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SPECTRAL PROBLEM FOR A GRAPH OF SYMMETRIC STIELTJES

STRINGS

V. PIVOVARCHIK AND O. TAYSTRUK

Dedicated to Yury Samǒılenko on the occasion of his 70th birthday

Abstract. A spectral problem generated by the Stieltjes string recurrence rela-
tions with a finite number of point masses on a connected graph is considered with
Neumann conditions at pendant vertices and continuity and Kirchhoff conditions at
interior vertices. The strings on the edges are supposed to be the same and symmet-

ric with respect to the midpoint of the string. The characteristic function of such
a problem is expressed via characteristic functions of two spectral problems on an
edge: one with Dirichlet conditions at the both ends and the other one with the
Neumann condition at one end and the Dirichlet condition at the other end. This

permits to find values of the point masses and the lengths of the subintervals into
which the masses divide the string from knowing the spectrum of the problem on the
graph and the length of an edge. If the number of vertices is less than five then the

spectrum uniquely determines the form of the graph.

1. Introduction

In this paper we describe finite-dimensional analogues of the results in [20].
The notion of a discrete Laplacian (see [4]) is closely related to the notion of adjacency

matrix of the classical spectral graph theory [3], namely, for a simple connected graph
with no loops,

L = I − T−1/2AT−1/2,

where L is the discrete Laplacian, T = diag{d(v1), d(v2), . . . , d(vp)}, d(vi) is the degree
of the vertex vi, i = 1, . . . , p, A is the (p×p) adjacency matrix, p is the number of vertices
in the graph.

The quantum graph theory (see [5]) considers spectral problems generated by Sturm-
Liouville or Dirac equation on metric graph domains. The mentioned equations on the
edges of a graph with boundary and matching conditions (usually continuity and Kirch-
hoff conditions) at the interior vertices generate an operator which is called continuous
Laplacian.

Under the conditions of equal lengths of the edges and equal potentials on the edges
and symmetry of the potential with respect to the middle of an edge the problem for
a continuous Laplacian can be reduced to the problem for a discrete Laplacian ([1], [6],
[2]). This approach has been widely used (see, e.g. [14], [17], [18], [20]).

A finite-dimensional analogue of this theory occurs in description of small vibrations
of mechanical systems (nets of Stieltjes strings, of springs connecting point masses [12],
[8], [9]).

After M. G. Krein [13], [11] we call Stieltjes string a weightless thread bearing point
masses {mk}

n
k=0 (n ≤ ∞,mk > 0) at points {xk}

n
k=1 (0 ≤ xk < xk+1). We will consider
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only strings with a finite number of masses and denote by lk = xk+1 − xk the intervals
between them. Then l =

∑n
k=0 lk is the total length of the string.

We consider small transverse vibrations of a graph consisting of symmetric Stieltjes
strings. If point masses are present at each interior vertex then the spectral problem
can be reduced to the spectral problem for a discrete Laplacian on the corresponding
graph. If our graph is a tree then the problem is related with the so-called tree-patterned
matrices [15], [16], [7], [19]. These matrices are generalizations of Jacobi matrices.

It should be mentioned that absence of masses at the vertices of our graph makes the
problem a bit more complicated than in [8], [15], [16], [7] because instead of the equation
(λI −L)Y = 0, where L is the discrete Laplacian, we have the equation (λM −L)Y = 0,
where M ≥ 0 is a diagonal matrix.

We use the idea of a connection between the continuous Laplacian and discrete Lapla-
cian to reduce the more complicated discrete operator of the problem of small vibration
of a graph of symmetric Stieltjes strings to a simpler finite dimensional operator to solve
the related direct and inverse problems. We show how to find the form of the graph and
values of the point masses and the subintervals of the Stieltjes string on an edge using
the spectrum of the whole graph and the length of an edge.

