l − 1 times

⊕ C, or as C2 ⊕ · · · ⊕ C
2

︸ ︷︷ ︸

l times

, so that the projections take the form

P1 = δ1 ⊕ Pp1
⊕ · · · ⊕ Ppl−1

⊕ δ2,(14)

P2 = δ3 ⊕Qq1 ⊕ · · · ⊕Qql−1
⊕ δ4, H = C⊕ C

2 ⊕ · · · ⊕ C
2

︸ ︷︷ ︸

l − 1 times

⊕ C,

P3 = Pr0 ⊕ · · · ⊕ Prl−1
,

P4 = Qs0 ⊕ · · · ⊕Qsl−1
, H = C

2 ⊕ · · · ⊕ C
2

︸ ︷︷ ︸

l times

,

where δ1, δ2, δ3, δ4 ∈ {0, 1} are defined from the conditions

α1δ1 + α2δ2 = λ0 ∈ ∆1,d, α1δ3 + α2δ4 = λm ∈ ∆1,d,

and

pj =
2λ22j−1 − (2λ2j−1 − α1)(α1 + α2)

α1(2λ2j−1 − α1 − α2)
,

qj =
2λ22j−1 − (2λ2j−1 − α2)(α1 + α2)

α2(2λ2j−1 − α1 − α2)
, 1 ≤ j ≤ l − 1,

rj =
2µ2

2j − (2µ2j − α3)(α3 + α4)

α3(2µ2j − α3 − α4)
,

sj =
2µ2

2j − (2µ2j − α4)(α3 + α4)

α4(2µ2j − α3 − α4)
, 0 ≤ j ≤ l − 1.

The conditions (11) are equivalent to

α1 + α2 + α3 + α4 − 2 =
1

l
(α1 + α2 − λ1 − λm),

λ0 +
k

l
(α1 + α2 − λ0 − λm) ∈ ∆1,c, 1 ≤ k ≤ l − 1,

1− λ0 −
k

l
(1− λ0 − µ2l) ∈ ∆2.c, 0 ≤ k ≤ l − 1,

where λ0, λm ∈ ∆1,d (total of 16 possibilities).

3.3. Main theorem. The main result of this paper is the following.

Theorem 2. Any irreducible orthoscalar representation of a finite poset S such that S
can be decomposed into a union of two unitarily one-parameter sets as described above,
is finite-dimensional.

Proof. Let S ∋ g 7→ Pg be an irreducible orthoscalar representation of S with character
α = (αg)g∈S .
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Introduce operators

(15) A1 =
∑

g∈S1

αgPg, A2 =
∑

g∈S2

αgPg

and let ∆1, ∆2 be the corresponding sets described by Proposition 3, so that σ(A1) ⊂ ∆1,
σ(A2) ⊂ ∆2. Then the orthoscalarity condition is equivalent to A1 + A2 = I. We also
write Σ1 and Σ2 for numbers (3) corresponding to S1 and S2 respectively.

First, we show that A1 has an eigenvalue. Let λ0 ∈ σ(A1). Then, since A1 +A2 = I,
µ0 = 1− λ0 ∈ σ(A2) ⊂ ∆2.

For µ0 there can be two possibilities. If µ0 lies in the discrete part of ∆2, then µ0 is
an eigenvalue of A2 and therefore, λ0 is an eigenvalue of A1.

If µ0 lies in the continuous part of ∆2, then µ1 = Σ2−1 ∈ σ(A2), and since A1+A2 = I,
λ1 = 1−µ1 ∈ σ(A1) ⊂ ∆1. If λ1 belongs to the discrete part of ∆1, then it is an eigenvalue
of A1, otherwise λ2 = Σ1 − λ1 ∈ σ(A1) etc.