In Section 2 we describe well known results on Stieltjes strings vibrations including
the method of recovering values of the point masses and the lengths of subintervals using
two spectra and the total length due to [11]. In Section 3 we show that in case of a
Stieltjes string, which is symmetric with respect to the midpoint, it is possible to find
values of the point masses and the lengths of the subintervals using only one spectrum
of the Dirichlet problem and the total length of the string. In Section 4 we describe
the problem of vibrations of a graph of symmetric Stieltjes strings. In Section 5 we
express the characteristic function of the spectral problem on the graph via characteristic
functions of the Dirichlet-Dirichlet and Neumann-Dirichlet problem on an edge of the
graph (Theorem 5.1) and find its form in the particular case when the graph is bipartite
(Theorem 5.2). We show that the spectrum of the problem on the graph and the length
of an edge uniquely determine values of the point masses and the subintervals into which
the masses divide the string (Theorem 5.3), and show how to find these values (proof
of Theorem 5.3). We also discuss the question whether one can judge on the form of
the graph knowing the spectrum of the main spectral problem (Corollary after Theorem
5.3).

2. Stieltjes strings

Let us consider a Stieltjes string bearing n point masses m1,m2, . . . ,mn (mk > 0), let
l0, l1, . . . , ln (lk > 0) be the intervals into which the masses divide the total length l of
the string (

∑n
k=1 lk = l).

Denote by Vk(t) the small transverse displacement of the mass mk at the time t. Then
we have [11]

(1)
Vk(t)− Vk−1(t)

lk−1
+

Vk(t)− Vk+1(t)

lk
+mkV

′′
k (t) = 0, k = 1, 2, . . . , n.

Substituting Vk(t) = Uke
iλt into (1) we obtain

(2)
Uk − Uk−1

lk−1
+

Uk − Uk+1

lk
= mkzUk, k = 1, 2, . . . , n,

where Uk is the amplitude of vibrations of the mass mk, z = λ2 is the spectral parameter.
If the ends of the string are fixed (Dirichlet-Dirichlet problem) then V0(t) = Vn+1(t) = 0
and, consequently,

(3) U0 = 0,
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(4) Un+1 = 0.

The sequence {νj}
n
j=1 (0 < ν1 < ν2 < · · · < νn) of eigenvalues of problem (2)–(4), i.e.,

the values of z for which there exists an eigenvector {U0, U1, . . . , Un, Un+1} 6= 0 is said
to be the spectrum of (2)–(4).

Following [11] we look for a solution in the form

Uk = R2k−2(z)U1, k = 1, 2, . . . , n+ 1,

where R2k−2(z) is a polynomials of degree k− 1. Then the spectrum of problem (2)–(4)
coincides with the set of zeros of the polynomial

R2n(z) =
l

l0

n∏

k=1

(
1−

z

νk

)
.

Next, we introduce the polynomials of an odd index,

(5) R2k−1 =
R2k(z)−R2k−2(z)

lk
.

The polynomials Rj(z) satisfy the following recurrence relations:

(6) R2k(z) = lkR2k−1(z) +R2k−2(z),

(7) R2k−1(z) = R2k−3(z)−mkzR2k−2(z)

with the initial conditions

(8) R−1(z) ≡
1

l0
,

(9) R0(z) ≡ 1.

The Neumann condition at the right end which corresponds to the situation where the
right end of the string is free to move in the direction orthogonal to the equilibrium
position of the string is

(10) Un+1 = Un.

The spectrum {µk}
n
k=1 of problem (2), (3), (10) coincides with the set of zeros of the

polynomial

(11) R2n−1(z) =
1

l0

n∏

k−1

(
1−

z

µk

)
.

It is known [11] that

(12) 0 < µ1 < ν1 < µ2 < ν2 < · · · < µn < νn.

The Neumann condition at the left end is

(13) U0 = U1.

We look for a solution of (2) which satisfies (13) in the form

Uk = Q2k−2(z)U1, k = 1, 2, . . . , n,

where Q2k−2(z) are polynomials of degree k−1 (k = 1, 2, . . . , n) which together with the
polynomials of an odd degree,

(14) Q2k−1 =
Q2k(z)−Q2k−2(z)

lk
,

satisfy the recurrence relations

(15) Q2k(z) = lkQ2k−1(z) +Q2k−2(z),

(16) Q2k−1(z) = Q2k−3(z)−mkλQ2k−2(z)
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with the initial conditions

(17) Q0(z) ≡ 1,

(18) Q−1(z) ≡ 0.

The zeros {ηk}
n
k=1 of

(19) Q2n(z) =

n∏

k=1

(
1−

z

ηk

)

are eigenvalues of Neumann-Dirichlet problem (2), (4), (13). Therefore,

0 < η1 < ν1 < η2 < ν2 < · · · < ηn < νn.

Let us denote by {ξk}
n
k=1 the set of zeros of

Q2n−1(z) = z

n∏

k=2

(
1−

z

ξk

) n∑

k=1

mk,

which are eigenvalues of the Neumann-Neumann problem (2), (10), (13). It is known
(see [11]) that

0 = ξ1 < η1 < ξ2 < η2 < · · · < ξn < ηn,

ξ1 < µ1 < ξ2 < µ2 < · · · < ξn < µn.

The Lagrange identity is

(20) R2k−1(z)Q2k(z)−R2k(z)Q2k−1(z) =
1

l0
.

The following theorem gives an algorithm for recovering the sets {mk}
n
k=1 and {lk}

n
k=0

using the spectra {µk}
n
k=1 and {νk}

n
k=1 and the total length l of the string.

Theorem 2.1. ([11]). For two sequences of positive numbers {µk}
n
k=1 and {νk}

n
k=1 to

be spectra of problems (2), (3), (10) and (2), (3), (4), respectively, it is necessary and
sufficient that they are interlaced in sense of (12). Under this condition the collection of
the corresponding sets {mk}

n
k=1 and {lk}

n
k=0 is unique for a given value of the total length

of the string l > 0. The masses and the subintervals can be found using the continued
fraction

R2n(z)

R2n−1(z)
= ln +

1

−mnz +
1

ln−1+
1

−mn−1z+...+ 1
l1+ 1

−m1z+ 1
l0

.

3. Symmetric Stieltjes string

In the sequel we consider Stieltjes strings symmetric with respect to their midpoints.
This means that

1) if n is even then:

mk = mn−k+1, k = 1, . . . ,
n

2
,

lk = ln−k, k = 0, . . . ,
n

2
− 1.

2) if n is odd then:

mk = mn−k+1, k = 1, . . . ,
[n
2

]
,

lk = ln−k, k = 0, . . . ,
[n
2

]
,

where [a] denotes the integer part of a.
For a symmetric Stieltjes string µk = ηk for all k, therefore, with account of (11) and

(19) we obtain
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Lemma 3.1. If the Stieltjes string is symmetric then

(21) R2n−1(z) =
1

l0
Q2n(z).

Using (21) we see that the Lagrange identity (20) for a symmetric Stieltjes string
attains the form

(22)
1

l0
Q2

2n(z)−
1

l0
= R2n(z)Q2n−1(z).

Proposition 3.2. Any sequence of distinct positive numbers {νk}
n
k=1 is the spectrum

of a Dirichlet-Dirichlet problem for a symmetric Stieltjes string of n masses and of a
prescribed total length. The spectrum {νk}

n
k=−n,k 6=0 of the Dirichlet-Dirichlet problem

(2)–(4) and the total length l > 0 uniquely determine the point masses {mk}
n
k=1 and

subintervals {lk}
n
k=0 of a symmetric Stieltjes string.

Proof. 1. In the case of even n we easily obtain

(23) R2n(z) = 2Rn(z)Rn−1(z).