Thus, we have the following sequence of numbers:

(16)
λ0 → µ0 = 1− λ0 → µ1 = Σ2 − µ0

→ λ1 = 1− µ1 → λ2 = Σ1 − λ1 → µ2 = 1− λ2 → . . . ,

and we terminate this sequence as soon as λk hits into the discrete part of ∆1 or µk hits
into the discrete part of ∆2 which would mean that all the numbers λk are eigenvalues
of A1, and µk are eigenvalues of A2. Introduce Λ = Σ1+Σ2−2, then simple calculations
yield

(17)

λ2k = λ0 + kΛ,

λ2k+1 = Σ1 − λ0 − (k + 1)Λ,

µ2k = 1− λ0 − kΛ,

µ2k+1 = Σ2 − 1 + λ0 + kΛ, k = 0, 1, . . . .

If Λ 6= 0, these sequences are unbounded, therefore, assuming λk ∈ σ(A1), µk ∈ σ(A2)
we conclude that the sequence (16) terminates, therefore, it consists of eigenvalues of A1

and A2. If Λ = 0, then (2A1 − Σ1)
2 = (2A2 − Σ2)

2 commutes with all Pg, g ∈ S, and
due to the irreducibility is a scalar operator. Then σ(A1) = 1 − σ(A2) consists of two
points, which are eigenvalues.

This way, we have shown that in the case where Λ 6= 0 one can assume that A1 has
at least one eigenvalue in the discrete part of ∆1. Taking this eigenvalue as λ0 in (16)
and repeating the argument above, we conclude that the spectrum of A1 consists of a
finite number of eigenvalues, λ0, . . . , λn. Moreover, similarly to the case of quadruples of
projections considered in Section 3.2 one can construct a series of corresponding eigen-
vectors f0, . . . , fn, span of which is an invariant subspace for all Pg, g ∈ S and thus is
the whole space H.

If Σ1 +Σ2 − 2 = 0, we have that either µ0 = 1 belongs to the discrete part of ∆2 and
irreducible representation is one-dimensional, or µ0 = 1 belongs to the continuous part
of ∆2, then λ1 = 2−Σ2 = 2−Σ1 −Σ2 +Σ1 = Σ1 belongs to the discrete part of ∆1 and
irreducible representation is two-dimensional. �

Remark 3. The proof in fact establishes a method to describe all irreducible representa-
tions of S, their dimensions and explicit formulas for the projections.

Remark 4. For the case where ∩g∈S1
kerPg 6= {0}, the value of Λ enables one to obtain

a rough estimate for the dimension of irreducible representations: for dimension k ≥ 2,
one can see that Λ > 0, 1− (k − 1)Λ ≥ 0, which implies k ≤ Λ−1 + 1.
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4. Essential posets

Let S be a poset, and let S ∋ g 7→ Pg be its orthoscalar representation,

∑

g∈S

αgPg = I.

If Ph = 0 for some h ∈ S, then the corresponding term can be excluded from the sum
above, and the family Pg, g 6= h forms an orthoscalar representation of the S \ h poset.
The same way, if Ph = I for some h ∈ S, then

∑

g∈S,g 6=h

αg

1− αh

Pg = I,

and the family Pg, g 6= h forms an orthoscalar representation of the S \ h poset.
Also, if h < k and Ph = Pk, then the family Pg, g 6= h, forms an orthoscalar represen-

tation of the S \ h poset with αk replaced by α′
k = αh + αk.

In all these cases, the representation of S is essentially determined by a representation
of a smaller poset S \ h.

Definition 3. We say that an orthoscalar representation S ∋ g 7→ Pg of S is essential,
if Pg 6= 0, Pg 6= I for all g ∈ S, and Pg 6= Ph for all g, h ∈ S, g < h. We say that a poset
S is essential if it possesses an irreducible essential orthoscalar representation.

Theorem 3. Let S be an essential poset which is a union of two unitarily one-parameter
posets. Then S is one of the following posets:

♣ ♣ ♣ ♣ , ♣ ♣ ♣ ♣

♣

✁✁❆❆ , ♣ ♣ ♣ ♣

♣❆❆✁✁
, ♣ ♣ ♣ ♣

♣

♣

✁✁❆❆ , ♣ ♣ ♣ ♣

♣

♣

❆❆✁✁
, ♣ ♣ ♣ ♣

♣ ♣

✁✁❆❆ ✁✁❆❆ , ♣ ♣ ♣ ♣

♣ ♣❆❆✁✁ ❆❆✁✁
.