Since the zeros of Rn−1(z) and of Rn(z) interlace we have

Rn−1(z) =
1

l0

n
2∏

k=1

(
1−

z

ν2k−1

)
,

Rn(z) =
l

2l0

n
2∏

k=1

(
1−

z

ν2k

)

and, consequently,

Rn(z)

Rn−1(z)
= ln

2
+

1

mn
2
z + 1

ln
2

−1.+···+ 1

−m1z+ 1
l0

.

2. In the case of odd n, we obtain, instead of (23), that

R2n(z) = R2[n2 ](z)(2R2[n2 ]−1(z)−R2[n2 ](z)m[n2 ]+1z).

Since zeros of R2[n2 ](z) and (2R2[n2 ]−1(z)−R2[n2 ](z)m[n2 ]+1z) interlace,

R2[n/2](z) =
l

2l0

[n2 ]∏

k=1

(
1−

z

ν2k

)
,

2R2[n2 ]−1(z)−R2[n2 ](z)m[n2 ]+1z =
1

l0

[n2 ]+1∏

k=1

(
1−

z

ν2k−1

)

and, consequently,

R2[n2 ](z)

2R2[n2 ]−1(z)−R2[n2 ](z)m[n2 ]+1z
=

l

2

∏[n2 ]

k=1

(
1− z

ν2k

)

∏[n2 ]+1

k=1

(
1− z

ν2k−1

)

=
1

−m[n2 ]+1z +
1

2−1l[n
2

]+
1

−2m[n
2

]z+
1

···+ 1
2−1l0

.

�
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4. Graph of symmetric Stieltjes strings

Now we consider an oriented connected plane graph G each edge of which is the same
symmetric Stieltjes string bearing n point masses. The graph is stretched and vibrate
in the direction orthogonal to the equilibrium plane of the graph. The orientation of the
edges of the graph is arbitrary.

Denote the vertices of G by vi, i = 1, 2, . . . , p, where p is the number of vertices in G,
by ej the edges of G (j = 1, 2, . . . , g where g is the number of edges).

For each i denote by d(vi) the degree of the vertex vi, by d+(vi) the indegree, i.e.,
the number of edges incoming into vi, by d−(vi) the outdegree, i.e., the number of edges
outgoing from vi.

Let J be the set of pendant vertices, K the set of interior vertices of G, W+
i the set

of numbers of edges incoming into vi and W−
i be the set of numbers of edges outgoing

from vi (i = 1, . . . , p).
We enumerate the point masses mk (k = 1, 2, . . . , n) and the subintervals lk (k =

0, 1, . . . , n) on an edge successively in the direction of the edge.
We assume absence of point masses in the vertices. For a point mass indexed by k

which lies on the edge j we have

(1)
V

j
k (t)− V

j
k−1(t)

lk−1
+

V
j
k (t)− V

j
k+1(t)

lk
= mkV

j
k

′′
(t),

where k = 1, 2, . . . , n, j = 1, 2, . . . , g, V j
k (t) is the transverse displacement of this mass.

Let the pendant vertices (if any) be free to move in the direction orthogonal to the
equilibrium position of the graph. Then we impose the Neumann condition at a pendant
vertex with an incoming edge,

(2) V j+

n (t) = V
j+

n+1(t)

and at a pendant vertex with an outgoing edge,

(3) V
j−

0 (t) = V
j−

1 (t).

At an interior vertex vi we impose the continuity conditions

(4) V
j−1
0 (t) = V

j−2
0 (t) = · · · = V

j−
d−(vi)

0 (t) = V
j+1
n+1(t) = V

j+2
n+1(t) = · · · = V

j+
d+(vi)

n+1 (t),

where {j−1 , . . . , j−d−(vi)
} ∈ W−

i ; {j+1 , . . . , j+d+(vi)
} ∈ W+

i and the balance of forces condi-

tion

(5)

d+(vi)∑

m=1

V
(j+m)
n+1 (t)− V

(j+m)
n (t)

ln
−

d−(vi)∑

m=1

V
(j−m)
1 (t)− V

(j−m)
0 (t)

l0
= 0.

Substituting V
j
k (t) = U

j
ke

ipt into (1) – (5) we obtain the following spectral problem:

(6)
U

j
k − U

j
k−1

lk−1
+

U
j
k − U

j
k+1

lk
= −mkzU

j
k ,

(7) U
j+m
n = U

j+m
n+1,

(8) U
j−m
0 = U

j−m
1 ,

(9) U
j−1
0 = U

j−2
0 = · · · = U

j−
d−(vi)

0 = U
j+1
n+1 = U

j+2
n+1 = · · · = U

j+
d+(vi)

n+1 ,
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(10)

d+(vi)∑

m=1

U
(j+m)
n+1 − U

(j+m)
n (t)

ln
−

d−(vi)∑

m=1

U
(j−m)
1 − U

(j−m)
0

l0
= 0,

where k = 1, 2, . . . , n; i = 1, 2, . . . , p; j−m ∈ W−
i ,m = j−1 , . . . , j−d−(vi)

; j+m ∈ W+
i ,m =

j+1 , . . . , j+d+(vi)
and U

j
k is the amplitude of vibrations of the mass mk located on the edge

ej , z = ρ2 is the spectral parameter.

5. Main results

It is convenient to introduce the following solutions of (6):

(11) U
j
k(z) =

Bj −AjQ2n(z)

R2n(z)
R2k−2(z) +AjQ2k−2(z),

where Aj , Bj are constants independent of k and z. These solutions exist for all z which
are not zeros of R2n(z).

In view of (8) and (9), equation (6) for k = 0 implies R−2(z) ≡ 0 while in view of (17)
and (18) equation (15) implies Q−2(z) ≡ 1. Substituting these into (11) we have

(12) U
j
0 (z) =

Bj −AjQ2n(z)

R2n(z)
R−2(z) +AjQ−2(z) = Aj .

In the same way, for k = n+ 1,

(13) U
j
n+1(z) =

Bj −AjQ2n(z)

R2n(z)
R2n(z) +AjQ2n(z) = Bj .

Accounting for (9), (17), (11) and (12), the Neumann condition at a pendant vertex
with an outgoing edge attains the form

U
j
0 (z)− U

j
1 (z) =

AjQ2n(z)−Bj

R2n(z)
= 0.

Using (5), (14), (20), (11) and that ln = l0, the Neumann condition at a pendant
vertex with an incoming edge become

(14) U j
n(z)− U

j
n+1(z) =

Aj − lnB
jR2n−1(z)

R2n(z)
= 0.

Continuity conditions (9) look now as

(15) Aj−1 = Aj−2 = · · · = A
j−
d−(vi) = Bj+1 = Bj+2 = · · · = B

j+
d+(vi) =: Φ(vi).

Balance of forces equation (10) with account of (12), (13), (15) attains the form

(16)

d+(vi)∑

m=1

(lnB
jR2n−1(z)−Aj)−

d−(vi)∑

m=1

(Bj −AjQ2n(z)) = 0.

Using definition (15) of Φ(vj) and (21) we rewrite (16) as follows:

d+(vi)∑

m=1

(lnΦ(vi)R2n−1(z)−Aj)−

d−(vi)∑

m=1

(Bj − Φ(vi)Q2n(z))

=

d+(vi)∑

m=1

(Φ(vi)Q2n(z)−Aj)−

d−(vi)∑

m=1

(Bj − Φ(vi)Q2n(z)) = 0

or

Q2n(z)d(vi)Φ(vi)−
∑

vj∼vi

Φ(vi) = 0.
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Finally, we obtain using the notation ζ = Q2n(z), F = {Φ(v1), . . . ,Φ(vp)}
T , T =

diag{d(v1), . . . , d(vp)} and denoting by A the adjacency matrix of our graph that

(17) ζTF −AF = 0.