Proof. We keep the notations used in the previous Section. First consider the case where
Λ = 0. Then any irreducible representation is one or two-dimensional. If S possesses two
elements g < h, then either Ph = I, or Pg = 0, or Pg = Ph, i.e. irreducible orthoscalar
representation is not essential. Therefore, for Λ = 0, the only poset with essential
irreducible representations is S = (1, 1, 1, 1), the poset considered in Section 3.2.

From now on, we assume Λ 6= 0. In this case we can assume that σ(A1) contains
an eigenvalue λ0 in the discrete part of ∆1. Then the argument used in the proof of
Theorem 2 implies that there can be the following two possibilities.

(i). Dimension dimH = n + 1 is even, λn lies in the discrete part of ∆1, other
eigenvalues λ1, . . . , λn−1 lie in the continuous part of ∆1, all µk, k = 0, . . . , n, lie in the
continuous part of ∆2.

(ii). Dimension dimH = n + 1 is odd, eigenvalues λ1, . . . , λn lie in the continuous
part of ∆1, eigenvalue µn lies in the discrete part of ∆2, all other µk, k = 0, . . . , n − 1
lie in the continuous part of ∆2.

Consider the case (i). Let h1, h2 be a (unique) pair of incomparable elements of S2.
Since all µk, k = 0, . . . , n, lie in the continuous part of ∆2, we see from the structure
theorem for a pair of projections Ph1

, Ph2
, that Ph = 0 for any h < h1, h < h2, and Ph = I

for any h > h1, h > h2. Therefore, an essential irreducible orthoscalar representation of
S exists in even dimension only if S2 consists of two incomparable points, S2 = (1, 1).

For the set S1, we have the following. Let g1, g2 be a (unique) pair of incomparable
elements in S1. By the structure theorem for a pair of projections Pg1 , Pg2 we decompose

H = C
1 ⊕ C

2 ⊕ · · · ⊕ C
2 ⊕ C

1
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into invariant with respect to Pg, g ∈ S1, irreducible subspaces. Then

(18)
Pg = δ1 ⊕ I2 ⊕ · · · ⊕ I2 ⊕ δ2, g > g1, g > g2,

Ph = δ3 ⊕ 02 ⊕ · · · ⊕ 02 ⊕ δ4, h < g1, h < g2,

where δ1, δ2, δ3, δ4 ∈ {0, 1}. Moreover, to exclude the cases Pg = I and Ph = 0 we assume
that δ1 + δ2 < 2, δ3 + δ4 > 0. In each of the two invariant one-dimensional blocks, the
sum Pg1 + Pg2 can take values 0, 1, or 2, and the following cases can arise.

1). In the both blocks the sum is 0. Then for Pg in (18) we can have δ1 + δ2 = 0,
or δ1 + δ2 = 1, thus there can be at most two different nontrivial projections Pg3 , Pg4 ,
g3 > g1, g3 > g2, g4 > g3. For Ph we have δ3 = δ4 = 0, thus there are no nonzero Ph.

2). In one block the sum is 0, and in the other one it is 1. Then for Pg in (18) we have
δ1 + δ2 = 1, and there can be at most one nontrivial projection Pg3 , g3 > g1, g3 > g2.
For Ph we again have δ3 = δ4 = 0, thus there are no nonzero Ph.

3). In the both blocks the sum is 1. Then for Pg in (18) we have δ1 + δ2 = 2, and for
Ph we have δ3 = δ4 = 0, thus there are no Pg 6= I, Ph 6= 0.

4). In the first block the sum is 0, in the second one the sum is 2, or in the first block
the sum is 2, in the second one the sum is 0. For Pg in (18) we have δ1 + δ2 = 1, and
for Ph we have δ3 + δ4 = 1. There can be at most one nontrivial projection Ph, h < g1,
h < g2, and at most one nontrivial projection Pg, g > g1, g > g2.

5) In one block the sum is 2, in the other one the sum is 1. Then similarly to the case
2 there can be at most one nontrivial projection Ph, h < g1, h < g2. For any g > g1,
g > g2 we have Pg = 0.

6) In the both blocks the sum is 2. Then similarly to the case 1 there can be at most
two different nontrivial projections Ph1

, Ph2
, h1 < g1, h1 < g2, h2 < h1. For any g > g1,

g > g2 we have Pg = 0.
Therefore, an essential irreducible orthoscalar representation of even dimension can

exist only for the following posets (we use the notation from [14]):

a1 ♣ ♣ ♣ ♣ , a2 ♣ ♣ ♣ ♣

♣

✁✁❆❆ , a6 ♣ ♣ ♣ ♣

♣

♣

✁✁❆❆ , a8 ♣ ♣ ♣ ♣

♣

♣

✁✁❆❆
❆❆✁✁

,

and the posets dual to a2 and a6

♣ ♣ ♣ ♣

♣❆❆✁✁
, ♣ ♣ ♣ ♣

♣

♣

❆❆✁✁
.

We show that the a8 poset arising in the case 4 above is not in fact essential, i.e., any
its irreducible orthoscalar representation is not essential. Indeed, in the case 4 above
assume that in the first one-dimensional block Pg1 = Pg2 = 0, and in the second one
Pg1 = Pg2 = 1, then δ1 = δ3 = 0, δ2 = δ4 = 1, and in essential representation σ(A1)
contains 0 and αg + αg1 + αg2 + αh. Then the sequence (16) is

λ0 = 0 → µ0 = 1 → µ1 = Σ2 − 1 → λ1 = 2− Σ2 → λ2 = Λ → . . .

→ µ2n+1 = Σ2 − 1 + nΛ → λ2n+1 = αg + αg1 + αg2 + αh.

Since we have already shown that an essential orthoscalar representation of the a8 poset
must have dimension more than 2, we conclude that λ2 ∈ σ(A1) and therefore Λ > 0. On
the other side, since λ2k+1 = Σ1 − (k + 1)Λ, we have λ1 > λ3 > · · · > λ2n+1, therefore
λ2n+1 ≤ λ1 = Σ1 − Λ < αg + αg1 + αg2 .

In the case (ii) of odd dimension, similar arguments lead to the following posets:

a1 ♣ ♣ ♣ ♣ , a4 ♣ ♣ ♣ ♣

♣ ♣

✁✁❆❆ ✁✁❆❆ ,
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and the poset dual to a4
♣ ♣ ♣ ♣

♣ ♣❆❆✁✁ ❆❆✁✁
. �

In the following section we will show that all posets listed in Theorem 3 admit essential
irreducible orthoscalar representations, and therefore they are essential ones.

5. Examples

As was shown above, the essential posets that are unions of two unitarily one-parameter
posets may have 4, 5 or 6 elements. Let S = S1 ∪ S2 be one of them with S1 ∩ S2 = ∅.
Obviously S and S2 ∪S1 are isomorphic. Therefore we consider only the posets in which
S1 has two comparable elements. The operators A1 and A2 will be defined by the for-
mula (15), where Pg is the orthoprojection corresponding to the element g ∈ S in an
essential orthoscalar irreducible representation of S. Note that in all posets a2, a4 and
a6 below the element g5 (or g6) is the maximal element of S1. Whence the ranges of A1

and P5 (or P6) coincide. Thus if A1 is invertible, then P5 = I (or P6 = I) and hence the
representation is not essential. Therefore A1 is singular for every essential representation
of a2, a4, a6. Let Λ = Σ1 +Σ2 − 2.

1) Representations of a2. Let a2 = S1 ∪ S2, S1 = {g1, g2, g5 | g5 > g1, g5 > g2}, S2 =
{g3, g4} and orthoprojections P1, . . . , P5 form an essential orthoscalar representation of
a2 with character α = (α1, α2, α3, α4, α5). The operator A1 is singular so there exists f0
such that A1f0 = λ0f0 = 0. According to Theorem 2, the sequence λi obtained by the
formulas (17) consists of eigenvalues of A1 and the sequence µj consists of eigenvalues of
A2 for i = 0, 1, . . . ,m′ and j = 0, 1, . . . ,m′ with some positive m′. Let f0, f1, . . . , fm′ be
the corresponding eigenvectors. This consequence can be obtain from f0 using special
linear combinations of Pi. Let D1(x) = P1 + φ(x)P2, D2(x) = P3 + ψ(x)P4, where

φ(x) =
α2(λ− α2 − α5)

α1(α1 + α5 − λ)
, ψ(x) =

α4(λ− α4)

α3(α3 − λ)
.