Let z0 be not a zero of R2n(z), then it is an eigenvalue of problem (6)–(10) if and
only if ζ0 =: Q2n(z0) is an eigenvalue of the matrix equation (17). This means that the
spectrum of problem (6)–(10) consists of zeros of R2n(z) and of zeros of the polynomials
Q2n(z)− αs, where αs are (s = 1, 2, . . . , p) the eigenvalues of (17).

Since there are no isolated vertices in our graph, i.e., d(vi) ≥ 1 for each vertex, the
matrix T is invertible and there exists T−1/2. Therefore, equation (17) can be rewritten
as

(ζI − Ã)F̃ = 0,

where

Ã = T−1/2AT−1/2, F̃ = T
1
2F.

The spectrum of the matrix Ã consists of p eigenvalues, counting the multiplicities.
Thus, if R2n(zk) 6= 0, then zk is an eigenvalue of problem (6) – (10) if and only if
Q2n(zk) = αs for some s, where αs (αs ≤ αs+1, s = 1, 2, . . . , p) are zeros of the polyno-

mial Pp(z) = det(zI − Ã) of degree p.
This means that the characteristic polynomial of problem (6)–(10) is

φ(z) = R
g−p
2n (z)Pp(Q2n(z)).

Theorem 5.1. The characteristic polynomial of problem (6)–(10) is of the form

φ(z) = R
g−p
2n (z)(Q2n(z)− 1)P̃p−1(Q2n(z)),

where P̃p−1(ζ) is a polynomial of degree p− 1 with P̃p−1(1) 6= 0.

Proof. It was shown in [4] that for the eigenvalues {χk}
p−1
k=0 of the discrete Laplacian

L = I − Ã the following inequalities are true:

0 = χ0 ≤ χ1 ≤ · · · ≤ χp−1 ≤ 2.

It is clear that

χk−1 = 1− zk,

where zk (z1 ≥ z2 ≥ · · · ≥ zp) are eigenvalues of Ã.
Since our graph is connected, its adjacency matrix is irreducible with all elements

being nonnegative. Therefore, by the Frobenius theorem ([10], p. 335), we obtain that
z1 = 1 is simple. Theorem is proved. �

Theorem 5.2. The representation

φ(z) = R
g−p
2n (z)(Q2

2n(z)− 1)Qm
2n(z)P̂ p−m

2 −1(Q
2
2n(z)),

where m ∈ N ∪ {0},m+ p is an odd number, P̂ p−m

2 −1 is a polynomial of degree p−m
2 − 1

with P̂ p−m

2 −1(1) 6= 0, is true if and only if the graph is bipartite.

Proof. Let the graph be bipartite. With an account of the previous theorem we need to
prove that zp = −1.

Since the graph is bipartite, we can attribute the value +1 to the vertices of one part
and −1 to the vertices of the second part. We direct the edges from the vertices with +1
to the vertices with −1.

Let us consider a Neumann-Neumann problem, i.e., the problem generated by (2) with
conditions (10), (13) on one edge.
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It is known ([10]) that according to the Sturm oscillatory theorem the eigenvector
corresponding to the eigenvalue zk changes the sign of its elements k − 1 times. In par-
ticular, it is true for the second eigenvector which we denote by U2 = {u0, u1, . . . , un+1}.
Due to the symmetry of our string we may assume that u0 = 1 and un+1 = −1.

Now placing such eigenvectors on edges of our graph such that u0 appears at each ver-
tex assigned +1 and un+1 at each vertex assigned −1 we obtain an (n+2)q -dimensional
vector

U = (u0, u1, . . . , un+1, u0, u1, . . . , un+1, . . . , u0, u1, . . . , un+1).