Then f1 = D2(µ0), f2j = D1(λ2j−1), f2j+1 = D2(µ2j). Assume that

(19) λ2i ∈ (α5, α1 + α5) ∪ (α2 + α5, α1 + α2 + α5)

and

(20) µ2j−1 ∈ (0, α3) ∪ (α4, α3 + α4),

where i, j = 1, . . . ,m. There exist only two cases in which the representation can be
reconstructed: λ2m+1 ∈ {α5, α1 + α5, α2 + α5} with m′ = 2m + 1 or µ2m ∈ {0, α3, α4}
with m′ = 2m. We consider both cases in details.

(i) λ2m+1 ∈ {α5, α1 + α5, α2 + α5}. The subspace

(21) span(f0, f1, f2, . . . , f2m+1)

is invariant under the act of P1, . . . , P5 for α1 6= α2. Operators P1, P2, . . . , P5 are restored
up to unitary equivalence: P5 = 0⊕I2m, P1, . . . , P4 have the form (14) with δ1 = δ3 = 0,
and δ2 = δ4 = 0 if λ2m+1 = α5 or

δ2 = 1− δ4 =

{
1, if λ2m+1 = α5 + α1,
0, if λ2m+1 = α5 + α2.

The parameters pj , qj , rj , sj are calculated by λi and µi after the substitution λi =
λi − α5.

Let now α1 = α2, then λ2m+1 = α1 + α5 = α2 + α5. Note, that

A1f2m+1 = (α1 + α5)f2m+1 = (α1 + α5)(P1 + P2)f2m+1.
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So f ′2m+1 = P1f2m+1 is an eigenvector of A1 too. Therefore we get two non-equivalent
representations of a2 with the same formulas on Pi as above except the relation

δ2 = 1− δ4 =

{
1, if f ′2m+1 = f2m+1,
0, if f ′2m+1 = 0.

The vector f ′2m+1 must be a multiple of f2m+1 since otherwise f ′2m+1 does not belong
to the subspace (21) and hence we have a new eigenvector of A1 and the elements of
the sequence λi are eigenvalues of A1 with i > 2m + 1. It is easy to see then that
λ2m+i = λ2m+3−i and µ2m+i = µ2m+3−i. So if λ2m2+1 = α5 or µ2m2

∈ {0, α3, α4}, then
the relation (19) or (20) does not hold. If at last λ2m2+1 = 0, then the subspace

span(f ′2m+1, D2(µ2m+2)f
′
2m+1, D1(λ2m+3)D2(µ2m+2)f

′
2m+1, . . . ,

D2(µ2m2
)D1(λ2m2−1) . . . D2(µ2m+2)f

′
2m+1)

is invariant under the act of P1, . . . , P5 and so the representation is reducible.
(ii) µ2m ∈ {0, α3, α4}. The subspace

(22) span(f0, f1, f2, . . . , f2m)

is invariant under the act of P1, . . . , P5 for α3 6= α4. Operators P1, P2, . . . , P5 are restored
up to unitary equivalence and has the form (13) with δ1 = δ2 = 0, and δ3 = δ4 = 0 if
µ2m = 0 or

δ3 = 1− δ4 =

{
1, if µ2m = α3,
0, if µ2m = α4,

and P5 = 0⊕ I2m. Note that the parameters pj , qj , rj , sj are calculated here also after
the substitution λi = λi − α5.

As above in (i), we get two different irreducible representations for µ2m = α3 = α4.
The formulas for Pi are the same except the relation

δ3 = 1− δ4 =

{
1, if f ′2m = f2m,
0, if f ′2m = 0,

where f ′2m = P3f2m. The vector f ′2m must be a multiple of f2m since otherwise we obtain
an invariant subspace with smaller dimension or the violation in (19) or (20). The proof
of the fact is similar and we leave it to the reader.

Thus we proved that with fixed coefficients αi there exist at most two non-equivalent
essential representations of a2. The most simple way to construct the examples is to put
α1 = α2 = α3 = α4 = 1/2 + ǫ, α5 = 1/(2m+ 5)− 2ǫ+ 8ǫ/(2m+ 5). Then λ2m+1 = α5,
(19) and (20) hold for small irrational ǫ and hence we obtain one essential representation
of a2 of dimension 2m. If we put α5 = 1/(4m) − 2ǫ − 3ǫ/(2m), then λ2m+1 = α1

and we have two non-equivalent representations of a2 of dimension 2m. It easy to see
that if α5 = 1/(4m) − 2ǫ − ǫ/(2m), then µ2m = 1/2 + ǫ = α3, that is we have two
essential representations of a2 of the dimension 2m+1 in this case. For last case we put
α5 = 1/(2m)− 2ǫ, then µ2m = 0 and for small irrational ǫ, the poset a2 has the only one
up to unitary equivalence essential representation in the dimension 2m+ 1.

2) Representations of a4. Let a4 = S1 ∪ S2, S1 = {g1, g2, g5 | g5 > g1, g5 > g2},
S2 = {g3, g4, g6 | g6 > g3, g6 > g4} and orthoprojections P1, . . . , P6 form an essential
orthoscalar representation of a4 with character α = (α1, α2, α3, α4, α5, α6). The operator
A1 is singular so we can construct the sequences λi and µj of eigenvalues of A1 and A2 as
we did for the representations of a2. Note that A2 is also singular since otherwise P6 will
be the identity matrix. Therefore there exist m such that (19) and (20) hold for every
i, j = 0, . . . ,m and µ2m = 0. Whence there exists only one up to unitary equivalence
representation. The operators Pi are restored by the formulas (13) where δi = 0, the
parameters pj , qj , rj , sj are calculated by λi and µi after two substitutions λi = λi −α5

and µi = µi − α6, P5 = 0⊕ I2m and P6 = I2m ⊕ 0.
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To find an appropriate character we set

(23) α1 = α2 = α3 = α4 = 1/2 + ǫ, α5 = ǫ/2.

Then the relation µ2m = 0 yields α6 = 1/(2m)− 5ǫ/2. The inclusions (19) and (20) hold
for small ǫ.

3) Representations of a6. Let a6 = S1∪S2, S1 = {g1, g2, g5, g6 | g6 > g5 > g1, g5 > g2},
S2 = {g3, g4} and orthoprojections P1, . . . P6 form an essential orthoscalar representation
of a6 with character α = (α1, α2, α3, α4, α5, α6). The operator A1 is singular, hence we
have again the sequences λi and µj . If λ2m+1 6= α6 for every m, then P6 = P5. Really,
the operator A1 is a sum of four nonnegative operators and if α6 /∈ σ(A1), then every
nonzero number of σ(A1) is greater or equal to α5 + α6. So the ranges of A1, P5 and P6

coincide. Whence P5 = P6.
Thus λ2m+1 = α6 for some m > 0 and we have only one up to unitary equivalence

essential representation of a6. The operator Pi, i = 1, . . . , 4 have the form (14) with
δi = 0 and the parameters pj , qj , rj , sj calculated by λi and µi after the substitution
λi = λi − α5 − α6. The operator P5 = 0⊕ I2m ⊕ 0 and P6 = 0⊕ I2m+1.

To find the character for which the orthoscalar representation exists we set αi as in
(23) and α6 = 1/(2m+ 1)− (5m+ 2)ǫ/(2m+ 1). Then λ2m+1 = α6 and for small ǫ the
inclusions (19) and (20) hold.

4) Representations of dual to ai. All essential representations of the posets dual to
a2, a4 and a6 can be calculated from the described representations using duality and the
formulas Qg = I − Pg.
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