This vector is an eigenvector of problem (6) - (10) because, by the construction, it
satisfies (6) on each edge, it satisfies the continuity conditions at the interior vertices
because at these vertices we have v0 = 1 or vn+1 = −1, respectively, on each incident
edge. Moreover, since u0 = u1 and nn+1 = un on all edges, both sums in (10) are equal
to zero, thus, (10) is true. Since un+1 = Q2n(zk)u1 and un+1 = −1 and u0 = 1 we
conclude that for this zk we have Q2n(zk) = −1.

Now let zk be an eigenvalue of problem (6)–(10) and Q2n(zk) = −1. Then by (21),
R2n−1(zk) = − 1

l0
and (22) implies that R2n(zk) = 0. Then any component of the

eigenvector of problem (6)–(10) corresponding to zk, being of the form (Cj,1Q−2(zk) +
Cj,2R−2(zk), Cj,1Q2(zk)+Cj,2R2(zk), . . . , Cj,1Q2n(zk)+Cj,2R2n(zk))

T , attains the values
Cj,1Q−2(zk) = Cj,1 and Cj,1Q2n(zk) = −Cj,1 of the opposite signs. This means that the
graph is bipartite. Theorem is proved. �

Theorem 5.3. Let G be a cyclically connected not bipartite graph with the same edges,
which is not a simple cycle. Let the same even number of masses be placed on each edge
symmetrically with respect to the midpoint of each edge. Then the spectrum of problem
(6)–(10) and the length of an edge uniquely determine the masses {mk}

n
k=1 and the

subintervals {lk}
n
k=0 between them.

Proof. We need to identify the zeros of R2n(z) among all the zeros of φ(z). Each zero

of φ(z) is a zero of at least one of the polynomials Rg−p
2n (z), (Q2n(z)− 1), (Q2n(z)− αk)

(k = 1, 2, . . . , p− 1).
Let {νk}

n
k=1 be the zeros of R2n(z). Then (22) implies

Q2n(νk) = ±1.

Location of the zeros {zk}
n
k=1 of φ(z) is given in Fig. 1.

Figure 1

It is clear that

z1 < z2 ≤ · · · < zp+1 = · · · = zg < · · · ≤ zg+p−1 ≤ zg+p = · · · = z2g+1 < · · · .

Here the zero z1 is the lowest zero of the polynomial Q2n(z)−αp = Q2n(z)−1, the zeros
z2, z3, . . . , zp are the lowest zeros of the polynomials Q2n(z)− αp−1, Q2n(z)− αp−2, . . . ,
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Q2n(z)− α1, respectively. To the right of them, we have a zero of R2n(z) of multiplicity
p − q. Also it is clear that {zkg}

n
k=1 belongs to the set of zeros of R2n(z). Then using

the procedure described in the proof of Proposition 3.2 and the known value of the edge
length we can construct the sequences {mk}

n
k=1 and {lk}

n
k=0. Theorem is proved. �

Corollary. If the conditions of Theorem 5.3 are satisfied and in addition to the spectrum
of problem (6)–(10) and the length of an edge, the number p of vertices is given then we
can find the number of edges g in the graph. If p < 5, then the form of the graph is
determined by these data.

Proof. Using Theorem 5.3 we can find the multiplicity of zg, because

ν1 = zg, ν2 = z2g, . . . , νn = zng.

According to Theorem 5.1 this multiplicity equals g− p. Therefore, knowing the number
of vertices, p, and the multiplicity of zg (= ν1) we can find the number of the edges, g.

Knowing the sequences {mk}
n
k=1 and {lk}

n
k=0 we can solve the direct problem for

an edge and find the characteristic polynomial Q2n(z). Then we can find all αk (k =
1, 2, . . . , p− 1):

αk = Q2n(zp−k+1), k = 1, 2, . . . , p− 1.

In case of p < 5 using αk (k = 1, 2, . . . , p − 1) and αp = 1 we can find the form of the
graph according to [3], Sec. 6.1. �
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